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Investigation of Wall-Pressure Fluctuations

Characteristics on a NACA0012 Airfoil with Blunt

Trailing Edge

A. Grébert∗ and J. Bodart† and L. Joly ‡

Université de Toulouse, ISAE-Supaero, BP 54032, 31055 Toulouse Cedex 04, France

The trailing edge noise, or the so-called self-noise of an airfoil, significantly contributes
to the broadband noise in various configurations such as high bypass-ratio engines and
counter-rotating open rotors. The present work aims at characterizing the wall-pressure
fluctuations in the turbulent boundary layer just upstream the trailing edge, that are known
to shape the trailing edge noise spectrum. These investigations are carried out using large-
eddy simulations, with the massively parallel compressible solver CharLESX , of the flow
over a truncated NACA0012 airfoil at Rec = 4×105 for angles of attack α = 0◦ and α = 6.25◦.
Unsteady wall-pressure signals are recorded using several thousands of probes distributed
over the suction side. We focus on data-processing the pressure signals to extract quantities
crucial to trailing edge noise modelling: the convection velocity Uc, the spanwise correlation
length lz and the spectrum of the wall-pressure fluctuations Φpp.

I. Introduction

Brooks et al.1 identified the turbulent boundary layer-trailing edge interaction, as one of the five self-noise
mechanisms, which finds its origin in the scattering of the vortical structures in the turbulent boundary

layer (TBL) by the trailing edge bluntness. The theoretical treatment of this noise mechanism generally
relies on Amiet2,3 and Howe4 theories. Accurately predicting the trailing edge noise still faces significant
issues: most of the modelling involves empirical and semi-empirical models5–8 which are essentially relying on
the pressure footprint at the wall of the upstream TBL. These methods were used by Brooks and Hodgson5

who found a good agreement of their sound pressure measurements in the farfield with the predictions of
Howe4, derived from the wall-pressure field. The results obtained with the model of Howe4 or Amiet2, later
enhanced by Roger and Moreau9, have been successfully compared to farfield sound pressure measurements
by Moreau and Roger10. These models rely on a small set of quantities describing the fluctuating pressure in
the TBL, namely the spectrum Φpp, the convection velocity Uc and the spanwise correlation length scale lz
of the surface pressure fluctuations. These quantities are difficult to measure experimentally and an accurate
assessment of these model parameters using large-eddy simulations is an option towards more reliable and
robust predictions. This is the objective of the present study which aims at characterizing these quantities
in the particular case of a NACA0012 airfoil.

In the last decades, numbers of experiments and empirical models have been developed to characterize
the convection velocity Uc of turbulent structures responsible for the wall-pressure fluctuations. This so-
called convective velocity is usually derived from the space-time correlation function yielding expressions of
Uc(ω, ε1) depending on both the temporal frequency, which may be related to the structure size through
Taylor’s hypothesis, and a streamwise separation distance ε1. According to Amiet2, Uc can be reasonably
expressed as a weak function of the temporal frequency of the local pressure signal and assumed to be cor-
rectly represented by a constant value Uc ≈ 0.8Ue, Ue being the velocity at the edge of the boundary layer.
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However, Brooks and Hodgson5 performed a comprehensive experimental investigation of trailing edge noise
in the case of a two-dimensional airfoil and reported that the convection velocity is both sensitive to the
longitudinal separation distance and the frequency. Farabee and Casarella11 experimental measurements of
the frequency spectra and cross-spectra of the wall-pressure fluctuations beneath a turbulent boundary layer
gave further insights about the physical meaning of the convection velocity. They obtained Uc from the
phase ϕ of the wall-pressure cross-spectrum using the relation ϕ(ε1, ω) = −ωε1/Uc. The convection velocity
was thus demonstrated to depend on the separation distance and frequency. They pointed out that the
classical Taylor’s hypothesis of “frozen turbulence” hardly holds in boundary layers where all eddies are not
advected at a unique velocity. Instead, they identified a clear dependency of Uc on the temporal frequency
for the lower range of frequency and on the separation distance for small distances. Leclercq and Bohineust12

performed experiments in an anechoic wind-tunnel facility to characterize the wall-pressure fluctuations on
a flat plate with a refined spatio-temporal resolution. They were able to discuss the relationship between
the frequency of the wall-pressure fluctuations, associated with coherent structures, with the length scale
or the convection velocity of theses structures. In turbulent boundary layers where the mean velocity sig-
nificantly varies across the flow, long living large eddies and short life-time small ones do not necessarily
travel at same velocities. They also do not have the same radius of impact on the pressure field. Small
eddies, associated with high frequencies and small streamwise correlation distances, have to fly closer to the
wall, at consequently low convection velocities, to impart significant wall-pressure fluctuations. Large eddies
of the size of the boundary layer thickness yield wall-pressure fluctuations at lower frequencies from places
more remote from the wall thus associated with larger convective velocities of the order of U∞. They also
feed the pressure cross-spectra at larger streamwise separation distances. Following these considerations, it
is expected that Uc increases with the streamwise separation distance ε1 and decreases with the frequency.
Eventually, the scale separation between large and small structures in the inner layer of the TBL necessarily
requires to sensitize refined models for Uc to the Reynolds number.

