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Résumé

L’imagerie ultrasonore est une modalité d’acquisition privilégiée en imagerie médicale en raison de

son innocuité, sa simplicité d’utilisation et son coût modéré d’utilisation. Néanmoins, la résolution

limitée et le faible contraste limitent son utilisation dans certaines d’applications. C’est dans ce

contexte que différentes techniques de post-traitement visant à améliorer la qualité de telles images

sont proposées dans ce manuscrit. Dans un premier temps, nous proposons d’aborder le problème

conjoint de la déconvolution et de la segmentation d’images ultrasonores en exploitant l’interaction

entre ces deux problèmes. Le problème, énoncé dans un cadre bayésien, est résolu à l’aide d’un

algorithme MCMC en raison de la complexité de la loi a posteriori des paramètres d’intérêt. Dans

un second temps, nous proposons une nouvelle méthode rapide de super-résolution fondée sur la

résolution analytique d’un problème de minimisation l2-l2. Il convient de remarquer que les deux

approches proposées peuvent être appliquées aussi bien à des images ultrasonores qu’à des images

naturelles ou constantes par morceaux. Enfin, nous proposons une méthode de déconvolution aveugle

basée sur un modèle paramétrique de la réponse impulseionelle de l’instrument ou du noyau de flou.
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Abstract

In the field of medical image analysis, ultrasound is a core imaging modality employed due to its

real time and easy-to-use nature, its non-ionizing and low cost characteristics. Ultrasound imaging

is used in numerous clinical applications, such as fetus monitoring, diagnosis of cardiac diseases,

flow estimation, etc. Classical applications in ultrasound imaging involve tissue characterization,

tissue motion estimation or image quality enhancement (contrast, resolution, signal to noise ratio).

However, one of the major problems with ultrasound images, is the presence of noise, having the form

of a granular pattern, called speckle. The speckle noise in ultrasound images leads to the relative

poor image qualities compared with other medical image modalities, which limits the applications of

medical ultrasound imaging. In order to better understand and analyze ultrasound images, several

device-based techniques have been developed during last 20 years. The object of this PhD thesis is to

propose new image processing methods allowing us to improve ultrasound image quality using post-

processing techniques. First, we propose a Bayesian method for joint deconvolution and segmentation

of ultrasound images based on their tight relationship. The problem is formulated as an inverse

problem that is solved within a Bayesian framework. Due to the intractability of the posterior

distribution associated with the proposed Bayesian model, we investigate a Markov chain Monte

Carlo (MCMC) technique which generates samples distributed according to the posterior and use

these samples to build estimators of the ultrasound image. In a second step, we propose a fast

single image super-resolution framework using a new analytical solution to the l2-l2 problems (i.e.,

`2-norm regularized quadratic problems), which is applicable for both medical ultrasound images and

piece-wise/natural images. In a third step, blind deconvolution of ultrasound images is studied by

vii



considering the following two strategies: i) A Gaussian prior for the PSF is proposed in a Bayesian

framework. ii) An alternating optimization method is explored for blind deconvolution of ultrasound

images using parametric model for the PSF/blurring kernel.
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Introduction

Motivation

Medical ultrasound (US) imaging is one of the most widely employed imaging modalities due to

its harmless, portable, cost efficient and real time properties compared with other medical imaging

modalities, e.g., X-ray, computed tomography (CT), magnetic resonance imaging (MRI) and positron

emission tomography (PET). Particularly, due to the advances in ultrasound hardware conducted

during last 20 years, clinical diagnosis using ultrasound systems is very common nowadays in ra-

diology, cardiology and obstetrics. Moreover, driven by the healthcare needs and the requirement

for low-cost imaging solutions, ultrasound is the first modality that is chosen for obstetrics, breast

mass assessment and cardiovascular diseases. Besides, ultrasound is the only imaging modality ca-

pable of imaging soft tissue deformations quickly enough for the interventional procedure guidance.

However, the relative poor image quality (e.g., low resolution and contrast) still limits the applica-

tions of medical ultrasound modality. Inspired by the tight relationship between image processing

techniques and medical image analysis, it is more and more interesting to improve ultrasound im-

age quality using some post-processing techniques besides the device-based methods. Among the

existing post-processing techniques, restoration (denoising, deconvolution, blind-deconvolution, etc.)

and segmentation remain necessary steps in ultrasound image analysis in order to obtain qualitative

measurements such as the location of objects of interest, as well as the quantitative measurements

such as area, volume or the analysis of dynamic behavior of anatomical structures. This PhD thesis

deals with the problems of ultrasound image quality improvement using post-processing techniques,

1



2 Introduction

including deconvolution, segmentation and super-resolution.

Organization of the manuscript

• Chapter 1: This chapter reminds the basic principles related to medical US imaging. In

addition to the physics related to ultrasound image acquisition, the linear image formation

model including the point spread function (PSF)/blurring kernel is presented. Moreover, several

widely studied post-processing techniques and some related state-of-the-art methods for medical

ultrasound imaging are reported.

• Chapter 2: This chapter presents a Bayesian method for joint deconvolution and segmenta-

tion of ultrasound images. Due to the tight relationship between these two problems, some

methods coupling deconvolution and segmentation have been recently considered for piece-wise

homogeneous/natural images. However, these methods are not always efficient for US images

because of the presence of speckle noise. In this chapter, a new model for joint segmentation

and deconvolution of ultrasound images is proposed within a Bayesian framework. Since the

posterior distribution obtained with the proposed Bayesian model is intractable, a Markov

chain Monte Carlo (MCMC) method based on a Gibbs sampler is investigated to sample the

posterior distribution. The generated samples are then used to build the Bayesian estimators

of the unknown model parameters.

• Chapter 3: This chapter presents a fast single image super-resolution (SR) method, which

consists of recovering a high resolution image from its blurred, decimated and noisy version.

The existing algorithms for single image SR include the traditional first-order gradient meth-

ods and the recent splitting-based methods dividing the SR problem into separate up-sampling

and deconvolution steps that can be easily solved. Instead of following this splitting strategy,

we propose to deal with the decimation and blurring operators simultaneously. The proposed

method is sufficiently generic to deal with medical US images and natural piece-wise constant

images. Different priors can be considered according to the image modalities of interest, in-

cluding Laplacian, Gaussian, generalized Gaussian or TV priors.
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• Chapter 4: While the deconvolution problems studied in the two previous chapters are sup-

posed to be non-blind, i.e., the point spread function is estimated as a prerequisite step, this

chapter studies the blind deconvolution of US images. Our first approach for tackling this

problem consists of assigning a Gaussian prior to the PSF and to formulate the blind deconvo-

lution problem within a Bayesian framework. An appropriate Gibbs sampler is then proposed

to sample the posterior of this Bayesian model and to build Bayesian estimators of the param-

eters of interest. A second idea investigated in this chapter is based on a parametric model for

the PSF. Given the parametric model for the PSF, several parameters are estimated instead of

the whole PSF, which can reduce computational burden. The blind deconvolution problem is

finally formulated as an optimization problem further solved within a variational framework.

Main Contributions

The main contributions of this thesis are as follows.

• Chapter 2. The contribution of this chapter is to propose a new hierarchical Bayesian model

for joint segmentation and deconvolution of US images. This model is based on a mixture of gen-

eralized Gaussian distributions (GGDs) assigned to the tissue reflectivity function (TRF)/image

to be estimated and a Potts model allowing interactions between pixels in a neighborhood to

be considered. To our knowledge, the proposed method represents a first attempt for a joint

segmentation and deconvolution in US imaging.

• Chapter 3. Single image super-resolution is addressed in this chapter. By taking advantage

of the decimation and blurring operators’ properties in the frequency domain, we show that it

is possible to calculate the analytical solution of the `2− `2 problem (i.e., Tikhonov regularized

quadratic problem). Other general image priors (e.g., TV, `1-norm priors) can be considered by

embedding this analytical solution into an alternating direction method of multipliers (ADMM)

framework.
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• Chapter 4. This chapter considers the blind deconvolution for ultrasound images. In order

to estimate the PSF and the TRF jointly, a Gaussian prior is first considered in Bayesian

inference. In a second step, a parametric model for the PSF is proposed in order to reduce the

computational burden of the blind image deconvolution algorithm. The formulated problem is

finally solved using an alternating optimization technique.
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Medical ultrasound imaging
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1.1 Ultrasound imaging background

Sound waves are caused by variation in the pressure within a medium. Precisely, a sound wave

consists of repeating pattern of high and low pressure regions, as shown in Fig. 1.1. The wavelength

λ is the shortest distance that the wave repeats itself, which is defined by

λ = c

f
(1.1)

where c is the speed of sound and f is its frequency. Note that the speed of sound depends on

the medium. Particularly, the speed of sound in soft tissues takes values in the range [1300, 1600]

7



8 Chapter 1 - Medical ultrasound imaging

Figure 1.1: A sound wave consists of pressure fluctuations. Diagnostic ultrasound waves are longi-
tudinal waves with the motion of particles in a direction parallel to the direction of energy transport
[LCR07].

m/s with an average value of 1540 m/s. Ultrasound waves are characterized by frequencies higher

than those audible to humans (> 20, 000 Hz). Medical ultrasound imaging (also known as diagnostic

sonography or ultrasonography) is a diagnostic imaging technique based on the use of ultrasound

waves, i.e., it uses high-frequency sound waves to “view" inside the human body. The frequencies

used in medical ultrasound generally range between 1-50 MHz. Ultrasound images (also known as

sonograms) are obtained by detecting the reflected echos of the ultrasound pulses emitted into tissues

using the same ultrasound probe.

During an ultrasound exam, a transducer (probe/scan head) is placed directly on the skin. A

thin layer of gel is applied to couple the probe to the body since the ultrasound pulses are highly

attenuated in the air. The echoes are then recorded and displayed as an image. The basic principle

of US imaging process and the diagram of an ultrasound imaging system is shown in Fig. 1.2. Fig.

1.3 displays the externel parts of a medical ultrasound imaging system.

1.1.1 Attributes and applications

Attributes

A comparison between medical ultrasound imaging and other prominent medical imaging modali-

ties such as X-ray computed tomography (CT) or magnetic resonance imaging (MRI), inspired from

[Sza04] is presented in Table 1.1. Moreover, the attributes of medical ultrasound images are summa-

rized and listed as below [Kre10],
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Figure 1.2: Block diagram of an ultrasound imaging process [Ale10].

Figure 1.3: External parts of a medical ultrasound imaging system.
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Table 1.1: Comparison of different medical imaging modalities [Sza04].

