E

el 1)

o] e i e s

THESE

Université
de Toulouse En vue de I'obtention du
DOCTORAT DE L'UNIVERSITE DE TOULOUSE

Délivré par :
Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :
Dynamique des fluides

Présentée et soutenue par:
M. CARLOS PEREZ ARROYO
le mercredi 2 novembre 2016

Titre :

LARGE EDDY SIMULATIONS OF A DUAL-STREAM JET WITH SHOCK-
CELLS AND NOISE EMISSION ANALYSIS

Ecole doctorale :
Mécanique, Energétique, Génie civil, Procédés (MEGeP)

Unité de recherche :
Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (CERFACS)
Directeur(s) de Thése :
M. CHRISTOPHE AIRIAU
M. GUILLAUME PUIGT

Rapporteurs :
M. CHRISTOPHE BAILLY, ECOLE CENTRALE DE LYON
M. PAUL TUCKER, UNIVERSITE DE CAMBRIDGE

Membre(s) du jury :
M. YVES GERVAIS, UNIVERSITE DE POITIERS, Président
M. CHRISTOPHE AIRIAU, UNIVERSITE TOULOUSE 3, Membre
M. GUILLAUME PUIGT, CERFACS, Membre
M. XAVIER GLOERFELT, ENSAM - ARTS ET METIERS PARISTECH, Membre







a mamd y papd






Acknowledgements

I would like to thank my supervisors G. Puigt and C. Airiau for their supervision and support
during this PhD thesis. I would like to express my gratitude to J-F. Boussuge for welcoming
me to the CFD team at CERFACS. I am indebted to G. Daviller for the numerous discussions,
invaluably constructive criticism, his support and guidance offered throughout this work.

I am thankful to the reviewers of this work C. Bailly and P. Tucker and to the members of the
Jury for the PhD Defense Y. Gervais, X. Gloerfelt and A. Savarese, who accepted to evaluate
the present study.

I would like to acknowledge C. Bailly, A. Savaresse and D. Guariglia for the experimental data
that was shared which helped to the realization of this work.

I am sincerely thankful to L. Gefen and R. Camussi for welcoming several times to Universita
degli Studi Roma Tre during this thesis.

I express my warm thanks to my colleagues of the project: T. Ansaldi, S. Bidadi I. de Dominicis,
C. Freitas, L. Gefen, F-J. Granados Ortiz, D. Guariglia, E. Hall, A. Mancini, E. Miguel,
D. Di Stefano and M. Khalil. T am sincerely grateful to them for several collaborations,
technical discussions related to the project and all the good moments that we shared together
over this past three years. In addition, I would like to thank, my colleagues at CERFACS for
their help. In particular, I would like to acknowledge R. Biolchini, S. Le Bras and M. Daroukh
for the many exchanges of ideas and help offered in this thesis process. I would also like to thank
the CSG team at CERFACS and M. Montagnac for their extraordinary technical support. In
addition, I would like to acknowledge the work of the administration team. In particular, I
would like to express my gratitude and appreciation to M. Campassens, M. Labadens and
C. Nasri.

This research project would not have been possible without the economical support frrom the
Marie Curie Initial Training Networks (ITN) AeroTraNet 2 of the European Community’s
Seventh Framework Programme, under contract number PITN-GA-2012-317142. This work
was performed using HPC resources from CERFACS and GENCI - [CCRT/CINES/IDRIS]
(Grant 2016-[x20162a6074]). The author acknowledges Onera for licensing CERFACS to use
the code elsA.

Finally, I would like to thank my family and all my friends, old and new. Thank you for
sharing many memorable moments.






Contents

Nomenclature v

Preamble ix

1 Aerodynamics and aeroacoustics of subsonic and supersonic jets 1
1.1 Acoustic analogy: a look into the past . . . . . ... ... . ... ... ... 1
1.2 Dynamics of jets . . . . . . . L 5
1.3 Aeroacoustics of supersonic jets . . . . . . ... 8

1.3.1 Mixing noise . . . . . ..o 9
1.3.2 Shock-associated noise . . . . . . . . . ... 11
1.3.3 Dualstreamjets . . . . . . . .. 17
1.4 Computational aeroacoustics . . . . . . . .. .. 20
1.4.1  Direct computation of sound . . . . ... ... 0oL 20
1.4.2 Hybrid methods . . . . .. .. .. 22
1.5 Reduction of jet noise . . . . . . . ... 23
1.5.1 Fluidic injection . . . . . . .. .. 23
1.5.2  Geometrical nozzle alteration . . . . . .. ... ... 0. 24
1.5.3 Shielding of noise . . . . . . . ... 26
1.6 Summary and perspectives . . . . . . .. .. 27

2 Numerical schemes for the Navier-Stokes equations 29
2.1 Governing equations and finite volume discretization . . . . . . . ... ... .. 29
2.2 Numerical discretization of the convective fluxes . . . . .. .. ... ... ... 32

2.2.1 Basescheme . ... ... . .. ... ... 32
2.2.2  Spatial filtering . . . . . ... 32
2.3 Shock-limiting technique . . . . . . . . . .. ... .. 33
2.4 Numerical discretization of the diffusive fluxes . . . . . . .. ... ... ... .. 34



4

2.5 Spatial discretization at the walls . . . . . .. .. .. ..o 0oL
2.6 Spatial discretization at the block interfaces . . . . . . . . ... ... ... ...
2.7 Aeroacoustic treatments at the inflow and outflow boundaries . . . . . . . . ..
2.7.1 Characteristic boundary conditions . . . . . . ... ... ... ...
2.7.2 Radiative boundary conditions . . . . . ... ... 0oL
2.7.3  SpONge zomes . . . ... ..o e
2.7.4 Turbulence forcing . . . . . . ...

2.8 Summary and perspectives . . . . .. ...

Large eddy simulation methodology for jet noise computations

3.1 Mesh generation . . . . . .. . L L

3.2 Large eddy simulation procedure . . . . . . .. .. .. ... .. ...
3.2.1 Two-step procedure . . . . . . . . ...
3.2.2 Dataextraction . . . . . . ...

3.3 Standard post-processing techniques . . . . . . ... ... ... ...
3.3.1 Acoustic far-field characterization . . . . . . . . ... ... ...
3.3.2 Hydrodynamic-acoustic filtering . . . . . .. .. ... 0oL
3.3.3  Azimuthal decomposition . . . . . . ...

3.4 Summary and perspectives . . . .. ... Lo

Wavelet-based signature identification procedure

4.1 Continuous wavelet transform . . . . . . .. . ... ... oL

4.2 Event detection . . . . . . . ...
4.2.1 Local intermittency measure . . . . . . . . ... ... ... ... ...
4.2.2 Significance levels . . . . ... oL

4.3 Conditional average . . . . . . . .. L

4.4 Parametrization of the procedure . . . . . . . . .. ... L.
4.4.1 Effect of the mother wavelet and the event detection procedure . . . . .
4.4.2 FEffect of the sign discrimination and the filtering . . . . . . . ... ...
4.4.3 Effect of the filtering . . . . . . . . ... oL

4.5 Scale selection procedure . . . . . .. ...

4.6 Summary and perspectives . . . .. ..o

Supersonic under-expanded single jet
5.1 LES configuration . . . . ... .. ...

5.1.1 Case conditions . . . . . . . . .,

ii

47
47
50
50
52
53
53
54
57
59

61
61
66
66
66
67
67
69
71
71
73
80



5.1.2  Mesh definition . . . . . . ... Lo o
5.1.3 Simulation parameters . . . . . . . .. ... L
5.1.4 Dataextraction . . . . . . ... oL
5.2 Experimental setups . . . . . .. .. L
5.3 Analysisofresults . . . . . .. . ..
5.3.1 Aerodynamic field . . .. ... .. L
5.3.2  Acoustic-hydrodynamic filtering in the near-field . . . . .. ... .. ..
5.3.3 Far-field acoustic field . . . . . . .. ... ...
5.3.4 Azimuthal modal analysis . . . . . ... ... ... 0oL
5.3.5  Power spectral density axial distribution . . . . . ... .. ... ...
5.3.6  Wavelet analysis . . . . . . .. L o
5.4 Summary and perspectives . . . . . ...
Supersonic under-expanded dual stream jet
6.1 LES configuration . . . . . . .. . .
6.1.1 Case conditions . . . . . . . ...
6.1.2 Mesh definition . . . . . . ...
6.1.3 Simulation parameters . . . . . . .. .. .o oL
6.1.4 Dataextraction . . . . . . . ... Lo
6.2 Experimental setup . . . . . . . ..
6.3 Analysisof results . . . . . . . ...
6.3.1 Aerodynamic field . . . . ... ...
6.3.2 Acoustic-hydrodynamic filtering in the near-field . . . . . ... ... ..
6.3.3 Far-field acoustic field . . . . . .. ... ...
6.3.4 Power spectral density axial distribution . . . . . .. .. ..o
6.3.5 Wavelet analysis . . . . . . . . . ... .
6.4 Summary and perspectives . . . . . ...
Towards a new shock-capturing technique for aeroacoustics
7.1 Review of shock-capturing techniques . . . . . . ... ... .. .. ... ....
7.2 Adaptive shock-filtering methodology . . . . . . . . . . . . . ... ... ... ..
7.2.1 Estimation of the filter strength . . . . . ... ... .. .00
7.2.2  On the nonlinear dissipative lux . . . . . .. .. ... ... ... ....
7.2.3 Optimization of the shock filter . . . . . . . . ... ... ... ... ...
7.3 Canonical test-cases . . . . . . . ...

iii


http://oatao.univ-toulouse.fr/16684/

7.3.1 Shock tube problem . . . . .. ... oo
7.3.2 Shu-Osher problem . . . . . . . . ... ...
7.3.3 Shock vortex interaction problem . . . . . .. .. .. oo
7.3.4 Shock/shear layer interaction . . . . . . .. ... ... L.
7.4 Application to supersonic jets . . . . . . . ...

7.5 Summary and perspectives . . . . . .. ... e
General conclusions and perspectives
A Second order moment azimuthal mean

B Azimuthal signal aliasing
B.1 Analysisofresults . . . . . .. ...
B.1.1 NF3D probes analysis . . . . .. .. .. ... ... .
B.1.2 NFI1D probes analysis . . . . .. .. .. ... ... ... ...
B.1.3 LIPS probes analysis . . . . .. .. .. ... ... ... ... ...
B.1.4 LIP_P probes analysis . . . . .. .. ... ... ... ...

B.2 Summary and conclusions . . . . .. ... Lo
C Collaborations and related publications

References

iv

211

217

219
220
220
228
231
236
241

243

245


http://oatao.univ-toulouse.fr/16684/

Nomenclature

Subscript and superscript symbols

8&\;%%:5% hm.mmgo@

Acoustic component

Convective value

Critical value

Values at the exit of the nozzle
Hydrodynamic component

Design or perfectly expanded conditions
Referenced to the left side

Referenced to the primary nozzle
Referenced to the right side

Referenced to the secondary nozzle
Total values

Values at the throat of the nozzle
Fluctuations of x with respect to the mean value
Value defined at quiescent conditions

Greek symbols

g

Y
d(z)

SS) >
T > > = E::

Href

Tr
Tij

Yo(n)

Shock parameter

Polytropic coefficient

Dirac delta defined at x

Kronecker delta defined as 1 if ¢ = j or 0 otherwise
Time-step

Measured angle with respect to the jet direction
thermal conductivity

Wayvelength

Laminar thermal conductivity

Molecular dynamic viscosity

Reference molecular dynamic viscosity for Sutherland’s Law
Density

Translation parameter

Retarded time

Reynolds stress tensor in Einstein notation

Mother wavelet

Angular frequency



Roman symbols

s <ogdes 8SN
= _
S5

=i

»

Speed of sound

Area

Specific heat at constant pressure

Specific heat at constant volume

Diameter

Specific kinetic energy

Specific internal energy

Specific total energy

Vector of convective fluxes in the x direction

Vector of viscous fluxes in the x direction

Frequency

Equivalent Frequency with respect to a scale

Vector of convective fluxes in the y direction

Vector of viscous fluxes in the y direction

Vector of convective fluxes in the z direction

Vector of viscous fluxes in the z direction

Helmholtz number

Identity matrix

wavenumber

Typical length-scale

Shock-cell length

mass flow rate

Mach number

pressure

Prandtl number

heat conduction vector

Gas constant

Cross-correlation of the variable a with b

Reynolds number

Scale

Strouhal number

Equivalent Strouhal number with respect to a scale

Temperature

Lighthill tensor

Reference temperature for Sutherland’s Law

velocity vector composed by (u1,ug,us) or (u,v,w)

Vector of conservative variables

Vector of cell-averaged conservative variables

Cell-averaged component of the conservative variables

Filtered component of the conservative variables

Volume

Wavelet transform

Vector of primitive variables

Vector of cell-averaged primitive variables

Filtered vector of primitive variables

Space vector composed by (x1, z2,x3) or (x,y, 2)
vi



Acronyms

BBSAN
CAA
CFD
CNPR
DCS
DNS
DOG
DRP
FNPR
FWH
LES
LIM
NPR
NLDE
OASPL
PSD
PSE
RANS
SCN
SPL
URANS

BroadBand Shock-Associated Noise
Computational AeroAcoustics
Computational Fluid Dynamics
Core Nozzle to Pressure Ratio
Direct Computation of Sound
Direct Numerical Simulation
Derivative of a Gaussian
Dispersion-Relation-Preserving
Fan Nozzle to Pressure Ratio
Ffowcs-Williams and Hawkings
Large Eddy Simulation

Local Intermittency Measure
Nozzle to Pressure Ratio
Non-Linear Disturbance Equations
Overall Sound Pressure Level
Power Spectral Density
Parabolized Stability Equations
Reynolds Averaged Navier-Stokes
Shock-Cell Noise

Sound Pressure Level

Unsteady Reynolds Averaged Navier-Stokes

vii



viii



Preamble

Background

Noise is defined as a loud or unpleasant sound. In aviation, even though a small fraction of the
energy required by the propulsion systems of an aircraft is transformed into sound, that fraction
represents a large power source. Over the last decades, aircraft noise has been an increasing
annoying phenomena that affects our health and environment. The noise encountered in the
surroundings of an airport affects our quality of life and generally disturbs activities related
to speech communication and sleep. Moreover, it might have adverse effects on the heart rate
and blood pressure. Several studies reported in [1] suggest that aircraft noise alters children
development in reading comprehension. Noise also affects our ecosystem giving prevalence
to species adapted to urban environments [2]. All the projections show that the growth of
passengers at the airports and the number of operations per day will continue to increase.
Furthermore, changes in regulations make it possible for new accommodations to be built in
the vicinity of the airports. Overall, the noise perceived by the population will grow unless
the technology is improved and the laws are prepared for the future.

For this purpose, in 2001, the Advisory Council for Aeronautics Research in Europe (ACARE)
developed a path to guide the development goals for 2020 [3] with the support of several
aeronautic stakeholders and governments. Among all the objectives of this agreement, the
main goals regarding the environment were: the reduction of perceived noise by one half of
current average levels, and a 50% and 80% cut per passenger kilometer in C'Oy and nitrogen
oxide emissions respectively. These objectives were revisited in 2012 with the publication of the
FlightPath 2050 [4]. A new goal was established for 2050 for a reduction of 65% in perceived
noise relative to the year 2000. For this matter, investigations about noise have been a case
of intensive study for the past 15 years.

The studies carried out in order to reduce aircraft noise are not only focused on the noise
radiated to the surroundings of the airports (ground noise) but also on the noise that is
propagated to the interior of the cabin. Crew and passengers are affected by cabin noise in a
daily basis. The repercussions are of course linked to the flight time, having a lesser impact
for short flights. The noise that is transmitted into the cabin can be classified in three groups.
The first group is the noise that is generated aerodynamically on the exterior of the aircraft
and then propagated into the cabin throughout all the flight time. This noise named airborne
noise, usually comes from the boundary layer formed around the aircraft and also from the
exhaust jet of the engines. The second group called structure-borne noise categorizes the noise
that is transmitted via direct vibrations from the propellers, turbines, compressors and other
systems. The third group gathers all the noise sources that appear only during a short period
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of time like the noise generated by the landing gear, the gearboxes or the hydraulic systems.
Nonetheless, the noise as a nuisance is not the only factor to be taken into account to seek for
a reduction in aircraft noise. From a structural point of view, sonic fatigue can appear in the
thin surfaces of the aircraft produced by the high frequency noise radiated from the engines,
specially in military applications [5].

Framework

This PhD thesis is enclosed in the AeroTraNet2 Project, a Marie Curie Action of the European
Commission’s 7th Framework Programme (FPT7) between several laboratories and researchers
around Europe. The project aims at generating a ready to use model for shock-cell noise
characterization. Shock-cell noise is a distinctive noise that appears in industrial turbofans at
off-cruise design flight conditions. Six academic partners collaborate to address the common
objective of modeling shock-cell noise in a wide-body aircraft engine configuration from private
sector partner Airbus France, by shock-tolerant numerical modeling for under-expanded jets
(University of Leicester), large eddy simulations for turbulent jets with weak shocks (CER-
FACS), advanced flow-noise correlations (Universita degli Studi Roma Tre), jet and near-field
noise experiments (von Karman Institute for Fluid Dynamics), reduced-order modeling and
flow control (Institut de Méchanique des Fluides de Toulouse, IMFT-INP), and advanced
laser-based measurement techniques (the Italian Ship Model Basin, CNR-INSEAN). Knowl-
edge output is synthesized through a dedicated knowledge capturing program by the University
of Greenwich, which is used by private sector partner General Electric. In AeroTraNet2, the
research output becomes itself object of knowledge management research, which is a novel
supra-disciplinary element. AeroTraNet2 is the successor of AeroTraNet project which studied
the unsteady flow in airframe fuel vents.

This project is part of the actual effort of the community to study aircraft noise. For this
purpose, AeroTraNet2 investigates three complementary approaches in a collaborative envi-
ronment. The first one is a pure mathematical view of the problem. However, due to the large
non-linearities of the flow, it is not always possible to reduce a physical model to an analytical
one. The second option is based on experimental studies carried out in the laboratory. They
are costly and even though the acquisition time is large, the measured locations are restricted
to the investments in the facility. On the other hand, numerical simulations are able to cap-
ture the flow at any point of space assuming available data storage capacity. In contrast to
experimental studies, due to simulation time restrictions, the numerical computations have a
small acquisition time.

Objectives

The global objective of the thesis is to study numerically the physics behind shock-cell noise
generation as a first step to design new noise attenuation devices for jet noise in aviation. To
that end, aeroacoustic Large Eddy Simulations (LES) of supersonic under-expanded axisym-
metric jets are carried out with a high-order solver based on a compact scheme.

Under-expanded jets are characteristic for the formation of a shock-cell structure. Due to a
mismatch in pressure at the exit of the nozzle, a system of expansion and compression waves,
known as shock-cells, are generated inside the jet which are responsible for shock-associated



noise. The high-order compact schemes used in this work, have been validated for subsonic
jets [6]. However, the behavior of such schemes in supersonic jets is an open question. On
one hand, high-order compact schemes suffer from high-frequency oscillations in shock-free
turbulent regions which are dissipated by the addition of a spatial filter. On the other hand,
this dissipation is insufficient to capture strong discontinuities in the flow-field such as shocks.
As a result, unphysical oscillations referred to as Gibbs’ phenomena are generated that increase
numerical instabilities and contaminate the solution [7]. The first objective of this thesis is to
validate the numerical schemes for the aeroacoustic simulation of a supersonic under-expanded
single jet.

Following the validation, the complexity of the case of study is increased with the computation
of a configuration representative of a modern industrial turbofan. In cruise flight conditions,
the exhaust of the turbofan engine can be under-expanded and present a similar system of
shock-cells than the one obtained for a single jet. Due to the fact that the gases of the primary
stream go through the combustion chamber, its temperature is higher than the one encountered
in the secondary stream. For this reason, it is most likely to find the shock-cell structure in the
secondary stream. The second objective is to carry out an LES of a dual stream configuration
with the secondary stream under-expanded.

The aerodynamic and acoustic fields obtained from an LES of a jet have to be analyzed in
detail in order to study the physics concerning the generation of noise. Common analysis
techniques can be used to extract the characteristic length-scales of the aerodynamics and the
spectra of the acoustics. As a third objective, the results employing advanced post-treatment
techniques are analyzed to gain a new insight into shock-cell noise. The objectives of the thesis
are summarized in three key points:

e Validation of the current high-order schemes for a supersonic under-expanded single jet.
e Large eddy simulation of a dual stream jet representative of an industrial turbofan.

e Analysis of the physics of shock-cell noise with advanced post-treatments.

Outline

The manuscript is structured as follows. Chapter 1 introduces the reader to the history of
aeroacoustics, the dynamics of jets and the physics behind supersonic jet noise. At the end
of this chapter, a bibliographical research about computational aeroacoustics and jet noise
reduction techniques are presented. Chapter 2 explains the numerical schemes implemented in
the solver for aeroacoustic simulations. Chapter 3 familiarizes the reader with the methodology
followed in this work for aeroacoustic large eddy simulations of supersonic jets. This chapter
includes a description of the mesh generation, the computation and standard post-treatment
techniques. Chapter 4 describes a wavelet-based analysis that is used to investigate the main
characteristic features of a jet and its acoustics. Chapter 5 and Ch. 6 detail the large eddy
simulation of an under-expanded single and dual stream jet respectively with a focus on the
physical analysis of shock-cell noise. Some numerical concerns exposed in Ch. 6 are treated in
Ch. 7 with the development of a new shock-capturing technique adapted to high-order compact
schemes. Last, the conclusions and perspectives of this work are presented.
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Chapter 1

Aerodynamics and aeroacoustics of
subsonic and supersonic jets

Aeroacoustics is the branch of the acoustics that is concerned with the sound generated by
aerodynamic forces or motions originated in a flow. The sound generated by externally applied
forces or classical acoustics such as the sound generated by the vibrating string of a guitar
does not fall into this category. The study of the aerodynamics of jets is essential for a better
understanding of the underlying phenomena responsible for the generation of aerodynamic
sound. The study of aeroacoustics is closely related to the aerodynamics not only because
the generation of sound is made by the turbulent motion of the flow but also because the
sound perturbations interact with the flow itself. Therefore, the study of aerodynamic sound
generated by jets has to be linked with the aerodynamics.

This introductory chapter presents the history of the dawn of modern aeroacoustics and its
relation to jets. First, an overview of the acoustic analogies is given in Sec. 1.1. Second, Sec. 1.2
explains the dynamics of supersonic under-expanded jets. Third, in Sec. 1.3, the aeroacoustics
of the jets is presented in a chronological way. A bibliographical survey of computational
aeroacoustics for jets is summarized in Sec. 1.4. Then, some insight is given to the actual
under-development technologies for reduction of jet noise in Sec. 1.5. Last, the chapter ends
with a summary and perspectives.

1.1 Acoustic analogy: a look into the past

The history of modern acoustics started with the compendium about the theory of sound
written by Lord Rayleigh [8, 9] at the end of the 19th century. Even though the compendium
is based on the work of many authors, it helped in the unification of the knowledge related
to sound phenomena and set the basis for further studies. In fact, it is only the chapter XXI,
with the study of a vortex sheet and sensitive jets that is closely related to jet noise. However,
Lord Rayleigh already highlighted the importance of such topic as seen in the following quote
that corresponds to the beginning of the chapter:

“A large and important group of acoustical phenomena have their origin in the
instability of certain fluid motions of the kind classified in hydrodynamics as steady
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[...] These phenomena are still very imperfectly understood; but their importance
is such as to demand all the consideration that we can give them.”

Despite the fact of this early document, the publication of Lighthill in the fifties [10, 11] and
later on in 1962 [12] gives the first theoretical approach to the sound generated aerodynamically.
The aerodynamic noise is the noise generated by the flow itself without the help of vibrating
solid boundaries. Lighthill based his studies on the fact that the theory of sound should
be based in terms of mass density, p, and momentum density, pu, where u stands for the
flow velocity vector, u = (uy,us,u3) = (u,v,w), in the Cartesian coordinates x (where x =
(x1,29,23) = (2,v,2)). The equations relate the change of mass or momentum in a small
volume to the total mass transport or momentum transport out of the volume as

dp  Opu;) d(pu;) n O(puiuj + pdij;)

o om Y Tar oz,

=0, (1.1)

where p is the pressure, and % is the partial derivative with respect to time t. Here, the
subscripts {e};, {e}; and {e};, follow the Einstein notation and ¢;; is 1 when i = j and zero
otherwise. In the previous equation (1.1), pu;u; represents direct convection of the momentum
component pu; by the velocity component u;, while p is the stress between adjacent elements
of fluid, which equally transfer momentum. Equation (1.1) yields the standard equations of
acoustics when an isotropic pressure is considered, i.e., the pressure variations are linked to
the density variations by the square of the velocity of sound a as

dp 9
— = 1.2
apl, ~ 12)

which is approximated to a2, for a uniform flow and small perturbations characteristic of the
undisturbed fluid noted by the subscript {e}. Starting from Eq. (1.1), using an isotropic
pressure and assuming small perturbations, the transformed equations read as

dp | 9(pui) Ipui) o Op
i — = 1.3
o " om0 Tar Teay, 0 (1.3)
so that the density p satisfies the standard wave equation
Pp 5 Pp
— —5 = 0. 1.4
gz Tz = Y (14)

However, without making any approximation, the equations can be divided into two parts:
first, the acoustic term, agopéij, and second, the remainder, which can be written as

Tij = puv; + (p — pasy)dij. (1.5)

This term appears in the right hand side of the momentum equation as

dp | Apu)  Opui) L2 Op 0Ty

bt — = : 1.6
o " om0 ot 0w, ox (16)
Equation (1.6) can be reformulated as an inhomogeneous wave equation as
0? 0? oT;;
9P 290 _ i (1.7)

oz "Xoz?  Oxj’
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where the term on the right hand side represents noise sources as an external forcing to the
wave equation Eq. (1.4).

If the same derivation is carried out in the Navier-Stokes equations (full formulation shown in
Ch. 2), the stress tensor T;; will account as well for the viscous terms as

Ty = puiuj + (p — paz,)dij — Tij, (1.8)

where viscous stresses are defined as

- 81% 8uj 2 8uk B

and p is the molecular viscosity.

The impact of the work of Lighthill made the term T;; to be known as the Lighthill tensor.
The term pu;u; of the Lighthill tensor corresponds to the noise generated by the fluctuations
of turbulence. The second term (p — paZ,)d;; identifies the noise associated to temperature
fluctuations. Finally, the last term 7;; characterizes the noise from viscous dissipation. For
low Mach number high Reynolds number unheated flows, the viscous stresses can be ignored
and the density can be set to p = poo, simplifying the Lighthill tensor to T;; = poou;u; with a
proportional error of the order of the square of the Mach number. This publication meant the
beginning of the Acoustic Analogy Theory, extensively used nowadays to propagate sound to
the far-field.

The source term %ngj of Eq. 1.7 involves second spatial derivatives that behave in noise
emission as quadrupoles. Noise sources can be usually decomposed in three types, monopole,
dipole and quadrupole sources, which corresponds to three ways to generate acoustic radiation.
The monopole sources are the simplest and more effective way of producing sound. They
represent a volumetric variation of the flow from a pulsating compact sphere. The dipole, is
seen as a vibrating compact sphere of constant volume or by two monopoles of opposite phase.
Either way, this source does not generate sound by feeding new fluid into the flow but by its
vibration, which makes it a less efficient sound source than the monopole. Finally, the most
well-known multipole, the quadrupole, consists in 2 dipoles usually positioned in an array of
2 by 2 with asymmetric phase.

Equation 1.7 can be solved analytically by means of applying the free-space Green function

1

where 0 is the Dirac delta and 7, is the retarded time defined as
=t (1.11)

Goo

and r is the distance between the emission x and the observation points y such that r = |x — y/|.
The density fluctuations p’ of the field can then be expressed as

1

dmaZ r

dy

0?
/ —_— J— —_— .
P (X,t) =p— poo = s / T;j (y,7r) . (1.12)
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Equation (1.12) can be simplified for a point far enough from the flow compared to a typical
wave-length. In that case, the differentiation #{;_ can be directly applied to T;;, giving
10T

1 (i —yi)(xj —y;) 1 9
POty =ppem o [ x_yP  aLoplimdy (L13)
o0 o0

One of the most known results from Lighthill [10] is the dimensional analysis to estimate
the aerodynamic sound production. By considering low Mach number high Reynolds number
similar flows with a typical velocity U, a typical length £ and the other constants of the gas, the
Lighthill tensor T;; is proportional to pooU?. If the fluctuations are generated by instabilities
rather than by any direct external perturbations, the dominant frequency of the problem will
be proportional to £/U. Therefore, the density variations at a far distance = from the origin
of the perturbations (Eq. (1.13)) are proportional to

111 /U\? U\
ﬂa<£)%Wﬁ=%<). (1.14)

2 2
a5, T ag, oo/ T

The intensity of sound is proportional to a2, /ps and can be expressed as

3
I(z) = 2262 (p(x,1)), (1.15)
Poo
where 02 (p) is the variance of the density p also expressed as (p — p)2 and known as the mean
square fluctuation. If the dimensional analysis of Eq. (1.14) is applied to the intensity of sound
shown in Eq. (1.15), one concludes that the intensity of sound is proportional to

O <£)2, (1.16)

5
a3, \x

and consequently, the acoustic power is proportional to ps,U8a>¢%2. This proportionality
relation is known as the U® power law. This dimensional analysis establishes that the acoustic
power radiated by a jet increases as the eighth power of the jet characteristic velocity, i.e. the
jet exit velocity.

The quadrupoles (noise sources) are transported downstream with the flow which has an impact
on the directivity of the jet noise. Taking into consideration a limited source volume, and a
Doppler factor for a moving observation point, the proportionality relation for the intensity of
Eq. (1.16) is modified by a factor |1 — M cos 9|75, where 0 is the angle measured with respect
to the direction of motion. Per contra, at supersonic speeds, this factor becomes singular when
M cos® = 1. At this condition, the quadrupoles are heard independently [13].