The approach developed by Amiet2 and Howe4 is based on the surface pressure field which bridges the
gap between local hydrodynamic quantities at some distance upstream of the trailing-edge to the features
of the farfield acoustic pressure spectrum. In this perspective, the surface pressure fluctuation normalized
spectrum Φpp(ω) is another key ingredient required to build up trailing edge noise models. In these models,
the wall-pressure fluctuations are used as wall footprints of moving acoustic sources and several models13,14

have been developed to predict the resulting Φpp(ω). Experiments such as the one by Leclercq and Bo-
hineust12 aimed at providing reference measurements to help calibrate these models. The last quantity of
interest to complete these TE noise models is the spanwise correlation length lz of the wall-pressure fluctua-
tions. Simple models15 for this length scale use dimensional analysis using the frequency and the convection
velocity to write lz = Uc/ωα, in which α is an adjustable non-dimensionnal parameter. This expression
agrees fairly well with experimental data at high frequencies but no consensus on α has been adopted by the
community as α varies significantly with the experimental or numerical framework and the model adopted
for the convection velocity. In particular, using a constant value for Uc leads to a nonphysical behavior of
the model for lz at low frequencies. Combined choices for the values of Uc and α from the literature have
been summarized in Table 1 which highlights the scattering of the model parameters. Interestingly, Howe4

reported that for low to moderate Mach number, the farfield noise in the mid-span plane may be predicted
from the wall-pressure spectrum Φpp(ω) upstream of the trailing edge and the spanwise correlation length
lz(ω), as used by Nodé-Langlois7 for trailing edge broadband noise.

The present work aims at providing a new set of data, highly resolved in space and time, to help developing
more accurate TE noise prediction models. We propose to characterize the pressure fluctuations in a TBL
over a truncated NACA0012 airfoil and to focus on the three model ingredients previously mentioned. The
numerical set-up and the flow solver are described in the following section with an emphasis on the tripping
method used to trigger laminar-turbulent transition. Validation of the grid resolutions is carefully reported
as well as the pressure data acquisition method and the influence of span extent of the numerical domain.
These best trade-offs are then adopted to perform final simulations for two angles of attack.



Table 1. Convection velocity and Corcos15 model constant used for different airfoil experiments. In bold

the case considered from Sagrado16’s work and in red the extreme values of Corcos15 model constant and
convection velocity Uc.

Airfoil (Reference) α = 1/b Uc/U∞ Mach Rec

NACA0012 Airfoil (Brooks and Hodgson5) α = 0◦ 0.625 0.60 0.11 1.56× 106

NACA0012 Airfoil (Brooks and Hodgson5) α = 0◦ 0.581 0.60 0.20 2.80× 106

NACA0012 Airfoil (Sagrado16) α = 0◦ − 6.25◦α = 0◦ − 6.25◦α = 0◦ − 6.25◦ 0.665 0.69 0.05 4.00× 1054.00× 1054.00× 105

NACA64-618 Airfoil (Fischer17) α = 2.6◦ − 3.1◦ 0.714 0.70 0.09-0.18 1.71− 2.85× 106

Valeo CD Airfoil (Roger and Moreau18) α = 13◦ 0.665 0.60 0.05 1.44× 105

Valeo CD Airfoil (Moreau and Roger19) α = 15◦ 0.833 0.75 0.05 1.38× 105

Valeo CD Airfoil (Moreau and Roger19) α = 8◦ 0.665 0.70 0.05 1.38× 105

V2 Airfoil (Rozenberg et al.20) α = 0◦ 0.714 0.65 0.05 1.44× 105

Fan Blade mid span (Rozenberg21) 0.714 0.75 0.05 1.38× 105

II. Flow solver

The present large-eddy simulations (LES) were performed using the massively parallel CharLESX solver
which solve the spatially filtered compressible Navier-Stokes equations for the conserved variables of mass,
momentum and total energy using a finite volume formulation, control-volume based discretisation in un-
structured hexahedral meshes. An explicit third-order Runge-Kutta (RK3) is used for time advancement
(see Bermejo-Moreno et al.22 for more details in the numerics). The solver has been used to study reactive23

and high Reynolds number flows24. It includes Vreman25 subgrid-scale (SGS) model to represent the effect
of unresolved small-scale fluid motions.

In order to be consistent with Sagrado16’s experiments (see Table 2), a laminar to turbulent transition
is imposed at a fixed xtr location. No modification is added to the geometry or the mesh, but a sponge-like
source term is added to the Navier-Stokes equations: we locally force the solution towards a flow at rest in
the transition region:

∂ρ

∂t
+

∂

∂xj
(ρuj) = σ(ρref − ρ)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij − τij) = σ [(ρui)ref − ρui]

∂E

∂t
+

∂

∂xj
[(E + p)uj + qj − ukτkj ] = σ(Eref − E)

(1)

where ρ, ui, p, E, τij and qj are the density, velocity, pressure, total energy, viscous stress tensor and heat
flux, respectively. The source terms on the right-hand side are made active only near the external boundaries.
1/σ is the characteristic time scale of the forcing and set to the same value for all conserved variables. To
match stability constraints we set σ ≈ 1/∆t, where ∆t is the timestep of the computation. The active region
in the present work covers the entire span and is a square box with dimensions 0.25δ × 1δ in streamwise
and wall-normal directions. The large value of the source term extent in the wall normal direction (1δ) is
chosen consistently with Sagrado16’s experiments at low Reynolds number of Rec = 4 × 105 considered for
the present LES.