Modality Ultrasound X-ray CT MRI

Principle Mechanical properties
Mean tissue
absorption

Tissue absorption Biochemistry

Access
Small windows

adequate
2 slides needed

Circumferential
around body

Circumferential
around body

Spatial
resolution

Frequency and
axially dependent

0.3− 3 mm
∼ 1 mm ∼ 1 mm ∼ 1 mm

Penetration
Frequency dependent

3− 25 cm
Excellent Excellent Excellent

Safety Very good Ionizing radiation Ionizing radiation Very good

Speed 30-1000 frames/sec Minutes 1
2 minute to minutes 10 frames/sec

Cost $ $ $$$$ $$$$$$$$

Portability Excellent Good Poor Poor

• Safety: Ultrasound uses non-ionizing sound waves, which is an important advantage, in partic-

ular for the evaluation of fetal or gonadal tissues.

• Inexpensive: Ultrasound examination is less expensive to conduct than CT or MRI, leading to

its improved availability possible in local low budget clinical environment.

• Portable: There are few (if any) contraindications to use medical ultrasound, compared with

MRI or contrast-enhanced CT.

• Real time: The real-time nature of ultrasound imaging is useful for the evaluation of physiology

as well as anatomy (e.g., fetal heart rate, the movement of the body’s internal organs as well

as blood flowing through the blood vessels).

However, ultrasonography suffers from some drawbacks, related to the non-negligible width of

acoustic beam and finite bandwidth of the transducer [Ale10]. As a result, ultrasound images usually
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have poor signal-to-noise ratio, limited contrast and spatial resolution. Besides, ultrasound waves

do not penetrate bone or other tissues containing air very well. Therefore, it is difficult to visualize

structures behind bones, e.g., brain. Moreover, training is required to accurately and efficienctly

conduct an ultrasound exam and there is nonuniformity in the quality of examinations.

Applications

Medical ultrasound imaging is widely utilized in medicine. Usually, ultrasound is used to visualize

internal body structures such as tendons, muscles, joints, vessels and internal organs. Its aim is often

to find a source of a disease or to exclude any pathology. Clinical applications involving medical US

imaging are summarized as follows [CSJ11, Sza04]:

• Cardiology: Echocardiography is an essential tool to diagnose cardiac diseases through the

observation of the dilation of parts of the heart and of the function of heart ventricles and

valves.

• Obstetrics: Obstetrical sonography is commonly used during pregnancy to check on the devel-

opment of the fetus.

• Urology: Ultrasound can be used for measuring the blood flow through the kidney, seeing

kidney stones or early detecting of prostate cancer.

• Angiology: Duplex ultrasound (B-mode vessel imaging combined with Doppler flow measure-

ment) is daily used in angiology to diagnose arterial and venous disease all over the body.

• Emergency Medicine: Point of care ultrasound has many applications in the Emergency De-

partment, including the Focused Assessment with Sonography for Trauma (FAST) exam for

assessing significant hemoperitoneum or pericardial tamponade after trauma. Ultrasound is

routinely used in the Emergency Department to expedite the care of patients with right upper

quadrant abdominal pain who may have gallstones or cholecystitis.

• Gastroenterology/Colorectal surgery: In abdominal sonography, the solid organs of the ab-

domen such as the pancreas, aorta, inferior vena cava, liver, gall bladder, bile ducts, kidneys,
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and spleen are imaged. Sound waves are blocked by gas in the bowel and attenuated in different

degree by fat, therefore there are limited diagnostic capabilities in this area. The appendix can

sometimes be seen when inflamed (e.g., appendicitis).

1.1.2 Ultrasound propagation

In a conventional pulse-echo ultrasound system, the ultrasound images are acquired by transmitting

pulses into the body and detecting echoes reflected and backscattered by acoustic inhomogeneities.

Thus, the physical phenomena during ultrasound propagation, e.g., reflection, scattering and atten-

uation, due to the interaction between ultrasound waves and medium decide the generation and the

inherent properties (e.g., heavy speckle noise) of ultrasound images.

Reflection and scattering

When the emitted pulses travel through the interface between two media of different acoustic prop-

erties (acoustical impedance), the reflected echoes that travel back to the transducer and thus give

information about the medium are due to reflection and scattering. Specular reflection happens

when the reflector is large and smooth compared to the wavelength, where the reflected waves are

in a singular direction. Conversely, scattering/diffuse reflection is taking place when the reflector

is small compared to the wavelength. Fig. 1.4 displays the phenomena of specular reflection and

scattering/diffuse reflection during ultrasound wave propagation.

• Reflection: As known from the basic physics, ultrasound waves are partially reflected or trans-

mitted at the boundary between two media when the interfaces are large and flat. Reflection

forms the basis of pulse-echo ultrasonic imaging and contributes to image formation displaying

organ boundaries. The extent of reflection and transmission depends on the acoustic impedance,

denoted as Z (Z = ρc, where ρ is the density and c is the speed sound of the material). The

amplitude of the reflected waves is proportional to the difference of the acoustic impedance of

two materials, which is defined by the ratio of the reflected to the incident acoustic pressure
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Figure 1.4: Specular reflection (left) versus scattering/diffuse reflection (right).

amplitude, called the amplitude reflection coefficient R defined by

R = Z2 cos θ1 − Z1 cos θ2
Z2 cos θ1 + Z1 cos θ2

(1.2)

where Z1 and Z2 are the acoustic impedances of the two tissues respectively. The ratio of the

transmitted to the incident acoustic amplitude is called amplitude transmission coefficient T ,

which is given by

T = 2Z2 cos θ1
Z2 cos θ1 + Z1 cos θ2

. (1.3)

• Scattering: During ultrasound wave propagation, the reflections from the interfaces whose

dimensions (denoted as d) are very small, i.e., d� λ, are classified as scattering. The resulting

detected echos have little angle dependence on the strength since the scattered waves spread in

all directions. Compared with the strength of echos from large interfaces, the total ultrasound

power scattered by the small targets is much smaller. Precisely, the scattered power (denoted

as Is) relative to the power of the incident pulse (denoted as Ii) is [Sza04]

Is
Ii
∝ d6f4 (1.4)

where f is the frequency of the pulse. This frequency dependence is often referred to as Rayleigh

scattering [LCR07].
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Figure 1.5: Specular reflection and transmission at the boundaries of two media.

Attenuation and Penetration

During ultrasound propagation, the loss of waves with distance is generally referred to as attenua-

tion. The main mechanism contributions of ultrasound attenuation are absorption and scattering.

Penetration, as the maximum distance that the ultrasonic beam can reach inside the tissue, is highly

related with attenuation.

• Attenuation: The rate of the attenuation generally depends on two factors: i) the materials

through which the waves are passing; ii) the ultrasound wave frequency (denoted as f). The

energy lost during the wave propagation is caused by absorption (conversion into heat) or the

scattering beam (out of the beam confines). In general, ultrasound attenuation is character-

ized by the following exponential decrease of the pressure. Considering the attenuation, a

transmitted signal can be modeled by

p(z, t) = exp(−αz)s(t− z/c) (1.5)

where z is the depth, s(t−z/c) is the wave emitted by the probe along the axial of z and α is the

attenuation coefficient of the medium defined by the ratio of the amplitudes on a logarithmic
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scale, i.e.,

α = 20 log10(A/A0) (1.6)

where A and A0 are the amplitudes of the pulse at the depth of measurement and z = 0.

Generally, α is given in dB/cm, which satisfies the relationship αdB = 8.6886αnepers [Sza04].

Attenuation also depends on the frequency of pulse. For soft tissue, the attenuation coefficient

is usually given as 0.3− 0.6 dB/cm/MHz [LCR07]. Thus, for deep organs, a low frequency (3-5

MHz) must be used to reduce the amount of attenuation.

• Penetration: Penetration is the maximum distance that the ultrasonic beam can reach inside the

tissue. As stated above, higher frequencies lead to higher attenuation, then lower penetration.

Thus, it is difficult to achieve good resolution at deeper depths given the trade-off between

frequency and exploration depth.

Higher frequency ultrasound has shorter wavelength, thus the corresponding acquired image has

better resolution. However, ultrasound with high frequency are absorbed easily, leading to more

attenuation and less penetration. Therefore, high frequencies are used for scanning areas of the body

close to the surface and low frequencies are used for areas that are deeper down in the body.

Resolution

• Spatial resolution: The spatial resolution of ultrasound images describes the minimum spacing

Figure 1.6: Spatial resolution of an ultrasound imaging system.
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between two reflectors. The spatial resolution in ultrasound imaging mainly refers to the reso-

lution along the axial direction (along the scan lines) and the lateral direction (perpendicular to

the axial direction). Precisely, the axial spatial resolution is the ability to distinguish the closely

spaced reflectors along/parallel to the beam axis, which mainly depends on the wavelength and

frequency. Typically, the axial resolution is chosen equal to 2 wavelength

λax = c

2B (1.7)

where c is the sound velocity and B is the bandwidth of the pulse emitted by the transducer.

The lateral spatial resolution refers to the ability to distinguish closely spaced reflectors per-

pendicular to the beam, which depends on the beam width at the location of the reflectors and

the focusing features [LCR07]. The lateral resolution is given by

λla = Fλ

D
(1.8)

where F is the focal depth, D is the probe diameter and λ is the wavelength, as shown in Fig.

1.7.

Figure 1.7: Lateral resolution of ultrasound imaging.

• Temporal resolution: In the standard brightness mode (B-mode) acquisition, the image is built

as a collection of scan lines acquired in sequence. In this situation, temporal resolution is
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synonymous with frame rate. Given the number of scan lines N , a maximum depth P and the

sound speed c, the frame rate is given by

FR = c

2PN . (1.9)

For an image at 15 cm depth and 50 scan lines, the frame rate is approximately 100 frames/sec,

i.e., a real time visualization is allowed. It is interesting to note that the ultrafast imaging in

biomedical ultrasound developed in graphical processing unit (GPU) technology has permitted

frame rates of > 1000 frames per second [TF14b].

1.1.3 Ultrasound transducer

An ultrasound transducer/probe generates sound waves and receives echoes through conversion be-

tween electrical energy and mechanical energy. The ultrasound transducer highly affects the perfor-

mance and imaging quality of ultrasonic scanner. According to different clinical applications, there

exist different kinds of probes, see e.g., Fig. 1.8.

In an ultrasound probe, there are one or more quartz crystals called piezoelectric (PZT) crystals,

as displayed in Fig. 1.9. When an electric current is applied to the crystals, these crystals vibrate

rapidly. The rapid change of the crystals produce sound waves that travel through the tissues.

Conversely, when sound waves hit the crystals, they emit electrical currents. This conversion of

electrical energy to mechanical energy is known as PZT effect.

Transducer arrays

• Single element transducer: It contains only one element that cannot change focus.

• Array transducer: It contains more than one element, i.e., single slab of PZT crystal is sawed

into separate elements, as shown in Fig. 1.9. Usually, multi-element transducers are manufac-

tured because several scanning elements can be activated together to produce narrower beam

(see Fig. 1.10). This beam can be formed by applying time delays to the individual elements

that transmit excitation pulses. Moreover, the arrangement of transducer elements in an array
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Figure 1.8: Different kinds of ultrasound probes.