The Lighthill analogy was improved by Ffowcs-Williams and Hawkings [14] to account for
this effect specially important for very high speed jets. His work led to a modification of the
exponent in the acoustic power law. For high speed flows (Mach number higher than 3), the
acoustic intensity becomes proportional to

me3<ﬁ)2. (1.17)
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Moreover, due to the non-uniformity of the jet, the waves undergo refraction. This deviation
impacts the directivity by the generation of a relative quiet zone downstream, known as the
‘cone of silence’. Lighthill’s analogy was later modified by Lilley [15], using the Euler equations
as a wave operator to take into account the refraction effects. The acoustic analogies are
globally used nowadays to propagate the noise to the far-field. In this work the analogy of
Ffowces-Williams and Hawkings [14] is applied in order to propagate the noise generated by
supersonic under-expanded jets to the far-field (see Sec. 3.3.1). The next section presents the
dynamics of the jets and its associated noise.

1.2 Dynamics of jets

Jets consist in a flux of flow caused by a difference in pressure. This section explains the
different jet topologies according to the Ap between the reservoir or the stage before the
nozzle, and the ambient pressure encountered where the jet is issued as shown in the sketch
of Fig. 1.1.

dA
A <0 %‘ <0 %‘ >0
Nozzle Exit / Throat Throat
Pamo Py Pamb
Reservoir Convergent Reservoir Convergent Divergent Exterior
section section section

(a) (b)

Figure 1.1: Sketch of a jet issued from a (a) convergent nozzle and a (b) convergent-divergent
nozzle

The topology itself depends on the difference in pressure and also on the shape of the noz-
zle. The nozzles are divided in three categories, convergent nozzles, divergent nozzles and
convergent-divergent nozzles. Combining the equation of conservation of mass and momen-
tum, the isentropic relations and the cross-sectional area A, one obtains

du  dA
1—M?*)— = — 1.18
(1-m3)% =2 (118)
where u is the cross-sectional average velocity and M the Mach number. This equation tells

that convergent nozzles (% < 0) are able to accelerate a subsonic flow (M < 1) up to

maximum, the sonic velocity at the throat or the most convergent section of the nozzle (% =
0). A supersonic flow (M > 1) would decelerate with the same shape. The contrary effect
occurs for divergent nozzles where % > 0, the subsonic flow decelerates, and the supersonic
flow accelerates. Taking these behaviors into account, the convergent-divergent nozzle known
as de Laval nozzle, can accelerate a flow from rest at subsonic conditions up to the throat of
the nozzle, where it reaches the sonic Mach number of one, and then continues to accelerate in

the divergent region to a supersonic Mach number. This opposite physical behavior appears



due to the fact that in a subsonic flow, the density remains moderately constant so that the
decrease in area in a convergent nozzle produces an increase in velocity in order to conserve
the mass flow. On the contrary, in a supersonic flow, both the density and velocity change.
In a divergent nozzle, the velocity increases and the density decreases as the area is increased
for a supersonic jet. This section focuses on jets issued only from convergent nozzles, more
information about the other topologies can be found in [16].

As mentioned above, the difference in pressure has an impact on the development of the jet.
The nozzle pressure ratio (NPR) is defined as

NPR = pi/poo, (1.19)

that is the ratio between the reservoir or total pressure p; and the ambient pressure po,. Four
different topologies can be found depending on this parameter and on the exit pressure at the
nozzle exit pe:

e Perfectly expanded p. = p with subsonic exit;
e Perfectly expanded p. = poo with sonic exit;
e Under-expanded p. > po with sonic exit and shock-cell formation;

e Under-expanded p. > ps with sonic exit, shock-cell formation and the appearance of a
shock-disk.

The first case is the one of a subsonic jet (the exit Mach number is lower than 1). Under these
conditions, the exit pressure is equal to the ambient pressure and thus it is perfectly expanded.
If the reservoir pressure is increased, the exit Mach number M, will increase as well following
the isentropic relation i

Pt Pt =1, 9\ 1

b_b <1+ ] Me> , (1.20)
if the energy losses are not taken into account. The symbol + stands for the specific heat ratio.
In a convergent nozzle, the Mach number will continue to increase until M, = 1 is reached at
the exit. At this point, a sonic exit with the exit pressure equal to the ambient pressure. At
these conditions, and assuming v = 1.4, the NPR reaches the critical value

1 NG N =2
NPR,, = Pt — (1 n 'VQMQ) o (ﬁ) T~ 1.8929, (1.21)
oo

and the Mach number M inside the nozzle is entirely defined by the geometry as
A 1 [ 2 y—1_,\\G-D
—=——(1+—M 1.22
A, M('y+1<+ 2 )) , (1.22)

where A, is the area at the nozzle exit plane. Similarly, the mass flow rate 7 is deduced from
the isentropic relations as

A 1 By
i = pud = P22 (1 + 72M2> o (1.23)
at

6



where a; is the sound speed computed with the total temperature T;. The maximum mass
flow rate is achieved for a choked nozzle where M = 1. The expression reduces to

A — 1\ A
= Pe 2 (1 + L) Y P 8102 (1.24)
ag 2 Qg
where A was substituted by A. because for a convergent nozzle, M = 1 can only be reached
at the nozzle exit.

Up to this point, the flow was expanding and accelerating in order to reach the ambient
pressure. On the third case, as the Mach number cannot increase above 1 (due to the flow
behavior in convergent nozzles), and therefore, cannot expand up to peo, a further increase
in the reservoir pressure will imply a mismatch in the exit pressure with p. > poo. The
jet is then said to be under-expanded. Under these conditions, the only physical way that
the flow expands to the ambient pressure is via an expansion fan which appears at the exit
plane. The expansion waves of the expansion fan bounce in the symmetry plane and are
reflected as compression waves. The compression waves are reflected again in the shear-layer
of the jet as expansion waves, creating a system of shock-cells as shown in Fig.1.2 (a). These
quasi-periodical structures are repeated inside the potential core that is being absorbed by the
shear-layer developed around the jet.

(b)

Figure 1.2: (a) Ezperimental shock-cell pattern generated by a M; = 1.15 from André [17].
(b) Shock-cell pattern and shock-disk generated by a M;j = 1.5 from André [17].

Despite this fact, a design Mach number M; or, the Mach number that would be achieved if
the flow could perfectly expand to ambient conditions can be defined with the NPR as

J2 v—1 71
, _ X
NPR = 2t — (1 + TMf) , (1.25)

P
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where the subscript {e}; denotes the conditions of a perfectly expanded jet also referred to as
design conditions. In a similar fashion, the other flow variables can be defined. The perfectly
expanded temperature 7} is determined as

1; y—1 2) -
22— (1 M:? 1.26
2= (1) (1.26)
where T} is the total temperature or reservoir temperature which is kept constant up to the
end of the potential core of the jet. The perfectly expanded velocity U; is defined with M; as

Uj = M;\[7RT;, (1.27)

where R is the gas constant and the density p; is computed using the perfect gas law p = pRT'

as
_ Peo

= . 1.28
i (1.28)

Pj
One needs to remember that the perfectly expanded conditions can be only reached if a

convergent-divergent nozzle is employed because the flow cannot go over M, > 1. The diameter
D; at the exit of the perfectly expanded divergent nozzle can be computed as

v—1 437“1)
— 2 i 1

Dith_ 14_77_1 M;
2

(1.29)

where Dy, is the diameter at the throat of the convergent-divergent nozzle. If the total pressure
is further increased, a normal shock appears at the end of the first shock-cell as shown in
Fig. 1.2 (b). This work focuses on the noise generated by weakly under-expanded jets with
the formation of a shock-cell structure. The noise generated by the different topologies is
explained in detail in the next section.

1.3 Aeroacoustics of supersonic jets

Aeroacoustics of jets have been extensively studied for many years. The physics behind the
noise radiated by subsonic and supersonic jets, the effect of Reynolds number, the influence of
temperature and co-flow have been investigated in order to develop new technologies able to
attenuate the noise in the aeronautical and aerospace fields. This section explains the physics
of supersonic jet noise. The sources of aerodynamic supersonic jet noise can be grouped into
two categories: jet mixing noise and Shock-Cell Noise (SCN). The first one can be found in all
jet topologies illustrated in Sec. 1.2, however, shock-cell noise can only appear when shocks
are developed. The difference in the nozzle exit pressure and the ambient pressure drastically
changes the generation of sound of a jet. The typical spectrum at the upstream direction for a
supersonic under-expanded jet is shown in Fig. 1.3. The mixing noise, also found in subsonic
jets, can be easily distinguished from the shock-associated noise having an amplitude about
10 dB lower and a dominant frequency of one order of magnitude inferior with respect to the
SCN.
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Figure 1.3: Typical far-field supersonic jet noise spectrum at 150° from the downstream direc-
tion, from Seiner et al. [18].

1.3.1 Mixing noise

Turbulence and free shear flows were intensively investigated in the seventies [19, 20, 21].
The researchers found that turbulence of free jets was composed by two different scales, the
fine-scale turbulence and the large turbulence structures. Later on, it was deduced that the
large structures were important jet noise sources in supersonic jets. In order to study the
jet mixing noise, a mathematical description of the fine-scale and large turbulence structures
was necessary. Tam et al. [22] developed the stochastic instability wave model. According
to this theory, the large turbulence structures can be composed of a linear combination of
the hydrodynamic stability modes of the flow. The eddies generated near the nozzle exit are
convected downstream, growing, but keeping a coherent form over a typical size of the jet
diameter. This is equivalent to a pressure instability wave expressed for simplicity as

p = Ae’hr=h), (1.30)

where w is the angular frequency of the jet, & the wavenumber and A the amplitude. The
instability acts as a wavy wall with the same wavenumber and frequency [23]. The wavy
wall analogy represents a wall with a small sinusoidal oscillation in height moving parallel to
its surface. If the speed of the surface is less than the ambient speed of sound as in the
fluid above, the pressure fluctuations will decay exponentially with the distance from the wall.
However, if the phase velocity or propagation speed of the wavy wall w/k is supersonic with
respect to the ambient sound speed, noise will be radiated as Mach waves at an angle

1
= — 1.31
0 arccos<M>, (1.31)

Cc

where M., is the convective Mach number of the eddies as depicted in Fig. 1.4. On the other
hand, when the phase speed is subsonic and the wavenumber is discrete, no acoustic radiation
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appears. Nonetheless, Tam and Burton showed [24, 25] that this sound generation phenomena
is also encountered in subsonic jets even though the convection speed is subsonic. This is
possible, due to the growth and decay of the instability waves in the jet. This phenomena is
easily explained if the amplitude overcomes growth and decay. Under these conditions, the
wave number is no longer discrete but a set of broadband wave numbers. Therefore, part of
the broadband wave number spectrum could reach a supersonic phase velocity, thus generating
the Mach waves.

Figure 1.4: Sketch of a supersonic wavy wall with Mach wave radiation at angle 0.

The large turbulence structures are considered as a non-compact source. This means that
the dimension of the structure is much larger than the wavelength of radiation. They appear
as a broad peak in the spectrum. This noise is mainly radiated in the downstream direction
due to the downstream convection of the eddies that develop when the shear-layer becomes
unstable. On the other hand, the fine-scale turbulence is a compact source, i.e., the char-
acteristic dimension of the structures is much smaller than their wavelength of radiation. It
produces broadband noise due to the inherent unsteadiness of the turbulence and it is nearly
omni-directional with a downstream preponderance with the exception of the cone of silence.

This identification of the jet mixing noise into two different sources was confirmed by Tam and
Golebiowski [26] when they found a similarity spectra for both components. Tam et al. were
able to collapse a large database of spectra into an empirical similarity spectrum regardless of
the jet Mach number (subsonic or supersonic), the jet temperature ratio, the directivity and
whether or not the jet was perfectly expanded. The similarity spectrum is

o= [ur(£)eme(£)](2)'

where A and B are the amplitudes of the independent spectra, fr and fp are the peak
frequencies, function of the jet operating parameters, and F’ (fiL) and G (fip) are the similarity

spectra that correspond to the large and fine turbulence scales respectively [26]. The shape of
the similarity spectra is shown in 1.5.
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Figure 1.5: Similarity spectra for the two components of turbulent mizing noise (Solid line for
the large turbulent structures and dashed line for the fine-scales of turbulence), from Tam [27].

1.3.2 Shock-associated noise

Shock-associated noise is found for imperfectly expanded supersonic jets. As explained above,
a shock-cell pattern appears due to the expansion that occurs at the nozzle exit plane. Shock-
associated noise can be divided into a tonal noise, called screech, and a broadband component
known as BroadBand Shock-Associated Noise or BBSAN.

Broadband shock-associated noise

In a simple way, Tam explains the generation of BBSAN [23] by the weak interaction between
the downstream propagating large turbulence structures of the jet flow and the quasi-periodic
shock-cell structure during the passage of the former through the latter. Large turbulence
structures are being generated at the nozzle lip due to the inherent instabilities of the flow.
These structures are shed and convected downstream by the main flow. The broadband noise
is generated by the interaction between these structures and the shocks that appear in the
shock-cell pattern. The shock-cell pattern is defined as a quasi-periodic pattern because, first,
due to viscosity effects, the strength of the shocks decreases and eventually disappears, second,
due to the unsteadiness of the flow, the shocks oscillate, and third, the shear-layer that is being
generated around the jet ends up swallowing the potential core of the jet.

Through the stochastic model theory [28], Tam showed the interaction between the large
turbulence structures and the shock-cells. The stochastic model is based on solving a non-
homogeneous boundary value problem. However, at the time, it was too complex and slow to
solve, and so, it was better to use the so-called similarity spectrum based on the assumption
that the noise source spectra had no intrinsic length or time scale. Tam managed to obtain
good agreement against experimental data in terms of directivity and amplitude using the
instability wave theory with some parameters determined empirically.

This model is based on considering the shock-cell structure as disturbances trapped inside the
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jet by the mixing layer around the jet. The jet behaves like a waveguide for the disturbances
that form the shock-cells. The sound generated can be explained with a one-dimensional
model. The velocity fluctuation u; associated with the large turbulence structures can be
represented by the real part of a traveling wave of the form

u; = Re[Aelkr=wt)], (1.33)

where A is the amplitude, k is the wavenumber and w is the frequency of the disturbance. The
waveguide mode of the shock-cells k = w/U. can be defined by a periodic function

B .

Uy = E(etw + e o), (1.34)
where U, is the convection velocity of the structures, &, is the nth shock-cell wavenumber and
B is the amplitude. The interaction between the convected structures and the shock-cells can
be represented by the product of Eqs. 1.33 and 1.34 as

AB
R 7@2[(k_kn)x_wﬂ N (135)
that represents a traveling wave with wavenumber (k — k). If k,, is larger than k, the phase
speed C' = w/(k — ky,) will be negative and supersonic. According to the wavy wall analogy,
it would radiate towards the upstream direction at an angle 6 defined by cosf = a~,/C. The
spectral peak frequency can be defined for different angles of radiation as

L, (1+ Uccosf/an)

f (1.36)

where Lih is the shock-cell spacing at the shock-cell i that can be approximated with the
formulation of Prandtl [29] and Pack [30] as

;2 2 12 Dj
h R T n(M7 - 1) o (1.37)
where M; and D; are the perfectly expanded Mach number and diameter respectively and o;
are the zeros of the Bessel function of order 0.

Fifty years later from the study of the shock-cell structure [29] using a linear vortex sheet
model by Prandtl, Pack expanded it for slightly imperfectly expanded jets [30]. Let p’ be the
pressure disturbance of the shock-cells:

p = i A;®;(r) cos(k;x), (1.38)
i=1

where A; = 2Ap/o;, is the amplitude, ®;(r) = Jo(203r)/J1(0) and k; = 20, /[D;(M} — 1)/
i =1,2,3 ..., the wave-number of the ith waveguide mode. Ap is the static pressure difference
at the nozzle exit plane and .Jy and J; are the Bessel functions of order 0 and 1 where Jy(o;) = 0.
The general approximated shock-cell spacing using Eq. (1.37) would be the one given by the
longest wavelength (i.e. when i = 1).
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Screech tonal noise

The appearance of the shock-cell pattern induces a broadband shock-associated noise, however,
the conditions to obtain the tonal noise, named screech, are not so easy to accomplish. De-
pending on the flow conditions, and the surroundings of the jet, specially the surfaces around
the nozzle exit plane, including the nozzle lip, screech could or could not appear, with or
without the presence of some harmonics. The BBSAN is a well known phenomena that can
be predicted both in frequency and amplitude. Screech on the other hand, is still difficult to
predict in terms of the amplitude.

The generation of screech is similar to that of the broadband shock-associated noise. The
turbulent structures that are convected downstream and interact with the shock-cells, generate
new acoustic perturbations that are radiated upstream. This collateral perturbations reach
the nozzle lip, inducing new perturbations that are convected downstream. Eventually, these
new perturbations reach the shock-cells, closing a feedback loop as sketched in Fig. 1.6.

’

Figure 1.6: Sketch of the generation of the screech. U, is the convective speed of the eddies,
and a~ the speed of the acoustic perturbations generated by the interaction of the eddies with
the shock-cells.

Screech has been studied from the fifties by Powell [31] due to its inherent capability to enhance
the mixing of the flow. Powell was the first to detect the upstream directivity of the shock
noise when examining some Schlieren pictures of supersonic jets. He tried to explain this
phenomena with a phased array of monopoles localized at the edge of the jet. In order to
generate noise, first, the phase needed to be such that the travel time of the hydrodynamic
disturbances that are convected downstream and the upstream acoustic perturbations would
sum up to an integral number of screech cycles or periods. And second, the amplitude needed
to be maximum in the upstream direction. The directivity pattern of the screech is given by
Powell [31] as

1 2 L
Dy = 3 + 3 cos (27r>\(1 — M, cos 9)) (1.39)

and
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Dy, = % + %COS (477?(1 — M, cos 9)) (1.40)
for the fundamental and the harmonic tones respectively. In Eq. (1.39) and Eq. (1.40), L is
the shock-cell spacing, 6 the angle measured with respect to the downstream direction. M,
and A. are the convective Mach number and the wavelength of the disturbance respectively.
The maximum directivity of the fundamental tone is obtained for the upstream direction
(0 = 180°) whereas for the harmonics it is at 90°. The frequency of the fundamental tone can
be approximated by

Ue

=— 1.41
/ L(1+ M,.)’ ( )
where U, i.e. the velocity of the convected structures, is usually taken as a first approximation
as 0.7 U; where U; is the fully expanded jet velocity. The screech period or cycle is defined
as the time that takes for an acoustic perturbation to cross a shock-cell, plus the time of the

convected structure to cross the same space. It can be defined as

L L
Ts=—+ — 1.42
=t (1.42)
where as is the ambient speed of sound. Eq. (1.42) clearly depends on the convective velocity,
and how the spacing is defined, particularly if one takes into account all the unsteadiness of
the process. Tam, Seiner and Yu [32] improved the equation to predict the screech frequency
of Prandtl (Eq. (1.41)) by taking into account temperature effects. The frequency can now be

expressed as
1 ~1/2 ;o \1/2] 78
1+ M, (1 i 7M]?) (t) , (1.43)
2 T

Ue

f: Lsh

where T} is the total temperature of the jet, T, is the ambient temperature and Lgj, is defined
as in Eq. (1.37) for 1. A simplified formula can be used by adopting the empirical result of
U. = 0.7Uj, a shock-cell spacing 20% smaller and rearranging the terms to express it as the
Strouhal number as

-1
fsD; _ v—1 “12 o\ Y2
Tjj = 0.67(M? —1)712 |14 0.7M; <1 + 2Mj2) <T:o) : (1.44)

This formulation was later modified by Panda [33] to account for standing waves outside the
shear-layer of the supersonic screeching jets. The standing waves have a resultant wavenumber
ksw = kp + ko, and are formed due to the interference between downstream propagating
hydrodynamic fluctuations k; and upstream propagating acoustic waves ks;. In terms of the
wavelength, the previous expression can be defined as 1/\g, = 1/A\; + 1/, where Ay and
A are the wavelength of the acoustic wave and hydrodynamic fluctuations respectively. This
shock-cell spacing can be substituted into Eqs. 1.41 or 1.43 to obtain the screech frequency
based on the standing waves.

The first formulations were based on the resonator behavior of screech and were proposed as
a tool that was able to compute the frequencies at which, if screech was present, it would

14



resonate. However, the physics behind the screech phenomena were still unknown. In the
last decades, they have been extensively studied. Following the description of Raman [34] and
Tam [23], screech can be defined with four key mechanisms: the instability wave growth, the
instability-shock interaction, the acoustic feedback and the receptivity process.

The key mechanism for the generation of screech is the perturbation of an instability wave that
grows by the shock-cell pattern. The mean flow accelerates between the shocks and decelerates
when approaching them. It can then be supposed that the disturbances are perturbed in the
same way. The exponential growth of the instabilities is modulated by the shocks and the
amplitude by the fluctuations of velocity.

Even though the growth is partially modified by the shock-cells, the instability needs to grow
up to a certain amplitude in order to interact with the shocks (i.e. usually between the 3rd
and the 5th shock-cell). One of the key aspects of screech is the prediction of the spacing of
the shock-cells. The frequency of the screech for instance, is proportional to the inverse of
the shock-cell length as seen in Eq. (1.41). For this matter, models formulated to predict the
shock-cell spacing are needed. Some examples are the Prandtl model explained in Sec. 1.3.2
or the one developed by Tam et al. [35] that solves an eigenfunction expansion of a modeled
shock-cell system inside a jet surrounded by a vortex sheet. Another example is the work of
Tam [36] that accurately calculates the structures and screech tone frequencies of rectangular
and non-axisymmetric supersonic jets.

However, better modeling to characterize the shock-cell spacing is required to take into ac-
count non-uniformities in the shock-cells of the unsteady flows. Panda showed [37] how the
shock moves inside the shock-cell pattern due to the turbulent structures that are convected
downstream from the nozzle lip. These structures shape the potential core of the jet. The
shock center moves downstream, loosing strength and a weaker shock appears upstream, which
in the process will become stronger but it will start from the opposite side of the shear-layer.
This process is illustrated in the sketch in Fig. 1.7 by Suda et al. [38]. The anchor point A,
moves forward to the point A’ and then point B moves backward until the starting position
is reached.

Later on, Suzuki and Lele [39] introduced the concept of shock leakage. The phenomenon
of shock leakage occurs near the saddle points of the vortices convected downstream in the
mixing layer surrounding the jet (see Fig. 1.8). The noise radiated from usually the third
shock-cell happens because the shock waves leak through the mixing layer. The location is
not arbitrary, near the third shock-cell, the vortices are developed enough to have a clear
saddle point. Downstream of the third shock-cell, no saddle points are clearly identified due
to the turbulence. This leakage, is considered as the acoustic perturbations that are convected
upstream. The turbulence reduces the intensity of the shock noise by scattering the fronts.
Lui and Lele [40] studied the test-case of an impinging shock into a shear-layer which bounces
back as a compression shock. Lui et al. determined wih Direct Numerical Simulation (DNS)
that the pressure fluctuation scales with the peak strength of the shock tip of the compression-
expansion wave. They concluded that the shock-associated noise is generated by the scattering
of the shock wave of the energetic streamwise velocity fluctuations in the shear-layer.

When the acoustic perturbations reach the nozzle lip, a coupling of aerodynamic and acoustic
disturbances occurs called receptivity. Receptivity is the phenomenon from which perturba-
tions alter the instabilities of the flow. This process is most known in the transition of the
boundary layer where outer perturbations enter the boundary layer and amplify the instabili-
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Figure 1.7: Dynamic motion of the traveling shock in the third shock-cell from Suda et al. [38].

ties that lead to transition to turbulence. The acoustic disturbances act like a forcing term in
the starting location of the shear-layer in the nozzle lip by generating hydrodynamic structures
that are convected downstream. In fact, it was shown by Norum [41], that the thickening of
the nozzle lip could increase screech up to 10 dB. This newly generated structures eventually
interact with the shock-cells, closing the feedback loop.

Figure 1.8: Sketch of the saddle point between two vortices where the shock leakage occurs.

Screech does not only appear as a tonal noise, but also as a modal behavior of the flow.
The jet undergoes different modes depending on the geometry of the nozzle and the jet flow
conditions, oscillating at the screech frequency. Powell [31] isolated 4 modes for the rounded
jets that he named A, B, C and D with toroidal or helical oscillations. The change between
modes can be seen as jumps in frequency and amplitude. The first mode A, can be actually
split into two, A1 and A2, both toroidal modes. The modes B and C are flapping modes with
a non-stationary flapping plane. Mode D is defined as an antisymmetric mode made of two
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contra-rotative helicoidal modes with the same frequency and amplitude. Hysteresis is found
when coming from mode C to mode D. Another mode E at the end of the curve was shown
by Panda, Raman and Zaman [42] for high Mach numbers.

The screech staging process was demonstrated by André et al. [43] to have enough influence
on the jet dynamics to actually affect the BBSAN. Depending on the intensity of the screech,
the shock-cells may collapse and disappear after the screech emitting shock-cell. Both the
broadband shock-associated noise (BBSAN) and the Overall Sound Pressure Level (OASPL)
increase in frequency when screech is eliminated. André et al. assumed that this is due to
the excess high frequency content produced by the additional shock-cells downstream of the
most critical shock-cell for the screech. Among their studies, they found first, that the screech
amplitude and oscillations increase with flight velocity (i.e. the velocity of the flow outside
the jet). Second, the amplitude of the screech decreases with temperature but for a constant
temperature, it is independent of the shock strength. And third, a minimum strength is needed
to originate screech, but the amplitude does not vary once screech appears. This supposition
may not apply to high Mach numbers where one could not get screech at all, for whichever
shock strength one had.

Even though many advances have been done when dealing with screech phenomena, complex
or just non-axisymmetrical configurations do not show this tonal noise. Furthermore, the
different subtleties for the appearance, makes it difficult to predict analytically, leaving as
only option, numerical costly computations.

1.3.3 Dual stream jets

The noise generated by dual stream jets is mostly the same as the one generated by single
jets. Even though the topology of the jet is different, the mechanism for noise generation
does not change. The interest for dual stream jets comes from the development of turbofan
engines. Turbofan engines were initially used in the fifties with the design of the engine Rolls-
Royce RB.80 Conway and they have been evolving ever since, increasing in performance and
by-pass ratio. The first studies on shock-cell noise for dual stream jets was carried out by
Tanna et al. [44] in the seventies. It was found that the shock-cell structure and its produced
noise were closely linked to the relation between the total to ambient pressure ratio of the
core and the fan jets. In particular, Tanna et al. [45, 46] and Tam et al. [47, 48] showed
that having a slightly supercritical primary jet would yield an almost complete destruction
of the shock-cell system of the secondary stream, reducing the overall shock-cell noise. Dahl
et al. [49, 50] applied the instability wave noise generation model of Tam et al. [24, 25] to
supersonic dual jets having good agreement with experiments. The structure of the shock-
cell system and the appearance and location of a shock-disk on the primary jet was studied
by Rao [51]. The appearance of screech on dual stream jets was studied experimentally by
Bent et al. [52]. It was found that the 'tonal’ shock-cell noise disappeared when the nozzle
had bifurcations inside the secondary stream. This illustrates how the effect of a pylon and
the internal struts of commercial turbofans would disengage screech from being present in
commercial aviation. Murakami et al. [53, 54] studied the lengths of the potential cores as well
as the spreading angle of both the primary and the secondary jets obtaining good agreement
with the theory. Their case of study was the one where the primary jet is supersonic and the
secondary is subsonic. Dahl et al. [55] studied a perfectly expanded dual stream jet where they
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showed that the mixing noise can be also adapted by the similarity spectra used for single jets.
Different configurations can be studied in coaxial jets, depending on the flow conditions of the
primary and the secondary jet. The primary jet is the one in the center, and the secondary
jet, the one surrounding the primary jet.

The constant increase in by-pass ratio and the new regulatory terms that were agreed by
the community on noise reduction led the industry to focus again on the noise generated by
the turbofans. An extensive experimental campaign on subsonic and supersonic dual stream
jets was initiated by Viswanathan [56, 57| and Viswanathan et al. [58] in order to carry
out a parametric study on the effect of the primary and secondary nozzle pressure ratio,
the secondary-to-primary jet velocity ratio and the secondary-to-primary nozzle area ratio.
The main conclusions are summarized in the following. First, the shock-associated noise
strongly depends on the geometrical shape of the nozzle and to whether or not the shocks
are found in the primary or in the secondary jets. When the shock-cell structure appears
in the secondary stream, there is a strong radiation to the aft angles. Second, the velocity
ratio is relevant for mixing noise but insignificant for shock-cell noise, hence obtaining the
noise characteristics similar of those from a single stream jet when it is less than 0.5. On the
other hand, when this parameter is high enough, the contribution from the secondary jet is
dominant at high frequencies and upstream angles. Last, the noise propagated at downstream
angles remains invariant for all geometric and jet conditions. Another experimental campaign
was carried out by Bhat et al. [59] who concluded that even though shock-cell noise does
not increase monotonically with increasing power settings [56], the overall power level does.
Viswanathan [56] found different behaviors when studying different topologies for dual stream
jets. The shock-associated noise is dominant for all angles, similar to a single jet, when the
primary jet is supersonic. In this case, the effect of the secondary shear-layer can be omitted.
Additionally, if the topology is inversed, i.e. the supersonic jet is the secondary stream, the
shock-associated noise will become apparent in the forward angles. Increasing the temperature
in the primary stream only, slightly affects the lower frequencies at lower angles.

The dual stream topology of interest in this work is the one where the primary jet is high
subsonic, and the secondary jet is supersonic and under-expanded as displayed in Fig. 1.9.
These flow conditions allow the appearance of the system of shock-cells in the surrounding
stream, ¢.e.the secondary jet, in a circular pattern. The two jets at different flow conditions
generate two shear-layers. Dahl et al. [55] identified the location of the noise sources for the
mixing noise downstream of the outer potential core when both shear-layers merge. Using
instability wave analysis, they showed that the instability waves generated in the inner shear-
layer reached the maximum amplitude at the same location.