III. Numerical set-up

III.A. Investigated configuration

The present work is based on Sagrado16’s experiments, performed at the Whittle Laboratory of the Uni-
versity of Cambridge. This test case has been chosen mainly because of the large database available and
the extensive analysis performed on the parameters of primary interest to this work. Furthermore, the
NACA0012 airfoil geometry has been extensively studied and documented in the literature, which allows
in-depth validation of the results and numerical strategies.



Sagrado16 used a truncated NACA0012 profile to create a blunt trailing edge. Various trailing edge thick-
nesses were investigated but we currently focus on the case with a bluntness parameter h/δ∗ above 0.3,
so-called blunt TE, to enable a vortex shedding at the trailing edge, identified as an additional noise source
by Brooks and Hodgson.5

Table 2 summarizes the flow conditions considered for the present work and identical to Sagrado16’s
experiments. We consider two angles of attack α = [0◦, 6.25◦] for which no flow separation occurs. The
tripping of the boundary layer is kept consistent with the experiments, and a transition from laminar to
turbulent is imposed at a location of xtr = 0.127c, using the above described method. Note that in this case,
natural transition has been reported16 to occur much further downstream at xtr ≈ 0.75c, which would not
be suitable for the study of noise models for fully developed turbulent boundary layers.

Table 2. Geometrical parameters based on Sagrado16’s experiments and
numerical parameters of the present work.

Geometry Rec M∞ TE thickness h/c xtr/c α

NACA0012 4 × 105 0.05 5.4 × 10−3 0.127 [0◦, 6.25◦]

III.B. Grid design

Table 3. Typical mesh sizes (expressed in wall units) requirements for a boundary

layer flow using DNS and wall-resolved LES (Wagner et al.26) and current LES grid
resolution.

Direction Grid spacing DNS Wall-resolved LES Current LES

Streamwise ∆x+ 10-15 50-150 30

Spanwise ∆z+ 5 10-40 10-20

Wall-normal min(∆y+) 1 1 1

Number of points in 0 < y+ < 10 3-5 3-5 5

The unstructured grid has a CH-type topology as shown in Figure 1. The mesh includes both struc-
tured and unstructured blocks. Block 1 to 4 are structured blocks whereas block 5 to 7 are unstructured
and composed of quads. The C part of the domain extend up to 20 chords upstream, above and below
the airfoil, the length of the H part is also 20 chords downstream. The structured block 2 is designed to
contain the entire boundary layer, based on TBL estimation at the trailing edge of the suction side using
Sagrado16 experiments. A rotation of blocks 1 and 3, and although not represented in the Figure 1, is
necessary for non-zero angle of attack to capture the wake which extends over 1.75 chords downstream. The
obtained 2D mesh is almost uniform in the streamwise direction except in the vicinity of the TE. It is finally
extruded in the spanwise direction using a constant cell size in the z-direction over a span length extend
Lz. Note that the wall normal direction is stretched using a bi-geometric progression between each block.
Periodicity condition is imposed in the z-direction and assessed not to influence the solution in section §IV.A.

We performed a mesh sensitivity analysis to evaluate the dependence of the measured quantities to the
chosen grid resolution. We report in the Table 3, grid requirements as established by Wagner et al.26 for
DNS and LES (without additional wall-modeling) of an attached boundary layer, together with our choices
of grids. Of course, these cell sizes requirement remain numerical scheme and thus code dependent, and need
to be adjusted. Regarding LES, the quality of the results strongly depends on the value chosen for ∆x+ and
∆z+, since ∆y+

min should be equal to 1 in order to resolve the velocity gradients adequately at the wall to
determine the level of turbulence production and hence the Reynolds stresses and wall friction reasonably.
Indeed, a LES with ∆x+ ≤ 50 and ∆z+ ≤ 12 is considered by Wagner et al.26 as an high-resolution LES
yielding good agreement of predicted skin friction in plane channel compared to DNS or experiments. On
the other hand, LES with ∆x+ ≥ 100 and ∆z+ ≥ 30 leads to unphysical streaks and large error in the skin
friction according to Wagner et al.26

Since the turbulent structures evolving in the TBL are partially responsible for the wall-pressure fluctua-
tions, it is necessary to capture the skin friction correctly and the resulting aerodynamic load. This directly
translates to an accurate estimation of momentum thickness evolution.



Block 2
Block 3

Block 4

Block 5
Block 6

Block 7

Block 1

y/c

x/c

U
∞

α

Figure 1. Schematic 2-D diagram of the computational domain’s blocking.