Figure 1.9: Basic piezoelectric ultrasound transducer structure [Sza04].
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Figure 1.10: Transducer arrays contain multi elements. A: linear; B: Phased; C: Convex [Tou14].
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makes it possible to focus or to steer the pulse-echo acoustic beam electrically by appropri-

ately delaying the excitation pulses to each element. More illustrations about beamforming are

presented in the following section.

1.1.4 Ultrasound data

Many different types of images can be formed using medical ultrasound instruments. The readers

can refer to [Sza04] for detailed illustrations.

Beamforming

The ultrasound image acquisition can be divided into two main steps, i.e., transmission and reception.

To concentrate the beam energy in a focal area, the transmission mode is when a subpart of the

elements of the probe (called active elements) are acted together with previously delayed in such a

way to obtain a summed beam at a focalization point. Then, the same probe switches in reception

mode that record the reflected echoes from the scatterers. Then, the reflected signals are delayed

and averaged, with or without apodization to create one radio-frequency (RF) line, as shown in Fig.

1.11. The accumulation of echoes in this way is referred to as delay-and-sum beamforming, which

exists in both transmission and reception operations. The apodization in the beamforming is usually

considered for reducing the amplitudes of side lobes in the incident pressure field. After repeating

the transmission and reception operations along all the elements of the probe, one image called post-

beamformed image/RF image is obtained. More recently, new beamforming techniques have been

developed to improve ultrasound image formation, which is out of the scope of this manuscript. The

readers can refer to [Tou14] and the references therein for more details illustrations.

RF, IQ signals

• RF: The radio frequency (RF) signal is the reflected signal obtained from the US imaging

system after beamforming techniques.
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Figure 1.11: Conceptual diagram of electronic beamforming. Top: Focalization in transmission in
US imaging scanners. Bottom: Focalization in reception in US imaging scanners [Tou14].

• IQ: The in phase/quadrature (IQ) signal, also called complex envelope signal, is the demodu-

lated version of RF signal. It can be computed as

rIQ = [rRF − iH(rRF)]e−iω0t (1.10)

where rRF, rIQ are the RF and IQ signals respectively, H(·) represents the Hilbert transform

and ω0 is the central frequency of the ultrasound probe.

Ultrasound image modes

• A mode: The Amplitude mode is the simplest single dimension mode, where the signals are

displayed as spikes related with the amplitude of the echoes.
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• M mode: The motion mode, also called time motion (TM) mode, represents movement of

structures over time. A 2D image is acquired initially and a single line is placed along the area

of interest. The M mode displays the time history of this single line over time. Due to its

good temporal resolution (high sampling rate), the M mode is valuable for evaluation of rapid

movements, e.g., it is widely used in echocardiography given the dynamic output of the cardiac

tissue. It is also often used with color flow Doppler for timing of abnormal flows.

• B mode: The ultrasound B-mode (B stands for brightness) images are 2D displays of echo

signal amplitudes. Precisely, the envelopes of the received RF signals are detected previously

by demodulating the RF signals. The corresponding amplitudes of the envelope signals are

then logarithmically compressed, where the resulting generated data are B-mode images. The

correspondence between a RF image and B-mode image of thyroid is shown in Fig. 1.12. Fig.

1.13 illustrates the relationship and calculation between RF, IQ and B-mode images.

Figure 1.12: RF image and its corresponding B-mode image of thyroid [Bas08, Mor13]. The extracted
axial profiles from the two images are shown at the right side of the figure.

• Other modes: Besides the US modes explained above, other widely used US modes include

Doppler mode, continuous wave Doppler (CWD), pulse wave Doppler (PWD) and so on [Sza04],

which are out of the scope of this manuscript.
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Figure 1.13: Relationship between ultrasound RF, IQ and B modes. “LBP” in the demodulation
stage represents low band-pass filter.

1.2 Ultrasound image formation

Ultrasound images are produced based on the reflection of the waves on the body structures. By

measuring the time between the transmission of a pulse and the reception of an echo, the ultrasound

machine can calculate the distance between the probe and the tissue that caused the detected echo.

This is the pulse-echo principle. In addition, the amplitude of the echoes also provide the information

necessary to produce an image. This section motivates the linear model generally assumed and used

in this manuscript for ultrasound image formation.

1.2.1 Received signal

Based on the physical principle of wave propagation and equation, Ng. et. al. [Ng06, NPK+06]

introduced a linear model for ultrasound image formation. More precisely, under the first order

Born approximation and the weak scattering condition classically assumed for soft tissues, the re-

ceived signal is the scattered pressure field integrated over the transducer surface, convolved with the

transducer electromechanical impulse response [Ng06, NPK+06]. The final expression of the received

signal/pressure field in the time domain is a linear model given by

r(r0, t) = h(r, t) ~ fm(r)|r=r0 , (1.11)

where ~ is the two dimensional convolution operator, r0 is the transducer surface, r is the location

of the scatterer/tissue of interest, the term fm(r) is commonly referred as tissue reflectivity function
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Figure 1.14: Point spread function of an electronically focused array at the focal point [LCR07].

(TRF) which accounts for the inhomogeneities of in the tissue due to density and propagation velocity

perturbations, h(r, t) = vpe(r, t)~hpe(r, t) is the system point spread function (PSF) which combines

the electromechanical response vpe(r, t) and the pulse-echo impulse response hpe(r, t). Note that hpe
relates the transducer geometry to the spatial extent of the scattered field [Ng06, NPK+06].

1.2.2 Point spread function

The ultrasound PSF plays an important role in ultrasound imaging system. It describes the imaging

system response to a point input, and it must be derived for an accurate deconvolution. An impor-

tant property of the PSF is its spatial variability. Methods allowing this variability to be handled are

proposed in [Ale10]. The PSF depends on factors including the ultrasound system and the medium.

Among the factors, the shape of the system PSF is mainly relative with the transducer and beam-

forming. As mentioned above, the most common beamforming technique is represented by static

single focus beamforming (shown in Fig. 1.11), where the time delay of transducer elements and

the apodization techniques can be designed to affect the focalization. The shape of the PSF at the

focal point is displayed in Fig. 1.14. It is also interesting to note that the beamforming techniques

can change the shape of the PSFs, as shown in Fig. 1.15. The differences between the PSFs in Fig.
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Figure 1.15: Point spread function phantom simulated using the Field II software [Jen96]. Different
apodization and focolization are employed in each image.

1.15 are due to the different apodizations and focalizations. Finally, it is interesting to mention that

the complicated dynamic beamforming techniques have been developed in order to have the most

uniform PSFs on the imaged plane.

As stated in the previous ultrasound image presentation, the main limitation of ultrasound images

is the poor image quality. Even though the device-based techniques have been carried out during last

20 years to improve ultrasound image visualization, many challenges on ultrasound imaging remain,

e.g., restoration, resolution enhancement, segmentation, etc. Thus, some post-processing methods to

improve the ultrasound image quality are prensented in the next section.

1.3 Post-processing techniques in ultrasound imaging

1.3.1 Introduction to inverse problems

An inverse problem is the process of calculating parameters from a set of observations: for example,

calculating an image in CT, source reconstructing in acoustic, etc. In other words, it starts with
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the results and then calculates the causes. Inverse problems most often do not fulfill Hadamard’s

postulates of well-posedness: they might not have a solution in the strict sense, solutions might not

be unique or might not depend continuously on the data (stability). Moreover, even if a problem

is well-posed, it may still be ill-conditioned, i.e., the condition number may be too large. In these

cases, a traditional technique is to consider regularization/penalty terms or prior information to

regularize the ill-posed/ill-conditioned problem to a well-posed/well-conditioned problem. Usually,

the regularization term is related with the prior information about the parameters to be estimated.

In this part, several widely studied post-processing techniques for ultrasound images are reported,

including speckle reduction, image deconvolution, image segmentation and image super-resolution.

All these problems deal with parameter estimation given the observation. In this sense, they belong

to the class of inverse problems.

1.3.2 Speckle reduction

Speckle noise is a well known inherent phenomenon in most B-mode US images due to the constructive

and destructive interferences of backscattered echoes from the scatterers that are much smaller than

the wavelength. Speckle noise leads to a granular pattern on the imaged tissue structures, which

generally obscure fine anatomic details. Even though speckle reduction was not studied in detail

in this manuscript, it is an important post-processing technique for medical US images. In the

context of speckle reduction using post-processing techniques, speckle noise is widely assumed to be

multiplicative [MT06, GCTZ09]. Thus, the logarithm transform is typically conducted to convert the

multiplicative speckle noise into additive noise. A review of speckle reduction methods for cardiac

ultrasound B-mode images can be found in [Per16]. However, it is interesting to note that even if

speckle noise can be considered as multiplicative noise, it is also a source of information that can be

exploited for speckle tracking and tissue characterization.
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1.3.3 Image deconvolution

Linear image formation model

As a consequence of the linear model in (1.11), US images can be modelled as the convolution between

a blurring kernel/PSF and a tissue reflectivity function. The resulting linear model can be rewritten

as below

y(r) = h(r) ~ x(r) + n(r), r ∈ R (1.12)

where y(r) is the observed image pixel at the location r, x(r) is the TRF to be estimated, h(r)

is the system PSF, n(r) is an additive noise due to the measurement and R is the image domain.

Equivalently, after lexicographical ordering the corresponding images y(r), x(r), n(r) and forming

the huge matrix H ∈ RN×N associated with h(r), we obtain the following equivalent model

y = Hx + n. (1.13)

PSF estimation

Given the linear image model mentioned above, the PSF of an ultrasound system is unknown in

practice. In an ultrasound image deconvolution framework, the estimation of the PSF is one of the

key problems. The PSF is shift variant along the axial direction due to the physical reasons, e.g.,

attenuation, scattering. In this case, US images are generally divided into several local regions along

the axial direction. In each region, the local PSF is assumed shift-invariant. The global blurring

matrix is built in this case by combining these local shift-invariant PSFs [NPK+07, MA05, AMP+11,

NO98]. Moreover, due to the development of recent beamforming techniques, it is often reasonable to

assume a shift invariant PSF. Thus, we explore the existing methods for ultrasound PSF estimation

under the assumption that PSF is shift invariant in this manuscript. Moreover, under the cyclic

boundary condition, the PSF is block circulant with circulant blocks (BCCB). Then the product of

Hx can be efficiently computed via Fast Fourier Transform (FFT). Details about the structure of H

are given in Appendix A of this manuscript.