Shock-associated noise is originated from the interaction between the vortical structures that
develop in the shear-layer and the shock-cell system. When the secondary stream is imper-
fectly expanded, the shock-cell system is contoured by the inner and the outer shear-layers.
Therefore, two possible shock-associated noise sources from the interaction with both shear-
layers take place. New factors need to be taken into account for the propagation of the noise
from the noise sources to the far-field because it has to cross the jet itself, now, with a different
topology than for the single jet. The acoustic perturbations generated inside the primary jet
have to cross the surrounding shocked stream, modifying both directivity and amplitude in the
process. The generation of screech and BBSAN have the same key mechanisms, but in a dual
stream jet, where the under-expanded jet is the secondary stream, the turbulence structures
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that are being convected downstream from the nozzle lip double because of the dual nozzle,
and shear-layer.
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Figure 1.9: Skecth of a turbofan engine with the secondary stream under-expanded.

Moreover, Abdelhamid et al. [60] found that the high frequency components developed in the
primary shear-layer whereas the low frequency components originated on the secondary shear-
layer. This phenomena was further studied by Tam et al. [61] who identified two different
components for the broadband shock-associated noise as seen in Fig. 1.10.
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Figure 1.10: Noise spectra of a dual stream jet with subsonic primary jet M, = 0.76 and
supersonic under-expanded secondary jet My = 1.36 from Tam et al. [61]. Black arrows indicate
the first component of broadband shock-associated noise and open arrows indicate the second
component.

The first component is the equivalent to the one of the single jet, generated due to the inter-
action of the turbulent structures with the outer shear-layer. The behavior of this component
does not change, the maximum amplitude is encountered in the upstream direction. However
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the second component generated by the interaction with the inner shear-layer was found to
radiate mostly downstream, reducing the amplitude at 90°. The physical explanation for this
roll-off is that the source responsible for generation of noise at large angles is moving at a sub-
sonic speed relative to the supersonic secondary jet. The disturbances generated decay when
they are transmitted through the secondary jet, which results in a reduction of the noise at
high inlet angles. Good agreement was found against the experimental data by applying a dual
sheet vortex model. Tam et al. developed a model [61] able to predict the shock-associated
noise frequency peaks from both primary and secondary shear-layers using a Fourier decom-
position of the shock-cell system [62]. The advances in high performance computing (HPC),
have provided with the possibility of running high Reynolds number large eddy simulations of
dual stream jets [63, 64, 65, 66, 67, 68]. Some of the main methodologies for computational
fluid dynamics in aeroacoustics are presented in the next section.

1.4 Computational aeroacoustics

The branch of Computational Fluid Dynamics (CFD) where the main focus is drawn to the
generation and propagation of the acoustic phenomena generated by the aerodynamics is called
Computational AeroAcoustics (CAA). Acoustics perturbations are by definition an unsteady
process. Therefore, in order to be able to compute acoustic waves and sound phenomena
computationally, an unsteady calculation or acoustic models are needed. Moreover, the errors
committed by the numerical model and machine related errors must be lower than the acoustic
perturbations itself. Numerical errors can lead to the underestimation of noise because the
acoustic efficiency is very low even for loud flows. Moreover, the propagation of acoustic
waves over long distances occurs with a very low attenuation. In order to perturb as less as
possible the low amplitude acoustic waves (i.e., decay in amplitude and a shift in phase), the
dissipation and dispersion effects of the numerical schemes need to be kept as low as possible.
As exposed by Colonius [69], two methodologies can be followed to compute the sound field:
direct computation of sound, and hybrid methods.

1.4.1 Direct computation of sound

The Direct Computation of Sound (DCS) aims to compute both the unsteady flow of the
problem, and the sound generated by itself. For this matter, the computational domain must
contain the noise producing region of the flow, and part of the near-field where the noise is
measured. The computational mesh needs to be selected to represent well both the flow and
the sound waves. At the beginning of computational aeroacoustics, DCS was usually used
to obtain underlying sound generation processes. This was in part, due to memory and time
restrictions originated by the meshes that were needed for actual industrial problems. The
above-mentioned shock leakage phenomena studied by Suzuki and Lele [39] or the work of Lui
et al. [40] are some examples. Thanks to the computer development of the last decade, not
only underlying phenomena has been studied but also real small contained problems.

The direct computation of sound can be done using Direct Numerical Simulation (DNS),
Large Eddy Simulation (LES) or Unsteady Reynolds Averaged Navier-Stokes simulation. The
objective of the DNS is to compute all the scales characteristic of the turbulent kinetic energy
without any modeling. This implies solving the Navier-Stokes equations, and thus, having
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a mesh able to resolve the Kolmogorov scale [;, characteristic of the dissipative scales. The
integral length-scale L representative of the flow structures can be related to the Kolgomorov
scale by the dimensional relation obtained for isotropic turbulence L/l, = Rei/ 4, where Rep,
is the Reynolds number of the flow characterized by the integral length-scale and the velocity
perturbation. The number of points needed to describe all the significant turbulence scales
varies in function of N = ReQL/ * which makes DNS quite restrictive in terms of memory cost
for cases with a high Reynolds number. A way to reduce the computational cost, yet resolving
most of the turbulence scales is to use LES. Large eddy simulations consist in computing the
biggest turbulence scales and modeling the smallest ones by using a spatial filtering. The flow
is resolved up to the Taylor microscale A4. In general, a subgrid scale model is introduced to
model the dissipative scales. One of the first subgrid scale model is the Smagorinsky model [70]
where an algebraic relation models the turbulent viscosity of the dissipative scales. Linking the
Taylor microscale with the characteristic length-scale of the flow one recovers the relation with
the Reynolds number of L/, ~ RelL/ % This new relation gives an approximative number of

nodes of N =~ Rei/ ? which is considerably smaller than the one needed using DNS. Obviously,
the decrease in accuracy by modeling the smaller scales and decrease in computational cost,
comes at the price of a worse representation of the flow features and the acoustics. At the lower
end, there is the URANS or unsteady RANS. The unsteady RANS is derived from the Reynolds
Averaged Navier-Stokes equations where the flow is decomposed in the mean component and
the perturbations. The conservative equations are solved for the mean quantities and different
transport equations (depending on the model) are used to model the turbulent quantities.

From the three above-mentioned methodologies, LES is the one that offers the best trade-off
between accuracy of the modeled physics and computational cost. Many studies of subsonic
jet noise has been already done using large eddy simulations ([71, 72, 73, 74, 75, 76, 77] among
others). In particular, Bogey et al. [71] found for a subsonic LES of a jet at M = 0.9 and
Re = 65 000 that the generation of sound was related to the breakdown of the shear-layer in
the central zone of the jet at the end of the potential core. Bodony and Lele [72] studied the
temperature effect of the jet, finding good agreement with the published experimental data.
Bogey and Bailly [73] studied the impact of different inflow forcing conditions on the flow
development and the sound field. If a forced ring vortex is used, involving several azimuthal
modes, the first four modes will have the biggest impact; removing them, will reduce the
turbulence intensity, giving a quieter flow. Direct numerical simulations of subsonic jets at
Reynolds number based on the diameter of 18,100 were carried out by Buhler et al. [78],
obtaining good agreement with the experiments. Sanjosé et al. [68] used LES to compute the
acoustic field of a dual stream subsonic jet, showing good agreement with experimental results
for the downward angles.

Supersonic jets have been studied numerically as well. Schulze and Sesterhenn [79], Schulze
et al. [80] and Berland [81] simulated a 3D supersonic under-expanded planar jet. Berland
et al. put in evidence the shock-leakage theory studied by Suzuki and Lele [39] for a real
jet that exhibited shock-vortex interactions in the third shock-cell. Mendez et al. [82] studied
supersonic perfectly expanded axisymmetric jets at M; = 1.4 using LES and Bodony et al. [83]
studied supersonic under-expanded and perfectly expanded jets at M; = 1.95. The same jet
was studied by Lo et al. [84], obtaining good agreement with the numerical results from Bodony
et al. [83]. The noise emitted from supersonic under-expanded rectangular nozzles at M; = 1.4
and the effect of chevrons was studied by Nichols et al. [85, 86].
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Numerical simulations will be able to capture the sound of the respective resolved scales if
the mesh at the target location is sufficiently fine. The maximum sound frequency f captured
by the mesh can be expressed as f = aoo/A wWhere as is the ambient speed of sound and
A = nAs, the wavelength that can be resolved by a specific number of cells n with spacing As.
The number of cells n needed to represent a wavelength depends on the numerical scheme used.
Mesh design for DCS is not a trivial task. Moreover, mesh stretching can introduce numerical
artifacts in the solution. More information about the mesh is given in Sec. 3.1. Nonetheless,
the propagation of acoustic perturbations is costly for high frequency ranges. The solution
should be extrapolated to the far-field without being concerned by meshing constrains. For
this purpose, analytical methods or integral formulations of the wave equation using a Kirchoff
or Ffowcs-Williams and Hawkings surface enclosing the flow can be used as Anderson [87] for
a subsonic jet. If the computation of the acoustic waves at the far-field is needed, a domain
extension with a simplified Cartesian mesh can be used where the Euler equations are solved.
An accurate result strongly depends on the interpolation zone at the grid interface between
the DCS domain and the extrapolation region. The methodology was carried out solving the
linear wave equation by Bogey [88] for a dual stream jet and Freund et al. for a subsonic and
supersonic jet [89, 90| respectively among other studies.

1.4.2 Hybrid methods

The second procedure to compute the noise is by means of hybrid methods. The hybrid
methods rely on the main computation to solve the general dynamics of the flow and a second
calculation to predict the noise. This second computation can be done a posteriori or at
the same time as the main computation. DNS and LES as well as RANS simulations are
adopted to compute the sound sources that will feed the computation of an acoustic analogy.
As mentioned in Sec. 1.1.3.2, Tam and Tanna [91] implemented a model where the intensity of

2
the broadband shock-associated noise was scaled as a factor of (M ]-2 — Mf) , where M; is the

perfectly expanded Mach number, and M, the actual exit Mach number. Tam [28] used this
work to develop a stochastic model wherein the large scale turbulence structures are modeled
by a superposition of the instability waves of the mean-flow of the jet. Bailly [92] computed
the noise of a subsonic and a supersonic jet from statistical source models by combining a
k — e RANS model with an acoustic analogy. Colonius [93] compared the sound generated by
a vortex pairing in a two dimensional compressible mixing layer using DNS itself and Lilley’s
analogy based on the flow computed by the DNS simulation. Vortex methods [94] can also
be applied in conjunction with the acoustic analogies in order to reduce the computational
time. Vortex methods provide a quick assessment of the impact of the main variables on the
radiated noise. A different hybrid method mixes the solution of the incompressible equations
for the flow, and a simplified set of compressible equations to predict the radiated noise. This
methodology known as Non-Linear Disturbance Equations (NLDE) [95] allows to compute
the acoustic field from the near-field density variations. The near-field density variations, also
known as hydrodynamic density correction, appear when solving the incompressible equations
due to the inherent pressure variations. These variations define a set of non-linear disturbance
equations that are used to compute the acoustic field. Last, Henry et al. [96] extended the
near-field compressible flow data to the radiated acoustic field with specific source-terms of
the numerical solution of the Linearized Euler Equations (LEE). Morris and Miller [97, 98]
used the solution of a RANS simulation together with the LEE to compute the acoustics of
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an under-expanded jet. The source terms are obtained with the product of the fluctuations
associated with the jet’s shock-cell structure and the turbulent velocity fluctuations of the jet
shear-layer. The model has been recently revisited by Kalyan and Karabasov [99] to improve
the predictions at higher frequencies. The new model includes an axial mean-flow velocity
gradient in the definition of the correlated scale of the acoustic source.

1.5 Reduction of jet noise

Any study of the underlying physics of jet noise normally has one main ulterior goal: the
reduction of jet noise. Even if the main goal of a study is not the development of technologies
for noise reduction, all the advances made by the whole scientific community will contribute
in one way or another to the reduction of jet noise. If progress is made in the private sector
that can be beneficial to ordinary people, it should be shared with the community. Noise
generated by aviation can be propagated from the aircrafts to the ground and also to the
interior of the cabin. The reduction of noise in the cabin can either be achieved by controlling
the noise generated by the external aeroacoustic sources, or by controlling the transmission of
loss through the fuselage sidewall. Main external aeroacoustic sources that affect cabin noise
are boundary layer noise and engine noise, composed of fan noise and jet noise. This section
reviews the most common technologies being developed for the purpose of reduction of jet
noise in aviation.

Most of the technologies used for jet noise reduction are based on enhancing the mixing in the
shear-layer of the jet. Enhancing the mixing lowers the effective velocity in the main noise-
producing region of the jet reducing the turbulence in that region but increasing it at the exit of
the nozzle. This reduces the low frequency noise generated by the large turbulence structures.
However, it also increases the high frequency noise generated from the enhanced mixing. This
trade-off between low and high frequency noise may imply an additional penalty for the aviation
industry. The technologies developed for jet noise reduction should not conflict with the
efficiency of the aircraft, i.e. the net thrust and the total weight. Here, these technologies are
grouped into three different categories: fluidic injection, nozzle alteration and noise shielding.

1.5.1 Fluidic injection

The injection of mass to the jet has been extensively studied over the past fifty years. Fluidic
injection is usually done via microjets inserted at the exit of the nozzle. Both aqueous and
gaseous injection concepts for supersonic and subsonic jet exhausts have been developed.

Aqueous injection reduces jet noise by reducing the jet temperature through evaporation and
the jet velocity through momentum exchange between the water droplets and the main jet.
Of course, aqueous injection is prohibited for in-flight use due to the large quantities of water
needed for an effective reduction of jet noise. Moreover, water pressures above 2000 kPa and
water-to-main-jet mass flow rates above 10% are required to achieve an overall sound pressure
level reduction of roughly 6 dB. On the other hand, this is a common operation at lift-off for
aerospace launch vehicles as the water can be stored and injected from the ground. The reader
is referred to the review of Henderson [100] for more information.

Differently, gaseous injection reduces noise through the introduction of streamwise vorticity
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in the jet. A reduction of 2 dB can be accomplished for subsonic single jets and of about 1
dB for subsonic dual stream jets. Henderson et al. [101] studied the application of microjets
to real configurations with pylon and central plug of supersonic single jets and dual stream
jets where the supersonic stream is the secondary. The setup is shown in Fig. 1.11. On their
experiments, they installed the microjets at the exit of the primary nozzle. Fluidic injection
eliminates the shock-cell pattern and its associated broadband shock-associated noise only
if the micro jets are installed in the outer shear-layer of the under-expanded stream. The
turbulent kinetic energy is also reduced at the end of the potential core as expected. Morris
et al. [102] achieved a reduction of 4 dB for mixing noise and 2 dB for broadband shock-
associated (BBSAN) noise in low by-pass ratio turbofan engines with the microjets installed
at the walls of the convergent-divergent nozzle. In general, turbulent mixing noise and BBSAN
correlates with the ratio of microjet to primary jet driving pressures normalized by the ratio
of corresponding diameters [103]. Depending on the driving pressure of the microjets, they
could reach under-expanded conditions and generate a shock-associated noise by themselves.
Gaseous injection has been also studied numerically with LES [104, 105, 106] and Lattice-
Boltzmann Methods [107] (LBM) obtaining the same conclusions. In addition, Huet et al. [104]
studied numerically an effective mixing noise reduction with minimum thrust loss using a
pulsed fluidic injection.

Air Supply Pylon

Fan Nozzle Fluidic Injectors

Figure 1.11: Sketch of the fluidic injection applied to the core nozzle of a turbofan from Hen-
derson et al. [101].

Overall, fluidic injections seem as a promising technology to apply in real turbofans. Nonethe-
less, the installation of microjets in real engines is not as straightforward as in the experimental
model and thus, a major revisit of the engine, pylon, and wing should be carried out.

1.5.2 Geometrical nozzle alteration

The study of the effect on noise emission by modifying the shape of the exhaust nozzle started
in the fifties. Westley et al. [108] investigated different nozzles and not much later, realizing
the great impact for jet noise, published a patent [109] with some of the basis of the nowadays
noise suppression techniques used in aviation. Many other patents were submitted in the
following years by Rolls Royce [110] and others. The alteration of the exhaust nozzle can
be grouped into two categories: addition of Vortex Generators (VG) and modification of the
contour of the nozzle. In this section, only the most recent studies are commented.
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Figure 1.12: (a) Tabbed nozzle sketch from [111]. (b) Chevron Nozzle sketch from [112]. (c)
Lobbed nozzle from [113]

Vortex generators (VG) are small protuberances added to a surface and are usually used on
the different airplane surfaces in order to assure the development of a turbulent attached
boundary layer. Samimy et al. [114] studied experimentally the effect of vortex generators for
jets with Mach numbers ranging from 0.3 to 1.81. The vortex generators that were normally
projected into the flow at the nozzle exit, introduced the same level of distortion in the flow
for the subsonic and supersonic cases. The VG or tabs, introduce an indentation into the high
speed side of the shear-layer via the action of streamwise vortices called trailing vortices. The
implementation of these vortex generators was shown to suppress screech and greatly alter the
shock-cell structure. A similar concept was studied later by Papamoschou et al. [115, 116, 117]
with the installation of turning vanes in the by-pass exhaust of a turbofan engine with by-pass
ratio of 3. The vanes produce locally-skewed mixing layers that reduce the length of the core
noise source region and thickens the by-pass stream on the underside of the jet. The overall
sound pressure level was reduced about 8 dB with only 2% of thrust losses. More recently,
Papamoschou [118] investigated pylon-based deployable flaps in turbofan engines with by-pass
ratio of 8. Using a fine perforation in the flaps, yielded a noise reduction of 2.1 dB in the
downward direction and 1.0 dB in the sideline direction. The thrust was impacted by a loss
of 0.7%.

The modification of the shape of the nozzle for jet noise reduction can be classified into different
categories depending on the actual modification. In the literature, they are all sometimes
generalized and referred to as chevrons. The so-called chevrons are a set of indentations or
serrations on the edge of the circumferential nozzle exit. Three types of indentations are shown
in Fig. 1.12. If the indentations are perpendicular, or with a high angle of penetration into the
flow, they are referred to as tabs. The tabs act similarly to the vortex generators explained
above. If the circumferential shape of the nozzle exit is modified with a series of contoured
lobes then one is dealing with lobed nozzles. Lobed nozzles were studied by Zaman et al. [119].
They determined that increasing the number of lobes reduces the turbulence intensity, the
radiated noise, but also reduces the thrust coefficient, and increases the high frequency noise.
Despite the known thrust losses, some patents were submitted at the beginning of the 21st
century [120, 113, 111]. Next, the actual chevrons are discussed in detail.

The geometry of the chevrons and their effect on noise reduction was investigated by Bridges
et al. [121]. In their parametric study, they changed the number of chevrons (or serrations),
the penetration in the flow and their length. They concluded that the chevron length had no
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major impact on either the flow or noise. The chevron penetration, 7.e. the angle that is being
deflected inside the nozzle with respect to the base profile, increases noise at high frequency and
lowers it at low frequency. This is especially aggravated for a small chevron count. On the other
hand, a good compromise in the frequency range is found for a higher number of chevrons. The
trends are similar for a cold and a hot jet. The impact of the chevrons with co-flow on under-
expanded jets was studied by Rask et al. [122] and Gutmark et al. [123]. A higher noise was
achieved when a low subsonic co-flow was applied. The flow presented higher turbulence levels
while keeping a similar shock-cell strength. Furthermore, the increase in velocity of the co-
flow reduced the strength of the shocks which led to a reduction of the overall perceived noise.
Schlinker et al. [124] investigated chevrons on supersonic jets at perfectly expanded, over-
expanded and under-expanded conditions for a range of stagnation temperature ratios between
0.75 and 2. They found that chevrons reduced the screech amplitude for all temperature ratios.
In-flight tests were done by Mengle et al. [125, 126] and Bultemeier et al. [127] with chevrons
located in the secondary fan of the engines. They showed a consistent reduction of 5 dB
in the low frequencies on the external fuselage skin of the airplane and an increase in the
high frequencies. A slight reduction of efficiency of the engines was observed when the flight
test were done with the engines with chevrons. Some researchers suggest that chevrons are
used merely as propaganda. FEither way, Huber et al. [128] demonstrated that the effect of
chevrons was nozzle-dependent. They obtained contradictory results using the same type of
chevrons but different nozzles. On one case, the low and high frequencies were reduced, on the
other model, the chevrons tended to either leave unchanged or increase the peak levels of the
broadband shock-associated noise. From their work, they concluded that the BBSAN reduction
does not originate solely from the increased mixing produced by the chevrons but it depends
as well from the quality of the expansion of the jet in the near-nozzle region. The underlying
nozzle aerodynamic characteristics drive the development of the compression-expansion system
further downstream where the shock-associated noise is originated. Nonetheless, several large
eddy simulations were carried out, showing good agreement with experimental results [129,
63, 130, 131, 85, 132, 86, 133, 134] when the same geometries were used.

Many studies are still needed in order to understand all the underlying phenomena behind the
origin and the suppression of jet noise. Additionally, studies such as those by Alkislar [135]
where he combines chevrons and microjets could help to increase the knowledge in the field.

1.5.3 Shielding of noise

In axisymmetric configurations, jet noise is emitted with the same levels at each azimuthal
position, regardless of the fact that non-axisymmetric modes could appear. If one wants to
reduce the noise propagated to the ground it will be reasonable to try to reduce the noise
only on the down-facing directions. A sketch from a patent for the application in turbofans
by Viswanathan [136] is shown in Fig. 1.13. This has been specially investigated for military
applications by Viswanathan et al. [137, 138, 139] with the introduction of beveled nozzles.
With the same plenum conditions, and an increase in thrust between 1% and 2% a reduction
of 4 dB is achieved with a bevel of 35 degrees. Advantage is taken from the asymmetry of the
exhaust jet. In turbofan engines, the asymmetry is assured by the supporting pylon, however,
while the intake of the turbofan has a rounded, but not axisymmetrical intake, the exhaust is
cylindrical. Moreover, the secondary stream of the turbofan, besides increasing the efficiency
of the engines, also provides with an acoustic shielding effect for the primary jet. On the same
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basis, Henderson [140] studied the impact of three stream jets operated at subsonic conditions.
She found that the third stream provided a reduction in the high frequency range at broadside
and peak jet noise angles. Additionally, Henderson et al. [141] investigated the effect of an
offset on the tertiary nozzle. A reduction of up to 8 dB was achieved on the thick side of the
offset. Papamoschou et al. [142] obtained good agreement with the experiments using RANS
hybrid computations. Nonetheless, the addition of a third stream seems to be in contradiction
with the trend of bigger by-pass ratios that at the moment, are constrained by the available
space for the turbofan between the wing, and the ground.
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Figure 1.13: Sketch of the beveled nozzle applied to the core nozzle of a turbofan from
Viswanathan et al. [136].

1.6 Summary and perspectives

The aerodynamics and aeroacoustics of jets have interested researchers from the dawn of the
modern era of aviation. The study of the aerodynamics of jets does not only come from an
efficiency point of view, but also from the noise generated. The first theories and analogies
studied by Lighthill and the successfully applied technologies for noise reduction by Westley
increased the interest of this field to the scientific community. Obtaining different noise emis-
sions by different topologies of jets gave raise to different models. Nonetheless, Tam et al.
found some intrinsic noise generation mechanisms that could be applied to any jet topology.
In subsonic jets, the noise is driven by the mixing noise from small-scale turbulence and the
large-scale turbulence structures. In supersonic imperfectly expanded jets, shock-cell noise is
the most important noise component. Shock-cell noise is the noise generated from the inter-
action between the convected vortical structures generated in the shear-layer of the jet, and
the shock-cell structure that appears from the imperfectly expansion of the jet to ambient
conditions. A particular shock-cell noise is the screech, which is a tonal noise generated by a
closed feedback loop between the vortical structures convected downstream and the acoustic
perturbations propagated upstream. The underlying physics behind jet noise has been deeply
studied experimentally. The advances in computational fluid dynamics have made possible to
study in more detail subsonic jets, its turbulence and its associated mixing noise. Recently,
supersonic jets and shock-cell noise have been numerically studied as well.

The theoretical, experimental, and numerical studies of jet noise are encouraged by the techno-
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logical need. The evolution of new technologies in aircraft propulsion has obliged the scientific
community to give an insight to new noise generating mechanisms encountered. Fluidic in-
jection and chevrons are some of the noise suppression techniques that are being developed
nowadays. The sole apparition of the turbofan engine already reduced drastically the noise
emissions while increasing the performances. Nevertheless, the technological evolution does
not stop, nor the search for knowledge. The technological evolutions came hand to hand with
new noise models and theories as well as new noise suppression technologies over the past fifty
years. Nowadays, the society is aware of the medical problems associated with noise and the
general annoyance of it. Furthermore, the cities are expanding closer and closer to the vicinity
of the airports and the number of flights does not stop increasing. New mnoise suppression
technologies as well as new numerical methodologies are to come if the noise objectives set by
the aeronautical community have to be achieved. In order to accomplish this, not only the
models and equations that represent the flow around an airplane or at the exhaust jet of the
engines must increase in accuracy but also the numerical schemes must become more efficient
and accurate.
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Chapter 2

Numerical schemes for the
Navier-Stokes equations

In physics, the Navier-Stokes equations describe the motion of viscous fluids. They govern
the atmosphere, the oceanic currents and the flow around cars, airplanes and rockets. These
equations are obtained from applying Newton’s second law of fluid motion to a fluid volume,
together with the assumption that the stress in the fluid is the sum of a diffusing viscous term
and a pressure term. The Navier-Stokes equations form a system of non-linear equations with
no general analytical solution. For this reason, they are discretized and solved numerically in
what it is known as Computational Fluid Dynamics.

In this PhD thesis, the Navier-Stokes equations are solved using the solver elsA [143] from
ONERA and co-developed by CERFACS. The code is a multidisciplinary tool that can be used
to study internal or external flows for different applications. The code elsA is a Finite Volume
multi-block structured solver optimized for parallel computations. The code is object oriented
and it is based on an interface coded in Python, the core in C++4 and specific subroutines in
Fortran.

In this chapter, the discretization of the Navier-Stokes equations is presented in Sec. 2.1.
Then the numerical discretization of the convective and diffusive fluxes is given in Sec. 2.2
and Sec. 2.4 respectively. The discretization of the spatial schemes is reformulated at the
walls in Sec. 2.5 and at the interfaces in Sec. 2.6. Then, the boundary conditions suitable for
aeroacoustic computations are introduced in Sec 2.7. Moreover, a shock-limiting technique
used for the case study of Ch. 6 is presented in Sec. 2.3. The chapter ends with a summary
and perspectives.

2.1 Governing equations and finite volume discretization

The governing equations considered in this chapter are the conservative form of the Navier-
Stokes equations. In three-dimensional space, the equations in Cartesian coordinates can be
written as

ou OE OF 0G 0OE" OF" 0G"

ot Tor Toy T o T ow T oy T a2

(2.1)
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where the vector of conserved variables U, convective fluxes E, F and G, and viscous fluxes
EY, FY and GY in the z, y and z directions are

P pu pu pw
pu pu2 +p pLU puwU
U=|pw|, E= pUY , F=| p?+p |, G= pWU , (2.2)
pw puw pow pw2 +p
pei puer + pu pver + pu pwey + pw
0 0
Trx Tyx
E’ = Tay , F'= Tyy ,
Taz Tyz
UTgy + VTgpy + WTaz — Qs UTyz + UTyy + WTyr — qy
; (2.3)
Tzx
G’ = Ty
Tzz

UTzy + VUTzy + WT2z —

The state quantities, p, u = (u,v,w), p and e; are the density, velocity components in the z,
y and z directions, pressure and total energy, respectively. Assuming a newtonian fluid and
the Stokes hypothesis [144], the viscous stress tensor, 7;; can be modeled as

2
= p(Vu+ va’) —nVuxL (2.4)

where p is the molecular viscosity, I is the identity matrix, and the supercript {e}? stands for
the transposed matrix. The heat conduction vector, q can be expressed with Fourier’s Law as

q=~rV- T, (2.5)

where k are is thermal conductivity and T the temperature. The molecular viscosity p and
the thermal conductivity k are related by a constant Prandtl number,

Pr = pCy/k. (2.6)

Here, C), is the specific heat at constant pressure. The molecular viscosity is obtained from
Sutherland’s law,

3/2
I > Trep +5 (2.7)

T) =
,U( ) Href <Tref T+S 5

where S, pi,.r and T;..r are constants that depend on the gas of consideration. For air .S = 110.4
K, prey = 1.716 107° kg m~! s7! and Trep = 273.10 K. The system is closed by assuming
a polytropic perfect gas which is characterized by constant C), and constant specific heat at
constant volume C), defined with the specific heat ratio v as

== 2.
’7 Cv’ ( 8)

30



giving the ideal gas law relation
p = pRT, (2.9)

where R is the gas constant. Last, the specific total energy e; can be given by

et:ei—l—ec:L—i—

py —1) %(Iﬂ %+ w) (2.10)

where e; and e, are the specific internal energy and the specific kinetic energy respectively.

The governing equations (2.1) can be expressed in compact form as

ou
EJFV-F@& =0, (2.11)

where F** = (E—E") &, + (F — F")é, + (G — G") &,. Here, &,, &, ,&, are the components
of the unit vector for the x, y and z directions.