To assess the grid resolutions, several meshes have been used and a comparison is proposed regarding
the wall-normal ∆y+

min and spanwise ∆z+ resolutions. The influence on the results of these grid spacings
is investigated for the following resolutions ∆y+

min = [1, 4, 10] and ∆z+ = [10, 20, 30], in the wall-normal
and spanwise direction, respectively. In order to validate the results, at α = 0◦, a comparison is made with
experimental results of Sagrado16 and with RANS computation performed on a 2D profile using Menter-SST
turbulence model on a similar grid. We choose to perform the sensitivity analysis with a fixed streamwise
resolution of ∆x+= 15 in both cases, i.e. we consider only ∆y+

min and ∆z+ variations, and a span length
of Lz = 0.02c. Data from the LES computations are analyzed after an initial run of 2 convective time unit
tc = c/U∞, which ensures that the solution has reached a statistically steady state. Statistical quantities are
then converged, averaging in both the spanwise homogeneous direction and time, during 3tc. In the present
paper, for the sake of brevity, only the skin friction coefficient Cf and TBL displacement and momentum
thickness are plotted in Figures 2 and 3, respectively.

Figure 2 shows the Cf distributions for ∆y+
min and ∆z+ variations, compared with Sagrado16’s data

which have been obtained using Clauser plots. In Figure 2(a), it can be observed a strong influence of
the wall-normal resolution on the Cf leading to an increasing underestimation with increasing ∆y+

min grid
spacing. However, in the Figure 2(b) the Cf seems rather insensitive to the spanwise resolution ∆z+ and is
in good agreement with Sagrado16, except in the vicinity of the TE, and RANS data regardless of the grid
spacing considered.

In order to better quantify the influence of ∆y+
min and ∆z+ resolutions, the TBL displacement and

momentum thickness are plotted in Figure 3. To extract the boundary layer displacement δ∗ and momentum
θ thickness, two methods are used to determine the boundary layer thickness δ as illustrated by Gloerfelt and
Le Garrec27: a power-law fitting of the velocity profiles ū/U∞ = (y/δ)1/n inside the boundary layer (y < δ)
and a linear fitting on the free-stream velocity outside the boundary layer. The boundary layer thickness
itself δ may be solely computed by the power-law, but using both fitting procedures increase the robustness
in the boundary layer thickness which is further used to define δ∗ and θ, using the following definitions:

δ∗ =

∫ δ

0

(
1− u(y)

U∞

)
dy and θ =

∫ δ

0

u(y)

U∞

(
1− u(y)

U∞

)
dy

The same conclusion drawn from the Cf can be observed for δ∗ and θ in the Figure 3. The results
are increasingly underestimating θ with the increasing ∆y+

min, as shown in Figure 3(a), whereas the TBL
momentum thickness computed for the different spanwise resolutions is stable regardless the ∆z+ considered,
see Figure 3(b). Regarding the TBL displacement thickness δ∗, Figures 3(a) and 3(b), influence of the mesh
resolution is non-monotonic on the estimation of δ∗. However, it can clearly be seen that the spanwise
resolution ∆z+ has only a weak effect on the flow dynamics whereas the wall-normal resolution ∆y+

min has a
direct effect on the Cf , δ∗, and θ, and must be carefully chosen. The mesh resolution chosen for the present
work is set to: ∆x+= 15, ∆y+

min= 1 and ∆z+= [10, 20] depending on the configuration and the span length
considered.
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Figure 2. Skin friction coefficient Cf as a function of x/c compared to Sagrado16’s experimental data for the tripped
case and RANS calculation using Menter-SST turbulence model. (a) and (b) illustrate the influence of the wall-normal

grid spacing for different ∆y+min = [1, 4, 10] (with fixed ∆x+= 15 and ∆z+= 10) and the spanwise grid spacing for different

∆z+ = [10, 20, 30] (with fixed ∆x+= 15 and ∆y+min= 1), respectively.
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Figure 3. Boundary layer displacement δ∗ and momentum θ thickness compared to Sagrado16’s experimental data for
the tripped case and RANS calculation using Menter-SST turbulence model. (a) and (b) illustrate the influence of the

wall-normal grid spacing for different ∆y+min = [1, 4, 10] (with fixed ∆x+= 15 and ∆z+= 10) and the spanwise grid spacing

for different ∆z+ = [10, 20, 30] (with fixed ∆x+= 15 and ∆y+min= 1), respectively.

III.C. Data acquisition

In order to measure unsteady pressure signals from our computations, probes are placed in the first wall-
normal cell along the airfoil. We acquire the pressure data along 101 spanwise lines of Nz equidistant probes
that are placed within the first cell on the upper surface of the airfoil. These pressure probes are referenced
as P0 x where x is the index of the probe line, from x/c = 0.6 down to the TE (x/c = 1.0), see the
Figure 4. The streamwise distribution of the probes, denoted by ε1 is kept constant except in the vicinity
of the trailing edge. Pressure probes are set to acquire pressure data every 50 timesteps ∆t such that the
normalized sampling frequency is f∗s = tc/(50∆t) ≈ 6000, i.e. we collect 6000 pressure samples per probe
and convective time scale tc.
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Figure 4. Probes are distributed in the streamwise direction from the TE (x/c = 0.978) up to x/c = 0.60 and in the
spanwise direction covering the entire span. (a) Schematic streamwise pressure probes location for longitudinal analysis.
(b) probes distribution on the upper side of the airfoil (span length not at scale).