• Homomorphic technique:

One of the most widely implemented technique is the homomorphic technique proposed in
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[Opp65]. In a noise free case (ignoring the additive noise corrupting the measurements), the

linear model (1.12) in the frequency domain is given by

Y (ω) = X(ω)H(ω) (1.14)

where Y (ω), X(ω) and H(ω) are the Fourier transforms of y(r), x(r) and h(r) and ω represent

the location of images in the frequency domain. Particularly, it has been observed in numerous

studies that the log-spectrum log |H| is regular and slow-varying function, while log |X| appears

to be broadband and “spiky”, see Fig. 1.16. Thus, it is possible to separate the PSF and

the reflectivity function using homomorphic techniques, whose basic idea is to transform the

product of two functions into the sum of two other functions. This separation is conducted in the

cepstrum1 domain. Precisely, the complex logarithmical transformation Ŷ of the observation

Y (ω) is given by

Ŷ (ω) = log |Y (ω)|+ i∠Y (ω)

= log |X(ω)|+ log |H(ω)|+ i{∠X(ω) + ∠H(ω)} (1.15)

where | · | and ∠ stand for the magnitude and phase of the complex signals. Considering the

real parts (denoted as Re) and the imaginary parts (denoted as Im) separately, (1.15) implies

the following relationships

Re : log |Y ((ω))| = log |X((ω))|+ log |H((ω))| (1.16)

Im :∠Y ((ω)) = ∠X((ω)) + ∠H((ω)). (1.17)

It has been shown that the energy of the PSF is confined at the first samples in the cepstrum

domain, while the energy of the reflectivity function is spread over the entire cepstrum domain,

see Fig. 1.16. Thus, the estimation of the PSF amplitude can be achieved by truncation in the

cepstrum domain. However, the phase estimation is not obvious since it is wrapped, i.e.,

−π ≤W{∠Y } ≤ π (1.18)
1The cepstrum is the result of the inverse Fourier transform (IFT) of the logarithm of the spectrum (Fourier

transform) of a signal
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Figure 1.16: Spectrum (left) and log cepstrum (right) of measured PSF and sythetic reflectivity
function for an A-line signal. The two images are extracted from [JL94].

where W is a wrapping operator. In the traditional homomorphic technique, it is possible to

estimate the phase using the minimum phase assumption (see [JL94] for more details).

• Generalized homomorphic technique:

Compared with the traditional homomorphic method, the generalized homomorphic technique

explores wavelet-based denoising methods/wavelet filtering to estimate the amplitude [Tax95,

BML12]. In order to estimate the phase of the PSF, a variety of phase unwrapping techniques

have been developed for ultrasound PSF in the literature, see e.g., [MA01, MA03]. It is also

interesting to note that the inverse filtering techniques can avoid the wrapped phase problem

(see [MT07] for details).

Non-blind image deconvolution

US image deconvolution aims at estimating the TRF x from the RF data y using the linear model

(1.13). A review of ultrasound image deconvolution can be found in [MA07]. US image deconvolution

is a typical ill-posed problem. Imposing a regularization constraint is one traditional way to cope

with this problem. Given the image formation model in (1.13), the image deconvolution problem can
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be formulated as the following optimization problem

min
x
f(y−Hx)︸ ︷︷ ︸
data fidelity

+ τ g(x)︸ ︷︷ ︸
regularization

(1.19)

where f(y−Hx) is the data fidelity term, i.e., the likelihood of the observations, related to the noise

distribution, g(x) is the regularization constraint, which usually reflects the prior knowledge about x

and τ is the regularization parameter which weights the importance between the data fidelity term

and the regularization term. Given an additive white Gaussian noise (AWGN), the data fidelity term

can be rewritten as

f(y−Hx) = 1
2‖y−Hx‖22 (1.20)

where ‖ · ‖2 stands for the standard `2-norm. In US imaging, Gaussian and Laplacian distributions

have been widely explored as prior information for the TRF x, leading to `2-norm [JT08] and `1-norm

[MT07], [YZX12a] constrained optimization problems.

• `2-norm regularized deconvolution

Considering Gaussian prior for the TRF x and an AWGN, the image deconvolution problem

can be rewritten as

min
x

1
2‖y−Hx‖22 + τ‖x‖22. (1.21)

The analytical solution of (1.21) can be implemented in the frequency domain, i.e.,

X(ω1, ω2) = Y (ω1, ω2)HH(ω1, ω2)
|H(ω1, ω2)|2 + τ

(1.22)

where ·H denotes the complex conjugate. This type of deconvolution is well known as Wiener

filtering [ZWZ97].

• `1-norm regularized deconvolution

Given AWGN and Laplacian prior for the TRF, we obtain the following image deconvolution

problem

min
x

1
2‖y−Hx‖22 + τ‖x‖1 (1.23)
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The cost function in (1.23) is non-differential, thus the traditional gradient-based algorithms

cannot be considered directly. However, the variable splitting based algorithms developed for

non-differential problems such as the alternating direction method of multipliers (ADMM)

[BPC+11a], the forward-backward algorithm (FBA) [CP11], the fast iterative shringkage-

thresholding algorithm (FISTA) [BT09], etc. can be employed.

• Total variation regularized deconvolution

Total variation (TV) is widely used in image processing as a prior due to its good properties

for edge preservation [NWY10, MBK12]. In order to give its definition, we first introduce the

gradient operators ∇x, where ∇ := [∂h, ∂v]T and ∂h and ∂v are the horizontal and vertical

gradients. For an image x ∈ Rm×n, under the periodic boundary conditions, the numerical

definitions of the gradient operators are

(∂hx)(i, j) =


x(i+ 1, j)− x(i, j) if i < m

x(m, j)− x(1, j) if i = m

(1.24)

(∂vx)(i, j) =


x(i, j + 1)− x(i, j) if j < n

x(i, n)− x(i, 1) if j = n.

(1.25)

The gradient operators can be rewritten as two matrices Dh and Dv corresponding to the

horizontal and vertical discrete differences of an image, respectively. Using these notations, the

TV prior can be defined as

‖x‖TV =
√
‖∂hx‖2 + ‖∂vx‖2 =

√
‖Dhx‖2 + ‖Dvx‖2. (1.26)

Given the TV prior and under the assumption of AWGN, we can rewrite the image deconvolu-

tion problem as (1.27), which involves a nondifferential cost function.

min
x

1
2‖y−Hx‖22 + τ‖x‖TV. (1.27)

The methods that have been proposed to tackle problem (1.27) include the variable splitting

algorithms such as the ADMM, FBA, primal-dual algorithms [CCC+10], etc.
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In addition to these traditional image priors considered for US images, different kinds of priors

depending on the type of applications have been studied. For instance, generalized Gaussian distri-

butions have been used for tissue characterization in [AMP+11], for joint US image deconvolution

and segmentation in [ZBKT16] and for US image compressed sensing in [CZBK15]. The Huber model

is proposed in [MR15] as a prior information for US image deconvolution. The Rayleigh distribution

has been explored for US image segmentation in [PDBT12].

1.3.4 Image segmentation

Image segmentation aims at partitioning an image into multiple regions or categories. More precisely,

image segmentation is the process of assigning a label to every pixel in an image such that pixels with

the same label share certain characteristics, e.g., color, intensity, motion or texture. Segmentation

can be used for object recognition or the locating of object boundaries in a variety of applications.

The image segmentation problem can be formulated in Bayesian or variational frameworks. There

are three general approaches for segmentation, i.e., thresholding, edge-based methods and region-

based methods [GH95, Wan09].

• Thresholding: Thresholding techniques are the simplest image segmentation methods, where

histogram thresholding may be applied to an image directly or combined with pre/post process-

ing techniques. Several popular methods are commonly used including the maximum entropy

method, the maximum variance method [Ots79, SS04], or k-means clustering [AV07].

• Edge-based methods: With these techniques, the edges of images, which are assumed to be

the object boundaries, are detected in order to identify the objects of interest. The edge-based

methods range from the simple methods based on edge detection (e.g., gradient operators,

Hilbert transform [PD03]) to more sophisticated methods based on watershed segmentation

[VS91].

• Region-based methods: Generally, region-based techniques are based on the assumption that

the neighboring pixels within one region have similar attributes. The aim of region detection

is to provide the possibility to characterize the detected object by parameter analysis (shape,
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position, size, etc.). The region-based methods can be roughly categorized into region merging,

region splitting and region growing schemes [SDR10].

Segmentation techniques in ultrasound imaging

Since ultrasound images suffer from a relatively low data quality caused by attenuation, speckle

and shadows, the methods used in literature exploit specific constraints or priors. Some widely

used constraints include the intensity based priors, geometric priors or the statistical analysis of the

ultrasound images. A variety of segmentation methodologies developed for medical US images have

embedded these constraints into Bayesian approaches, active contours, active appearance models,

level-sets, machine learning, clustering or graph based frameworks. In addition, it is interesting to

note that most of the segmentation methods are developed for the traditional B-mode ultrasound

images. A review of US image segmentation methods until 2006 can be found in [NB06]. Other

interesting reviews on US image segmentation until 2010 are [Nob10, SDR10]. It is also important to

note that for specific clinical applications including breast, carotid, prostate, ventricle, etc., different

segmentation methods should be considered to obtain satisfying segmentation performances. For

instance, an evaluation platform for left ventricle segmentation in 3D echocardiography has been

conducted in [BHA+14]. A review of the breast cancer detection and segmentation methods can also

be found in [CSJ+10].

Bayesian algorithms: Pereyra et. al. proposed a Bayesian method based on the statistical

analysis (mixture of α-Rayleigh distributions) of B-mode ultrasound images [Per12]. Precisely, a

Markov chain Monte Carlo (MCMC) method was investigated to jointly estimate the mixture pa-

rameters and a label map associated with the US image pixels. In this thesis, we will study a similar

framework to ultrasound RF images. Note that the statistical analysis of RF images (mixtures of

generalized Gaussian distributions) were also studied in [Ale10]. More detailed explanations about

this Bayesian framework for ultrasound image segmentation will be presented in Chapter 2.
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1.3.5 Single image super-resolution

Single image super-resolution (SR), also known as image scaling up or image enhancement, aims

at estimating a high-resolution (HR) image from a low-resolution (LR) observed image [PPK03].

This resolution enhancement problem is still an ongoing research problem with applications in var-

ious fields, such as remote sensing [MBD15], video surveillance [YH10], hyperspectral [AAM05],

microwave[YLTV15] or medical imaging [MBK12].

In the single image SR problem, the observed LR image is modeled as a noisy version of the

blurred and decimated HR image (to be estimated) as follows,

y = SHx + n (1.28)

where the vector y ∈ RNl×1 (Nl = ml × nl) denotes the LR observed image and x ∈ RNh×1 (Nh =

mh×nh) is the vectorized HR image to be estimated, with Nh > Nl. The vectors y and x are obtained

by stacking the corresponding images (LR image ∈ Rml×nl and HR image ∈ Rmh×nh) into column

vectors in a lexicographic order. Note that the vector n ∈ RNl×1 is an independent identically

distributed (i.i.d.) additive white Gaussian noise (AWGN) and that the matrices S ∈ RNl×Nh

and H ∈ RNh×Nh represent the decimation and the blurring/convolution operations respectively.