The finite volume method is employed to discretize the system, where the equations are inte-
grated over a cell C' of volume V. This is followed by an application of the Gauss divergence
theorem to yield

d
7/ U(x,t) dV+/ F'.n dS =0, (2.12)
dt Jo S

where n is the unit-normal vector of the cell’s surface of area S. Introducing the vector of

averaged quantities over the cell U and the vector of mean flux over the interface F7 results

in the following semi-discretized equation

V+ > (F'-n)y Sp=0. (2.13)
fe{faces of C'}

The face normal flux in the expression is

(F}}et-n>f—((E—E”)nm—l—(F—F”)ny—i—(G—G“)nz> . (2.14)

f

The time derivative in Eq. (2.13) is discretized using the six-step low-storage optimized
Dispersion-Relation-Preserving (DRP) Runge-Kutta scheme of Bogey and Bailly [145]. It
is of the form

_ p I
gttt =T AP 2.15

where U denotes the cell-averaged component of the conserved variable vector in Eq. (2.2), n
is the physical time step, p is the number of stages and At is the time step. The optimized
parameters 7; for the six-stage (i.e., p = 6) Runge-Kutta scheme are provided in Table 1. Op-
timization is performed by minimizing the dispersion and dissipation errors up to the angular

—_
frequency w = 5%;.
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Table 2.1: Coefficients of the six-stage optimized Runge-Kutta algorithm of Bogey and
Bailly [145]

M 1

V2 1/2

v3  0.165919771368
v4  0.040919732041
~v5  0.007555704391
v6 0.000891421261

2.2 Numerical discretization of the convective fluxes

2.2.1 Base scheme

The base scheme employed is the compact sixth-order accurate finite volume formulation of
Fosso et al. [146]. The method evaluates the (averaged) conservative quantities U at the cell
interfaces based on an implicit formulation which is similar to the finite difference scheme of
Lele [147]. While the Padé schemes were developed to compute the derivatives at the grid
points, the method of Fosso et al. [146] determines the interface quantities from which the
corresponding numerical fluxes are derived. The interpolation formula is of the form

an—1/2 + Ui+1/2 + 5Uz‘+3/2 = CLUi_l + bUl + CUH_l + dUH_Q, (216)

where the coefficients on a uniform Cartesian mesh are « = §=1/3, a =d =1/36 and b =
¢ = 29/36. These sixth-order coefficients are obtained by performing Taylor-Series expansion
of each term about the interface i +1/2 and matching the left- and right-hand side coefficients
up to fifth-order. The form of the expression is similar to the upwinding compact scheme
of Pirozzoli [7]. However, the present scheme is centered and therefore non-dissipative. The
coefficients on non-uniform and curvilinear meshes can be obtained in a similar manner. The
compact formulation generates a tridiagonal system of equations that is solved using Thomas
algorithm.

2.2.2 Spatial filtering

The non-dissipative compact interpolation scheme shown in Eq. (2.16) is susceptible to grid-to-
grid oscillations. In general, unphysical oscillations with compact schemes arise due to mesh
non-uniformities, approximate boundary conditions and jump discontinuities such as shock
waves [148]. In the case of turbulent flows, the methods are also responsible for generating
aliasing errors [149]. In order to mitigate the high-frequency oscillations without compromising
on the accuracy of the base scheme, a low-pass filter is typically utilized. Here, either the
sixth- or eighth-order symmetric compact filter of Visbal and Gaitonde [150] is employed. The
filtering algorithm supplies dissipation to damp the high-wavenumber modes responsible for
the instabilities. In the large eddy simulation approach used in this PhD thesis, the spatial
filtering is also used as sub-grid scale model. It is expressed as

N
arUi1 + Ui+ apli =Y %" (Ui+n +Ui_n> , (2.17)
n=0
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where U denotes a filtered quantity, a, are the filter coefficients and oy is an adjustable
parameter between —0.5 and 0.5. The N + 1 coefficients for the sixth- and eighth-order spatial
filter are provided in Table 2.2. The coefficients are functions of the free parameter oy which
controls the width of the low-pass filter. Increasing oy reduces the overall dissipation supplied
by the filter. Furthermore, the dissipation is confined to a narrow band of high wavenumbers.
To prevent excess diffusion of turbulent quantities and acoustic waves, o is set to 0.47 in the
current study [151].

Moreover, the filtering operation in Eq. (2.17) is performed once at the end of the Runge-Kutta
time stepping. In studies [148, 152] involving shock-turbulence interaction, the spatial filter is
restricted to smooth turbulent regions of the flow.

Table 2.2: Coefficients for the sixth- and eighth-order compact filter in Eq. (2.17)

ag ai a2 as a4

11—|—10af 15—|—34af —3+6af 1—2af

6th order
16 32 16 32

93+7004f 7+ 1804]0 -7+ 140éf 172af *14’20[](‘

8th order
128 16 32 16 128

In this work, however, the filtering algorithm is applied throughout the domain, including
regions where shocks and contact discontinuities exist. The following section explains a limiting
procedure applied to the convective fluxes when shocks develop in the flow.

2.3 Shock-limiting technique

In the case of high-speed turbulent flows, numerical schemes must be capable of not only
handling the unsteady multi-scale flow features but also resolving strong non-linearities such
as shock-waves. Although the high-frequency oscillations in shock-free turbulent regions is
dissipated by the spatial filter introduced in Sec. 2.2.2, it is insufficient to capture discontinu-
ities in the flow-field. As a result, unphysical oscillations referred to as Gibbs’ phenomena are
generated that increase instabilities and contaminate the solution [7]. To address this issue,
Visbal and Gaitonde [148] developed an adaptive filter algorithm that retained the baseline
compact scheme [147] throughout the domain and gradually reduce the order of an eight-order
spatial filter to two near shocks. In practice, the algorithm to modify the spatial filter is ex-
pensive and results in loss of accuracy due to its implicit formulation. In this work, an in-house
solution [153] is used that limits the jump between two adjacent cells based on the limiters of
the piece-wise parabolic method from Colella and Woodward [154].

The procedure can be described in three steps. First, the compact scheme from Eq. (2.16)
is used to compute the primitive values W4 /2 at the cell interface I1/5. Second, a limiting
procedure is applied to the interface where two values are obtained, from the left side of the
interface of a cell WZLH /2 and from the right side Wfil /2 as sketched in Fig. 2.1. Last, the

actual flux of the interface is computed using a Riemann solver [155] from the two states
S22 s
Wi+1/2 and Wi+1/2'
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Figure 2.1: Discretization at the block interface for the compact scheme.

The limiting procedure is based on the condition that the values from three consecutive points
{Pi—1/2: Pis Piv1}s {Pi1, P, Pip1j2} or {Pi_1/2, P, Piyy/2} define a parabola without an ex-
trema. This condition can be expressed as.

_— SE— N — S —)
Wil =Wi Wiin=W if (W;,—W;)(W;— Wi—11/2) <0,
— = ool R — — _— <R —
Wili)2=3W; =2W; 9 if (W= Wiii)) <Wz - i(wz’—l/2 + Wi+1/2)>
<L <R
(Wiiijs — Wilyp)?
> 6 R
L < ovol o L <R v | ook oL
Wiiajs =3Wi = 2Wi s if (Wi = Wityyo) (Wa = 5(Wiy o + Wi
<L <R
(Wit1y2 = Wil1)9)?
< — 6 .

(2.18)

2.4 Numerical discretization of the diffusive fluxes

Aeroacoustic simulations of industrial jets are associated with high Reynolds numbers and
thus, dominated by the convective effects rather than by the diffusive ones. In this context,
the diffusive terms can be discretized by a second order scheme instead of a high order scheme.

The finite volume discretization of the diffusive term involves an integral on any mesh interface.
The integrand combines both the solution gradients and its value on the interface. The value
on the interface is taken from the compact finite volume formulation used for the convective
term. As a consequence, the definition of the discretized diffusive term needs the computation
of the gradient on the interface.

For structured grids, the standard way to compute interface gradients follows a two-steps
procedure. First, the computation of the cell-centered gradient is carried out by applying the
Gauss divergence theorem and second, the interface gradient is defined from the cell-centered
quantities.
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Step 1: computation of the cell-centered gradient

For a cell C' of volume V', the Gauss divergence theorem gives

VVvuU = Z (Uf -n)s Sy, (2.19)
f€faces of C

where Uf is the interface quantity. The interface f is shared by two adjacent control volumes
and the interface quantity can be the average of left and right contributions, with the constant
weight coefficient of 1/2 or the extrapolated quantity from the compact scheme.

Step 2: computation of the interface gradient

Taking the interface gradient as an average of left and right gradients (with a constant weight
coefficient of 1/2) is the simplest scheme but such a scheme is known to lead to odd/even
decoupling and does not damp high frequency modes. The 5p-cor scheme can be seen as a
correction of the simplest centered diffusion scheme.

In this section, explanations on the scheme follow the notations introduced in Fig. 2.2 and
the goal is to define the gradient on the interface labeled (i — 1/2,j) located between cells
(i—1,7) and (7,7). The scheme defines the gradient on the dual (blue) volume that is directly
used in the flux computation. The formulation of this interface gradient from the dual volume
explains why it can be seen as a correction of the standard centered scheme.

ny(i—1,7) nl/(z,]) na(i+1,7)
/
Y

\
71— 2 zn:(ll\ () \z+1

1,7) 1 (4, )

Figure 2.2: Sketch of a mesh for explanations regarding the diffusive scheme.

First, following the Gauss divergence formulation on the dual cell, the averaged gradient on the
dual cell is linked with interface quantities. The shape of the elements are not accounted for
and introducing interface quantities with non integer indices, the formulation can be expressed
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as

Vi-15) T Vi) o + , N s N e
%(J)VU(H_I/QJ) = —U(Z»_Lj)nn(z - ].,j)Sn(’L - ].,j) + U(Z,])nn(z,j)Sn(z,j)

1/—= . ) . .
+5 (U(i1,j+1/2)”2(Z —Lj+1)S(—1,j+1)
+U i j1/2yn2(15 5 +1)Sa (3, j + 1)>
1/= . . . .
_2<U(i1,j1/2)n2(Z —1,j—1)S2(i - 1,5 —1)

+U i j-172)m2(i, 5 — 1)S2(i, 5 — 1)).
(2.20)

Then, it should be noted that the contributions following ns direction also found for the
computation of the cell centered gradients on cells indices (i — 1,7) and (7, j) as

Uit j+1/2n2(i — 1,5+ 1)S2(i — 1,5 + 1)+
Ui j1/2)n2(i, 5 +1)Sa(i, j +1)—

U(ifl,jfl/Z)HQ(i —Lj—1S@GE~-1,j—-1)—

Ulij—1/2)n2(i,j — 1)Sa(i, j — 1) (2.21)
= Vli—15) VU-15) + Vi) VUGiyj)
+U(ig1)2,5m1 (i +1,5)S1(0 + 1, 5)
—Uficy2ym (i —1,5)81(0 — 1, 7).

On the dashed lines, the normal vector ny,(i,7) is defined as the averaged of left and right

interface normals as

e e o ma(i—1,0)S1(i — 1,5) +na(d, 5)S1 (i, 5)
(i, 1) (i,§) = = R

The final formulation is obtained by injecting Eq. 2.21 in Eq. 2.20. This diffusive scheme was
successfully applied to aeroacoustics computations in the past [156].

2.5 Spatial discretization at the walls

The high-order numerical schemes considered in our approach for the computation of the
convective fluxes are based on implicit formulations using a relative high number of points.
Close to the boundaries of the computational domain, the number of points available is reduced
and the numerical schemes used in the interior of the domain can not be longer used to compute
the primitive variables W=(u, v, w, p, T'). In a similar way, the high-order spatial filter given
by Eq. (2.17) can not be used close to the boundaries.

The numerical discretization adapted to finite volume is used to reconstruct the velocity com-
ponents, the temperature and the pressure. At the wall, the velocity satisfies the Dirichlet
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condition, 7.e. a null velocity. The pressure, follows a Neumann condition with a null perpen-
dicular gradient
op
on

An isothermal wall is characterized by a Dirichlet condition for the temperature with 7' = T,
whereas for an adiabatic condition, the Neumann condition is applied as

(2.22)

wall

or

™ (2.23)

wall

The numerical discretizations at the wall for the compact scheme and the filter of order 6 are
described in the following.

Discretization at the wall for the compact scheme

In this work, the components of W are not directly imposed at the wall but computed from
the compact scheme from Eq. (2.16). The implicit scheme can be applied over 4 points up to
the wall if the numerical domain is extended by adding two additional ghost cells and a ghost
interface as shown in Fig. 2.3. The ghost cells and the interface are situated symmetrically from
the wall. The variables are then computed at these ghost cells by adding some constraints.
In order to obtain a null velocity at the wall, the velocity is considered as an odd function
following the normal direction to the wall. This implies computing the velocity at the points
Py and P_; and at the interface I/, as

Uj = —U1—;
; = —v,_; for i=0, -1, and -1/2 (2.24)
W; = —W1—4

32l lap

Ps | P2 | P1 | Po: P+

wall/ ghost cells

Figure 2.3: Discretization at the wall for the compact scheme.

Applying the compact scheme from Eq. (2.16) to Eq. (2.24) gives a null velocity at the wall.
For an isothermal wall, the fictitious values are defined to obtain a temperature T, at the wall
as

T; =2T, —Ti_; fori=0,-1and-1/2, (2.25)

Last, the temperature in an adiabatic wall and the pressure are characterized from a Neumann
condition with a null gradient normal to the wall. One simple way to take this into considera-
tion is by considering the temperature and the pressure as even functions with respect to the
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normal direction to the wall. In this case, the temperature is computed as
T;=T,_; fori=0,-1and -1/2, (2.26)

and the pressure as
pi =p1_i for i=0, -1 and -1/2. (2.27)

Discretization at the wall for the filter

The spatial discretization for the filter of order 6 from Eq. (2.17) is similar to the one of the
compact scheme. The formulation of 7 points can be applied up to the first point on the wall
by adding 3 additional ghost cells as shown in Fig. 2.4. The values of the velocity components,
the pressure and the temperature can be computed on Py and P_; using the regular scheme.
The point P53 is used to compute the variables on the point P_o. In order to use the implicit
filter from Eq. (2.17), the values at Py must be known. These values are computed from the
filtered variables at P;. For example, the velocity components are

Uy = —1y
F——H (2.28)
Wy = —W1

32 l2 lap

Ps | P | Py Poi PyiPoi

wall/ ghost cells

Figure 2.4: Discretization at the wall for the filter.

2.6 Spatial discretization at the block interfaces

The solver elsA allows to carry out simulations based on parallel computer architectures.
To this end, the numerical domains are split into different sub-domains named blocks. The
blocks are then balanced over different processors to reduce the time of the simulations. In
the computation, a system of equations is solved for each block of the domain as

2
a1oW_1/2+ Wi+ B15W3z/9 = Z a;Wj. (2.29)
j=—1

An interchange of information is then needed between each adjacent block. The representation
of a mono-dimensional domain split in two blocks A and B by the interface Iy /5 is sketched
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in Fig. 2.5. The interchange of information between the blocks allows to artificially extend
the blocks with ghost cells. For example, block A is extended by the cells P_; and P, that
correspond to the cells of block B.

32l lag

......................

Ps | Ps | P2 | Pt | Poi Py
[ ] [ ] (] [ ] (] [ ]

BLOCK A BLOCK B

block interface

Figure 2.5: Discretization at the block interface for the compact scheme.

Discretization at the block interface for the compact scheme

From Fig. 2.5, inside block A it is possible to apply the implicit scheme from Eq. (2.16) up to
the interface I3,5. At the interface Iy /5, Fosso proposes to use a decentered scheme of order 5

to compute the state Wy 5 as

2
Wi+ 81 nWap= Y ajW; (2.30)
j=—1

where [ /o and aj are interpolation coefficients determined from Taylor expansions of order
5. Using a decentered scheme on the block interface I; /o implies that the value computed for
the block A Wf‘/2 and the value computed for the block B Wf o are different. In order to
conserve the fluxes at the interface, a Riemann solver is applied {155]. It defines a single flux
at the interface computed from the values W‘f‘/2 and Wﬁz.

Discretization at the block interface for the filter

The original formulation from Visbal and Gaitonde [150] is based on a decentered scheme
of the filter. However, Fosso [146] observed that this formulation introduced an important
dispersion, responsible for parasitic oscillations at the interfaces. For this reason, he proposed
to conserve the implicit formulation from Eq. (2.17) that reads as

3 o L
afWi_l + W, + afWi+1 = Z % (Wi—i-j -+ Wi_j) pour 7 > —1

= (2.31)

o~

W_, = W_g
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2.7 Aeroacoustic treatments at the inflow and outflow bound-
aries

In Computational Fluid Dynamics, the Navier-Stokes equations are solved within a finite do-
main. The boundary conditions are the numerical conditions that are imposed at the bound-
aries of the domain. The definition of boundary conditions plays an even more important role
in aeroacoustic simulations that are based on non-dissipative algorithms because of the possi-
bility of numerical instabilities and spurious wave reflections at the boundaries. Therefore, in
order to achieve clean and accurate solutions, the boundaries must allow the free passage of
incoming and outgoing waves without introducing parasitic perturbations. In this work, the
boundary conditions based on characteristic and radiative conditions are used and presented
in the following. Moreover, an accurate and realistic definition of the turbulent boundary
layers that develop inside the nozzles is a must to obtain the same mixing conditions in the
shear-layer of the jet. This turbulent boundary layer can be achieved by using a long enough
duct inside the nozzle that allows for the growth of instabilities and transition of the boundary
layer to turbulent regime. The modeling of the duct implies that the mesh is able to capture
the instabilities that lead to transition which increases the cost of the simulation. An external
forcing can be used as a less expensive workaround in order to help the transition to turbulent
regime. In this work, a forcing based on divergence free disturbances is explained in Sec. 2.7.4.

2.7.1 Characteristic boundary conditions

The first kind of boundary conditions is based on a decomposition of the Navier-Stokes equa-
tions in characteristic variables. They were initially introduced by Thompson [157] for hyper-
bolic equations, this approach was extended to the Navier-Stokes equations by Poinsot and
Lele [158]. For the sake of clarity, the approach considers only the two-dimensional Euler
equations in Cartesian coordinates. The equations are written in non-conservative form and
primitive variables as

OW  OW W
o A, tBg, =0 (2.32)

where W = [p,u, v, pl|' is the vector of primitive variables, and A and B are the matrices

u p 0 O v 0 p 0
10w 0 1/p 00w 0 0

A=10 0 w 0| P70 0 v 1/p (2:33)
0 py 0 wu 0 0 py w

Considering a boundary with normal direction  and assuming that the term B%—VJ is constant
in the x direction, the system of equations (2.32) reduces to

oW  OW
o A TK=0 (2.34)

According to the approach detailed by Thompson [157], the matrix A is diagonalized and can
be expressed as a function of the matrix of eigenvalues S as

D = S"1AS, (2.35)

40



where D is the diagonal matrix of eigenvalues of A as

u—c 0 0 0
0 u 0 0
D= 0 0 wu 0
0 0 0 u+e
The equation (2.32) then can be written as
OW
— +SL+K=0
ot + + R

where L; = )\ilfaaﬂ with

X -
=0 —pa 0 1},
L=1[a2 0 0 —1},

13:[0 0 1 0},

=10 pa 0 1].

The equation (2.37) is then expressed as

g]; _pa?: = L1 — K4+ paKs,
%_% = —Ly—a’K, + K4,
gj = —L3 — Ko,

% —I-pa% = —Ly — Ky — paKs.

(2.36)

(2.37)

(2.38)

(2.39)

In order to apply this set of non-reflective boundary conditions, the waves Ly, Lo, L3 et Ly
must be discerned among incoming or outgoing waves. For example, in the case where the
boundary considered is located downstream of the flow of a subsonic jet directed along x, only
the wave L; is incoming (U — a < 0) and the three waves Lo, L3 and L, are outgoing. The
amplitude of the wave L is then imposed null, which allows to write the following boundary

conditions as

Li=0
ngu<a222—g§>
()

Ly=(u+a) <g§+pagz>.

(2.40)

The spatial derivatives in expressions Lo, Ls and L4 are obtained from the decentered dis-
cretized schemes. The temporal derivatives for the points in the borders are computed using
the system of equations (2.39). A similar procedure is carried out in order to obtain the
boundary conditions in the transverse y direction. For aeroacoustic computations of jets with

elsA, the characteristic conditions are used at the exit of the domain.
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2.7.2 Radiative boundary conditions

The second category of boundary conditions was elaborated from the linearized form of the
Euler equations valid in the acoustic far-field. Tam and Webb [159] proposed a formulation
for the linearized Euler Equations in two dimensions. The radiative condition was established
assuming that the pressure perturbations are purely acoustic and they behave as spherical
waves that come from a punctual source inside the computational domain. The approach
was extended to the Euler equations with the presence of a flow by Tam and Dong [160]
and generalized to three-dimensional flows by Bogey and Bailly [161]. The three-dimensional
formulation is written in spherical coordinates (r, 8, ®), with the source of the emission at the
origin. The three-dimensional radiative conditions [161] are written as

/

/
P o 1 P
— ! — 4+ — "1 =0 2.41
ot ;, t (8r + ar) ;, ’ ( )

where u’ is the vector of fluctuating velocities (u/,v’,w’), « is a constant equal to 2 in two
dimensions and 3 in three dimensions, and v, is the group velocity of the acoustic waves defined
by

vg=u-& +1/a2 - (u-&)? — (u-eéa)?, (2.42)

where (&,, &y, €g) are the three unit vectors in the directions r, 6, ® .

For an exit condition, the boundary not only encounters acoustic perturbations but also aero-
dynamic perturbations that usually are several orders of magnitude higher in amplitude. These
entropic and vortical modes are taken into account in the equations as

/ 1 /
8p—i—u-V,o':(ap—l—u-Vp'>

ot 22 \ ot

881;/ +u-Vu' = —; (Vp')

aaf +EV = —; (V) (2.43)
8;/ 1TV = —; (V)

One of the main difficulties of the approach is to have a mean flow from which to compute
the perturbations (p’,u’,p’). In practice, this mean flow can be obtained from a preliminary
RANS computation or by using an average of the flow during the computation.

Some comparisons between the radiative conditions and the characteristic conditions are found
in the literature [162, 163] showing that the radiative conditions give good results for acous-
tic propagation cases [162]. For aeroacoustic computations of jets with elsA, the radiative
conditions are applied to the lateral boundaries of the domain.
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2.7.3 Sponge zones

The non-reflective boundary conditions do not guarantee the complete absence of reflexions
of significant waves into the interior of the domain when the amplitude of the aerodynamic
fluctuations is too important. It is then necessary to define some regions where the fluctuations
of the flow are damped before the boundaries. These regions are known as sponge zones. There
exist two main techniques for the generation of a sponge zone. The first technique consists in
stretching the mesh. This methodology presents also the interest of decreasing the number of
points in the mesh. On the other hand, the stretching can cause the generation of parasitic
waves that could be propagated inside the domain. For this reason, inside a sponge zone a
second technique is used with the first one. It consists in introducing an artificial dissipation
with the bias of a stabilizing operators. For this purpose, inside the code elsA, a filter of
second order or a source term can be used in a non-exclusive way.

Second order filter

The filter of second order is given by the following explicit relation

p
o Tp—x 1 1 1
Ui jk = Uik — OFf (a:f — a:d) (4ui1’j’k ~ QUigk gLk | (244)

where w is the field before the filtering, uf is the variable filtered, oy is the filtering constant,
x4 and 'y are the coordinates of the beginning and end of the sponge zone, and p is an index
set to 2.

Source term

The utilization of a stabilizing operator under the shape of a source term is carried out by
adding a callback function in the equations as

ou a (xp—x P

where Uy, is the target value for the field u, o, is the callback amplitude, Ax is the size of
the considered cell, and p is an exponent set to 2.

2.7.4 Turbulence forcing

The transition of a jet to a turbulence regime can be established over a long distance. In this
case, the phenomena related to vortex pairing shows a similar transition that the one of a
laminar shear-layer. In order to have a fair comparison with the reality and the experimental
data, the jet must be already turbulent at the exit of the nozzle. It is therefore compulsory to
help the transition to turbulence inside the nozzle by injecting some kind of synthetic turbu-
lence perturbations. When dealing with aeroacoustic simulations, one of the main constraints
is the parasitic noise associated to the synthetic perturbations. To an extent, this is avoided
using velocity perturbations with null divergence. However, numerical errors caused by the
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discretization generate small perturbations that are propagated throughout the computational
domain. The formulation of Bogey and Bailly [73] used in this work is detailed in the following.

The divergence free disturbances added to the velocity profiles in the shear-layer zone are
based on a combination of the jet azimuthal modes m, and they modify the axial and radial
velocities every time step in the following way

i

where the amplitudes —1 < ¢; < 1 and the phases 0 < ¢; < 27 of each mode are randomly
updated every iteration. The unit vortex ring velocities are expressed, for r = \/y% + 22 # 0,

as
w9 2 Az, 7)?\ | r—rg
[vringl - rAyeXp ( 111(2) Ayg To— T 5 (247)

where A(x,7)% = (v —10)?+ (r —r)?, Ay is the transverse grid spacing, and the axial location

Z] +au; Y € cos(io + ¢;)

1=n

um‘ng
Um'ng‘| ’ (246)

is xg >~ 7g.

2.8 Summary and perspectives

In this chapter, the numerical schemes of the solver elsA used for aeroacoustic simulations in
the presence of shocks were presented. The Navier-Stokes equations were as well introduced
with all the assumptions and hypotheses used for its simplification. The resulting equations
are discretized in time and in space. The temporal discretization is based on the six-step low-
storage optimized Dispersion-Relation-Preserving (DRP) Runge-Kutta scheme of Bogey and
Bailly [145]. The spatial discretization can be divided into the discretization of the convective
fluxes and the diffusive fluxes. The convective fluxes are discretized with the implicit sixth-
order compact scheme from Fosso et al. [146]. The low-dissipative low-dispersive high-order
scheme allows for a good discretization of the acoustic pressure waves that have several orders
of magnitude less than the mean pressure of the flow. In order to avoid the high-frequency oscil-
lations generated by the compact-scheme, a sixth- or eight-order spatial filter from Visbal and
Gaitonde is applied. The filtering algorithm supplies dissipation to damp the high-wavenumber
modes and it is also used as sub-grid scale model in the large eddy simulations. On the other
hand, the discretization of the diffusive fluxes is done by a second order scheme due to the fact
that the aeroacoustic simulations of industrial jets are mainly dominated by convective effects
rather than by the diffusive ones. In addition, the spatial discretization of the convective fluxes
and the spatial filter are modified at the boundaries to take into account the stencil of the
compact scheme. Then, an in-house shock-limiting technique was presented. This technique is
based on the limiters from the piece-wise parabolic method from Colella and Woodward [154].
Last, the treatments specified for aeroacoustic simulations were introduced. In particular, the
characteristic boundary conditions from Poinsot and Lele [158] and the radiative conditions
Tam and Dong [160] and generalized to three-dimensional flows by Bogey and Bailly [161] were
introduced. The formulation of the sponge zones used on the boundaries of the computational
domain and the turbulence forcing used to generate synthetic turbulence were explained.

The numerical base schemes presented in this chapter have been widely validated. On the other
hand, as it is shown in Ch. 6, the actual shock-limiting schemes lack from consistency. A new
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shock-capturing technique was developed and it is detailed in the latest chapter. Moreover,
new formulations for wall-models adapted to high-order schemes have been developed by Le
Bras et al. [164] which could reduce the cost of the aeroacoustic large eddy simulations of jets.
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Chapter 3

Large eddy simulation methodology
for jet noise computations

In the present study, the flow and its associated acoustic field are computed with LES for
different topologies of supersonic under-expanded jets. A good knowhow and methodology
could determine a successful computation against one that has a higher degree of uncertainty.
Once some initial problems are solved, computational fluid dynamics allow to investigate the
evolution of a flow. It is up to the user to decide the level of accuracy of the simulation.
Questions such as, is the mesh refined enough? is the time-step appropriate? or, are enough
flow snapshots saved? could determine if a computation was worth doing, or if it will remain
simply as part of a process of trial and error.

This chapter explains the general methodology carried out for aeroacoustic jet simulations
focusing on: the pre-processing, the computation and the post-processing techniques. First,
the mesh generation procedure is explained in Sec. 3.1. Second, in Sec. 3.2 the setup of the
simulations is explained. Then, an overview about some standard post-processing techniques
is given in Sec. 3.3. In particular, this section focuses on the method for far-field noise propa-
gation, a hydrodynamic-acoustic filtering, and the azimuthal decomposition. Last, a summary
and some perspectives are presented.

3.1 Mesh generation

This section explains the procedure for the generation of the mesh adapted for jet noise aeroa-
coustic computations. The CFD solver (elsA[143]) used during this work is a multi-block
structured solver. A structured solver implies that the mesh must be constructed with a
structured approach where different blocks are defined to accommodate the model geometry.
The type of elements encountered in the mesh are quadrilaterally-faced hexahedra. The con-
nectivity between blocks can be conformal, where the grid lines are continuous in the interface
of the blocks, or non-conformal. In the latest, each block can have a different number of el-
ements in the connected faces which leaves the interface with hanging nodes. The meshes in
this work are conformal and they were generated with the commercial software IGG (Auto-
Grid v10.1rc) from Numeca. The mesh generation was carried out mostly in batch mode. The
scripts implemented to generate the mesh account for the generation of the model geometry
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and the domain geometry, the generation of the blocks and its different discretization laws and
the definition of the boundary patches.

The mesh topology is of the type butterfly [87, 63]. The use of a solver developed in Cartesian
coordinates and its application to axisymmetric cases such as cylindrical jets is not straight-
forward. A cylindrical mesh shows a singularity at the axis where one of the faces of the
hexahedral elements is null as shown in Fig. 3.1 (a). This is avoided with the implementation
of a butterfly mesh. This topology replaces the area surrounding the axis by a square-like
block as shown in Fig. 3.1 (b). This kind of mesh topology avoids the over discretization at
the axis. In a cylindrical structured conformal mesh, the azimuthal discretization is fixed and
dimensioned according to the vortical structures that develop in the shear-layer. This implies
that the number of azimuthally distributed cells near the axis directly depends on a predefined
value. Overall, a butterfly topology allows for a more uniform mesh in the central region.

(b)

Figure 3.1: Sketch of (a) a cylindrical mesh and (b) a butterfly mesh.