We first measure the cross-correlation coefficient Rpipj (τ) defined by:

Rpipj (τ) =
〈p′i(xi, t)p′j(xj , t− τ)〉
p′irms

(xi)p′jrms
(xj)

(2)

with τ the time delay between the two considered signals p′i is the surface pressure fluctuation from probe i
located at position xi, p

′
irms

the root mean square of the pressure fluctuation measured by probe i and 〈·〉
denotes the time averaging. The cross-correlation is representative of the general dependence of the pressure
fluctuation from one probe to the other. It provides information regarding characteristic scales of the wall-
pressure related structures. Using Rpipj (τ) it is possible to compute a convection velocity as a function of
the separation distance ε1 in the streamwise direction between probes. The convection velocity Uc(ε1) is
then defined as:

Uc(ε1)

Ue
=

ε1/δ
∗

[τUe/δ∗]max

(3)

where [τUe/δ
∗]max denotes the time delay corresponding to the maximum of the cross-correlation Rpipj (τ)

between two signals separated by a distance ε1/δ
∗.

Another important quantity is the wall-pressure coherence which is defined by:

γ2
ij(f) =

|Φpipj (f)|2

Φpipi(f)Φpjpj (f)
(4)

Φpipj being the cross-spectrum between signals (obtained from the Fourier transform of the correlation
function Rpipj (τ)) while Φpipi is the autospectrum of each signal. γ2

ij(f) provides information about the

frequency content of Rpipj (τ), 0 ≤ γ2
ij(f) ≤ 1 and its square root is the normalized cross-spectrum between

the two signals p′i(t) and p′j(t). In the present work, lateral coherence γ2(ε3, St) will be mainly discussed since

Brooks and Hodgson5 and Wagner et al.26 reported that the lateral coherence relates more specifically to
the physical size of the eddies. This allows to compute a spanwise correlation length lz and provides further
information about the TBL pressure patterns and associated flow structures. Note that the homogeneity in
z is leveraged to increase the convergence of the statistical sampling.

IV. Flow characteristics

IV.A. Minimum span length requirement

In order to perform reliable and accurate LES of a z-homogeneous configuration, it is important to assess that
periodization does not affect the flow solution by using a wide enough domain span Lz. A characterization
of the flow field is reported in this section for two different span lengths Lz = 0.02c and Lz = 0.06c. This
characterization is given, in the form of the resulting chord-wise evolution of the skin friction Cf , the shape
factor H12, the cross-correlation Rpipj (τ), the spanwise coherence γ2(ε3, St) and the spanwise correlation
length lz. Both simulations are performed using the parameters introduced in the previous section and



summarized in Table 2 with Vreman25 SGS model and at α = 0◦. The spanwise resolution ∆z+has been
doubled from ∆z+= 10 to ∆z+= 20 for the larger span length’s case (though the span length is three-times
wider) because of its previously commented weak influence and for obvious computational cost motivations.
The total simulation time for both cases is t = 4.3tc after an initial run to converge towards a statistically
steady state.

The skin friction coefficient and shape factor are plotted in Figure 5. One can observe that the span
length as a moderate influence on the Cf , Figure 5(a), but the larger one allowed a better agreement with
the experimental data from Sagrado16 with a slight underestimation of the Cf in the vicinity of the trailing
edge. Another point of comparison is H12, plotted in Figure 5(b), highlighting a rather important influence
of the span length. Indeed, it can be observed, for Lz = 0.06c, that H12 increasingly deviate from Lz = 0.02c
case as we move towards the TE. This is explain by the thickening of the boundary layer which reaches
a height δ, denoting the BL thickness, equal to the spanwise extend Lz of the computational domain at
approximately x = 0.7c. The overestimation of the shape factor is the results of slight underestimation of
the BL momentum thickness θ whereas BL displacement thickness δ∗ is perfectly fitting the experimental
data for Lz = 0.06c, which are not shown in the present work for brevity.
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Figure 5. (a) represent the skin friction coefficient Cf as a function of x/c for both span lengths considered and

compared to Sagrado16’s experimental data for the tripped case and RANS calculation using Menter-SST turbulence
model. (b) is the shape factor H12 = δ∗/θ compared to Sagrado16’s experimental data for the tripped/untripped cases
and RANS calculation using Menter-SST turbulence model.

Another approach to characterize the influence of the span length is the analysis of the pressure signals
recorded using the probes introduced in the computational domain. Pressure data, for both cases, are
gathered over a total simulation time of t = 4.3tc convective time unit and divided in 8 overlapping segments
with a 50% overlap. The cross-correlation coefficient Rpipj (τ) is computed using probe P0 10 (x = 0.978c)
as a reference for correlation with upstream probes separated by ε1. The coherence function is computed for
the spanwise distributed probes of P0 10 probe line, i.e. with the same streamwise location x = 0.978c.

One can clearly observe in Figures 6(a) and 6(c), the different decreasing rates of the maximum value
of the cross-correlation coefficient with the separation distance ε1. This rate relates to the change in the
pressure signature, since the farther apart the probes, the larger the distance over which the structures can
evolve and change, yielding to less correlated signals. For the narrower span, Figure 6(a), the pressure signals
are correlated over a larger separation distance and thus for a greater time delay compared to the larger
span. Since these Rpipj (τ) plots take as a reference the probe line P0 10 at x = 0.978c, this observation
can be explained by the fact that the lateral size of the domain Lz, which is approximately 0.5δ in this
region, constrains the size of the largest energetic structures. For Lz = 0.06, Figure 6(c), these structures
can evolve more rapidly, without being constrained by the domain, leading to much lower correlation value
of Rpipj (τ) with increasing separation distance. Another interesting quantity is the spanwise coherence
function γ2(ε3, St) which gives an insight to the turbulent structures evolving in the BL since it relates to
the physical size of the eddies as reported by Brooks and Hodgson5. In figures 6(b) and 6(d), are plotted the
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Figure 6. (a) and (c) are the line plots of the cross-correlation coefficient Rpipj
for different streamwise separation