More specifically, H is a block circulant matrix with circulant blocks, which corresponds to cyclic

convolution boundaries, and left multiplying by S performs down-sampling with an integer factor d

(d = dr×dc), i.e., Nh = Nl×d. The decimation factors dr and dc represent the numbers of discarded

rows and columns from the input images satisfying the following relationships mh = ml × dr and

nh = nl × dc. Note that the image formation model (3.1) has been widely considered in single image

SR problems, see, e.g., [YWHM10, SSXS08, SSXS11, NWY10, ZGTL12].

The methods dedicated to single image SR can be classified into three categories [YWHM10,

SSXS08, TLBL10].

• Interpolation-based approaches

The first category includes the interpolation-based algorithms using nearest neighbor inter-

polation, bicubic interpolation [TBU00] or adaptive interpolation techniques [ZW08, MY10].
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Despite their simplicity and easy implementation, it is well-known that these algorithms gen-

erally over-smooth the high frequency details.

• Learning-based approaches

The second type of methods consider learning-based (or example-based) algorithms that learn

the relations between LR and HR image patches from a given database [FPC00, GBI09, HSA15,

ZEP12, YWHM10]. Note that the effectiveness of the learning-based algorithms highly depends

on the training image database and these algorithms have generally a high computational

complexity.

• Reconstruction-based approaches

Reconstruction-based approaches that are considered in this manuscript belong to the third

category of SR approaches [SSXS08, SSXS11, TLBL10, NWY10]. These approaches formulate

the image SR as a reconstruction problem, either by incorporating priors in a Bayesian frame-

work or by introducing regularizations into the ill-posed inverse problem. Also, the traditional

image priors presented above for the deconvolution problems can be implemented for the single

image SR problems.

This PhD thesis will concentrate on the reconstruction-based methods for single image SR due to

its efficiency in terms of computational time. Note also that there are limited works on single image

SR in ultrasound imaging, while multi-frame image SR is studied more widely. Among the existing

methods for single image SR, [MBK12] proposed to solve the problem in an ADMM framework for

US imaging. In this thesis, we have developed a general method which is valid for both ultrasound

and natural images is developed (see Chapter 3).

1.4 Conclusion

This chapter presented some background about medical ultrasound imaging, ranging from the physic

principle to the linear image formation model. Also, several widely considered post-processing tech-

niques have been discussed allowing ultrasound image quality to be improved. These post-processing
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techniques, include speckle reduction, image deconvolution, image segmentation and single image

super-resolution that can be formulated as ill-posed problems. The aim of this thesis is to study new

post-processing methods for ultrasound images.



Chapter 2

Joint deconvolution and segmentation
of ultrasound images

Part of this chapter has been adapted from the journal paper [ZBKT16] and the conference paper
[ZBKT14].
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2.1 Introduction

Ultrasound imaging is a well-established medical imaging modality widely used for clinical diagnosis,

visualization of anatomical structures, tissue characterization and blood flow measurements. The

popularity of US imaging compared to other imaging modalities such as computed tomography

(CT) or magnetic resonance imaging (MRI) is mainly due to its efficiency, low cost and safety

[Dha11]. Despite these advantages and the recent advances in instrumentation [TF14a] and beam-

forming [RAHA14], it also has some limitations, mainly related to its poor signal-to-noise ratio,

limited contrast and spatial resolution. Furthermore, US images are characterized by speckle, which

considerably reduces their quality and may lead to interpretation issues. For this reason, several

despeckling methods can be found in the US literature [GK15, MT06]. Despite its negative effect,

speckle has also been extensively used as a source of information in applications such as image

segmentation and tissue characterization [NB06, PDBT12]. Specifically, it has been shown that the

statistical properties of the speckle are strictly correlated with the tissue structures [AMP+11, Sza04].

Thus, methods allowing image restoration using the statistical properties of the speckle noise are also

an interesting research track in US imaging [NPK+07, AMP+11].

2.1.1 Problem Statement

As stated in Chapter 1, RF ultrasound image formation can be modeled using the following linear

model

y = Hx + n. (2.1)

where the vectors y, x and n are the TRF to be estimated, the observed RF ultrasound image and

the measurement noise respectively, the huge matrix H ∈ RN×N is associated with the system PSF.

Due to the physical corrections related to image formation (e.g., time gain compensation, dynamic

beamforming), in most of soft tissues, H can be assumed shift invariant. Moreover, cyclic convolution

is considered in this manuscript for computational purpose, leading to a block circulant matrix of

circulant blocks (BCCB) H1. Note that the PSF is unknown in practical applications and that its
1Some existing works [NPK+07, MA05, AMP+11, NO98] assume that the PSF in US imaging is shift-variant mainly

along the axial direction. In this case, US images are generally divided into several local regions along the axial direction.
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estimation has been extensively explored in US imaging. A typical approach in US imaging, also

adopted in this manuscript, is to estimate the PSF in a pre-processing step before applying the

deconvolution algorithm (see, e.g., [AMP+11, JMGS93]).

2.1.2 Related Work

US image deconvolution aims at estimating the TRF x from the RF data y, which is a typical ill-

posed problem. Imposing a regularization constraint is one traditional way to cope with this problem.

The regularization constraint usually reflects the prior knowledge about x. In US imaging, Gaussian

and Laplacian distributions have been widely explored as prior information for the TRF x, leading

to `2-norm [JT08] and `1-norm [MT07], [YZX12a] constrained optimization problems.

Due to the tight relationship between image deconvolution and segmentation, it is interesting

to consider these two operations jointly. This idea has been recently exploited for piecewise ho-

mogeneous images using the Mumford-Shah model [BSK04, BCC+11, CYZ14], the Potts model

[AMD10, SWFU15] or the generalized linear models [PCS13] in Bayesian or variational frameworks.

Moreover, segmentation-based regularizations have been considered in [Mig06] to improve the image

reconstruction performance. However, due to the intrinsic granular appearance of US data, these

methods are not always efficient to simultaneously restore and segment US images. In order to develop

US image deconvolution and segmentation methods, it is common to take advantage of the statistical

properties of the TRF. Except the traditional Gaussian and Laplace distributions mentioned above,

distributions that have been considered for US images include the homodyned K [HO09], Nakagami

[LN11] and generalized Gaussian distributions [BTDF07]. In particular, Alessandrini et. al. recently

investigated a deconvolution method for US images based on generalized Gaussian distributions

(GGDs) using the expectation maximization (EM) algorithm [APMS11, AMP+11]. This method as-

sumed that the US image can be divided into different regions characterized by GDDs with different

parameters. Despite its accuracy when compared to several state-of-the-art US image deconvolution

methods, the framework in [APMS11] has two major drawbacks that we propose to tackle in this

In each region, the local PSF is assumed shift-invariant. The global blurring matrix is built in this case by combining
these local shift-invariant PSFs.
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chapter. First, it is well-known that the EM algorithm can easily converge to a local minimum of the

cost function and is sensible to the initial values of the parameters to be tuned, which may lead to

inaccurate estimates. Second, the EM algorithm can only be applied to cases where a mask (or label

map) of the homogeneous regions is available. Note that a US image deconvolution method based

on Markov chain Monte Carlo (MCMC) methods was recently investigated in [ZBKT14]. However,

the proposed method also required an a priori label map for the different image regions. Due to

the tight relationships between segmentation and deconvolution, we think that combining these two

operations can increase their performance, which is the objective of this chapter.

2.1.3 Proposed method

Compared with the US image deconvolution method of [ZBKT14], this chapter defines a Potts Markov

random field for the hidden image labels, assigns GGD priors to the image TRF, and investigates a

joint segmentation and deconvolution method for US images. Thus, the proposed algorithm general-

izes the results of [ZBKT14] to situations where a label map is unknown. Additional motivations for

the proposed model are provided below. First, it uses a GGD-Potts model to regularize the ill-posed

joint deconvolution and segmentation problem. Second, it exploits the local statistical properties

of different image regions, which are usually related with the anatomical image structures. Finally,

the proposed model is able to capture the spatial correlations between neighboring pixels. To our

knowledge, the proposed method represents a first attempt for a joint segmentation and deconvo-

lution in US imaging. The complicated form of the resulting posterior distribution makes it too

difficult to compute closed form expressions of the corresponding Bayesian estimators. Therefore, a

Markov chain Monte Carlo (MCMC) method based on a Gibbs sampler is investigated to sample the

posterior distribution of interest and build the estimators of its unknown parameters.

2.2 Bayesian Model for Joint Deconvolution and Segmentation

This section introduces the Bayesian model investigated in this chapter for the joint deconvolution

and segmentation of US images. We assume that the US TRF x = (x1, · · · , xN )T can be divided into
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K statistical homogeneous regions, denoted as {R1, ...,RK} and we introduce a hidden label field

z = (z1, · · · , zN )T ∈ RN mapping the image into these K regions. More precisely, zi = k if and only

if the corresponding pixel xi belongs to the region Rk, where k ∈ {1, · · · ,K} and i ∈ {1, · · · , N}.

The conditional distribution of pixel xi is then defined as

xi|zi = k ∼ GGD(xi; ξk, γk) (2.2)

where ξk and γk are the shape and scale parameters of the GGD associated with the region Rk. We

remind that a univariate GGD with shape parameter ξ and scale parameter γ denoted as GGD(ξ, γ)

has the following pdf

pGGD(x) = 1
2γ1/ξΓ(1 + 1/ξ)

exp
(
−|x|

ξ

γ

)
, x ∈ R. (2.3)

Assuming that the pixels are independent conditionally to the knowledge of their classes, the

TRF is distributed according to a mixture of GGDs with the following probability density function

(pdf)

p(xi) =
K∑
k=1

wkGGD(xi; ξk, γk) with wk = P (zi = k). (2.4)

In addition, we assign a Potts model to the hidden field z to exploit the dependencies between pixels

that are nearby in the image [AMD10, PDBT12, PDBT13]. The resulting model is referred to as

GGD-Potts model. In the following, we define a hierarchical Bayesian model based on this GGD-

Potts model for the joint segmentation and deconvolution of US images. Using the Bayes rule for

the joint posterior of the unknown parameters, the following result can be obtained

p(x, z,θ|y) ∝ p(y|x,θ)p(x|z,θ)p(z|θ)p(θ) (2.5)

where ∝ means “proportional to", θ is a parameter vector containing all the model parameters

and hyperparameters except x and z, i.e., the noise variance, the shape and scale parameters. The

likelihood p(y|x,θ) depending on the noise model and the prior distributions p(x|z,θ), p(z|θ) based

on the GGD-Potts model are detailed hereinafter.
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2.2.1 Likelihood

Assuming an additive white Gaussian noise (AWGN) with a constant variance σ2
n, the likelihood

function associated with the linear model (2.1) is

p(y|x, σ2
n) = 1

(2πσ2
n)N/2

exp
(
− 1

2σ2
n

‖y−Hx‖22
)

(2.6)

where ‖ · ‖2 is the Euclidean `2-norm.