A general multi-block structured butterfly mesh of an isolated single jet can be defined by 18
blocks if no merging of different compatible topological blocks is done. Figure 3.2 shows in
solid line the contour of the different blocks needed for a general mesh of a single jet. The inner
region groups the central block and the adjacent blocks inside and outside the nozzle. The
outer blocks group the lip region, the near-field physical domain and the sponge regions that
encloses the whole domain of interest. The domain, and therefore the blocks, grow radially
with the axial position. This expansion of the domain has to be taken into account to avoid a
denser outflow boundary. When dealing with conformal structured meshes, the number of cells
is propagated through the connected blocks, e.g. the radial discretization of the central block
inside the nozzle determines the radial discretization of the central block outside the nozzle as
this discretization is propagated by the connected joined face at the nozzle exit plane. The size
of the outflow boundary must be increased in order to have a uniformly distributed boundary
that contains the same number of cells in the radial direction as the blocks inside the nozzle.
This expansion also helps in having a better isotropy of the mesh following the expansion of
the jet. The axial discretization shared between connected blocks, is changed from the regions
noted with the letters A, B,C. In region A and C, an expansion ratio of less than 4% is
considered. On the other hand, in region B, the mesh is uniformly distributed. The choice
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of the size of the three regions depends on the case of consideration and has a big impact on
the total number of cells of the mesh, and thus, on the cost of the simulation. The maximum
expansion ratio in the physical domain was restricted to 4% and the skewness of the cells to a
minimum of 54 degrees to avoid spurious noise [151]. In the sponge layer, an expansion ratio
of 10% was used. An example of the mesh is shown in Ch. 5 and Ch. 6 for particular jets.

e Sponge layer
""""""""""""""""""""""""" I5hysical
‘ Domain | ..
__________________________________ /'
- N S
':: Inner Region
— e e S
"""""""""""""""""""""""""" \
______________________________ Lip Regic;{%""' )
__________________________ . LipRegion .~
—\\\ ___________________________________________________ e
A B . C ]
(a) (b)

Figure 3.2: Sketch of a domain for a jet. In solid lines are represented the block boundaries
and in dashed lines the different regions inside each block. (a) axial representation. (b) radial
representation.

The three dimensional mesh generated for an aeroacoustic computation of a jet has to be
adapted based on the numerical schemes used, the type of boundary conditions, the flow
conditions and the level of discretization of the pressure perturbations. Capturing the noise
source mechanism in a jet is related to the level of discretization of the mesh according to the
different turbulence scales [165]. For a large eddy simulation, the mesh should be able to resolve
down to the order of the Taylor microscale [166]. The Taylor microscale is the intermediate
length-scale at which fluid viscosity significantly affects the dynamics of turbulent eddies in
the flow. These microscales are found in the dissipation range and are modeled by the subgrid
scale equivalent model of the LES (see Ch. 2). The noise source mechanism can be related to
the turbulence interaction on the mean flow known as mean noise and the noise generated by
the turbulence itself known as self-noise [167]. On the other hand, the propagation of noise
disturbances in the near-field is linked with the spatial numerical schemes and the resolvable
frequencies. The high-order compact schemes explained in Ch. 2, allow for the discretization
of a wave with a negligible dispersion and dissipation using only 6 points per wavelength. The
mesh size is then defined by

Goo
As = —, 3.1
=5 (31)
where a is the ambient speed of sound and f is the resolvable frequency of interest which is
defined according to the physics of the case of study.

Once the mesh is generated, it is split for parallel computations. The split is done to distribute
the new blocks among the processors. The splitting of the mesh was done internally with
elsA[143] which is based on the Greedy algorithm [168]. The Greedy algorithm does not
give the best optimal load balance between each processor, instead, it yields locally optimal
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splits that approximate the global optimal distribution after some iterations. A maximum
load balance error of 10% was obtained throughout all the parallel computations to assure a
good efficiency of the computation.

3.2 Large eddy simulation procedure

3.2.1 Two-step procedure

The definition of the boundary conditions and the initial conditions are necessary for a compu-
tation. In this work, a two-step procedure using a Reynolds Average Navier-Stokes simulation
(RANS) is used as boundary and initial conditions as in [63]. The LES is initialized with
the RANS in a coarse mesh before using the refined and case adapted mesh to accelerate the
transient phase. The diagram of the procedure is summarized in Fig. 3.3.

; 2nd Order Scheme High Order Compact Scheme
RANS interpolation LES interpolation LES LES
rans > coarse > fine > fine
mesh ; mesh mesh mesh
Initial Conditions Transient Phase Adaptation Phase Data Extraction

Figure 3.3: Simulation procedure scheme.

The RANS simulations are carried out as well with the solver elsA[143]. Some details about
the RANS simulations are explained in the following. The turbulence model used in the com-
putations is the one-equation Spalart-Allmaras standard model [169]. The convective flux is
computed using an upwind approach based on the Roe’s approximate Riemann solver [155].
The scheme’s accuracy is increased by either a second order MUSCL extrapolation [170] cou-
pled with the minmod limiter or a third order extrapolation technique [171]. The last technique
does not include any limiter but the convergence to the steady state does not suffer from this
numerical parameter. Finally, Harten’s correction [172] is included to avoid non-entropic solu-
tions. The convection term of the Spalart-Allmaras turbulence model is discretized following
the formalism of Larrouturou [173]. In order to efficiently attain the steady state, the back-
ward Fuler time integration is coupled with a V-type multigrid technique with three levels of
coarsening. The implicit system is solved at CF L = 100 with a LU — SSOR algorithm with
four sweeps [174]. A minimum of 4-6 drops of order of magnitude in the residuals is obtained
for the all RANS simulations after 10,000 multigrid cycles.

The full three-dimensional mesh used for the RANS simulations has the same topology as the
LES mesh explained in Sec. 3.1. However, the domain is bigger reaching up to 100 diameters
in the axial and in the radial direction for the single jet presented in Ch. 5. Moreover, as
it is expected, the mesh expansion ratios are not as limited as those for LES. The flow has
been interpolated from the RANS mesh into the LES mesh with the interpolation treatment of
Antares [175]. The interpolation is done with 8 neighboring points weighted with the inverse
distance to a predefined power. The source terms of the non-reflective boundary conditions
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detailed in Ch. 2 are obtained as well, directly from the RANS. Because the domain is smaller
for the LES than for the RANS simulation, ambient pressure conditions are not fully reached
at the exit of the domain (when this one was interpolated into the LES mesh). Therefore,
the RANS solution gives a better approximation of the conservative variables at the boundary
than imposed ambient values.

When the LES is initialized from a RANS solution, the flow needs to adapt from time-averaged
variables, to the instantaneous time-resolved solution. Due to the fact that the RANS is not a
solution of the Navier-Stokes equations, because they are not averaged in time, an unphysical
behavior of the flow may appear. Moreover, the simulation overcomes a transient phase from
the RANS to the LES, where the vortices in the shear-layer and all the transient phenomena
start to develop. In order to accelerate this transient phase, a coarse mesh could be used
in-between. The coarse mesh and the utilization of a second order upwinding convection
scheme kills the unphysical phenomena when switching from RANS to LES faster than directly
computing with the refined mesh and the high-order schemes presented in Ch. 2. Afterwards,
the computation can be continued with the refined mesh. The use of RANS has the advantage
of applying a fully developed jet as initial conditions. The velocity entrained by the jet helps
to evacuate the transient phenomena at a faster pace than when quiescent conditions are
used as initial conditions. An alternative procedure would have been to impose an analytical
solution as initial conditions. This approach is beneficial when the resources are not available
to compute an initial RANS. An example of the transient phase of the dual stream from Ch. 6
is shown in Fig. 3.4.

° RANS convected outﬁide

® «<— unphysical vortex

Figure 3.4: Pressure contours of a dual stream jet at the transient phase between RANS and

LES.

In this step, unphysical vortices appear due to the initialization with RANS and must be
convected outside the physical domain. Additionally, the Courant-Friedrich-Levy (CFL) con-
dition is less impacted when the RANS is used as initial conditions with respect to quiescent
initial conditions. Our experience shows that the full development of a jet from quiescent con-
ditions could produce a different phenomena, that could be more detrimental to the time-step
defined by the CFL condition than when using RANS as initial conditions. The impact on the
time-step of the simulation would eventually affect the computational time of the simulation.
Because the time integration is done explicitly, the time-step of the whole mesh is determined
by the cell with the most restrictive CFL. The time-step is defined based on the initialization
of the simulation. In this step, the CFL is set to 0.95 which allows for a variable time-step.
The time-steps achieved during this phase define the final constant time-step of the LES.
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3.2.2 Data extraction

Once the LES has overcome the transient phase, the data extraction phase can be started.
Experiments and Computational Fluid Dynamics are complementary results. Normally, an
experience is used to validate the CFD. After this first step is validated, the rest of the CFD
flow can be studied with a higher degree of confidence. The experiments can usually be run
for a longer period of time, i.e. obtain more samples, but the location, number of probes or
variables is restricted by the cost, the positioning of the measurement tools and the type of
experimental apparatus. In a CFD simulation, the positioning of the numerical probes depends
only on the discretization of the mesh due to the fact that one can measure any computed
quantity at each cell in the domain. Several variables can be computed at the same time
in the same location and different numerical measurements can be done at the same time.
Moreover, the extracted data is not perturbed by the extraction tool as it can happen in some
experimental procedures. On the other hand, the physical time of the simulation is usually
less than 1% the measured time in the experiments. Experiments and CFD are therefore
complementary.

A large eddy simulation of a jet can supply the researcher with enormous quantities of data
to analyze. Before launching a simulation and extracting all the data of each cell of the mesh
at each iteration, one needs to keep in mind three factors. First, the researcher needs to think
about the interest of the data being saved. For example, if the time-step of a simulation is of the
order of 1078 seconds, the equivalent frequency sampling would be of 100 MHz. If the frequency
of the physical phenomena occurring in the simulation is of several orders of magnitude lower,
as it would be in most jet simulations, the data could be saved every 100 iterations, instead
of at each iteration. Also, maybe the data near the boundaries or in other regions are not
relevant for the physics of interest and they could be spared. Second, the computational
cost in terms of time and memory space needs to be foreseen. Depending on the solver, it
may occur that extracting the data in the whole domain, slows down the simulation due to
Input/Output performances based on the software or the hardware architecture. Certainly, the
quantity of data extracted needs to be predicted in order to avoid filling all the memory space
of the storage systems. Last, the data extracted has to be analyzed. Depending on the post-
processing techniques used, it could involve loading in memory the whole dataset. This could
be impractical if the memory required is higher than the one installed on the post-processing
stations.

For the reasons mentioned above, the data extracted in the jet simulations of Ch. 5 and
Ch. 6 is only composed of numerical probes, topological surfaces, plane-cuts and the mean
in the complete three-dimensional domain. The full instantaneous three-dimensional flow was
not saved due to memory constraints. More details about the positioning are given in each
respective chapter. The numerical probes extract the conservative cell-variables and other
computed quantities such as the vorticity in some locations of the domain that are specified
in a list. The probes are located in the shear-layer at different radial locations and distributed
axially and azimuthally over the domain. The topological surfaces are obtained following a
gridplane of the structured mesh. The extracted topological surfaces contain the conservative
variables of each cell-face. Plane cuts are also extracted using the cut treatment of Antares [175]
that is based on VTK libraries [176]. Always in the interest of saving computational memory,
only some axial cuts are saved. Some of these surfaces are used to propagate the noise to the
far-field with the formulation presented in Sec. 3.3.1.
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3.3 Standard post-processing techniques

3.3.1 Acoustic far-field characterization

For a direct computation of sound approach such as the one used in this study, the aerody-
namic field contains the hydrodynamic disturbances as well as the acoustic perturbations (see
Sec. 1.4.1). The hydrodynamic disturbances act as noise sources and are indiscernible from the
acoustics due to the inherent non-linearities of the flow. Pressure perturbations can always be
measured inside the flow, however, the separation from hydrodynamics and acoustics, is not
clear, if the measure is done in the non-linear region of the flow. In the near-field region where
the non-linearities are small compared to the linear terms, a proper acoustic measurement
can be done. For a jet, this is the region outside the shear-layer. Nonetheless, the near-field
region also contains hydrodynamic perturbations known as pseudo-sound perturbations. They
are pressure perturbations originated from the convection of vortical structures but that do
not travel at the ambient speed of sound. The hydrodynamic-acoustic filtering is explained in
Sec. 3.3.2. The far-field condition is reached when the noise sources can be considered punc-
tual, i.e. the noise is emitted from one single punctual location. In the far-field, the amplitude
of the acoustic perturbations are attenuated with the inverse square distance and the shape
remains constant. The acoustic field in the far-field can be computed numerically or with an
acoustic analogy. If the acoustic field is computed numerically, for example with the acoustic
wave equation, the region between the near-field and the far-field must be discretized. In order
to reduce the computational cost, acoustic analogies are available to analytically propagate
the noise to the far-field using Green functions. The Lighthill acoustic analogy presented in
Sec. 1.1 is an example of it, however, it is not consistent since all the sources are modeled as
quadrupoles. Curle [177] and then Powell [178] extended the Lighthill analogy to take into
account boundary conditions without the need of a modified Green function. Later, Ffowcs-
Williams and Hawkings [179] proposed a surfacic formulation. In this work, the formulation
of Farassat [180] is implemented and presented in the following.

Formulation

A surface X defined by f(z,t) = 0 is considered. Inside the surface ¥ the function f is defined
negative as f(x,t) < 0. The velocity of the surface 3 is denoted as v. Multiplying the mass
and momentum conservation equations by the Heaviside function H(f) and combining them
together results in

2
gtg ((p—po) H(f)) + a2 V% ((p— po) H(f))
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where Tj; is the Lightill tensor defined as Tj; = pv;v; + (p — pago)éij —7;; and the components
L; and @) are defined as

L; = —(pui(uj — vj) + (p — po)dij — 7ij)n;, (3.3)
Q = (p(ui — vi) + povi)ni,
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where n is the exiting normal vector to X. Using the free Green function it is found

az, (p—po) H(f) 47722 <3$25$]///f>orl—M L (y, - )dy
tan ] ooyt (- ) 33)
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where 7 =| x —y | and M, = (u-r)/(rax). The density fluctuation corresponds to the
superposition of three components: a quadrupole source, a dipole source and a monopole
source. The quadrupole source is represented by the Lighthill tensor 7;; and encloses all the
quadrupole sources found inside the surface ¥. The dipole source, known as loading source
term noted by L; represents the constraints exerted on the surface. The monopole source,
also known as the thickness source term noted by @ accounts for the displacement of fluid
produced by the body. The loading and thickness source terms are surface distributions of
sources and represent all the fluctuations generated by the flow in the interior of the surface.

Setup

The computation of the FWH analogy is done directly on-the-fly with an in-house implemen-
tation in elsA. The propagation of sound to the far-field is done at each iteration. In addition,
the topological surfaces used for the analogy are saved at a specified frequency. Computing
the propagated sound on-the-fly implies that the observers must be defined before the data
extraction step starts. The surfaces are saved in order to be able to do a posteriori com-
putation of the far-field sound specifying new observers. The surfaces saved are topological
surfaces that follow one gridplane of the mesh in the cylindrical direction. The values at the
interface are directly obtained from the compact scheme. Moreover, a topological surface has
the advantage of avoiding interpolations with respect to a simple conical cut. In addition,
the surface follows the mesh. This means that the construction of the mesh must take into
account the expansion of the jet to avoid extracting a topological surface that crosses the jet
plume. An example of such a surface is illustrated in Fig. 3.5.

In the present work, the FWH surfaces are open at the outflow boundary where the jet exits
the domain. A spatial average can be done for a set of surfaces located at the exit of the
domain to account for the noise produced by the exiting vortices without adding the hydrody-
namic pseudo-sound. This procedure improves the accuracy in the low-frequency range [129].
However, this methodology was not implemented as the shock-cell noise is radiated mainly in
the upstream direction where the surface is closed and the frequency range is higher than the
one affected by the closing surfaces.

3.3.2 Hydrodynamic-acoustic filtering

As it was mentioned in Sec. 3.3.1, the near-field flow is composed of hydrodynamic and acoustic
perturbations. The pressure perturbations obtained in the irrotational near-field of a turbulent
jet are composed of both components in an a priori unknown fashion. In order to focus
the study on either the hydrodynamic or the acoustic component, the acoustic-hydrodynamic
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Figure 3.5: FWH extraction surface of a dual stream jet in green. The contours of the pressure
perturbation are shown in the background image. The shaded region represents the physical
domain.

filtering of Tinney and Jordan [181] was implemented. This filtering allows for a more rigorous
study of the underlying source mechanism related to the measured pressures in the near-
field. The decomposition into hydrodynamic and an acoustic components is not possible for
Mach numbers of order unity, as the modes from both components are coupled together [182].
Nonetheless, the near irrotational pressure field gives a meaningful differentiation between the
pressure fluctuations associated with the passage of the vortex cores [183]. This hydrodynamic
footprint, even if it consists of pressure perturbations that do not travel at the speed of sound,
they are responsible for sound generation [167]. The pressure near-field of a subsonic jet was
filtered in hydrodynamic and acoustic perturbations in [184], showing all the above-mentioned
features.

For the case of interest, 7.e. a supersonic jet, the filtering can be performed outside the jet
where the flow is mostly irrotational. The idea behind the filtering is to separate the two
components using geometrical relations of the acoustics waves with respect to a linear array
of probes. In order to filter a signal, an array of probes following a straight line is needed.
The quality of the hydrodynamic filtering is affected by the number of probes used and by its
distribution. An array of probes that follows the expansion of the jet is best suited for this
filtering in comparison with a horizontal one. A horizontal array of probes should be placed
farther away from the jet to avoid a crossing with the jet plume. At this location, the field
would most likely be composed of only the acoustic component making probably pointless
the filtering. The separation is carried out taking advantage of the transformation into the
wavelength-frequency domain. The pressure signal of the probe array p(z/,t) is expressed in
the wavelength-frequency domain as

p(k,w) = / / p(a! )W (2" )e " Fe"+ ga! . (3.6)
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where the reference coordinate 2’ is set parallel to the array. W(a') is a weight function
that smooths the signal at the axial ends of the array. In this work, the smoothing window is
applied over one diameter. An acoustic fluctuation generated by a noise source inside the jet is
propagated outside the jet at the ambient sound speed a~,. However, the acoustic perturbation
is propagated at a relative supersonic speed obtained with the geometrical relation

0’ = a0 (2r f + aoo), (3.7)

in the 2/ coordinate system, where r is the perpendicular distance from the axis situated on
the array to the noise source and f is its frequency. Alternatively, the propagation speed seen
by the axis x’ can be geometrically linked to the perpendicular and parallel wavelengths of the
noise source that emits at a frequency f = aoo/A. The different wavelengths and distances are
sketched in Fig. 3.6. The propagation speed is then

/ N 2
N ey (3.8)

oo 124+ N2 — 7 r

where ) is a pseudo-wavelength parallel to the axis 2’ and ) is the actual wavelength perpen-
dicular to the axis 2.

In order to clarify the previous relations easily, two extrema can be studied. When the distance
from the source to the array r tends to infinity, a plane wave is sensed by the array. Therefore,
the plane wave has an infinite wavelength ¢’ in the 2’ axis or the sound speed a’ goes to
infinity (see Eq. (3.7)). If the noise source is located in the same axis as the linear array, the
perpendicular distance r will be equal to zero. At this point, the acoustic perturbations are
convected at the sound speed ao, and the hydrodynamic perturbations at a lower speed. In
the general case, when the distance r is finite and not zero, the acoustic perturbations travel in
the 2’ axis at a velocity higher than the speed of sound having the limit at the ambient speed
of sound as.. This component is referred to as the supersonic or acoustic component. In the
same fashion, the hydrodynamic perturbations developed by the convected vortices travel at
a velocity smaller than the speed of sound as,. This component is referred to as the subsonic
or hydrodynamic component.

X ! i noise source
' X

Figure 3.6: Sketch of the different wavelengths with respect to different azxes from a noise source
situated at a distance v from the array.

Then, the subsonic and supersonic components can be recovered from the transformed signal
obtained by Eq. (3.6) using only the ranges p(k > w/ac0,w < kan) and p(k < w/ao0,w > kaso)
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respectively as

pr(e' ) = //p(k‘ > W/ oo, w < kase)e " F D dlde, (3.9)
pa(’,t) = / / p(k < w/ase,w > kase)e B+ dkdy, (3.10)
where the subscript {e}, represents the hydrodynamic perturbations characterized by subsonic

phase velocities and the subscript {e}, the acoustic perturbations characterized by supersonic
phase velocities. An example of this decomposition is shown in Fig. 3.7.
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Figure 3.7: Near-field pressure signal decomposed into the hydrodynamic and the acoustic
components. Signal extracted from the supersonic under-expanded single jet from Ch. 5 at 3 D
from the nozzle exit and an expansion angle of 5 degrees.

3.3.3 Azimuthal decomposition

The azimuthal decomposition decomposes a signal recorded in an azimuthally distributed array
of probes into the azimuthal modes based on Fourier coefficients. The azimuthal decomposition
has been widely applied to the study of supersonic jets. In particular, in the study of supersonic
screeching jets. These kinds of jets follow different azimuthal behaviors depending on the exit
Mach number of the jet. As it was shown by Powell [31], screech sound can affect the azimuthal
modal behavior and development of the flow. The azimuthal decomposition gives information
about the energy of each mode, and can be used to study each mode separately to gain more
insight of the physics that lay behind the generation of shock-cell noise.

Two similar methodologies based on the Fourier decomposition were found in the litera-
ture [185, 186]. However, being based on the same basis, the results are equivalent. Both
methodologies imply that the actual signal is based on a linear superposition of different
azimuthal modes. If the flow contains a high order of non-linearities, the azimuthal decom-
position will give less accurate results as it tries to model a non-linear flow as linear (see
Appx. B). The energy of the non-linear terms would be hidden inside the linear terms.

The first methodology [186], decomposes the real signal directly into the different modes by
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expressing it as a Fourier series such that

p(9;t)

) cos (m@) + by, (t) sin (mo)) , (3.11)

where ¢ is the azimuthal coordinate, M the number of azimuthal modes solved, and the set
{ao, @, bin }, with m = 1...M, are the Fourier coefficients corresponding to the different modes.
In order to recover the different Fourier coefficients and retrieve the azimuthal modes, it is
necessary to solve a linear problem obtained from equation 3.11. The linear problem to solve
with 2M +1 = N is F = T~ 'P where P is a vector containing the different signals on the
azimuthal array as
p(¢1,t)
P= : . (3.12)

p(én,1)

F' is a vector containing the Fourier coefficients of the series as

ao(t)

F= , . (3.13)

And T is a matrix of trigonometrical functions:

1 cos(¢1) sin(¢p1) --- cos(M¢p)  sin(Mo)
T=|": : : : : . (3.14)
1 cos(¢n) sin(on) --- cos(Mon) sin(Mon)

The second, but equivalent methodology, expresses instead, the spectrum of the signal as
Fourier series as in [185]. The cross-spectra is computed between the different azimuthal
probes with respect to a reference probe. The complex amplitudes of the cross-spectra are
used to solve for the modal composition by solving the system of equations

M/2—1 M/2—1

Fu(dn) =cot+ 3 e+ 3 chemimon, (3.15)

where F}, is the cross-spectra between one probe and the reference probe. In a similar way as
explained for the first methodology, the system of equations can be resolved and the complex
Fourier coefficients retrieved. Using the cross-spectra with respect to a reference probe means
that the phase and the amplitude of the complex coefficients are referenced to the ones of
the reference probe. In the current work, no reference probe was used, always leaving the
reference phase with respect to the plane z = 0 with positive y and the amplitude untouched.
The Fourier coefficients of the Fourier series are the same for the Fourier transform for discrete
signals.
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3.4 Summary and perspectives

In this chapter, three aspects of the simulations carried out were explained. First, the gen-
eration of the mesh for aeroacoustic simulations of jets was explained. The type of solver
determines the topology of the mesh. In the present study, the use of a structured solver
influenced the author to adopt a butterfly topology. The details of the mesh that are needed
with the constraints of the numerical schemes were also described. In particular, the stretch-
ing ratio of the cells must not be higher than 4% to avoid spurious noise. Additionally, a
general definition of the blocking system was described. The methodology for the LES was
split in a two-step procedure where the initial conditions are computed via a RANS simula-
tion. The Reynolds-averaged Navier-Stokes simulation was carried out using a mesh with the
same topology as the LES but with lighter mesh constraints. The RANS solution is inter-
polated into a coarse LES mesh to evacuate the transient phase out of the domain. Then it
is again interpolated into the final refined LES mesh. After the transient phase is done, the
data extraction phase can start. In this work, the amount of data extracted was kept low due
to memory constraints while trying to get a good picture of the physics of the problem. In
order to analyze the acoustics of supersonic under-expanded jets, several post-processing tech-
niques were implemented. This chapter presented the procedure followed for the propagation
of the noise to the far-field, the hydrodynamic-acoustic filtering and the azimuthal decomposi-
tion. The pressure perturbations are propagated to the far-field with the Ffowcs-Williams and
Hawkings analogy and the information saved on topological open surfaces inside the domain.
The hydrodynamic-acoustic filtering allows for a separation of hydrodynamic disturbances and
acoustic waves in the near-field region of the jet. This is done by transforming the data of a lin-
ear array of numerical probes into the frequency-wavenumber domain and then discriminating
the relative phase velocities of each component.

The methodology developed for this work has a good efficiency in terms of time needed to
carry out a complete simulation, however, the procedure could become too cumbersome if
data exchanges must be done between different computing stations, storage systems etc. On
the other hand, this methodology is easier to implement if all the steps can be done on the
same computing station (such as a supercomputer). Due to memory constraints, some of the
steps such as interpolations, or the generation of the mesh were carried out in a different
computing station which meant a transfer of bulky files.
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Chapter 4

Wavelet-based signature
identification procedure

This chapter explains the wavelet-based post-processing procedure implemented in order to
extract the most characteristic events of the flow. This tool was studied because it allows for a
decomposition of the signal in different scales or frequencies in order to identify different events
while keeping the discretization in time and is shown to be a powerful tool even for short time
signals. The signal is decomposed into the wavelet domain where some energetic requisites are
checked to select the most representative events of the signal. A window is centered at each
detected event and then all the windows associated to each event are averaged. The result is
a signature characteristic of a true feature of the signal.

The signal used in this chapter comes from the dual stream jet investigated in Ch. 6. In par-
ticular, in the first part of this chapter, the temporal signal is a pressure signal representative
of shock-cell noise obtained in the far-field at 160° from the jet axis. For the selection of the
scale of Sec. 4.5, a signal located in the near-field is analyzed at r/Dg = 1.5, which extends
from 0 < /D, < 10.

The chapter is split as follows. First, an overview of the continuous wavelet transform is given
in Sec. 4.1. Second, two different methodologies are explained in Sec. 4.2 in order to detect the
events and the conditional average is explained in Sec. 4.3. Third, a parametrization study of
the procedure is given in Sec. 4.4 in terms of the mother wavelet, the methodology applied to
detect the events, the filtering of the events and the size of the filtering window. Then, the
effect of the scale chosen is explained in Sec. 4.5. Finally, some conclusions are drawn.

Some of the procedures detailed in this chapter were developed in collaboration with L. Gefen
from Universita degli Studi Roma Tre in Rome, partner of the AeroTraNet2 project. More
details about the collaboration are given in Appx. C.

4.1 Continuous wavelet transform

The wavelet transform originated in the eighties with Morlet [187] and is nowadays one of the
most popular time-frequency transforms. The regular wavelet transform decomposes a one
dimensional signal into a two-dimensional representation of the signal. For a temporal signal,
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the wavelet transform represents the signal in time and scale. The Fourier transform has been
the choice by default of many researchers due to its well known characteristics, and easy to
access functionalities. However the main disadvantage of the Fourier transform is that it looses
the time-information. In order to overcome this issue, the windowed Fourier transform (WFT)
allows for a transformation of the signal in time and frequency. This is a Fourier transform
applied on a sliding window over the signal, instead of applying it to the entire signal. One
of the main drawbacks of the WFT, is that the length of the sliding window has to be kept
constant over the whole signal. The length of the window influences the time resolution of the
transformation: a larger window would give a better decomposition at lower frequencies but
a worse one for the higher frequencies and vice-versa. This is where the wavelet transform
surpasses the Fourier transform. Using the analogy of the Fourier transform, the wavelet
transform allows for a decomposition in time and frequency for a set of different scales where
each of them was transformed with a scaled window, thus avoiding the use of a constant length
window that would benefit only one region of the spectrum.

The continuous wavelet transform can be expressed as

\/1‘?‘ _:of(t) W (t - T) dt, (4.1)

where f () is the temporal signal, {w (s, 7)} is the set of wavelet coefficients, 7 is the translation
parameter, s is the dilatation or scale parameter and * (t—T) is the complex conjugate of the
daughter wavelet (t T) obtained by the translation and dilatation of the so-called mother
wavelet 1o (t). Mathematically, the wavelet transform is a convolution of a temporal signal
with a dilated function with different scales of dilatation. Each scale represents a different
window size in the windowed Fourier transform.

w(s,7)=

The discrete form of the continuous wavelet transform of a discrete signal f, is defined as the
convolution of f,, with the daughter wavelet ¢* (t) as

Z furt” [ )‘”] , (4.2)

where n is the localized time index, N is the number of points in the time signal and dt the
time step. If the convolution of Eq. (4.2) is done N times, the calculation can be conducted
in Fourier space simultaneously for all N times. The discrete Fourier transform (DFT) of the
time series f, is

nef27rikn/N’ (43)

=] —

3 2z

LM
kﬁ

where k is the frequency index. The Fourier transform of the wavelet ¢ (¢/s) is given by ¥ (sw).
The convolution theorem states that the wavelet transform is the inverse Fourier transform
of the product of the Fourier coefficients obtained with Eq. (4.3) and the wavelet in Fourier
space as

wy, (s) = Epp* (swy) ROt (4.4)
k=0

where wy, is the angular frequency defined as ijz\}rgi, positive when k& < N/2 and negative
otherwise. Here, the mother wavelet is normalized at each scale to have unit energy. This

allows for a fair comparison between each scale.
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The mother wavelet used in the wavelet transform needs to have zero mean and be repre-
sented both in time and frequency space to fulfill the admissibility condition [188]. The main
factors that define a mother wavelet are the orthogonality, the set of numbers to which they
belong, the width and the shape. The wavelet transform can be orthogonal or nonorthogonal.
In the orthogonal wavelet transform, the time is depicted by discrete blocks proportional to
the width of the wavelet basis at each scale, allowing a compact representation of the signal.
The nonorthogonal wavelet transform gives a continuous convolution for each scale producing
smooth and high correlated wavelet spectrum at adjacent times. In this methodology, only
the nonorthogonal continuous wavelet transform is used. A mother wavelet can be complex,
or real. The complex mother wavelet decomposes the signal in a real and imaginary part that
defines the amplitude (modulus), and phase (angle) and it is better suited for capturing an
oscillatory behavior. On the other hand, a real mother wavelet decomposes the signal only in
a real component which gives a better discretization of peaks or discontinuities. The width
of the mother wavelet determines the resolution in frequency. A narrow mother wavelet has
a good time resolution but a poor frequency resolution and vice-versa. Because the wavelet
transformation acts like a convolution, a mother wavelet whose shape is similar to the phe-
nomena that one wants to capture would give a better resolution in amplitude. For further
information about the wavelet transform, the reader can refer to [188, 189, 190].