distance ε1, the time delay τ has been normalised by the velocity Ue at the edge of the boundary layer and the
displacement thickness, δ∗. (b) and (d) are the contour maps of the spanwise coherence function γ2(ε3, St), the frequency
is given by St = fh/U∞, with h the TE thickness, and the lateral separation distance ε3 is normalised by δ∗. Probe
P0 10 (closest to the TE, x = 0.978c) is the reference probe.

contour maps of γ2(ε3, St), as a function of frequency St and lateral separation distance ε3 for the reference
probe line P0 10. One can observe for the highest frequencies (0.1 < St < 1) the coherence rapidly vanishes
with increasing frequencies due to the decreasing scales of the eddies. For lower ones, a coherence ridge
can be noticed around a particular frequency of St ≈ 0.03 and St ≈ 0.025, respectively in Figures 6(b)
and 6(d), with a slower rate of decorrelation along the span compared to high and low frequencies. This
ridge corresponds to the largest length scales evolving in the BL, with a characteristic frequency f ∼ δ−1,
as reported by Brooks and Hodgson5. For the lowest frequencies, no coherent structure can grow in the BL
yielding to rapid decorrelation rate over the span.

Using the spanwise coherence function we can compute the spanwise correlation length lz by integrat-
ing γ2(ε3, St) over the frequency range. This methodology have been sparsely used in the literature and
should lead to more accurate results compared to the exponential fitting techniques commonly used. Two
models have been selected for comparison and a brief description is given, more details can be found in the
corresponding paper. Corcos15 proposed a simple model for lz(ω), Eq. (5), involving only the convection
velocity Uc of the turbulent structures responsible for the surface pressure field. In this model, α (or b) is a
nondimensional parameter adjustable. This model have been extensively used in the literature but is only
valid for high frequencies. Salze et al.28 developed a model based on Efimtsov29 to correctly evaluate lz over
the whole frequency range, particularly in low frequency range, using pressure measurements on a flat plate
with different pressure gradients. This model is giving the best results for the correlation length at low and



high frequencies. The model is given by Eq. (6) where H1 = δ
δ∗ and the empirical constants a4, a5 and a6

have to be defined using numerical/experimental data. The Salze model for the correlation length recovers
Corcos15 model at high Stδ∗ = ωδ∗/U∞ while admitting the physical lower bound δ∗/a6 for low Stδ∗ . The
Corcos15 model parameters used are α = 0.833 and Uc/U∞ = 0.75. For Salze et al.28 model, the parameters
used are identical as those defined in the paper; a4 = 0.85, a5 = 100 and a6 = 1 and Uc/U∞ = 0.75.

lz =
Uc
ωα

= b
Uc
ω

(5)

lz
δ∗

=

[(
a4Stδ∗

Uc/U∞

)2

+
a2

5

St2δ∗ (H2
1U∞/uτ )

2
+ (a5/a6)2

]− 1
2

(6)

Figure 7 shows lz computed from the present simulations, at x = 0.978c. For Lz = 0.02c, one can
observe that lz is limited by the half spanwise extend of the domain Lz/2 for the largest integral scales
aforementioned. Furthermore, discrepancies appear, for both span lengths, at high frequencies (Stδ∗ > 1)
for which lz tends to an asymptotic value. Between cases Lz = 0.02c and Lz = 0.06c this asymptotic value
is almost doubled, highlighting the direct dependency to the spanwise resolution which was doubled from
∆z+= 10 to ∆z+= 20. This asymptotic value corresponds to the size of three consecutive cells 3∆z+. The
limits of Corcos15 model can clearly be seen at the lowest frequencies whereas Salze et al.28 model gives a
perfect estimation of lz up to Stδ∗ = 1 for Lz = 0.06c.
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Figure 7. Correlation length lz for span length Lz = 0.02c and Lz = 0.06c at x = 0.978c compared to Salze et al.28 and
Corcos15 models. lz is normalised using the spanwise averaged displacement thickness δ∗ at P0 10 location and the
frequency is given by ωδ∗/U∞. ∆z represents the size of one cell in the spanwise direction.

Following the conclusions established in this section the span length influence is clearly visible especially
for the lowest frequencies corresponding to the largest scales evolving in the boundary layer. According to
the present results, the lateral length of the LES domain is set be at least Lz/2 = 4δ∗ wide, corresponding
to Lz = 0.06c for α = 0◦, to enable sufficient signals decorrelation over the span as well as to prevent any
spurious sustained levels of coherence.