2.2.2 Prior Distributions

Tissue reflectivity function (TRF) x

As explained beforehand, a mixture of GGD priors is assigned to the TRF. Assuming that the pixels

are independent conditionally to the knowledge of their classes, we obtain the following prior for the

target image

p(x|z, ξ,γ) =
K∏
k=1

Nk∏
i=1

1
2γ1/ξk

k Γ(1 + 1/ξk)
exp

(
−|xi|

ξk

γk

)

=
K∏
k=1

1[
2γ1/ξk

k Γ(1 + 1/ξk)
]Nk exp

(
−
∑Nk
i=1 |xi|ξk
γk

)

=
K∏
k=1

1[
2γ1/ξk

k Γ(1 + 1/ξk)
]Nk exp

−‖xk‖ξkξk
γk

 (2.7)

where ξ = (ξ1, · · · , ξK)T and γ = (γ1, · · · , γK)T , ξk and γk are the shape and scale parameters of

the kth region Rk, Nk is the number of pixels in Rk, xk contains all the pixels assigned to Rk, Γ(·)

is the gamma function and ‖xk‖ξ = (∑Nk
i=1 |xi|ξ)1/ξ denotes the `ξ-norm.

Noise variance σ2
n

In the presence of an AWGN, it is standard to assign a conjugate inverse gamma (IG) prior to the

noise variance, i.e.,

p(σ2
n) ∼IG(α, ν)

= να

Γ(α)(σ2
n)−α−1 exp

(
− ν

σ2
n

)
IR+(σ2

n) (2.8)
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where IA is the indicator function on the set A. This prior has two adjustable parameters α, ν which

make it very flexible and thus appropriate to the variance of most statistical models. The values of

α and ν have been fixed by cross validation in our experiments leading to (α, ν) = (0.1, 0.1).

Labels z

A Potts model (generalization of the Ising model) is considered as prior for the hidden image label

field. The Potts Markov random field (MRF) has been shown to be appropriate for image segmen-

tation [MGM06, PDBT13]. It establishes dependencies between pixels that are nearby in an image

[PDBT12, PDBT13]. More specifically, adjacent labels of the image are dependent and tend to be-

long to the same class. The conditional distribution of zn (associated with pixel xn) for the Potts

MRF is defined as

p(zn|z−n) = p(zn|zV(n)) (2.9)

where z−n = (z1, ..., zn−1, zn+1, ..., zN ) and V(n) contains the neighbors of label zn. In this manuscript,

a first order neighborhood structure (i.e., 4 nearest pixels) is considered. The whole set of random

variables z forms a random field.

Using the Hammersley-Clifford theorem [Bes74], the prior of z can be expressed as a Gibbs

distribution, i.e.,

p(z) = 1
C(β) exp

 N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)

 (2.10)

where β is the granularity coefficient or smooth parameter, δ(·) is the Kronecker function and C(β)

is the normalizing constant (often referred to as partition function). The value of β has been fixed

by cross validation, leading to β = 1.

Shape and scale parameters

The prior used for the US TRF defined in (2.7) depends on the shape and scale parameters of the

GGD, which are usually referred to as hyperparameters. Following the works in [CPT+10], we have
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chosen the following priors for these hyperparameters

p(ξ) =
K∏
k=1

p(ξk) =
K∏
k=1

1
3I[0,3](ξk) (2.11)

p(γ) =
K∏
k=1

p(γk) =
K∏
k=1

1
γk
IR+(γk) (2.12)

where k ∈ {1, ...,K}. Note that the range [0, 3] covers all the possible values of ξk and that p(γk) is

the uninformative Jeffreys prior for γk.

2.2.3 Joint posterior distribution

The joint posterior distribution of the unknown parameters x, σ2
n, ξ,γ, z can be determined as follows

p(x, σ2
n, ξ,γ, z|y) ∝ p(y|x, σ2

n, ξ,γ, z)p(x, σ2
n, ξ,γ, z)

∝ p(y|x, σ2
n, ξ,γ, z)p(x|ξ,γ, z)p(σ2

n)× p(ξ)p(γ)p(z)

∝
1

(2πσ2
n)N/2

exp
(
− 1

2σ2
n

‖y−Hx‖22
)
× 1

(σ2
n)α+1 exp

(
−ν/σ2

n

)

×
K∏
k=1

{
aNkk exp

−‖xk‖ξkξk
γk

× exp
[ N∑
n=1

∑
n′∈V(n)

βδ(zn − zn′)
]

×1
3I[0,3](ξk)

1
γk
IR+(γk)

}
(2.13)

where ak = 1
2γ1/ξk
k

Γ(1+1/ξk)
and the hyperparameters are supposed to be a priori independent. Fig.

2.1 summarizes the proposed hierarchical Bayesian model as a directed acyclic graph (DAG), in which

the relationships between the parameters and hyperparameters are indicated.

2.3 Sampling the posterior and computing the Bayesian estimators

Computing closed-form expressions of the MMSE or MAP estimators for the unknown parameters

x, σ2
n, ξ,γ, z from (2.13) is clearly complicated. In this case, a possible solution is to consider MCMC

methods in order to generate samples asymptotically distributed according to the distribution of

interest and to use the generated samples to build estimators of the unknown parameters. In this
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Figure 2.1: Hierarchical Bayesian model for the parameter and hyperparameter priors, where the
TRF x is modeled by a mixture of GGDs, the hidden label field z follows a Potts MRF and the
parameters appearing in the boxes are fixed in advance.

section, a hybrid Gibbs sampler is investigated to generate samples asymptotically distributed ac-

cording to (2.13). These samples are used to compute the Bayesian estimators of the US TRF x,

hidden label field z, noise variance σ2
n and GGD parameters ξ,γ.

2.3.1 Hybrid Gibbs sampler

The proposed hybrid Gibbs sampler is a 5-step algorithm summarized in Algorithm 1. The algorithm

is explained in detail in what follows.

Algorithm 1: Hybrid Gibbs Sampler
1 Sampling the noise variance σ2

n according to the conditional distribution (2.14).
2 Sampling the shape parameter ξ according to the conditional distribution (2.16) with an

RWMH algorithm.
3 Sampling the scale parameter γ using (2.18).
4 Sampling the labels z according to the normalized conditional distribution (2.22).
5 Sampling the TRF x using an HMC method.
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Sampling the noise variance σ2
n

The conditional distribution of σ2
n|y,x, ξ,γ, z is the following inverse gamma distribution whose

expression is derived in Appendix B.1

p(σ2
n|y,x, ξ,γ, z) ∝ p(y|x, σ2

n, ξ,γ, z)p(σ2
n)

= IG
(
α+N/2, θ + 1

2‖y−Hx‖22
)
. (2.14)

Generating samples according to (2.14) is straightforward.

Sampling the shape parameter vector ξ

The conditional distribution of the shape parameter vector ξ satisfies the following relation

p(ξ|y,x, σ2
n,γ, z) ∝ p(y|x, σ2

n, ξ,γ, z)p(x|ξ,γ, z)p(ξ)

∝ p(x|ξ,γ, z)p(ξ). (2.15)

Assuming that the shape parameters are a priori independent, we have

p(ξk|x,γ, z, ξ−k) ∝ p(xk|ξk, γk, zk)p(ξk)

∝ aNkk exp

−‖xk‖ξkξk
γk

 I[0,3](ξk) (2.16)

where ξ−k = (ξ1, ..., ξk−1, ξk+1, ..., ξK) for k ∈ {1, ...,K}, xk contains the pixels belonging to class k

and zk is built from the corresponding labels. Unfortunately, the conditional distribution (2.16) is not

easy to sample directly. Thus, we propose to consider a random walk Metropolis Hastings (RWMH)

move, which samples the parameters according to an appropriate proposal (specifies in [Has70]) and

accept or reject these samples with an appropriate acceptance probability. More implementation

details about this move and the resulting algorithm are given in Appendix B.2. It is also interesting

to note that a proximal HMC (PHMC) algorithm for non-differential target distribution has also

been studied in Appendix E.
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Sampling the scale parameter vector γ

The conditional distribution of the scale parameter vector γ satisfies the following relation

p(γ|y,x, σ2
n, ξ, z) ∝ p(y|x, σ2

n, ξ,γ, z)p(x|ξ,γ, z)p(γ)

∝ p(x|ξ,γ, z)p(γ). (2.17)

Assuming that the scale parameters are independent, we have

p(γk|x, ξ, z,γ−k) ∝ p(xk|ξk, γk, zk)p(γk)

∝ IG
(
Nk

ξk
, ‖xk‖ξkξk

)
(2.18)

where γ−k = (γ1, ..., γk−1, γk+1, ..., γK) for k ∈ {1, ...,K}. Drawing samples from the inverse gamma

distribution (2.18) is straightforward. More details about the derivation of (2.18) are provided in

Appendix B.1.

Sampling the labels z

The conditional distribution of the labels z can be computed using Bayes rule

p(z|y,x, σ2
n, ξ,γ) ∝ p(y|x, σ2

n, ξ,γ, z)p(x|ξ,γ, z)p(z)

∝ p(x|ξ,γ, z)p(z). (2.19)

Considering the dependency between a label and its neighbors, the conditional distribution of the

label zn (corresponding to the image pixel xn) is given as follows

p(zn = k|z−n,x, ξ,γ) ∝ p(xn|zn = k, ξ,γ)p(zn = k|zV(n)) (2.20)

where z−n is the vector z whose nth element has been removed and zV(n) represents the neighbors

of label zn. Note that a 4-pixel neighborhood structure has been adopted in this chapter. Denoting

the left hand side of (2.20) as πn,k, we have

πn,k ∝ ak exp
(
−|xn|

ξk

γk

)
exp

 ∑
n′∈V(n)

βδ(k − zn′)

 . (2.21)
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The normalized conditional probability of the label zn is defined as

π̃n,k = πn,k∑K
k=1 πn,k

. (2.22)

Finally, the label zn can be drawn from the set {1, ...,K} with the respective probabilities {π̃n,1, ..., π̃n,K}.

Sampling the TRF x

The conditional distribution of the target image we want to estimate is defined as follows

p(x|y, σ2
n, ξ,γ, z) ∝ exp

−‖y−Hx‖22
2σ2

n

−
K∑
k=1

‖xk‖ξkξk
γk

 . (2.23)

Sampling according to (2.23) is the critical point of the proposed algorithm. Due to the high di-

mensionality of x, classical Gibbs or MH moves are inefficient. Thus we propose to implement an

efficient sampling strategy referred to as Hamiltonian Monte Carlo (HMC) method. The principles

of this method have been presented in [Nea11] with an application to neural networks. It is widely

reported that HMC generally outperforms other standard Metropolis-Hastings algorithms, particu-

larly in high-dimensional scenarios [HG14]. This empirical observation is in agreement with recent

theoretical studies showing that HMC has better scaling properties than the Metropolis adjusted

Langevin algorithm (MALA) and RWMH [BPR+13]. The main steps of the HMC method with

details about the way to adjust its parameters are reported in Appendix B.3.