In the current study, three mother wavelets are investigated: Morlet, Paul (m = 4) and the
second derivative of a Gaussian (DOG with m = 2) known also as Marr or Mexican Hat. The
Morlet mother wavelet is a complex function adapted for analysis of local periodicity of the
signal. A good discretization is achieved in the frequency (scale) domain. The Morlet mother
wavelet is defined as

bo(n) = m=VAeione=1/2, (4.5)

where w = 6 to fulfill the admissibility condition. The DOG (m = 2) mother wavelet is a real
function and is good for a search of localized structures due to a better discretization in time.
The function is defined as

dm

Woln) = dTm/ (4.6)

where m = 2. Half-way through between both above-mentioned mother wavelets, there is the
mother wavelet Paul defined as

2Mimm] 1

@)l (L— i

Yo(n) = (4.7)

with m = 4 in this work. The representation in time of the three mother wavelets is shown in
Fig. 4.1.

The scale s in the wavelet transform can be expressed as a frequency with different factors
depending on the mother wavelet. From here on, the wavelet scale s is represented with f(s)
where the scales of the three mother wavelets vary from each other to have the same f(s)
bounds. In order to avoid confusion, the frequency obtained from a Fourier analysis of any
temporal signal is represented simply as f. The relations between the frequency and the scales
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for all three mother wavelets are

_ wot+ V24w

4rs

_2m+1

Paul: f(s) = — — (4.8)

\/m—i-%
Dog: f(s) =~ ——

21rs

Morlet = f(s)

Figure 4.1: Representation in time n of the mother wavelet (a) Morlet, (b) Paul (m = 2) and
(¢c) DOG (m = 2). The solid line represents the real part and the dashed line the imaginary
part.

The signal that is analyzed in this part of the chapter is the pressure at the far-field of the
supersonic dual stream jet from Ch. 6. The signal, shown in Fig. 4.2 (a), is computed at 160°
from the jet axis at a distance of 30D;. This signal was chosen as the most characteristic of
shock-cell noise for the dual stream jet. The signal has a length of 10 ms with a time-step of
7.5 pus which gives a frequency sampling of 130 kHz or a St; = 20. In this chapter, the results
are averaged by 16 azimuthal positions unless otherwise stated. The averaged Sound Pressure
Level (SPL) is displayed in Fig. 4.2 (b). The peak of the broadband shock-associated noise
(BBSAN) is located just below Sts =1 and it extends up to Sts, = 1.5.

Figure 4.3 shows the wavelet power transform of the signal of one azimuthal position for the
three mother wavelets. The difference between the three mother wavelets is clear. The wavelet
power with Morlet mother wavelet (see Fig. 4.3 (a)) displays a good discretization in f(s),
enhancing the intervals where the signal is important at a specific f(s). However, the time
discretization is limited. On the other hand, DOG has a poor discretization in f(s), but a
better one in time (see Fig. 4.3 (¢)). The wavelet power transform obtained with Paul shown
in Fig. 4.3 (b) is a compromise between both of them. In the three cases, the BBSAN is visible
in the range of 0.8 < St5 < 1.5 as for the SPL in Fig. 4.2 (b).

The small cross-hatched region in Fig. 4.3 is known as the Cone Of Influence (COI). Because the
formulation of the discrete wavelet transform (Eq. (4.4)) makes use of the Fourier transform,
errors will occur at the extremes of the signal. In order to reduce this effect, the signal was
padded with zeros up to the next power of two and then removed after the wavelet transform
was done. The cone of influence is the region of the transform where the edge effects are
important. Inside the COI, the amplitude of the power wavelet is reduced due to the zero-
padding. The cone of influence is defined as the e-folding time for the auto-correlation of
wavelet power at each scale.
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Figure 4.2: (a) Temporal signal of one azimuthal position at 160° in the far-field, (b) Sound
Pressure Level in dB/H z averaged by all the azimuthal signals at 160°.
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Figure 4.3: Wavelet Power using the mother wavelets: (a) Morlet, (b) Paul (m = 4)and (c)
DOG (m=2)
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4.2 Event detection

Once the power wavelet is computed at each scale f(s), the characteristic events have to be
discerned from the signal. Two techniques are presented in this section. The first one is the
so-called Local Intermittency Measure (LIM) introduced by Farge[188] which gives a local
measure of the ratio between the local energy and the time-averaged mean for a specific scale.
The second technique compares the local energy with a defined background spectrum energy
at all scales, then the events detected can be assumed a true feature of the flow with a certain
significance level [189].

4.2.1 Local intermittency measure

The LIM gives a measure of the local energy with respect to the time averaged mean energy
at all the scales. The LIM’s mathematical formulation, noted L (s,7), is written as

w?(s, )

(w(®s, 7)),

where w?(s, 7) is the local energy for a specific time and scale, and (e)
average.

L(s,7) = (4.9)

- Tepresents the time

The value of the LIM gives an indication about the fluctuation of the energy. It is possible to
select the most energetic events in a signal f (¢) by selecting a proper threshold 7. The events
are found where L(s,7) > T and there is a local maxima in the power wavelet. In this study,
the value of the threshold is chosen to be 1 in order to increase the number of events detected
as the time-length of the signal on which the analysis is performed is short.

4.2.2 Significance levels

This procedure noted as SIG95 compares the local energy with a defined background spectrum
energy at all scales. The null hypothesis states that the events detected can be assumed a
true feature of the flow with a certain significance level if their wavelet power spectrum is
significantly above this background spectrum.

The discrete wavelet transform of Eq. (4.4) links the Fourier coefficients, with the wavelet
coefficients, therefore, if the Fourier coefficients are normally distributed, then the wavelet
coefficients should be also normally distributed. The normalized Fourier power spectrum is
given by N|#|?/202, where o is the variance of the signal. If x,, is normally distributed, then
the power will be x? distributed with two degrees of freedom denoted by x3. The distribution
for the Fourier power spectrum is expressed as

N |2 |?
202

1
= Ekag, (4.10)

where P is the normalized Fourier power spectrum and k is the frequency index. The symbol
= indicates "distributed as”. The corresponding distribution for the local wavelet power
spectrum is then

N|wy(s)[?

1
= §ka§, (4.11)

g
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for each scale s and time n. Once an appropriate background spectrum is chosen and a
particular threshold for the confidence for the x? is selected, the distribution can be calculated
at each scale following Eq. (4.11) and the events selected if they are superior to the threshold
value. In this study, a white noise background spectrum was selected with a confidence level
of 95%, however, other background noises such as red noise (increasing power with decreasing
frequency) can be used. For more information, the reader is referred to [189].

4.3 Conditional average

The event detection gives as output a set of times when the energetic events occur in the time
series. At each time location corresponding to a peak of energy it is possible to extract a
window W, of fixed time-length tyy, from the original signal f (¢). The conditional-average, f
can be calculated from this set of windows as the average of all the windows &; centered at the

times t; as
N’VL

i () = ol Py = 50 D S (69, (112)
=1

where the superscript n and subscript {e},, stand for the position of the reference signal and
of any other signal respectively, the subscript {e}, stands for the scale, N" is the number of
detected events, 7' is the set of corresponding times for a specific scale s at which these events
are occurring and {;} is the interval surrounding each peak, & € [f@- — tTW, ti + %’V}, t; € 7.
The averaged signal is known as the signature. An example of a signature is shown in Fig. 4.5.

The conditional average can be split into auto-conditioning and cross-conditioning as the
regular auto- and cross-correlation of a signal. The events are located in a reference signal
(denoted with the superscript n), for a reference variable (e.g. pressure in the far-field) and
then, the window average can be applied to the same signal with the same variable, or to
a different signal, with the same, or another variable (denoted with the subscript {e},,). In
the first case, it is referred as auto-conditioning, while in the second case, it is referred as
cross-conditioning.

Before the averaging of the windows, the events can be differentiated by sign, and filtered by a
window. The sign discrimination is carried out into positive and negative events depending on
the sign of the time series at the instants where the events were located. Moreover, the events
can be filtered by a window size. If the events are too close between each other, the window
average could be biased by the surrounding events. This window filtering can be done before
or after the sign discrimination. The effect of the filtering and the discrimination of the sign
are further discussed in the following section.

4.4 Parametrization of the procedure

This section studies the effect of the different parameters on the final signature obtained with
the conditional average. The parameters of study are: the mother wavelet, the event detection
procedure, the sign discrimination and the filtering. All these parameters have an impact on
the scale chosen and on the final number of events used on the conditional average. One needs
to keep in mind that some parameters need to be set constant to allow for an automation of
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Figure 4.5: Signature in the far-field (a), at 160° and (b) at 60°.
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the procedure at all the different positions of the probes of study. It may happen that some
of the conclusions reached on this section do not apply to other signals, specially if they have
a different order of magnitude in terms of the number of temporal instants, harmonics and
phase between them. This analysis is carried on a short signal where there is only a dominant
peak in the spectrum.

4.4.1 Effect of the mother wavelet and the event detection procedure

Because each mother wavelet has a different representation in time and scale of the events when
the signal is decomposed into the wavelet power, each mother wavelet modifies the number
of events detected per scale. Figure 4.6 shows the total number of events detected without
filtering with (a) LIM and (b) SIG95 for the three mother wavelets. The mother wavelet DOG
allows to detect the highest number of events, on the other hand, Morlet detects the smallest
number of events. As it was discussed in Sec. 4.1, the Morlet mother wavelet tends to group
the events in periodic signals throughout time. The number of events detected with Paul lays
in between. Depending on the detection procedure, the number of events either grows with
f(s) or a peak shows. Figure 4.6 (a) illustrates that for LIM, more events are detected for
higher f(s) or smaller scales s. A change in the slope is discernible between 1 < Sty < 2,
that is where the SPL is higher (Fig. 4.2 (b)). In addition, SIG95 detects a peak in number of
events in the same range for SIG95. Nonetheless, in this range, the number of events detected
with LIM is of the same order of magnitude than with SIG95.
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\w 4 | \w 4
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# events # events
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Figure 4.6: Number of events detected according to the mother wavelet using (a), LIM and
(b) SIG95. No filtering is used.

The signatures computed from the auto-conditioning are shown in Fig. 4.7 and Fig. 4.8 for
LIM and SIG95 respectively. When LIM is used, the signature does not vary with the scale.
This is mainly true, because in our signal, there is no other higher frequency component of
similar or higher amplitude. As a consequence, the average of the windows falls into the same
signature above St; = 1. This averaging is more obvious with DOG because of the higher
number of events detected. On the other hand, the signature is noisier at lower f(s) when
using Morlet. Of course, SIG95 gives a null signature above the f(s) where there are no events
detected.
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Figure 4.7: Difference signature obtained at all scales f(s) using LIM and the mother wavelet
(a) Morlet, (b) Paul (m =4) and (c¢) DOG (m = 2). No filtering is used.

Pa

5 15
= 9 294 2
e g & =
= 3 = 3 -
== 3 == ==
= 2f =2 =
7 o F 7

-3

t[t-U,/D,] t[t-U,/D,] t[t-U,/D,]

(a) (b) (c)

Figure 4.8: Difference signature obtained at all scales f(s) using SIG95 and the mother wavelet
(a) Morlet, (b) Paul (m =4) and (¢) DOG (m =2)
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4.4.2 Effect of the sign discrimination and the filtering

When the events are detected they can be discriminated according to the corresponding sign
in the time series. The total number of events is the sum of the positive and negative events
with respect to the mean value of the signal. Figures 4.9 and 4.10 show the number of events
using LIM and SIG95 respectively. Overall, the number of positive events is slightly higher
than the negative events. However, this is not the case for Morlet due to the small number of

events detected.
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Figure 4.9: Number of events detected according to the sign of the event selected using LIM
and the mother wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG (m =2). No filtering is

used.

The signature can be computed doing the conditional average on the positive events, the
negative events, the difference average or the mean average. Usually, the complete signature
is computed from the average of all the events. However, when dealing with short time series
with an overall small number of events, it is better to treat them independently. Figure 4.11
shows the signatures calculated at all scales with different types of the average. Figure 4.11
(a) presents the signature obtained only with positive events. In addition, Fig. 4.11 (c) shows
the signature that corresponds to the negative events. Here, the color palette was inverted
in order to keep the same color scheme. Figure 4.11 (d) is the difference average, that is,
(sgn.™ — sgn™)/2, and Fig. 4.11 (d) is the mean of the positive and negative signatures,
without the sign swap. Here, sgn defines the sign of the temporal signal. In a fully acoustic
field, the difference between a negative and a positive event is minimal, they are just dephased
by m rad. This is why the positive, negative and difference signatures have a similar shape.
However, if the regular average is done, the signature is completely lost (see Fig.4.11 (d)).

4.4.3 Effect of the filtering

The detected events can be filtered according to a filtering window size. The selection of the
events is done starting with the events with a higher energy and clearing the surrounding
events that lay within a window length around it. Next, the event with the second highest
wavelet power is selected and the events around it filtered. This process is repeated until no
more events are left. The application of this filtering window eliminates the events that could
bias the signature. The filtering window length should be of the order of the true feature
of the signature, a priori unknown. This filtering process can be applied before, or after
the sign discrimination. When it is applied before the sign discrimination, the events are
filtered regardless of the sign of the event, thus obtaining a lesser number of events for the
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Figure 4.10: Number of events detected according to the sign of the event selected using SIG95
and the mother wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG (m =2). No filtering is

used.
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Figure 4.11: Signature obtained at all scales f(s) using LIM and the mother wavelet DOG. (a)
Positive signature, (b) negative signature, (c) difference signature and (d) average signature.

No filtering is used.
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Figure 4.12: Number of events detected according to the filtering of the events using LIM and
the mother wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG (m =2)
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Figure 4.13: Number of events detected according to the filtering of the events using SIG95
and the mother wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG (m = 2)

conditional average. On the other hand, if the filtering is done after the sign discrimination,
a higher number of events remains because the positive and negative events are taken into
account separately. Figure 4.12 and 4.13 show the filtering of the events with a windows of
2.5 non-dimensional time units with LIM and SIG95 respectively. Whether the events are
detected with LIM or the significance levels, the filtering has a bigger impact on the number
of remaining events with the DOG mother wavelet. This is due to the fact that the events are
more frequent and closer one to each other than the filtering window length chosen. When
using the Morlet mother wavelet, the filtering does not affect the results because the events
are farther apart than the size of the windows length.

The signature obtained with the filtered events is noisier because less events are taken into
account for the average. Figure 4.14 shows the difference signature using the mother wavelet
DOG and the event detection based on the significance levels. Figure 4.14 (a), where no
filtering is done depicts a clearer image than Fig. 4.14 (b) or (¢) because of the higher number
of events used in the conditional average.

4.5 Scale selection procedure

The wavelet transform decomposes the signal into a set of scales. The conditional average is a
process that requires the selection of a particular scale. As it is shown in Sec. 4.4, the number
of events detected at each scale varies with the scale f(s). In particular, the number of events
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Figure 4.14: Difference signature obtained at all scales f(s) using SIG95 and the mother
wavelet DOG. (a) No filtering, (b) filtering after sign discrimination and (c) filtering before
sign discrimination.

tends to increase with f(s) for LIM. The conditional average will select these events, filtered
or not, and it will carry out the conditional window average of all of them, giving in theory a
different signature for each scale. As it was mentioned before, the signal post-processed so far,
only contains one peak in the spectrum. The signature obtained has a peculiar independence
to the scale selected, if a minimum number of events is used in the conditional average.
Furthermore, because the conditional average is carried out in the complete signal, it could
happen that the events of completely different scales are in phase with each other, acquiring
a signature that is the net combined effect of both features. Depending on the objective of
the signature extraction, a reconstruction by scales could be done with only the set of scales
required like a band pass filter as

0t ? I Re {w, (s5)}
fn= Cs1bo(0) 2 3]1./2 ’

Jj=0

(4.13)

where §j is the spacing between the discrete scales, dt is the time-step of the time series and Cj
is a constant that depends on the mother wavelet. The factor 1(0) removes the energy scaling
and the factor sjl-/ ? converts the wavelet transform to an energy density. The reconstruction
of the signal of Eq. (4.13) uses the real part of the wavelet transform. If only one complete
signature is to be obtained, the conditional average can be applied directly to the original time

series.

The generation of a signature at each scale as it is discussed in Sec. 4.4, can be a costly task,
specially if the number of scales is high, and the time series are long. This computation can
not be always done, thus requiring the selection of a unique scale to represent the true feature
of the signal, or the feature one is interested in study, which may differ. Different approaches
can be discussed to select the scale. First, the scale can be chosen depending upon the number
of events, selecting the scale where there is a maximum. This can be useful if the events are
detected with a procedure like the significance levels that display a maximum in the region
where the energy is also maximum (Sec. 4.4.1). Regardless on whether or not, the signature is
independent on the scale for LIM, the smallest scale s (or highest f(s)) would systematically
be chosen as the one with the highest number of events if the threshold was kept at one. If
LIM is applied, a different method should be probably used in order to select the scale or the
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threshold. In this study, the results of four different automatically selected scales are analyzed.
First, the scale chosen can be the one where there are more events detected. Second, the scale
can be selected where there is the maximum of energy based on either the global wavelet
spectrum, the global wavelet spectrum scaled by the global significance levels or the global
wavelet spectrum transformed into an energy density.

The global wavelet spectrum is computed when the wavelet spectra is averaged in time as
1 N-1
—2 2
we(s) = — Z lwn(s)]°. (4.14)
N n=0

This global wavelet spectrum can be scaled by the significance levels calculated globally. By
doing so, the scales that have most of the energy above the confidence level have more impor-
tance than the others. However, it dependents on the background noise. Finally, the global
wavelet spectrum can be scaled by the scales in order to transform the wavelet spectrum into
an energy density. Figure 4.15 shows the different global wavelet spectrum and the Fourier
power scaled by the maximum values as it is the maximum of each curve that will be used to
select the scale. As a reference, the maximum of the Fourier power is set for the selection of
the scale. In this case, it peaks near Sty = 1. For the global wavelet spectrum, noted as mean
in Fig. 4.15, the maximum is found at the same positions for all the mother wavelets except
Morlet where it is at a lower frequency f(s). If the global wavelet spectrum is scaled by the
global significance levels, the maximum is recovered near Sts(s) = 1 for all the mother wavelets
used. Using the energy density deviates the peak to higher scales f(s) between 1 < St4(s) < 2.
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Figure 4.15: Time averaged mean wavelet power using the complete signal and the mother

wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG (m = 2).

As it was shown in the previous sections, the selection of the scale does not have a great
influence on the computed signature. In order to have a better view of the effect of the scale
selection on the signature, an extended set of signals is chosen. The data are located in the
near-field at /Dy, = 1.5, they extend from 0 < z/D; < 10 and are azimuthally distributed
with 16 positions. First, the signatures obtained when selecting the scales by the number of
events are discussed. Second, the scale selection is based on an energy criteria.

As it was shown in Sec. 4.4.1, the selection of events based on the significance levels or the local
intermittency measure (LIM), is radically different. This is illustrated in Fig. 4.16 and Fig. 4.17
with LIM and SIG95 respectively, where the number of events detected is depicted at each
axial position. The black dots represent the maximum number of events at each axial position.
The signature computed with the scales at the maxima is shown in Fig. 4.18 and Fig. 4.19
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Figure 4.16: Number of events at each axial position using LIM and the mother wavelet (a)
Morlet, (b) Paul (m =4) and (¢) DOG (m = 2). The black dots represent the mazimum at

each azxial position.

Figure 4.17: Number of events at each azial position using SIG95 and the mother wavelet (a)
Morlet, (b) Paul (m =4) and (¢) DOG (m = 2). The black dots represent the mazimum at
each axial position.

with LIM and SIG95 respectively. The signature corresponds to the positive filtered events
after the sign discrimination. Figure 4.16 shows that when LIM is applied, the location of the
maximum number of events (black dots), which determines the scale selected, does not vary
with the different mother wavelet used. This translates into a similar signature (Fig. 4.18) for
the different mother wavelets. Evidently, the number of events detected vary with the mother
wavelet which gives a cleaner signature when more events are detected. On the other hand,
when the events are detected with the significance levels as shown in Fig. 4.17, the maxima
are found at similar, but different scales f(s) for the different mother wavelets. Nonetheless,
the respective signatures displayed in Fig. 4.19 do not exhibit a clear difference between them
or the ones obtained using LIM. If the scale is selected with the maximum number of events,
and the events are filtered, the resulting signature will not depend on the method of event
detection, nor the mother wavelet.

The same analysis can be carried out selecting the scales with respect to the maximum in
energy of the global wavelet spectrum as illustrated in Fig. 4.15. Figures 4.20, 4.21 and 4.22
show the global wavelet spectra for each mother wavelet, and each normalization of the global
wavelet spectra respectively. The maxima is located at the same scales f(s) regardless of the
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Figure 4.18: Signature selecting the scales where the maximum of the number of events is found

using LIM and the mother wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG (m =2). The
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Figure 4.19: Signature selecting the scales where the maximum of the number of events is found
using SIG95 and the mother wavelet (a) Morlet, (b) Paul (m = 4) and (¢) DOG (m = 2).
The black dots represent the maximum at each axial position.
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mother wavelet and if the global wavelet spectrum is normalized by the significance levels or
not. If the global wavelet spectrum is normalized by the scales s (Fig. 4.22), the maxima is
found at different scales f(s). The position of the maxima clearly differs with the mother
wavelet Morlet. Finally, the signature of the different cases is displayed in Fig. 4.23, Fig. 4.24
and Fig. 4.25 for each normalization respectively. When the first two methods are used, there is
a clear distinction between the ranges from 0 < /D, < 4 and 4 < /Dy < 10, however, when
using the global wavelet spectrum scaled by the scales, the transition is smoother. Moreover,
the signatures in the range 4 < z/D; < 10 are considerably different between the different
mother wavelets. This occurs, mainly because of the discrepancy in number of events detected
at those scales. Even if the global wavelet spectrum showed a maximum at one particular
scale, the fact that not many events are detected at those scales (Fig. 4.17) gives a noisier not
well averaged signature. This is probably a particular case when dealing with short signals as
those obtained in costly simulations.

Figure 4.20: Normalized energy spectrum at each axial position using the global wavelet spec-
trum and the mother wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG (m = 2). The black
dots represent the mazrimum at each axial position.

Figure 4.21: Normalized energy spectrum at each azial position using the global wavelet spec-
trum normalized by the global significance levels and the mother wavelet (a) Morlet, (b) Paul
(m=4) and (¢) DOG (m = 2). The black dots represent the mazimum at each azial position.

78



th On

= 08 —
S4 = =
O:. 0.6 qn O:.
2, 04 2 2
e e e

Figure 4.22: Normalized energy spectrum at each axial position using global wavelet spectrum
normalized by the scales and the mother wavelet (a) Morlet, (b) Paul (m =4) and (¢) DOG
(m =2). The black dots represent the mazimum at each axial position.

t It'unf,nni
t It'unf,nni
t It'unf,nni

Figure 4.23: Signature selecting the scales where the mazximum of the normalized energy spec-
trum is found using the global wavelet spectrum and the mother wavelet (a) Morlet, (b) Paul
(m=4) and (¢) DOG (m =2). The events are extracted using the significance levels.
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Figure 4.24: Signature selecting the scales where the maximum of the normalized energy spec-
trum is found using the global wavelet spectrum normalized by the global significance levels and

the mother wavelet (a) Morlet, (b) Paul (m = 4) and (¢) DOG (m = 2). The events are
extracted using the significance levels.
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Figure 4.25: Signature selecting the scales where the mazimum of the normalized energy spec-
trum is found using the global wavelet spectrum normalized by the scales and the mother wavelet
(a) Morlet, (b) Paul (m = 4) and (¢) DOG (m = 2). The events are extracted using the

significance levels.

4.6 Summary and perspectives

In this chapter, a wavelet-based signature identification procedure was presented and ana-
lyzed with respect to different parameters and methodologies. The signature corresponds to a
characteristic feature of the flow. The signature was obtained by averaging several temporal
windows centered in time at the instants where some energy requisites are accomplished in a
signal. The resulting signature conserves the same units as the original signal. The selection of
the instants where the windows are centered is done wvia a continuous wavelet transformation
of the signal. The power wavelet was computed, and compared against a specific threshold in
order to detect the events in time. This chapter explains the basics of the continuous wavelet
transform, the methodology followed and the impact of different parameters in the resulting
signature. First, the choice of mother wavelet and the event detection methodology was dis-
cussed. Second, the effect of the sign discrimination and filtering was explained. Last, the
selection of the scale used in the event detection was examined.

When using wavelet transforms, the choice of the mother wavelet should be based on what
is investigated. However, if one is only dealing with event detection, the most significant
impact on the choice of the mother wavelet, is the number of events detected. Here, three
mother wavelets were discussed. The mother wavelet Morlet, gives a better discretization in
scale f(s), but also gives the smallest number of events detected, as it tends to group the
intermittent phenomena in time. The derivative of a Gaussian (DOG, m = 2), has a weak
scale discretization but it accurately represents the events in time, obtaining the larger number
of events detected. The third mother wavelet studied named Paul, lays in between the other
two mother wavelets giving a fairly good discretization in scale, and a number of events higher
than with Morlet.

The detection of the events can be done comparing the signal to some background noise
like white noise or red noise, or by checking the local intermittency measure (LIM). Both
methods depend on a single parameter. On the first case, the typical background noise has
to be defined, which may not be known a priori. The second method, needs to be compared
against a threshold level. In this study, the background noise was defined as white noise,
and the threshold in LIM to 1. When the significance levels method was used, the number
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of events detected presented a maximum mostly where the events were more energetic, hence
demonstrating a better localization in scale f(s). On the other hand, a higher number of
events was detected when using LIM, but it was systematically found for the highest scales
f(s).

The signature can be computed with positive or negative events depending on the sign of the
signal at the instants when the events are detected. The events are detected with the wavelet
power, and thus, there is no sign discrimination. The resulting positive and negative signatures
are representative of the positive and negative events. When dealing with acoustics normally
distributed, the positive and negative signature could have the same shape and only change
in sign. Then, a difference average could be applied in order to increase the smoothness of the
signature. This average could have no meaning inside a jet where positive and negative events
do not correspond to the same features of the flow. Moreover, the events detected can be
filtered by a window to avoid a biased signature by different energetic events that lay within
the same averaging window. If the filter is applied before the sign discrimination, more events
will be filtered, obtaining a remaining number of events inferior to those obtained if the events
are filtered after the sign discrimination. Filtering the events before the sign discrimination
implies that the positive and negative events are treated equally and no bias is appreciated
between them. However, the filtering can not be carried out always before if a small number
of events remains.

Finally, the scale where the events are considered has to be chosen. The selection of the scale
can be done with respect to the number of events detected or with respect to the energy of
the global wavelet spectrum. The signature is cleaner when it is computed using the scales
where the maximum number of events is detected. When the number of events is small due
to the fact that the signal is short in time, this should be the method to apply. If the scale is
selected with respect to the global wavelet energy, and the signal is short, it may occur that
the number of events is too small to have a proper converged conditional average.

The wavelet-based signature identification is shown to be a good method to identify the true
features of a signal. However, the choice of the optimal mother wavelet, event detection
procedure, filtering windows, and scale depend on the case of consideration and the physics
of interest. In this chapter, only the signatures that correspond to the auto-conditioning
were investigated, however, the interest of this procedure increases when dealing with cross-
conditionings between pressure and velocity. This analysis is carried out for the single jet in
Ch. 5 and the dual stream jet in Ch. 6.
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Chapter 5

Supersonic under-expanded single
jet

In the aeronautic field, shock-cell noise is encountered in military aircrafts, space launch sys-
tems and commercial aviation. The engines of military aircrafts and the exhaust nozzles of
space launch systems can be modeled as a supersonic single jet. Depending on the thrust
required, and the ambient pressure (which is function of the altitude), the jet that is formed
at the exit of the nozzle can be under-expanded, perfectly expanded or over-expanded.

This chapter discusses the results obtained with LES of an under-expanded single jet. This
case of study allows to validate the numerical schemes applied to a jet encountering shock-cells,
the general LES methodology, and the post-treatment tools developed to analyze the data.
First, the definition of the case of study, the characteristics of the mesh and the simulation
parameters are described in Sec. 5.1. Some details are given in Sec. 5.2 about the experimental
results used for comparison. Then, the results are analyzed in Sec. 5.3. Last, a summary and
some perspectives are introduced.

Some of the results discussed in this chapter were presented in several conferences such as
3AF [191], DLES10 [192] and CFM [193]. Some of the data produced with this case of study
was shared among other partners of the project AeroTraNet2. More information about the
collaborations is explained in Appx. C.

5.1 LES configuration

This section describes the main characteristics of the large eddy simulation of a single jet. The
characteristics of the code used for the LES are explained in Ch. 2. For additional information
on the LES procedure and mesh generation, the reader is referred to Ch. 3.

5.1.1 Case conditions

The case of study is a cold under-expanded single jet with a perfectly expanded exit Mach
number of M; = 1.15 (NPR = 2.27). Here, NPR stands for Nozzle to Pressure Ratio (see
Ch. 1 for a wider explanation). The jet is established from an axisymmetric convergent nozzle
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with diameter D of 38.0 mm. The lip of the nozzle at the exit has a thickness of 0.5 mm. The
Reynolds number based on the exit diameter and the perfectly expanded conditions is

piUiD _

1.25 x 109, (5.1)
g

Rej =

The ambient conditions used for this case are an ambient pressure ps, of 98,000 Pa and
an ambient temperature To, of 288.15 K. The generating pressure or total pressure is set to
pr = 2.225 x 10° Pa. The total temperature is defined equal to 7; = 303.15 K. A small external
flow of 0.5 m/s is added to help with the convergence of the simulation.

The main conditions are summarized in table 5.1.
D[mm| | M; | NPR| p;[Pa] | T;[K]| Re;
33 | 115 227 | 2.225x10° | 303.15 | 1.25 x 10°

Table 5.1: Conditions for the supersonic under-expanded single jet.