IV.B. Influence of the pressure gradient

In this part, we discuss an additional computation performed using α = 6.25◦ with an increased span length
of Lz = 0.1c, consistent with the development of a thicker BL. Regarding outer layer scales, the domain has
a similar span length Lz/2 = 4.45δ∗, matching the above derived span length requirements. Apart from the
angle of attack, simulations parameters and grid resolutions are kept identical for both cases, and the same
post-processing procedures described in the previous section are used. In the Figure 8(a) and Figure 8(b), we
report line plots of Rpipj (τ). One can observe a slightly different rate of decorrelation for both angles with
higher values of the peak of Rpipj (τ) for larger ε1 for α = 6.25◦. This illustrates that pressure fluctuation
related structures remain correlated over larger separation distance and hence for longer time, consistent
with the BL thickening. In the Figure 8(c) we extract the convection velocity Uc, see Eq. (3), as a function



of ε1 normalised by δ∗, taken at the reference probe line P0 10 (x = 0.978c), for both angles of attack. Using
the δ∗ length scale, Uc(ε1) presents a very similar behaviour except for very small distances ε1< 5. Uc(ε1)
seems rather insensitive to pressure gradient variations, and reach an asymptotic value of approximately 0.75
(α = 0◦) and 0.72 (α = 6.25◦). One can observe a very good agreement with Sagrado16’s data for small ε1.
Discrepancies appearing for larger ε1 are of comparable magnitude than the error induced by the relatively
short time history (regarding large scale events) of the pressure signals used in this analysis. The lack of
sampling is even more pronounced for α = 6.25◦, as δ∗ is almost doubled in comparison with the symmetric
case, making statistical convergence at large scales even more difficult to reach.
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Figure 8. (a) and (b) are the line plots of the cross-correlation coefficient Rpipj
for different streamwise separation

distance ε1. (c) Convection velocity as a function of the longitudinal separation distance ε1, normalised by δ∗, for
both angle of attack investigated α = 0◦ and α = 6.25◦ compared to Sagrado16 experiments. Reference probe used for
longitudinal spacing ε1 and δ∗ is P0 10 at x = 0.978c.

Contour maps of the spanwise coherence function γ2(ε3, St) for α = 0◦ and α = 6.25◦, at the same
location on the suction side x = 0.978c, are plotted in Figure 9(a) and Figure 9(b), respectively. As observed
previously, γ2(ε3, St) presents the same general pattern for both angles of attack. The higher the frequency
(the smaller the scale), the more rapidly the coherence decreases. We observe a large coherence ridge for
both cases, which differs between α = 0◦ and α = 6.25◦ with St = 0.025 and St = 0.015, respectively. The
reduction of this characteristic frequency is associated with the thicker BL on the suction side for α = 6.25◦

and thus larger scale structures of the TBL. An additional frequency peak appears with the increased angle of
attack, with a second, smaller ridge of coherence appearing around St = 0.06, Figure 9(b). This narrow ridge
is also present on Figure 9(a) at a frequency of St = 0.08 and may be related to the vortex shedding occurring
at the TE in both cases. In the Figure 10(a) are plotted the spanwise and streamwise coherence of the pressure
fluctuations at location x = 0.978c with the same separation distance in both directions, ε1=ε3= 0.003c.



(a) α = 0◦ (b) α = 6.25◦

Figure 9. Contour maps of the spanwise coherence function γ2(ε3, St) on the suction side near the TE for probe line
P0 10 (x/c = 0.978), for both angle of attack investigated: (a) α = 0◦ and (b) α = 6.25◦. The frequency is given by
St = fh/U∞, with h the TE thickness, and the lateral separation distance ε3 is normalised by δ∗.

For a given probes spacing, the coherence is lower in the lateral direction. It highlights the fact that the
coherence function relates to different aspects of the pressure field. The spanwise coherence γ2(ε3, St) relates
to the size (or scale) of the eddies whereas the streamwise coherence γ2(ε1, St) relates more directly to the
lifespan, or decay, of these eddies. Because eddies with the largest scales have the longest lifespan, these
features of the surface pressure field are interrelated and the maximum of coherence occurs around the same
frequency. Furthermore, the value of γ2(ε1, St) is not unity, demonstrating that the convected TBL pressure
field is not completely frozen. The eddies associated to lower frequency contributions appear to be changing
character, or decaying, downstream but less rapidly than those with the highest frequencies. Finally, the
increase of the pressure gradient is seen to affect the streamwise coherence for the higher frequency range by
decreasing γ2(ε1, St), indicating a shorter lifetime, i.e. higher decay rate, of the eddies which contributes to
these frequencies. An opposite observation can be made for the spanwise coherence as the highest frequency
range seems unaffected by the pressure gradient whereas the lowest range presents higher γ2(ε3, St) values
indicating larger structures in the TBL, which is thicker due to the adverse pressure gradient.

Figure 10(b) shows the coherence function between probes located at x = 0.99c on the pressure and
suction sides, P0 0 and L0 0. It can be seen that the coherence is rather small for the higher frequency
range (St ≥ 0.2) for both angles of attack and a peak appears St = 0.1 associated with the vortex shedding
from the TE. This is in agreement with the value found by Brooks and Hodgson5 and Sagrado16. The peak
corresponding with the vortex shedding is obtained for smaller frequency for the non-zero AoA case. This is
due to the chosen normalisation and associated variation of the bluntness parameter h = 0.35δ∗ as opposed
to h = 0.6δ∗(α = 0◦). The increased adverse pressure gradient and hence TBL thickness, only affects the
low frequency range, highlighting larger scales evolving in the TBL.