2.3.2 Parameter estimation

Bayesian estimators of the unknown parameters are computed using the generated samples obtained

by the hybrid Gibbs sampler summarized in Algorithm 1. Since the labels are discrete variables,

marginal MAP estimators are chosen for the their estimations. The MMSE estimators for the other

variables (the TRF x, noise variance σ2
n and GGD parameters ξ, γ) are calculated. For example, the

MMSE estimator of the TRF x is computed by

x̂MMSE|ẑMAP , E{x|z = ẑMAP} =
∫
p(x|z = ẑMAP)dx. (2.24)
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For each pixel, we can approximate this estimator as follows

x̂n,MMSE|ẑn,MAP '
1
M

M∑
i=1

x(i)
n |z(i)

n = ẑn,MAP (2.25)

where M is the number of iterations after the so-called burn-in period (see Section 2.4.2 devoted to

the sampler convergence for more details) that satisfy z(i)
n = ẑn,MAP, the superscript i represents the

ith generated sample and the subscript n is used for the nth pixel. Note that ẑMAP is the marginal

MAP estimator of the label map and that x̂MMSE is the MMSE estimator of the reflectivity. Note

also that a similar estimator was implemented in [KTHD12] for image blind deconvolution.

2.3.3 Computational complexity analysis

The computational cost of the proposed Gibbs sampler is mainly due to the generation of the TRF x

and the label map z. In each sampling iteration, the computational complexity for sampling the TRF

x using the HMC is of the order O((L+1)N logN), where L is the number of Leapfrog iterations and

N is the number of image pixels. The computational complexity for sampling the label map z is of the

order O(KN), where K is the number of label classes. Thus, in total, the computation complexity

for drawing a cycle of samples in the Gibbs sampler is of the order O((K + (L+ 1) logN)N). Note

that in general (L+ 1) logN � K. Thus, the most time consuming step is for sampling the TRF.

2.4 Experimental results

This section presents several experiments conducted on simulated and real data using our algorithm.

We have also compared our approach with several existing deconvolution algorithms previously ap-

plied in US imaging.2

2.4.1 Evaluation metrics

Different evaluation metrics were considered for simulated and in vivo US images since the TRF

ground truth is only available for simulated images. These metrics are presented below.
2All the experiments have been conducted using MATLAB R2013a on a computer with Intel(R) Core(TM) i7-4770

CPU @3.40GHz and 8 GB RAM.
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Simulated US images

• Image deconvolution: The performance of the TRF estimation is assessed in terms of im-

provement in SNR (ISNR), root mean square error (RMSE), normalized root mean square error

(NRMSE), peak signal-to-noise ratio (PSNR) and image structural similarity (MSSIM). These

metrics are defined as follows

ISNR = 10 log10
‖x− y‖2
‖x− x̂‖2 , (2.26)

RMSE =
√
‖x− x̂‖2 (2.27)

NRMSE =
√
‖x− x̂‖2
‖x‖2 , (2.28)

PSNR = 20 log10
max(x, x̂)
RMSE , (2.29)

MSSIM(x, x̂) = 1
W

W∑
j=1

SSIM(xj , x̂j) (2.30)

where the vectors x,y, x̂ are the ground truth of the TRF, the RF image and the restored TRF,

respectively. Note that W is the number of local windows used to analyze the image under

study, xj and x̂j represent the local reflectivities of x and x̂ located in one of these windows

and SSIM is the structural similarity measure of each window (defined in [WBSS04]).

• Image segmentation: The performance of the label estimator is assessed using the overall

accuracy (OA), defined as the ratio between the number of correctly estimated labels over the

total number of labels.

In vivo US images Since the ground truth of the TRF and the label map are not available

for in vivo US data, the quality of the deconvolution results is evaluated using two other metrics

commonly used in US imaging: the resolution gain (RG) [YZX12a] and the contrast-to-noise ratio

(CNR) [AM10, JNN+12]. The resolution gain (RG) is the ratio of the normalized autocorrelation

(higher than −3 dB) of the original RF US image to the normalized autocorrelation (higher than −3
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dB) of the deconvolved image/restored TRF. The definition of the CNR is given by

CNR = |µ1 − µ2|√
σ2

1 + σ2
2

(2.31)

where µ1, µ2, σ1 and σ2 are the means and standard deviations of pixels located in two regions

extracted from the image. The two regions are manually chosen so that they belong to different

tissue structures. Moreover, as in most US studies, they are at the same depth in order to avoid

issues related to wave attenuation. Note that the higher the values of RG and CNR, the better the

deconvolution performance.

2.4.2 Sampler convergence

The convergence of the proposed Gibbs sampler can be monitored by determining the so-called burn-

in period which refers to the first elements of the Markov chain that are discarded and not used to

compute the estimators. The potential scale reduction factor (PSRF) is classically used to determine

this burn-in period [GR92]. It requires to run several chains in parallel with different initializations.

It is defined by

PSRFv = M − 1
M

+ C + 1
CM

Bv
Wv

(2.32)

where C is the number of Markov chains considered, M is the number of iterations after the burn-in

period, Bv and Wv are the intra-chain and inter-chain variances of the variable v, whose definitions

are given by

Bv = M

C − 1

C∑
c=1

(v̄ − v̄c)2 , (2.33)

Wv = 1
C

C∑
c=1

1
M − 1

M∑
i=1

(
v̄c − v(i)

c

)2
(2.34)

where v̄ = 1
C

∑C
c=1 v̄c, v̄c = 1

M

∑M
i=1 v

(i)
c and v(i)

c is the ith sample of the variable v in the cth chain.

Values of the PSRF below 1.2 indicate a good convergence of the sampler as suggested in [GR92].

In this work, we checked that the PSRFs of all the variables of interest were below 1.2.
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2.4.3 Computational complexity

The computational complexity analysis has been included in Section 2.3.3. In this part, the running

time curves versus the image size and number of regions are displayed in Fig. 2.2, which are in

agreement with the previous computational complexity analysis. As illustrated in Fig. 2.2, the CPU

time is more dependent on the image size than on the structure complexity.
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Figure 2.2: CPU time of our algorithm versus the image size (left) and the number of classes (right)
for 6000 Monte Carlo iterations. Left: number of classes K = 2. Right: image size 100× 100.

2.4.4 Synthetic data

Deconvolution

We first study the deconvolution performance on synthetic data with controlled ground truth, which

allows the quality of the different estimators to be appreciated. Precisely, three groups of 2D synthetic

images with the same image size N = 50 × 50 are generated assuming that the image pixels are

independent and identically distributed (i.i.d.) according to GGDs with different shape and scale

parameters, as reported in Table 2.1. Each image has been corrupted by a 5 × 5 Gaussian blurring

kernel with variance σb = 3 and an AWGN. The level of AWGN is characterized by the blurred

signal-to-noise ratio (BSNR) expressed in decibels as follows

BSNR = 10 log10

(
‖Hx− E(Hx)‖22

Nσ2
n

)
(2.35)

where E(·) is the empirical average operator (sample mean) and N is the total number of image

pixels. The BSNR was set to 40 dB for the synthetic data. Regarding the MCMC algorithm, 50
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Figure 2.3: Deconvolution results for one column of the synthetic image (the red curves are the
observed lines, the blue curves are the ground truth and the green curves are the restored signals
using the proposed method). The GGD parameters are ξ = 2,γ = 2 in (a), ξ = 1.5,γ = 1.2 in (b)
and ξ = 0.6,γ = 0.4 in (c).

chains of 6000 iterations including a burn-in period of 2000 iterations were run for each simulation

scenario. In each Monte Carlo chain, the stepsize was initialized to ε = 10−5 and the number of

leapfrog steps was uniformly sampled in the interval [50, 70].

The typical deconvolution performance for one column of each of the three observed images is

depicted in Fig. 2.3. These results show a good performance of the proposed image deconvolution

algorithm. Fig. 2.4 shows the histograms of the generated samples from one single Markov chain for

the noise variance, the GGD parameters and the hyperparameters of three synthetic images. These

histograms are clearly in good agreement with the true values of the parameters indicated by the

vertical lines. More quantitative results of the parameter estimation are reported in Table 2.1.

Segmentation

This section evaluates the performance of our method for the segmentation of two regions of the same

size (128× 64) using the overall accuracy (OA). Given that pixels in both regions are characterized

by two zero-mean GGDs, the difference between the two regions is controlled by the ratios of the

shape or scale parameters in the two regions. The values of OAs obtained for different ratios of GGD

parameters are displayed in Fig. 2.5. Comparing the two graphs in Fig. 2.5, the variations of OA
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Figure 2.4: Estimated marginal posterior distributions (histograms) of the noise variance σ2
n (1st

line), the hyperparameters ξ (2nd line) and γ (3rd line). The vertical lines represent the ground
truths of the corresponding parameters. Each column corresponds to a given image.

Table 2.1: Parameter Estimations for the synthetic data
Group Group 1 Group 2 Group 3

Parameters σ2
n ξ γ σ2

n ξ γ σ2
n ξ γ

(×10−5) (×10−5) (×10−5)

True values 3.72 2 2 3.22 1.50 1.26 3.13 0.60 0.37

MMSE 3.65 1.98 2.00 3.63 1.41 1.16 4.15 0.59 0.37

Standard deviation 0.35 0.04 0.05 0.61 0.09 0.09 0.60 0.03 0.02
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Figure 2.5: OA versus the ratios of the GGD parameters (left: scale parameters γ1 = γ2 = 20, right:
shape parameters ξ1 = ξ2 = 1).

are clearly sharper for the left figure, showing that the segmentation accuracy is more sensitive to

the shape parameters.

2.4.5 Joint Deconvolution and Segmentation

Comparison with existing methods

Simulated US images The proposed joint deconvolution and segmentation algorithm (de-

noted as “JointMCMC”) was compared to the technique proposed in [APMS11] (that performs US

deconvolution with GGD priors using the EM algorithm, denoted here by “DeconvEM”) on simulated

data. Since “DeconvEM” was proposed for statistical homogeneous regions, we assumed that the

labels associated with the statistically homogeneous regions were known for “DeconvEM”. In order

to test the robustness of our method to label estimation errors, we also implemented the proposed

algorithm using the true labels (denoted as “DeconvMCMC”). In this case, similar to “DeconvEM”,

only the deconvolution process was performed, without label estimation. Finally, we compared our

results with the `2 and `1 norm constrained optimization solutions. For the `2-norm optimization

problem, a numerical solution is given by

x̂ = (HTH + λI)−1HTy (2.36)

where λ is the regularization parameter. Concerning the `1 norm optimization problem, numer-

ous dedicated algorithms, e.g., ISTA [BT09], FISTA [BT09], TwIST [BDF07] or GEM [BD06] are
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available in the literature. The conjugate gradient (CG) method was considered in this work. Note

that the regularization parameters were fixed manually by cross validation for the `2 and `1 norm

constraint optimization problems.