5.1.2 Mesh definition

The structured multi-block mesh used for the LES is defined in this section. The mesh contains
75 x 106 cells with about (1052 x 270 x 256) cells in the axial, radial and azimuthal directions
respectively. Figure 5.1 (a) displays a gridplane of the mesh at z/D = 0 where the pink lines
represent the edge of the physical domain. The sponge zone is located outside the pink region.
As explained in Ch. 3, the mesh has a butterfly shape in order to avoid the singularity at the
axis. The lip of the nozzle is discretized with 8 cells. A zoomed view is shown in Fig. 5.1 (b)
and Fig. 5.1 (¢) displays the axial gridplane located at the exit of the nozzles.

The maximum expansion ratio between adjacent cells achieved in the mesh is not greater
than 4%. The radial discretization at different axial positions is depicted in Fig. 5.2 (a). The
maximum Helmholtz number (He = fD/as) that the mesh is able to capture at the end
of the physical domain is about 2. The radial domain size grows with the axial position in
order to take into account the expansion of the jet (from r/D = 3.5 at the exit of the nozzle
to r/D = 8 at /D = 30), nonetheless, the maximum He number is kept constant at the
boundary with the sponge layer. The axial discretization shown in Fig. 5.2 (b) is composed of
4 sections defined by the numbers 1 to 3. At the nozzle exit (x/D = 0), the mesh has an aspect
ratio of 2.5; this ensures an appropriate definition of the first expansion fan of the shock-cell
system. Then, up to point 1, the mesh elongates at a rate of 3%. This stretching allows for a
drastic reduction of the total amount of cells in the axial direction. The segment 1 2 consists
in a uniform discretization. Then, in segment 2 3, the mesh is slowly elongated up to a mesh
size able to capture a Helmholtz number of 2. The last section, starting at point 3, is the one
corresponding to the sponge layer where the mesh has a stretching ratio of 10%.

The nozzle geometry can be divided into the internal and the external part. In this work, the
internal part of the nozzle is not modeled and no wall turbulence models are used. In order to
have a good approximation of the boundary layer, either the mesh at the wall is fully resolved,
or wall models are applied. Unfortunately, the wall models were not yet implemented nor
tested for high-order compact schemes at the time of the computation. Moreover, using a fully
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Figure 5.1: Mesh grid planes representing every fourth nodes in the plane z/D = 0 for (a) a
general view and (b) a closer look at the nozzle exit. (c) shows the exit plane of the nozzle.
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resolved grid at the interior of the nozzle with conformed structured meshes would multiply
the number of cells by about 5. The boundary layer at the exit of the nozzle could drastically
change inside the nozzle without wall models or a fully resolved mesh. The boundary layer
would therefore be modified with respect to the one obtained with the fully resolved RANS
simulation. Therefore, not being able to assure a good definition of the boundary layer, it was
decided to completely remove the internal part of the nozzle. In the following sections it is
shown that the shear-layer transitions to turbulence in less than 1 diameter. An alternative
solution could have been to model the interior of the nozzle with an unresolved mesh, but apply
the correct level of synthetic turbulence (Sec. 2.7.4) to match the experimental boundary layer.
On the other hand, the walls of the external sections of the nozzle attain a resolution at the
wall of 5y ~ 25 with 20 points in the boundary layer that is generated by the suction of the
jet and the small co-flow used.
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Figure 5.2: Discretization of the mesh along (a) the radial distribution for different x/D and
(b) the axial distribution along the axis, where dr is the radial step and dx the streamwise one.

During this thesis, an exchange of data and knowledge was done with Leicester, partner of
the AeroTraNet2 project. Their in-house code, COSMIC, is a second-order multi-block finite
volume explicit time-resolved LES and Detached Eddy Simulation (DES) solver developed at
the University of Leicester [194, 195]. Moreover, the mesh used for the COSMIC simulations
was generated at CERFACS because they lacked of a structured meshing software. A special
care was taken when designing the mesh for COSMIC in order to have a higher maximum
resolvable Strouhal number of 3. Due to the fact that the solver is second-order, the mesh
was generated with a finer radial and axial discretization. Nonetheless, the mesh generated
for COSMIC has the same number of cells than the one used in elsA. This has been achieved
by reducing the number of azimuthal cells from 256 to 64.

Remark: The far-field SPL obtained by Leicester with DES using COSMIC are included
in Sec. 5.3.3 for completeness. Further details about the computation parameters and an
exhaustive examination of the results will be given in the PhD thesis of A. Mancini.

5.1.3 Simulation parameters

The computation is initialized by a Reynolds-Averaged Navier-Stokes (RANS) simulation using
the Spalart-Allmaras turbulence model [169]. Contrary to the LES mesh shown in the previous
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Sec. 5.1.2; the internal nozzle is modeled for the RANS computation which is fully wall-resolved
in the internal and external sections of the nozzles with a maximum wall unit (y™) of unity
and 25 points in the boundary layer. The nozzle is modeled in the interior up to 10 diameters
and the RANS domains extends to 100 diameters in the radial and axial directions. The effect
of the mesh on the RANS simulations was studied together with an uncertainty quantification
for the under-expanded single jet as part of a collaboration with Greenwich University (see
Appx. C). The LES is then initialized from the RANS keeping the exit profile. The flow is
initialized over 120 dimensionless convective times (f = ta,/D). The final computation is then
run for 140 dimensionless convective times in order to obtain the statistics. A non-dimensional
time step At of 0.0004 equivalent to a CFL about 0.9 is selected for the data extraction phase.
In dimensional quantities, the time step is equivalent to 0.045 us.

The boundary conditions applied in the simulation are sketched in Fig. 5.3. Non-reflective
boundary conditions of Tam and Dong [160] extended to three dimensions by Bogey and
Bailly [161] are used at the lateral boundaries. The exit boundary condition is based on the
characteristic formulation of Poinsot and Lele [158]. Additionally, sponge layers are set around
the domain to attenuate exiting vorticity waves. No inflow forcing is applied as the interior
of the nozzle is not modeled. Last, no-slip adiabatic wall conditions are defined at all the
external wall boundaries of the nozzle.

This simulation was run without the shock-limiting schemes explained in Sec. 2.3 as the maxi-
mum Mach number is relatively low and no strong discontinuities are encountered throughout
the shock-cells. Moreover, avoiding the use of the shock-limiting scheme allowed for a longer
computational time. The spatial filter of order 6 (Sec. 2.2.2) was applied to this case of study.

The simulation was run on 128 processors on the internal supercomputer Bullx B510 at CER-
FACS. The total computational time was about 420,000 CPU h, which includes the RANS
computation used to initialize the LES, the LES on the coarse mesh, the adaptation phase from
the coarse mesh to the fine mesh, and the actual large eddy simulation of 140 non-dimensional
convective times.

«— non-reflective radiative conditions,

30D

Figure 5.3: Sketch of the domain representing the different boundary conditions and dimen-
stons.
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5.1.4 Data extraction

The data extracted in this simulation was mainly limited due to memory storage constraints
as explained in Ch. 3. The data extracted is divided in the mean, cuts, numerical probes and
topological surfaces. The cuts, numerical probes and topological surfaces were extracted every
200 iterations which is equivalent to a frequency of 112.37 kHz.

Plane cuts were extracted at z/D = 0 and y/D = 0, and at the axial locations x/D €
{0,1,2,3,4,5,6,7,8,9,10}. These cuts were used to extract several linear arrays of probes at
different locations with an axial discretization of Az = 0.05 D, or for azimuthal arrays with
20 probes.

Numerical probes were extracted at the axis every 0.1 D (noted as AXIS), at the lip-line (noted
as LIP_LINE) and in the near-field at 1 D, 2 D and 3 D from the nozzle exit and an expansion
angle of 5 degrees (noted as NF1D, NF2D and NF3D respectively).

The far-field sound is obtained by means of the Ffowcs-Williams and Hawkings analogy
(FWH) [196]. The surface used to extrapolate the variables to the far-field is located in a
topological surface starting at /D = 3.5 from the axis and growing with the mesh. The cut-
off mesh Strouhal number is St = fD/U; ~ 1.8. The sampling frequency was set to 112.37
kHz which gives a sampling Strouhal number higher than the mesh cut-off limit. The noise
was propagated up to a distance of 53 D as in the experiments.

5.2 Experimental setups

The numerical results from the LES are compared against different experimental results in
order to validate the numerical schemes and the overall methodology. The simulation is based
on the experimental campaign performed at LMFA in Lyon [17] but two other experiments are
used for completeness of the comparison. The additional experimental results come from the
Institut Pprime at Poitiers [197] (France), and the VKI at Rhode-St-Geneése (Belgium) [198].

The NPR of the computation is based on the same NPR set at the LMFA of 2.27. On the
other hand the closest NPR to the reference one for Pprime and the VKI is 2.30. Moreover,
the nozzles differ in the interior shape and the diameters from the one used at LMFA of 38
mm to 40 mm at Pprime and 24 mm at VKI. The facility at VKI is explained in detail in
Sec. 6.2.

The experiments from LMFA are considered in order to compare the Mach number profiles
at the axis, the shear-layer development for the RANS and the LES, the turbulence values
in the lip-line, the velocity length-scales, the Schlieren images and the far-field noise. The
experiments from Pprime are used for comparisons with the near-field pressure spectra. Last,
the results from VKI are examined in order to compare the PIV contour plots and the far-field
spectra.
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5.3 Analysis of results

5.3.1 Aerodynamic field

As explained in the introduction, shock-cell noise is generated from the interaction between
the vortices developed in the mixing layer that are convected downstream, and the shock-cell
system that appears from the mismatch in pressure at the exit of the nozzle. The frequency of
the main peak of the broadband shock-associated noise (BBSAN) [199] can be easily calculated
with the convection velocity of the vortices and the spacing of the shock-cells as

U. 1

Ip= T 1= M, cos(0)’ (5.2)

where U, is the convection velocity, Lgj, is the averaged shock-cell spacing, 0 is the angle with
respect to the jet direction and M, is the convective Mach number defined as Ue where a is

Qoo

the ambient speed of sound. The fundamental frequency ZU—C of the interaction of the vortices
sh

and the shock-cell system is shifted due to the Doppler effect by the factor m. The
Doppler effect can be seen as the noise produced by an array of phased monopoles situated on
the shock-cells that radiate noise only when the vortices interact with them. Hence obtaining
a lower frequency at the upstream angles and a higher frequency at the downstream angles.
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Figure 5.4: Mach number profile at the axis.

The averaged Mach number profile at the axis for the RANS, the LES and the experimental
results, is shown in Fig. 5.4. As it is expected, the RANS simulations dissipate more the shock-
cells loosing the amplitude with respect to the experimental profile. Moreover, the potential
core obtained for the RANS decays at a different rate than the LES. The RANS models have
been demonstrated not to correctly propagate the turbulence to the centerline [200, 201].
On the other hand, a good agreement is found for all the positions of the shock-cells. The
LES has good agreement for the shock-cell spacing in the first three shock-cells. But further
downstream, there is a shift between the experimental and the numerical Mach number profiles.
The shock-cell spacing is reduced by about 5%. Even though the amplitudes are higher than
in the experimental results, they follow the same decay and they have the end of the potential
core at the same position. Figure 5.5 shows the shock-cell spacing for all shock-cells in (a)
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and the computation of the main frequency peak associated to that shock-cell spacing using
Eq. (5.2) in (b). Here, the convective velocity is considered as U, = 0.7U;, which is usually
used as a reference.
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Figure 5.5: (a) Shock-cell spacing Ly, /BD for each shock-cell where L,, is the shock-cell spacing
of the n — th shock-cell, 3 is the shock parameter and D the diameter. (b) Strouhal number
of the frequency fsp, = U/ Ly,.

The two-dimensional field at z/D = 0 of the numerical LES are compared against the RANS,
the experimental PIV from VKI, and the experimental Schlieren from LMFA [17] in Fig. 5.6.
Figure 5.6 (a) shows the comparison of the Mach number contours for the LES and the
RANS. A good agreement is found in the first 4 shock-cells, however, farther downstream, the
expansion of the shear-layer is greater for the RANS simulation which makes the shock-cells
disappear sooner due to the collapse of the potential core. A different numerical scheme and
a highly denser mesh could help solve this problem even though the price to pay may be too
high for the purpose of the RANS.

Next, the LES is compared against the PIV from VKI in Fig. 5.6 (b). A good agreement
is found for the first three shock-cells and the expansion of the shear-layer even though the
conditions were not exactly the same and the shape of the internal nozzle is different. The
PIV shows that the shock-cells are highly attenuated after the fourth shock-cell. One of the
main differences between the experimental results and the LES is the appearance of screech.
The screech has been known to affect drastically the structure of the shock-cells downstream
of the source [43] which could explain the difference after x/D = 4.

On the other hand, if the numerical Schlieren is compared against the experimental one from
LMFA (Fig. 5.6 (c)), an excellent agreement is found for the intensity (shades of gray) of the
density variation. As it was presented in Fig. 5.4, the shock-cell size of the LES differs from
the experimental results by a phase of exactly one shock-cell at /D = 7. The difference in the
shock-cell length has a direct effect on the positioning in frequency of the peak of the BBSAN
as it is shown in the following.

The expansion rate of the shear-layer in the radial direction defines the length of the potential
core and the length of the shock-cell structure. A higher expansion rate means a smaller
potential core and thus a smaller shock-cell structure [202]. In addition, if the expansion is
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Figure 5.6: Mach number contour plots comparisons between (a) LES and RANS, (b) PIV
from VKI and LES and (c) Schileren from LMFA [17] and numerical Schieleren from the
LES.
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too small, the shock-cell structure could be unrealistically extended farther downstream. The
axial velocity profile along the radius at /D = 0.16 and /D = 0.41 are shown in Fig. 5.7 (a)
and (b). Good agreement is obtained within the first 3 diameters. Further downstream, the
shift in the shock-cells makes the comparison not viable.

L | 12 " Exp.André, B. —a—
¢ , elsA ——
09 | - = ]
® ! i e 08¢ 1
Qx 0.8 | i é T —
= | : S 06} 1
07| | : > oal ]
06 | Exp. André, B. —e— | 1 02} 1
: e
05 L L L L 0 1 1 1
05 -025 0 025 05 0 02 04 06 08 1
y/D y/D

(a) (b)

Figure 5.7: Awzial velocity along the radius at (a) x/D = 0.16 and (b) /D = 0.41

The expansion of the shear-layer represented in Fig. 5.7 is in part influenced by the turbu-
lence levels. Although no inflow forcing is applied, matching the jet exit profile against the
experimental velocity profiles and a good discretization of the flow, seems to be sufficient for
this supersonic jet to transition to a fully turbulent flow within the first radius from the exit
nozzle plane. To support this statement, the turbulence levels of the velocity components at
the lip-line are shown in Fig. 5.8. Although the shape of the imposed profile at the nozzle exit
is turbulent, the fact that it is a steady profile from the RANS simulation implies that the
actual turbulence is zero. However, after the first radius, it reached the same levels of rms as
in the experiments even though an overshoot is found within the first 2 diameters and there
is a decay of 25% at /D = 8.
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Figure 5.8: Turbulence levels of the axial and radial component of velocity at r/D = 0.5

The size of the turbulent structures generated along the lip-line (r/D = 0.5) is measured by
means of a spatial auto-correlation following the same formulation as in [17]. The spatial
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cross-correlation R, is computed as

o' (F, ) (T + &, 1)

Ry = EA
uu urms (T, t)u’/‘ms (f + 57 t)

(5.3)

where v/ is the axial velocity perturbation, u"™* the axial velocity root mean square, T is the
actual position, and & the spatial separation. The axial velocity auto-correlations R, are
shown at the positions /D = 1.5 and /D = 9.0 in Fig. 5.9 (a) and (b) respectively. For this
purpose, the computational flow field was probed every 0.1 D. The increase in the size of the
turbulence structures in the mixing layer is clearly illustrated.
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Figure 5.9: Awial velocity along the radius at (a) x/D = 0.16 and (b) z/D = 0.41

The turbulence length-scale computed from the auto-correlations along the lip-line L., is
shown in Fig. 5.10. The integration of R,,, is calculated up to the value 0.1. Despite the fact
that Fig. 5.9 (a) and (b) display an increase in size of the turbulence structures with respect
to the experimental results, Fig. 5.10 shows that it presents the same growth rate, but shifted
1.5 diameters in the axial direction. This displacement is probably due to the imposed steady

profiles at the exit of the nozzle, where the transition occurs in a more abrupt fashion as seen
in Fig. 5.8.
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Figure 5.10: Axial velocity length-scale at r/D = 0.5
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5.3.2 Acoustic-hydrodynamic filtering in the near-field

The near-field pressure field is compared to the one from A. Savarese (Pprime, Poitiers) [197].
The pressure signal is extracted from a linear array located at /D = 3 and expanding with an
angle of 5°. Unfortunately, the experimental microphones were located in a horizontal linear
array at /D = 4 and were obtained after the simulation. The comparison at the same position
is not possible because the linear array would traverse the sponge zone at /D = 4. The Power
Spectral Density (PSD) from both arrays is shown in Fig. 5.11. Even though the differences
in the positioning of the arrays and the fact that the experimental NPR is higher than the
numerical one, similar patterns are found. The main peak has a ”"banana like” [197] shape in
the axial direction. The secondary peak that appears at higher frequencies is also captured
even though it is highly dissipated due to the coarsening of the mesh and its associated cut-off
frequency. Following [197], the frequency axis is normalized by the parameter 5 defined as

_ 2
B =M}~ M2, (5.4)

where M; is the Mach number calculated at perfectly expanded conditions and M is the
actual Mach number, which is equal to one for non-perfectly expanded jets. This parameter
can be used to normalize the frequency from two jets that have different NPRs because the main
peak positioning is based on the mean shock-cell length, which in fact depends on the perfectly
expanded Mach number. In a similar fashion, the pressure amplitude can be normalized as

,_Ap
_ﬁ’

before converting it to dB. This normalization has been shown to be effective for a larger
number of NPR in [197].

The PSD of the pressure field shown in Fig. 5.11 contains the hydrodynamic and the acoustic
components. In order to study independently both the acoustic and the hydrodynamic com-
ponents of a jet, the acoustic-hydrodynamic filtering [181] presented in Sec. 3.3.2 is applied to
the near-field of the supersonic under-expanded single jet.

Ap (5.5)

The filtering was applied over several linear arrays in order to obtain a two-dimensional field
of the filtered pressure perturbation. Figure 5.12 displays the original pressure perturbations
of a snapshot and the filtered hydrodynamic and acoustic components. The filtering allows
the hydrodynamic component to be clearly visible and the acoustic component to gain in
detail specially near the jet, where the hydrodynamic perturbations are more intense. The
hydrodynamic component of a jet extends several diameters radially and even though it is
in fact a pressure perturbation, it can not be considered as an acoustic wave because it is
convected at a speed smaller than the ambient speed of sound a~,. From Fig. 5.12 it can be
seen how the filtering shows a noisy behavior closer to the jet, due to the fact that the Mach
number is of order unity and thus, it contains a high level of non-linearities [182]. At the axial
edges of the domain, some waves appear on the hydrodynamic component that should belong
to the acoustic component even though a smoothing window was applied.

The spectrum obtained by the different components is depicted in Fig. 5.13 and can be com-
pared to the original signal. The acoustic component (Fig. 5.13 (c¢)) mostly recovers the
BBSAN peak that appeared at 3 D in Fig. 5.11. The hydrodynamic component is shown in
Fig. 5.13 (b). Shock-cell noise is generated by the interaction between the vortical structures
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Figure 5.11: PSD of the pressure (a) for an array located in the near-field at r/D = 3 D
and and expansion angle of 5% for the LES (b) and an experimental array of microphones at

r/D =4 from Pprime [197].
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Figure 5.12: Snapshot of the hydrodynamic-acoustic filtering in the near-field of a supersonic
under-expanded single jet. Pressure perturbation contours in the range [—150, 150] Pa.
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and the shock-cells. The later oscillates due to the passage of the vortices and, at the same
time, shock-cell noise is radiated through the saddle point of the vortical structures [40]. These
interactions are present in Fig. 5.13 (b) as a tonal behavior which in fact is also visible in the
acoustic field. The axial pattern of this energetic event matches the shock-cell system. As
it can be seen in Fig. 5.13 (c), some of the excited regions of the hydrodynamic component
overlap with some regions of the acoustic component.
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Figure 5.13: Sound pressure level of an array of probes located at 1 D from the axis which
extends up to 10 D in the azial direction with an expansion angle of 5°. (a) Full signal, (b)
hydrodynamic component and (¢) supersonic component.

The importance of the acoustic-hydrodynamic filtering is further noticed when spatial-temporal
cross-correlations of the filtered pressure are carried out in the near-field. Figures 5.14 (a),
5.14 (b) and 5.14 (c) show the pressure cross-correlation of the original - original signal, hy-
drodynamic - hydrodynamic component and the acoustic - acoustic component respectively.
The cross-correlation is performed between one point located at [x/D = 0,y/D = 3] and an
array located at y/D = 1 with an inclination of 5°, following the expansion of the shear-layer.
Figure 5.14 (a) displays the shock-cell noise about z/D = 4 with a maximum normalized
cross-correlation of 0.38. When the filtering is applied, the cross-correlation peak increases up
t0 0.41 (5.14 (c)) and it becomes clearer downstream of the end of the potential core (x/D > 9)
(Fig. 5.14 (a) focuses only on the shock-cell noise region). The filtering improves the cross-
correlation specially downstream where the hydrodynamic components have the same general
direction as the acoustic waves. The cross-correlation of the hydrodynamic component from
Fig. 5.14 (b) some correlated areas most likely due to the entrainment caused by the jet.

Figures 5.14 (d), 5.14 (e) and 5.14 (f) now focus the cross-correlation on the point located
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at [v/D = 15,y/D = 3] and the above-mentioned array. At this position, the original cross-
correlation from Fig. 5.14 (d) differs completely from the acoustic component from Fig. 5.14 (f).
The original signal is clearly dominated by the hydrodynamic component from 5.14 (e) which
adopts the same shape. The mixing noise of the large turbulent structures is mostly generated
at the end of the potential core and radiated at 30° [23]. The cross-correlation of the acoustic
component agrees with the theory, showing a high correlation up to this location, with a
convective velocity of the speed of sound.
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Figure 5.14: Spatial-temporal pressure cross-correlation at /D = 0.0 of the (a), original
component, (b) the hydrodynamic component, and (¢) the acoustic component and at x/D =

15.0 for (d), (e) and (f) respectively.

The acoustic-hydrodynamic filtering, even if it is not exact nor fully accurate in the separated
flow components, is shown to be a powerful tool to use in the near-field of a jet. The application
to shock-cell noise does not greatly improve the correlations because the directivity is opposite
to the one of the large turbulent structures. Nonetheless, it allows for a better interpretation
of the results and future post-processing techniques as it is discussed in the following.
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5.3.3 Far-field acoustic field

In this section, the SPL at the far-field at »/D = 53 from the nozzle exit plane is compared
against numerical results from the University of Leicester (noted as COSMIC'), experimental
results from LMFA [17] (noted as exp.André) and experimental results from VKI (noted as
exp.VKI).

The pressure perturbations from elsA were propagated to the far-field using the Ffowcs
Williams-Hawkings analogy presented in Sec. 3.3.1 and averaged over 20 azimuthal probes
in order to artificially increase the convective time of the signal. On the other hand, both
experimental far-field pressure spectra were measured with a single array of microphones situ-
ated at different angles. The experimental results from the VKI are normalized to the actual
distance based on the diameter. The amplitudes are also normalized by the Strouhal number
to take into account the difference in diameter.

The comparisons are shown in Fig. 5.15 for different angles computed from the jet direction.
The following analysis is focused at 30°, 60°, 90°, and 120°. The lower downstream angles are
identified with the noise generated by the large structures that are convected downstream. At
30°, both experimental spectra have a similar decay and amplitude at Strouhal numbers higher
than 2.5. On the other hand, they differ by a maximum of 5 dB at the lower frequencies which
could be due to the differences in the inner geometries of the nozzles, different turbulence levels
or installation effects. Similarly to the experimental results, the numerical spectra differ as
well with the same trend, similar decays and amplitudes at high frequencies, and a discrepancy
in amplitude for the lower frequencies. The decay shown about St ~ 2.5 for the simulations
comes only from the frequency cut-off of the mesh, not able to resolve the higher frequencies.

At 60°, more differences are visible between both experiments. First, the results from VKI
display the BBSAN peak about St = 1.9 whereas the LES pressure spectra from elsA are
dissipated by the cut-off Strouhal number of the mesh. The higher frequencies cannot be
compared between both simulations due to the different mesh cut-off Strouhal numbers, being
about St =~ 2 for elsA and St ~ 3 for COSMIC. A similar difference in amplitude as for the
lower angles is shown for the lower frequencies. The difference in the azimuthal discretization
could explain why at this angle, the numerical sound pressure levels differ up to 10 dB at the
lower frequencies. A coarser mesh in the azimuthal direction would generate larger and more
energetic structures convected downstream. Preliminary investigations obtained by Leicester
confirm a bigger size of the structures when comparing the axial velocity length-scales.

At 90°, the experimental results show similar amplitudes at the lower frequencies and the
same position for the BBSAN peak. On the other hand, the peak is broader for the results
from VKI which increases the amplitude in the surrounding Strouhal numbers about 4 dB.
The DES from COSMIC is able to capture the BBSAN peak at this location, however, the
amplitude at the lower frequencies is still shifted by 5 to 10 dB. The BBSAN peak from elsA
has a lower amplitude and is shifted in frequency with respect to the experimental SPL due
to the fact that the shock-cell length captured is smaller than the experimental one as it is
shown by Eq. (5.2).

The effect of the shock-cell length is clearly visible at 120°. Here, the BBSAN is well captured
by elsA, but it is shifted to higher Strouhal numbers. Good agreement in amplitude is
found for all the resolved Strouhal numbers (up to St ~ 2). At this angle, the difference in
amplitude is smaller for the numerical results from COSMIC. The experimental results show
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Figure 5.15: Far-field sound pressure level at r/D = 53 from the nozzle exit for different
angular positions with respect to the jet direction.
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a very good agreement for all frequencies. On the other hand, the screech is not captured at
the same frequencies and more screech peaks appear in the facility at VKI than at LMFA.
The screech is not captured in the numerical simulations. The initial conditions used for this
LES, a poor discretization of the nozzle lip, and the fact that the interior of the nozzle is not
modeled [81, 203, 80, 66] are the key points for not obtaining screech. Moreover, some other
factors could have influenced the lack of screech. For example, not having enough simulation
time in order to develop the feedback loop required for screech to appear, or an excessive
dissipation caused by the sixth-order spatial filter.

In this section, two numerical and two experimental far-field noise spectra are compared. Geo-
metrical differences in the nozzles, different experimental setups and slightly different working
conditions as well as different dimensions and characteristics of the anechoic rooms can result
in the differences observed in the comparison. If the impact of the different anechoic rooms is
important, it could not be captured by CFD simulations because only a small part of the ex-
perimental setup is simulated. The numerical results are computed with two different solvers
with different meshes and numerical schemes. The mesh cut-off frequency limit drastically
impacts the higher frequencies and extra care should be taken when defining the mesh or
positioning of the FWH surfaces in the domain to try to capture as much as possible of the
physics of interest. The difference between the numerical results in amplitude for the lower
frequencies is believed to come from the difference in the azimuthal discretization of the mesh.
The azimuthal discretization of the mesh for COSMIC has only 64 points in comparison with
256 for elsA. This implies that the vortical structures are larger and may radiate more sound
at the lower end of the spectrum. The effect on the shock-cell noise is yet to be studied.

5.3.4 Azimuthal modal analysis

In this section, the azimuthal modal analysis discussed in Sec. 3.3.3 is applied to the pressure
signal from the single jet. First, the focus is drawn to the near-field pressure at the nozzle
exit plane, then the study is extended to the evolution in the axial direction of the different
azimuthal modes.

Even though screech does not develop in the simulations, some phenomena related to screech
is captured. The total power spectral density (PSD) contained at the plane z = 0, i.e the sum
of the PSD at every location in space [z, y| for each frequency is shown in Fig. 5.16. A peak is
found at St = 0.62, close to the experimental screech main tone (St = 0.65) from LMFA [17]
as illustrated in Fig. 5.15. This Strouhal number and its vicinity are the focus of this section.
A supersonic under-expanded screeching jet would show a similar amplitude in the screech
(and some of its harmonics) for a wide range of angular positions (as it can be seen in the
experimental results from Fig. 5.15). However, in order for the screech to occur, the feedback
loop must be initiated with a strong noise radiation at 180° that will impact the region where
the instabilities develop. In the following, the positions at /D = 0 are studied to focus mainly
on the acoustic perturbations without entering in the BBSAN main lobe region shown in the
upstream angles of Fig. 5.15.

The PSD of the pressure is displayed in Fig. 5.17 for several Strouhal numbers and different
radius at the exit plane. The position closer to the jet (r/D = 1), shows clearly the tonal noise
that occurs at St = 0.62 and a secondary peak at St = 0.65 (Fig. 5.17 (a)). The intensity
of these two peaks is attenuated for the position /D = 2 (Fig. 5.17 (b)) and non-relevant at
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r/D = 3 (Fig. 5.17 (c)) which is in agreement with a high upstream directivity (6§ ~ 180°)

of the perturbations. This highlights the possibility to obtain screech by increasing the mesh
resolution near the nozzle lip, and modeling the interior of the nozzle.
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Figure 5.17: PSD of the pressure at the positions [x/D,r/D] (a) [0,1], (b) [0,2], (c¢) [0,3].
The ordinate axis is scaled by the maximum value.

The azimuthal modal decomposition of the pressure at the same positions is shown in Fig. 5.18.
The perturbations reaching the nozzle exit are composed of different modes for a wide range
of Strouhal numbers. Close to the axis (Fig. 5.18 (a),(d) and (g)), these modes alternate with
the frequency. As explained for Fig. 5.17, although the modes are still distinguishable, an
attenuation occurs at /D = 2 (Fig. 5.18 (b),(e) and (h)). However, farther away from the
axis at x/D = 3 (Fig. 5.18 (c),(f) and (i)), a position where the BBSAN starts to be important,
the perturbations are composed of several superimposed modes for the frequency range of the
shock-cell noise.