As mentioned above, the lateral coherence function γ2(ε3, St) is used to compute the spanwise correlation
length lz, which is plotted for both AoA cases in Figure 11, at x = 0.978c. We establish a comparison with
the models of Salze et al.28 and Corcos15, with identical modelling parameters. With the strongest adverse
pressure gradient, the highest frequencies exhibit the same asymptotic behaviour mentioned in section §IV.A,
and related to the coherence between adjacent cells. However, in the mid-frequency range, the adverse
pressure gradient seems to affect the frequency corresponding to the maximum lz by slightly shifting it to
lower frequency, i.e. from ωδ∗/U∞ = 0.35 to ωδ∗/U∞ = 0.30. Regarding the lower frequency range the same
asymptotic behaviour of 1δ∗ with decreasing frequency is found, as observed for α = 0◦.

Another interesting point of comparison is the power spectral density (PSD) plotted in Figure 12. The
PSD is reported for the same different streamwise position, on the suction side, from the trailing edge at
x = 0.99c up to x = 0.73c in Figure 12(a) and Figure 12(b) for α = 0◦ and α = 6.25◦, respectively. One
can observe narrowband peaks in the higher frequency range, St ≥ 1, which are the acoustic signature,
fundamental and harmonics, of the vortex shedding occurring in the tripping area at x = 0.127c. Indeed,
normalizing the frequency using the height of the source term previously introduced in place of the trailing
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Figure 10. Coherence function γ2, solid lines represents α = 0◦ results and dashed lines α = 6.25◦. (a) γ2 for streamwise
and spanwise aligned probes at x = 0.978c with a separation distance of ε1=ε30.003c. (b) γ2 between probes located at
x = 0.99c on the pressure (P0 0) and suction (L0 0) sides.
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Figure 11. Correlation length lz for the two angles of attack α = 0◦ and α = 6.25◦ at x/c = 0.978 compared to Salze et
al.28 and Corcos15 models. lz is normalised using the spanwise averaged displacement thickness δ∗ at P0 10 location
and the frequency is given by ωδ∗/U∞.

edge thickness, induces a first peak at St′ ≈ 0.1, characteristic of a bluff body vortex shedding. The
signature of the airfoil induced shedding also appears for both AoAs with a maximum of the PSD (at
location x = 0.9983c) at St = 0.1 exhibiting the vortex shedding occurring at the TE. One can observe an
increase in the mid and low frequency energy content and a decrease at higher frequencies with increasing
x/c in both Figures 12(a) and 12(b). However, the shift on the PSD between the location closest to the TE
and the point furthest upstream is larger for the non-zero AoA case, see Figure 12(b). This is due to the
increase of the TBL thickness towards the TE and hence, the size increase of the biggest scales (i.e. lowest
frequencies). This is translated into a shift of the energy content from the high frequencies to the lower ones,
in agreement with Brooks and Hodgson5 and Sagrado16.
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Figure 12. Power spectral density referenced to p0 = 2× 10−5 Pa at different streamwise positions for the two angles of
attack α = 0◦ and α = 6.25◦.

V. Conclusion

We carried out large-eddy simulations to document the wall pressure fluctuations on a NACA0012 airfoil
at M = 0.05 and flow conditions corresponding to a chord-based Reynolds number Rec = 4 × 105. We
addressed the zero-load configuration for α = 0◦ and the α = 6.25◦ one to characterize the influence of the
pressure gradient. The airfoil trailing edge is blunted with a bluntness parameter h/δ∗ > 0.3 which promotes
vortex shedding. The laminar-turbulent transition was imposed at a fixed location xtr = 0.127 by adding a
sponge-like source term to the Navier-Stokes equations preserving both the geometry and the mesh topology.
Spatial resolutions have been carefully chosen and the grid sizes set to ∆x+= 15, ∆y+

min= 1 and ∆z+= [10, 20]
to comply with literature facts about the streaks characteristic length scales in all directions. The span extent
of the numerical domain has been verified to fulfill spanwise decorrelation of wall-pressure fluctuations only
if Lz/2 > 4δ∗. Thousands of numerical probes were distributed over the entire span between x/c = 0.6 and
x/c = 1.0 and pressure signals were recorded over a period as long as t = 4.3tc with a normalized sampling
frequency of 6000 samples per convective time-scale. The convection velocity Uc displayed a significant
increase with the separation distance ε1 towards an asymptotic value at large distances that is robust to
the influence of the pressure gradient, at least for the considered angle of attack. The spanwise correlation
length lz computed from the present simulations were compared to Salze et al.28 model which showed great
capability to estimate lz over the entire frequency range and accounted very well for the effect of the pressure
gradient. The observation by Sagrado16 about the power spectral density are in line with the present study
with, in particular, a characteristic decrease of the energy containing frequency towards the TE along the
chord. The comprehensive database obtained from the present highly resolved large-eddy simulations have
been validated against previous results and are giving credit to previously proposed sub-models for Uc, lz
and Φpp, themselves entering current noise prediction models. The extension of the present procedure to
higher Mach numbers and more representative airfoil geometries is likely to help understanding how the
features of near trailing edge boundary layer turbulence enters ingredients of the Amiet-type models and it
should be helpful in developing new versions of TE noise models properly sensitized to the aerodynamic load
or to compressibility effects.
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