For the sake of clarity, the single values of the PSD are shown in Fig. 5.19 for the previous
positions at the Strouhal numbers of interest 0.62 and 0.65. The dominant mode at St = 0.62
is fully axisymmetric (mode 0) whereas, at St = 0.65, there is a composition of axisymmetric
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Figure 5.18: PSD of pressure of the azimuthal modes at the positions (xz/D,y/D) = (0,1) in
(a,d,g), (x/D,y/D) = (0,2) in (b,e,h) and (x/D,y/D) = (0,3) in (c,f,i), where the PSD
is averaged between positive and negative modes. The ordinate axis is scaled by the mazximum
value.
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and helical modes. At the first two positions (Fig. 5.19 (a) and (b)), the axisymmetric mode
is dominant. However, at the farthest position (Fig. 5.19 (¢)), the dominant mode changes to
the second helical mode.
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Figure 5.19: PSD of pressure of the azimuthal modes at St = 0.62 and St = 0.65 in o and
X respectively at the positions (x/D,y/D) = (0,1) in (a), (x/D,y/D) = (0,2) in (b), and
(x/D,y/D) = (0,3) in (c), where the PSD is averaged between positive and negative modes.

Figures 5.17, 5.18 and 5.19 all show that the modes are distinct close to the jet axis and with
the same order of magnitude otherwise. The PSD of the modes at the lip-line is displayed in
Fig. 5.20 for both Strouhal numbers. At St = 0.62, the contribution of the axisymmetric mode
0 reaches the maximum at z/D = 5 and is dominant up to x/D = 6, farther downstream all
the modes are mixed with the same order of magnitude. At St = 0.65, the dominance of the
axisymmetric mode 0 is lost downstream of /D = 4 in favor of the helical mode 2, reaching
the maximum at z/D = 6, again, farther downstream all the modes are superimposed.
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Figure 5.20: PSD of pressure of the azimuthal modes at (a) St = 0.62 and (b) St = 0.65 at
y/D = 0.5. The complete signal is shown in solid black line. The modes 0, 1, 2 and 3 are
shown as o, O,A and v respectively, where the PSD is averaged between positive and negative
modes.

The modal decomposition at the lip-line can be applied to the root-mean-square (rms) of the
pressure in order to identify where these modes are contributing to the total spectra, or on
this case, to the rms of the complete signal. Figure 5.21 (a) illustrates how the peak of the
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mode 0 lays on /D = 5 and the peaks of the higher modes lay on /D = 6 in agreement with
Fig. 5.20. Figure 5.21 (b) depicts that the behavior changes due to the BBSAN components
that reach this region (y/D = 3). The peak of the mode 0 at x/D = 4, which corresponds to
the peak shown in Fig. 5.21 (a) at /D = 5 is almost dissipated, while the peaks of the other
modes of the signal are clearly visible.
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Figure 5.21: RMS of pressure of the azimuthal modes at (a) y/D = 0.5 and (b) y/D = 3.
The complete signal is shown in solid black line. The modes 0, 1, 2 and 3 are shown as o, [J,A
and V respectively, where the PSD is averaged between positive and negative modes.

Finally, in order to visualize the axisymmetric and helical modes, the DFT modulus of the
pressure at an axial plane at /D = 6 is shown in Fig. 5.22 and 5.23 at the Strouhal numbers
0.62 and 0.65 respectively. Suda et al. [38] reported high oscillations of the shock-cells for
a rectangular supersonic screeching jet. Figures 5.22 and 5.23 illustrate this mixed motion
between axisymmetric and helical modes for a circular supersonic non-screeching jet. At
St = 0.62 (Fig. 5.22) the central part of the jet and the tips of the shock-cells oscillate in time
axisymmetrically with the same phase and an annular region near the position of M = 1.0
that is not excited at this frequency. The helical behavior at St = 0.65 (Fig. 5.23) is presented
with a cloverleaf pattern that alternates from negative to positive phases on each lobe.
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Figure 5.22: (a) DFT modulus of the non-dimensional pressure (p = p/pres/v) and (b) its
phase at St = 0.62 at the plane x/D = 6. The negative values of the phase are represented
with dashed isolines.
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Figure 5.23: (a) DFT modulus of the non-dimensional pressure (p = p/pres/v) and (b) its
phase at St = 0.65 at the plane x/D = 6. The negative values of the phase are represented
with dashed isolines.
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5.3.5 Power spectral density axial distribution

The previous section showed how some regions of the shock-cell system are more excited at
particular frequencies. This section studies in depth the different PSD energy distributions
inside the jet.

The PSD of the pressure at the axis is displayed in Fig. 5.24 (a) and at 7/D = 1 in Fig. 5.24 (b).
The power spectral density at the axis illustrates the effect of the shock-cell system on the pres-
sure. The vertical patterns correspond at each axial position where the maximum compression
of the shock-cells is achieved. The horizontal patterns are detected at about St ~ {0.3,0.6,0.9}.
The maximum of the energy spectrum is found about /D = 5. At r/D = 1, there is a similar
shape than the one of the near-field at /D = 3 (see Fig. 5.11). Moreover, some traces of the
frequencies with higher levels of PSD can be seen in the range 0 < z/D < 2.
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Figure 5.24: Frequency-space pressure enerqgy distribution along the azxial direction for the data
set (a) at the axis and (b) at r/D = 1.

If the azimuthal decomposition is performed on the array located at r/D = 1 the different
excited frequencies can be separated in azimuthal modes. Similarly to what is shown in
Sec. 5.3.4, characteristic frequencies are found for different azimuthal modes. Figure 5.25
displays the energy contribution of each azimuthal mode. In all of them, a distinguishable
"banana-like” shape [197] is detected, that corresponds to the shock-cell noise as it was depicted
in Fig. 5.11. For each mode, there are some frequencies that are more excited than others.
Mode 0 has peaks for Strouhal numbers St ~ {0.57,0.91,1.16}, mode 1 at St ~ {0.74,1.05},
mode 2 at St ~ {0.61,0.91} and mode 3 at St ~ {0.80,1.09}. All modes present peaks at
frequencies that are separated by a small A St ranging from 0.25 to 0.34.

In order to study in more detail the different peaks, the signal comprised in the region within
the shock-cells is transformed into the frequency-wavenumber domain. The transformation
at the axis is shown in Fig. 5.26 (a) and at the lip-line in Fig. 5.26 (b). Both locations
illustrate that the excited tones previously found are in fact mainly in the negative part of
the axial wavenumber and travel at a group velocity between U, — a and ao,. This indicates
that the axis and the lip-line are capturing a negative traveling pressure wave even when the
flow is supersonic. This can be explained taking into account the upstream directivity of the
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Figure 5.25: Frequency-space pressure energy distribution along the azial direction for the data
set at v/D =1 for the azimuthal modes: (a) mode 0, (b) mode 1, (c) mode 2 and, (d) mode
3. The horizontal dotted line highlights the frequencies of interest.
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shock-cell noise.

2.0

St [f-D/U]

Figure 5.26: Frequency-wavenumber energy distribution along the axial direction for the pres-
sure (a) at the axis and (b) at the lip-line.

Figure 5.27 shows a snapshot of a DNS from Daviller [204] of a two-dimensional interaction of
a spatially developing mixing-layer with a compression wave separating a supersonic stream
at M = 1.2. In Fig. 5.27, the shock-cell noise that is convected outside the jet at the ambient
speed of sound is also convected inside at an axial velocity of Fj—@, the jet being supersonic,
deforms the perturbation in the axial direction displacing it downstream locally. However, due
to the fact that the origin of the perturbation in the shear-layer is moving upstream it creates
an oblique front wave that is seen by an axial array of probes to travel upstream at a speed
Uo€x as sketched in Fig. 5.28.

Figure 5.27: Shock-leakage mechanism represented by an isosurface of the dilatation field (col-
ors) and contours of vorticity (white lines) from [204]
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Figure 5.28: Ewolution of a negative traveling front wave inside a supersonic jet.

5.3.6 Wavelet analysis

The wavelet based methodology described in Ch. 4 used to identify and extract the charac-
teristic events of the flow is utilized here for the supersonic under-expanded single jet. In this
section, the procedure is applied at different scales (or equivalent frequencies) and the events
are located based on the energy criteria identified as SIG95 with a background red noise. The
mother wavelet used in this case of study is the DOG mother wavelet as it presented the
higher number of events necessary for a good convergence of the signatures. Unfortunately,
this mother wavelet makes it difficult to identify different events that have similar scales and so,
the events obtained probably are an average of different events captured at other scales. Here,
the events are filtered over a temporal window that corresponds to 2.5D/U; dimensionless
time units.

In order to identify the events corresponding to the negative and positive traveling pressure
waves shown in Sec. 5.3.5 separately, the signal was reconstructed using only the positive or
negative regions of the spatial wavenumber kD from Fig. 5.26. The wavelet transform and the
event identification procedure are then applied to the original axial velocity, the reconstructed
negative traveling and positive traveling pressure waves of the data sets AXIS, LIP_LINE and
NF1D. Moreover, a comparison is done against the results obtained with the acoustic filtered
pressure and the negative traveling pressure for the data set NF1D.

As explained in Sec. 4, the cross-conditioning needs two different variables, the reference or
conditioning variable and the plotting variable. The reference or conditioning variable is set in
order to detect the events and the plotting variable is the one that is averaged. As an example,
the axial velocity can be used as reference variable to detect the events, but the average is
performed using the pressure. Here, the conditioning variables are the axial velocity, the
negative traveling pressure and the positive traveling pressure, on the other hand, the plotting
variables are the axial velocity and the original pressure signal. In this example, it means that
the pressure plots are conditioned by the axial velocity. Even if the acoustic-hydrodynamic
filtering or the separation of negative and positive traveling waves is inaccurate due to the linear
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behavior of the procedure, the cross-conditioning averages the original variables, minimizing
associated problems.

Axis probes analysis

First the results at the axis are analyzed as follows. Figure 5.29 shows the cross-conditioning in
space (in the range 0 < /D < 10) of the above-mentioned variables of the events captured at
x/D =5, that is the position where the maximum energy is found according to Fig. 5.24 (a).
The event localization at /D = 5 gives as output a list with the positions in time where
the peaks of the events are located. The cross-conditioning in space is done by averaging the
values corresponding to the time list at all axial positions. The signature computed from the
cross-conditioning is illustrated in solid line. Moreover, in Fig. 5.29, the envelope of the event
is depicted by the dashed line. The envelope corresponds to the maxima and minima of the
signatures, captured at all axial positions. The thin gray vertical lines represent the position
of the expansion peak of the shock-cells. The scale used for the averaging corresponds to a
St(s) = 0.6, that is the Strouhal number for which the higher energy content is identified
at the axis. In addition, Fig. 5.30 depicts the cross-conditioning in space at different times.
Here, in order to recover a different time with respect to the list of times obtained with the
procedure, a positive or negative At is applied to the list before the averaging of the windows.
The envelope shown in Fig. 5.30 corresponds to the envelope of the evolution in time of the
signature seen at /D = 5. The upside down red triangle line represent the signature at
—1000 At, the solid black line is the actual time of the event, whereas the blue triangle line
corresponds to the average at +1000 At.

Figures 5.29 (a) and 5.29 (b) display the signatures computed with the axial velocity events
for the axial velocity and the pressure respectively. The signature of the event detected in
Fig. 5.29 (a) grows axially and has most of the peaks of the envelope at the expansion regions
of the shock-cells. At z/D = 5, there is the maximum peak of the signature. Some other
peaks are found farther downstream due to a poor averaging because of a lower number of
events detected. From Fig. 5.30 (a) it can be seen that the signature moves downstream. The
average speed of the signature corresponds to U;. Moreover, the signature obtained for the
pressure (Fig. 5.29 (b)) shows that the pressure related to these events decays after z/D = 6
to a small value at /D = 10 even when the envelope for the axial velocity is the maximum.
As it can be seen from these figures, the axial velocity and the pressure are shifted in phase by
7w rad meaning that a positive amplitude in the velocity correlates with a negative amplitude
for the pressure. The pressure signature seems to move upstream in Fig. 5.30 (b).

Similarly, the signatures obtained with the negative traveling pressure events are illustrated in
Fig. 5.29 (c) and (d) plotting respectively, the axial velocity and the pressure. In this case, the
axial velocity envelope shown in Fig. 5.29 (c) remains fairly constant after /D = 6 compared
to the growing envelope in Fig. 5.29 (a). The cross-conditioning with the original component of
the pressure displayed in Fig. 5.29 (d) presents a maxima around z/D =5 (as in Fig. 5.29 (b)).
The amplitudes of the signatures exhibit a bias for the positive values. Here, due to the fact
that the events were extracted using the negative traveling pressure variable, both signatures
move upstream as it is shown in Fig. 5.30 (c¢) and Fig. 5.30 (d). This signature corresponds to
the shock-cell noise that enters the jet as explained in Sec. 5.3.5 because it is the only signal
that travels upstream.
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Last, the signatures obtained with the positive traveling pressure events are displayed in
Fig. 5.29 (e) and (f). The signatures for the axial velocity exhibit a similar envelope than
the one calculated with the negative traveling pressure even though the signature itself has a
different shape with less oscillations. For both the axial velocity and the pressure, the signa-
tures have the peak slightly shifted from the position where the event was detected. Figure
5.30 (e) shows that the signature computed for the axial velocity moves downstream while
from Fig. 5.30 (d) the direction of the pressure signature is not clear. The inaccuracy of these
signature could mean that the number of events detected with the positive traveling pressure
is not enough to have a converged signature or that the distinction between the positive and
the negative events is not fully accurate.

Following the observations at the axis, the cross-conditioning can be applied over a two-
dimensional or a three-dimensional field. Due to the storage cost of saving the three-dimensional
field, here, only the two-dimensional cuts were used for the cross-conditioning. The average of
the snapshots is done taking both the planes z/D =0 (y/D > 0 and y/D < 0) and y/D =0
(/D >0 and z/D < 0) increasing the convergence of the signature. A signature can be said
to be converged if the normalized modulus by the standard deviation is greater than 1 and
there are enough snapshots to average out the other turbulence scales, i.e. the normalized
amplitudes are close to zero outside of the region of influence of the signature. Figures 5.31,
5.32, 5.33 show the signatures of the cross-conditioning obtained in a two-dimensional cut
where the reference events are detected at the same position of the previous analysis (r/D = 0
and z/D = 5). The black solid line represents the sonic Mach number. Here, the results are
non-dimensionalized by the local standard deviation in order to allow for a better discrimi-
nation of the effect of the event. The reader should take into account that the amplitude of
the hydrodynamic pressure inside the jet differs by several orders of magnitude with respect
to the acoustic component propagated outside. On the other hand, the previous results from
Fig. 5.29 and Fig. 5.30 were in dimensional units to illustrate the decay of the signatures along
the axial direction.

The two-dimensional signatures obtained with the axial velocity events are shown in Fig. 5.31 (a)
and (b) plotting respectively, the axial velocity and the pressure. The signatures for the ax-
ial velocity (Fig. 5.31 (a)) illustrate the movement of the shock-cells inside the potential core.
The shear-layer is well captured but no clear structures are visible from the cross-conditioning.
The pressure signature (Fig. 5.31 (b)) exhibits a similar pattern inside the potential core with
inverse colors as it was shown in Fig. 5.29 (b). Some structures are visible outside the potential
core but they are not fully converged. On the upstream region, on top of the nozzle, some
pressure waves can be discerned but they also present a lack of convergence.

The two-dimensional signatures obtained with the negative traveling pressure events are de-
picted in Fig. 5.32 (a) and (b) plotting respectively, the axial velocity and the pressure. From
the axial velocity signature shown in Fig. 5.32 (a), it can be seen that the patterns inside the
potential core are merged with the external velocity diagonally at /D = 5 with a negative
peak, and at /D = 4 with a positive peak. The pressure signature presents a pattern inside
the potential core and another outside the potential core with opposite amplitudes that extend
up to /D = 1. The pressure waves are being convected upstream inside the potential core (as
in Fig. 5.28). Because they are being convected diagonally, the positive region of the external
pressure wave lays on top of the negative pressure wave which gives this distinctive checker-
board pattern. The diagonal pattern can be clearly seen close to the nozzle, where the jet is
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Figure 5.29: Cross-conditioning of (a) u—u, (b) u—p, (¢) Pneg—u, (@) Pneg—p, (€) Ppos —u
and (f) ppos —p from AXIS where the first variable is the one used to locate the events and the
second variable is the one plotted. The dash black line represents the envelope of the signature
for all axial positions. The vertical dashed line represents the axial position where the events
are located and the vertical thin solid line represent the axial location of the shock-cells.
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Figure 5.30: Cross-conditioning of (a) u—u, (b) u—p, (c) Preg—u, (d) Pneg—p, (€) Ppos —u
and (f) ppos — p from AXIS where the first variable is the one used to locate the events and
the second variable is the one plotted. The upside down red triangles represent the signature at
t =trep — 1000 At, the black solid line at t = t,.y and in blue triangles at t = t,.y + 1000 At.
The dash black line represents the envelope of the signature for all shifted times. The vertical
dashed line represents the azial position where the events are located.
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Figure 5.31: Two-dimensional cross-conditioning of (a) uw— w and (b) uw— p, from the axis
where the first variable is the one used to locate the events and the second variable is the one
plotted. The black solid lines represent the Mach number contours above 1. The vertical dashed
line represents the location in space at the axis of the reference point.
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fully laminar. Outside the nozzle, the shock-cell noise peaks at St = 0.6 which corresponds to
the one used to select the scale in the event detection procedure.
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Figure 5.32: Two-dimensional cross-conditioning of (a) ppeg —u and (b) ppeg — p, from the
azis where the first variable is the one used to locate the events and the second variable is the
one plotted. The black solid lines represent the Mach number contours above 1. The vertical
dashed line represents the location in space at the axis of the reference point.

As it can be seen in Fig. 5.33 (a), the cross-conditioning between the positive traveling pressure
waves and the velocity gives a similar noisy image in the two-dimensional cut than in the axis
(Fig. 5.29 (e)). Some patterns are recognizable, however their normalized amplitude is close to
zero which means that they are not too significant. On the other hand, the cross-conditioning
between the positive traveling pressure waves and the pressure gives a similar pattern inside
the potential core and over the nozzle as the one obtained for the negative traveling pressure
waves. Moreover, outside the jet, a pattern of positive traveling waves is discerned. These
pressure waves actually travel at the convective velocity of the vortices convected downstream.

Lip-line probes analysis

The same analysis that was carried out for the probes at the axis can be done for the probes
located at the lip-line (r/D = 0.5). However, in order to ease the lecture of the manuscript,
here only the two-dimensional cross-conditioning plots are shown in Fig. 5.34, Fig. 5.35 and
Fig. 5.36. For this data set, the solution is averaged as well over the cuts in z/D = 0 and
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Figure 5.33: Two-dimensional cross-conditioning of (a) ppos — u and (b) ppos — p from the
azis where the first variable is the one used to locate the events and the second variable is the
one plotted. The black solid lines represent the Mach number contours above 1. The vertical
dashed line represents the location in space at the axis of the reference point.
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y/D = 0, however, due to the fact that the position /D = 0.5 and x/D = 5 where the events
are detected lays on four different azimuthal positions, each of them, is treated independently
before doing the average. This means that the list of times obtained for the event identification
differs for the 4 azimuthal positions. Nonetheless, using the same scale implies that the events
identified correspond to the same characteristic Strouhal number. For events related to an
axisymmetric mode, they should have similar detection times.

The two-dimensional signatures obtained with the axial velocity events are shown in Fig. 5.34 (a)
and (b) plotting respectively, the axial velocity and the pressure. Contrary to the results at
the axis illustrated in Fig. 5.31 (a), at this location a clear signature of the structures trav-
eling downstream is visible. These structures are elongated by the differences in velocity in
the shear-layer, having a higher convective velocity near the jet. Radially, these structures
extend half a diameter whereas axially, they extend about 1.8 D for a full period. The sig-
nature obtained for the pressure shown in Fig. 5.34 (b) present structures that are extended
radially over the shear-layer. The signature captures an interaction between the downstream
shock-cells and its shear-layer with patterns that extend from the axis to /D = 1.

The two-dimensional signatures computed with the negative traveling pressure events are
displayed in Fig. 5.35 (a) and (b) plotting respectively, the axial velocity and the pressure.
The signature obtained for the axial velocity (Fig. 5.35 (a)) exhibits the same pattern inside
the potential core for x/D < 4.5. Farther downstream, the pattern stretches to the axis and
a similar pattern with opposite amplitude is found that extends from r/D = 0.2, inside the
shock-cells to /D = 0.7. The same pattern can be seen with more detail when plotting
the pressure as shown in Fig. 5.35 (b). The maximum of the pattern is located at the sonic
line (noted with the black solid line) which suggests that the perturbation is generated at
this location. Contrary to the signatures obtained with the events detected at the axis, the
secondary pattern formed outside the potential core extends up to r/D = 2 and it is clearly
propagated upstream.

Last, the results of the two-dimensional signatures computed with the positive traveling pres-
sure events are shown in Fig. 5.36 (a) and (b) plotting respectively, the axial velocity and
the pressure. The axial velocity displayed in Fig. 5.36 (a) presents a pattern in the lip-line
that again seems to be stretched from the axis. Outside the shear-layer, the pattern is found
but it is disconnected to the pattern in the lip-line by the shear-layer. On the other hand,
the pressure displayed in Fig. 5.36 (b) exhibits the same pattern but connected through the
shear-layer. This last signature identifies the influence of the pressure in the near-field of the
vortical structures convected downstream through the shear-layer.

Near-field probes analysis

Finally, the two-dimensional cross-conditioning is shown in Fig. 5.37 and Fig. 5.38 for the
results obtained in the near-field. The pressure data of the array of probes situated at /D = 1,
x/D = 0 with an expansion angle of 5° is filtered using the acoustic-hydrodynamic filtering
from Sec. 3.3.2 and between negative and positive traveling pressure waves. At this location,
due to the fact that the velocity is negligible as it is located outside the jet shear-layer, the
signatures computed with the axial velocity events are omitted in the analysis.

Figure 5.37 (a) and (b) display the results obtained for the negative traveling pressure waves.
A comparison between both filtered variables is shown in Fig. 5.39 and discussed in the fol-
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Figure 5.34: Two-dimensional cross-conditioning of (a) uw—wu and (b) w—p, from the lip-line
where the first variable is the one used to locate the events and the second variable is the one
plotted. The black solid lines represent the Mach number contours above 1. The intersection
of the dashed lines represents the location in space of the reference point.
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Figure 5.35: Two-dimensional cross-conditioning of (a) ppeg —w and (b) ppeg — p, from the
lip-line where the first variable is the one used to locate the events and the second variable
is the one plotted. The black solid lines represent the Mach number contours above 1. The
intersection of the dashed lines represents the location in space of the reference point.
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Figure 5.36: Two-dimensional cross-conditioning of (e) ppos — u and (f) ppos — p from the
lip-line where the first variable is the one used to locate the events and the second variable
is the one plotted. The black solid lines represent the Mach number contours above 1. The
intersection of the dashed lines represents the location in space of the reference point.
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lowing. The signatures in the near-field computed with the negative traveling pressure or the
acoustic component were calculated with the averaging of the events detected at the scale that
corresponds to a St(s) = 1.1 which lays on the center of the shock-cell noise peak displayed
in Fig. 5.11 (a) at /D = 4.5 . The cross-conditioning obtained with the positive traveling
pressure events and the hydrodynamic events gives qualitatively identical results. Therefore,
only the signatures computed with the positive traveling waves are illustrated in Fig. 5.38 (a)
and (b). The scale used to compute the signatures from the hydrodynamic or positive traveling
pressure events is set to St(s) = 0.21 which corresponds to the main Strouhal number of the
hydrodynamic perturbations.
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Figure 5.37: Two-dimensional cross-conditioning of (a) ppeg — w and (b) ppeg — p, from the
near-field where the first variable is the one used to locate the events and the second variable
is the one plotted. The black solid lines represent the Mach number contours above 1. The
intersection of the dashed lines represents the location in space of the reference point.

The two-dimensional cross-correlation obtained from the negative traveling pressure events
is shown in Fig. 5.37 (a) and (b), for the axial velocity and the pressure respectively. The
signatures calculated for the axial velocity and the pressure look similar with the exception
that the signature for the axial velocity is not well defined inside the shear-layer (Fig. 5.37 (a)).
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On the other hand, the signature of the pressure is well defined inside the shear-layer up to
x/D = 8 with pressure perturbations coming from the shock-cell noise. The signature captured
at this position travels upstream at an average angle of 140°.

In a similar fashion, the signatures obtained with the positive traveling pressure events shown
in Fig. 5.38 exhibit a comparable pattern when the axial velocity or the pressure are plotted
with the exception that in the shear-layer, the axial velocity is not well defined. The pressure
presents a pattern that reaches the axis. This pattern, characteristic of the downstream
propagating pressure waves, has a spatial length-scale greater than the one found in the lip-
line. This is explained by the fact that the scale or equivalent frequency used to detect the
events in the lip-line is a smaller one, which corresponds to a higher Strouhal number. The
signature of the shock-cell noise is detected as well over the nozzle. This indicates that it is
linked to the downstream traveling pressure waves characteristic from the convected vortical
structures.

xr =45D, t =trej
4 T T T “ 1

B
T
>

& = BN W

y/D
o e B W B

20 2 6 8 10
X?D

Figure 5.38: Two-dimensional cross-conditioning of (a) ppos — u and (b) ppos — p, from the
near-field where the first variable is the one used to locate the events and the second variable
is the one plotted. The black solid lines represent the Mach number contours above 1. The
intersection of the dashed lines represents the location in space of the reference point.
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One of the limitations of this methodology is the fact that two different types of events that
have the same or a similar scale cannot be easily differentiated. The event detection procedure
of this study is based on the energy of the signal for different scales. If two independent events
radiate noise at similar frequencies and with a similar energy content, the event detection
procedure will not be able to discriminate between them. Having the knowledge of the physics
and the case that is being studied can be used to your own advantage in order to pre-process
the signal before applying the event detection procedure. In this case, Figure 5.39, shows the
cross-conditioning with the pressure of the acoustic component of the pressure signal on the left
column and of the negative traveling waves on the right column for different instants. Overall,
the results are similar, however, taking a closer look at the advanced times, there is a pressure
wave that can be seen traveling downstream for the cross-conditioning using the acoustic
component. This high frequency acoustic pressure wave is suspected to be originated near the
exit of the nozzle where the flow undergoes transition and several acoustic perturbations at
a wide frequency range are emitted. On the other hand, if the pressure signal is filtered into
negative traveling pressure waves, and the cross-conditioning is performed with this variable
as a reference to detect the events, this perturbation disappears, due to the fact that it is
traveling downstream. The remaining patterns are not highly affected by the selection of the
reference variable. From the advance times shown in Fig. 5.39 (g) and (h), it can be seen
that the event detected extends in space over the size of the potential core. This is expected
because the shock-cell noise is generated over several shock-cells, and the events from the
different shock-cells are taken into account as a whole.

5.4 Summary and perspectives

This chapter was devoted to the large eddy simulation of a supersonic under-expanded jet using
high-order compact schemes. The computation was validated against different experimental
results from different research facilities and against other numerical results obtained with a
different solver.

The shock-cell pattern was compared with the Mach number profiles at the axis and PIV or
Schlieren images showing good agreement for the first 4 shock-cells, farther downstream, there
is a minimal displacement of the shock-cells. The shear-layer followed the same expansion
rate and similar turbulence levels even though the internal part of the nozzle was not modeled
and no turbulence forcing was applied. The acoustic spectra in the near-field and in the
far-field were analyzed, obtaining good agreement with the experimental results. In the near-
field, a "banana-like” shape peak was found for the broadband shock-associated noise with an
harmonic in the range 0 < /D < 6. The far-field acoustic pressure perturbations that were
propagated with the FWH analogy presented an overall good agreement with the experimental
results. Nonetheless, the peak of the BBSAN was shifted to higher frequencies due to the
mismatch in the length of the shock-cells. Moreover, screech was not capture because the
interior of the nozzle was not modeled. The near-field pressure perturbations were filtered
into acoustic and hydrodynamic components in order to increase the accuracy of other post-
treatments. The azimuthal modal decomposition was carried out at different radial positions
and several modes were investigated. Moreover, different patterns were found on the pressure
energy distribution for different arrays of probes with negative pressure traveling waves inside
the supersonic potential core. This is possible due to the fact that the shock-cell noise that is
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Figure 5.39: Two-dimensional cross-conditioning of Dacoustic — P on the left hand side and
Dneg — P on the right hand side at different shifted times where the first variable is the one used
to locate the events and the second variable is the one plotted. The black solid lines represent
the Mach number contours above 1. The intersection of the dashed lines represents the location

in space of the reference point.
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propagated upstream outside the jet enters the potential core and generates an oblique front
wave. Last, this characteristic front wave was studied with the wavelet-based methodology. A
cross-conditioning was carried out between the events obtained using either the axial velocity,
the negative traveling pressure waves or the positive traveling pressure waves and either the
axial velocity or the pressure. The cross-conditioning illustrates how the signatures of the
events are localized in space and their evolution in time. Notably, the shock-cell noise exhibited
a checkerboard pattern between the shear-layer and the potential core due to the diagonal front
wave that is convected inside the potential core. Moreover, the shock-cell noise was clearly
visible for the upstream positions that showed a spatial length-scale of the order of the potential
core.

In order to improve the results, different approaches are available. First, the interior of the
nozzle could be modeled to better match the turbulence levels on the shear-layer and possibly
capture screech tones, together with a new mesh able to capture up to a cut-off Strouhal
number of at least three. This would increase the range of the resolvable frequencies and help
capture the complete BBSAN peak. The post-processing techniques based on the wavelet could
benefit from an extended simulation time. In particular, the mother wavelet Morlet could be
used for achieving a better discretization in frequency and discern the cross-conditioning of
different events that have different characteristic scales.

This case of study served the purpose of validation of an aeroacoustic simulation of a supersonic
jet with the high-order compact numerical schemes implemented in elsA, the methodology
and the post-processing techniques. Following this chapter, a supersonic under-expanded dual-
stream jet characteristic of nowadays commercial engines is studied.
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