In vivo US images Due to the fact that the ground truth for the label map is not available

for in vivo US data, we were not able to test the methods “DeconvEM” and “DeconvMCMC” for these

images. Instead, we considered Gaussian and Laplacian priors that have been extensively used in the

US image deconvolution literature [MT07], [JT08], [YZX12a]. The analytical solution for the `2-norm

optimization problem is given by (2.36). The GPSR (gradient projection for sparse reconstruction)

[FNW07] algorithm is implemented for the `1 norm constrained optimization problem for the real

data, where the regularization parameter is chosen as 0.1‖HTy‖∞, as suggested in [FNW07].

Joint deconvolution and segmentation for simulated US images

Experiments were first conducted on three groups of simulated US images with a simulation scenario

inspired by [NPK+07]. The PSF was simulated with a realistic state-of-the-art ultrasound simulator

Field II [Jen96] corresponding to a 3.5 MHz linear probe as shown in Fig. 2.6 (a). All images were

simulated with the same PSF and contaminated by an AWGN with BSNR= 30 dB. All the simulation

results presented hereinafter were obtained using 6000 Monte Carlo iterations, including a burn-in

period of 2000 iterations.

• Group 1: The TRF x mimicking a hyperechoic (bright) round inclusion into an homogeneous

medium was blurred by the simulated PSF and contaminated by an AWGN with BSNR = 30

dB. The simulated images are of size 128 × 128. The pixels located inside and outside the

inclusion, indicated by the label map in Fig. 2.6(c), are distributed according to GGDs with

parameters (ξ, γ) = (0.6,1) (inside) and (ξ, γ) = (1.8,2) (outside) as highlighted in Fig. 2.6(b).

The simulated observed B-mode image (log-compressed envelop image of the corresponding

beamformed RF data which is commonly used for visualization purpose in US imaging) is

shown in Fig. 2.6(d). The quality of the deconvolution can be appreciated by comparing the

estimated TRFs shown in Figs. 2.6(e)-2.6(i) obtained with the methods `2, `1, DeconvEM,
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(a) PSF (b) TRF (c) Label (d) B-mode (e) `2

(f) `1 (g) DeconvEM (h) DeconvMCMC (i) JointMCMC (j) JointMCMC

Figure 2.6: Group 1: (a) Simulated PSF; (b) Ground truth of the TRF; (c) Ground truth for label
map; (d) Observed B-mode image; (e)-(i) Estimated TRFs in B-mode form obtained with methods
`2, `1, DeconvEM, DeconvMCMC and the proposed JointMCMC; (j) Estimated label map obtained with
the proposed method (regularization parameters for the `2 and `1 methods set to 0.01 and 0.1).

DeconvMCMC and the proposed JointMCMC. The quality of the segmentation can be observed

in Fig. 2.6(j), which shows the estimated label map obtained with the method JointMCMC.

Finally, the performance of the GGD parameter estimators is illustrated by the histograms of

the generated GGD parameters (ξ,γ) displayed in Fig. 2.7, where the red and green vertical

lines indicate the MMSE estimates and the true values of the parameters, respectively.

• Group 2: The TRF x is an homogeneous medium with two hypoechoic (dark) round inclusions

(see Fig. 2.8(a)) that was blurred by the same simulated PSF and contaminated by an AWGN.

The size of the US reflectivity image is 100×100 and BSNR = 30 dB. The pixels located inside

and outside the inclusions are distributed according to GGDs with parameter vectors (ξ, γ) =

(0.8,10) (inside) and (ξ, γ) = (1.5,1) (outside) as highlighted in Fig. 2.8(a). The simulated

observed B-mode image is shown in Fig. 2.8(c) whereas the ground truth of the label map is

given in Fig. 2.8(b). Figs. 2.8(d)-2.8(h) show the estimated TRFs obtained with the methods

`2, `1, DeconvEM, DeconvMCMC and the proposed JointMCMC, confirming the good performance
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Figure 2.7: (Group 1) 1st line includes the histograms of shape parameters ξ for the pixels inside
(left) and outside (right) the inclusion; 2nd line includes the histograms of scale parameters γ for the
pixels inside (left) and outside (right) the inclusion; The red and green vertical lines are the MMSE
estimates and the true values of the parameters ξ, γ, respectively.
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Table 2.2: Hyperparameter Estimations for Simulated data (Group 2).
Method ξ1 ξ2 γ1 γ2

Ground truth 0.8 1.5 10 1

DeconvEM 0.60 0.96 21.10 0.42

DeconvMCMC 0.80 2.15 10.05 1.50

JointMCMC 0.82 1.37 11.24 0.82

of JointMCMC for the deconvolution of US images. The estimated label map obtained with the

method JointMCMC is shown in Fig. 2.8(i), confirming its good segmentation performance.

Finally, the hyperparameter estimates of Group 2 are shown in Table 2.2, confirming the good

estimation performance.

• Group 3: The third simulated image was obtained by using a clean TRF x of size 275 ×

75 (see Fig. 2.9(a)) blurred by the same simulated PSF and contaminated by an AWGN

such that BSNR = 30 dB. A more realistic geometry of the simulated tissues was considered,

inspired by one of the in vivo results provided in the next section (see Fig. 2.11(i)). Three

different structures were generated mimicking the skin, the tumor and the surrounding tissue

(green, red and blue regions in Fig. 2.9(b)). The pixels in the different regions are distributed

according to GGDs with different parameters: (ξ, γ) = (0.5, 1) for the blue region, (ξ, γ) =

(1, 30) for the green region and (ξ, γ) = (1.8, 2) for the red region. Figs. 2.9(d)-2.9(h) show the

estimated TRFs obtained with the methods `2, `1, DeconvEM, DeconvMCMC and JointMCMC.

The estimated label map obtained with the method JointMCMC is also shown in Fig. 2.9(i).

Visually, we remark that all the three methods provide images with better object boundary

definition (better spatial resolution) than the observed B-mode images. The quantitative results

reported in Table 2.3 confirm that given the same conditions (knowledge of the true label map),

our approach “DeconvMCMC” is more accurate than the existing “DeconvEM”. Moreover, we

can note that the proposed technique “JointMCMC” is able to estimate the label map with a

precision of more than 98% and with a small quality loss for the estimated TRF.
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(a) TRF (b) Label (c) B-mode (d) `2

(e) `1 (f) DeconvEM (g) DeconvMCMC (h) JointMCMC (i) JointMCMC

Figure 2.8: Group 2: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed B-
mode image; (d)-(h) Estimated TRFs in B-mode form obtained with the methods `2, `1, DeconvEM,
DeconvMCMC and the proposed JointMCMC; (i) Estimated label map obtained with the proposed
method (regularization parameters for the `2 and `1 methods set to 0.1 and 1).
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(a) TRF (b) Label (c) B-mode (d) `2

(e) `1 (f) DeconvEM (g) DeconvMCMC (h) JointMCMC (i) JointMCMC

Figure 2.9: Group 3: (a) Ground truth of the TRF; (b) Ground truth for label map; (c) Observed
B-mode image; (d)-(h) Estimated TRFs in B-mode form obtained with methods `2, `1, DeconvEM,
DeconvMCMC and the proposed JointMCMC; (i) Estimated label map obtained with the proposed
method (regularization parameters for the `2 and `1 methods set to 0.1 and 1).
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Table 2.3: Deconvolution Quality Assessment for Simulated data
Group Method ISNR (dB) NRMSE PSNR (dB) MSSIM OA

1

`2 12.83 0.52 33.19 0.98 N/A

`1 12.83 0.52 33.19 0.98 N/A

DeconvEM 13.04 0.46 33.74 0.98 N/A

DeconvMCMC 16.21 0.35 36.57 0.99 N/A

JointMCMC 16.01 0.36 36.37 0.99 0.99

2

`2 10.63 0.69 21.02 0.61 N/A

`1 12.75 0.54 23.30 0.79 N/A

DeconvEM 14.31 0.45 24.70 0.82 N/A

DeconvMCMC 15.09 0.41 25.39 0.88 N/A

JointMCMC 15.00 0.42 25.26 0.88 0.99

3

`2 9.96 0.70 21.92 0.64 N/A

`1 11.49 0.59 23.45 0.76 N/A

DeconvEM 12.21 0.54 24.16 0.78 N/A

DeconvMCMC 12.40 0.52 24.40 0.80 N/A

JointMCMC 12.38 0.53 24.37 0.79 0.98

Visually, we remark that all the three methods provide images with better object boundary

definition (better spatial resolution) than the observed B-mode images. The quantitative results

reported in Table 2.3 confirm that given the same conditions (knowledge of the true label map), our

approach “DeconvMCMC” is more accurate than the existing “DeconvEM”. Moreover, we can note

that the proposed technique “JointMCMC” is able to estimate the label map with a precision of more

than 98% and with a small quality loss for the estimated TRF.
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Figure 2.10: Estimated TRF (left) and label map (right) for a two-class image with K = 3 (ISNR
= 14.46 and OA = 0.8).

Influence of the number of classes While most of the hyperparameters are automatically

estimated in our Bayesian method, the number of classes K has to be tuned manually. This section

studies the influence of the parameter K on the segmentation and deconvolution. For this purpose,

we have reconsidered the simulated image of Group 2 by setting K = 3, while the TRF only contains

two classes of pixels. The corresponding estimated TRFs and label maps are shown in Fig. 2.10.

A visual inspection as well as the obtained ISNR show that the restored TRF in Fig. 2.10 (left) is

similar to the result in Fig. 2.8 that was obtained by setting K = 2 using the proposed method.

A slight degradation of the estimated label field can be observed, as highlighted by the OA that

decreases from 0.99 to 0.8.

Joint deconvolution and segmentation for in vivo US images

Three groups of experiments have been conducted to evaluate the performance of the proposed

method for in vivo US images. The images were acquired with a 20 MHz single-element US probe.

In contrast to the simulation scenarios studied previously, the PSF and the TRF are not available

for in vivo experiments. For this reason, the PSF has been estimated from the RF image using

the method of [MA05]. The regions selected for the computation of CNR are shown in the red

rectangles of the observed B-mode images in Figs. 2.11(a),(e),(i). All the estimated TRFs are shown

in B-mode form, after envelope detection and log-compression. The envelope detection is generally

performed by considering the magnitude of the analytic signal in US imaging. While it is adapted to

bandlimited modulated RF signals, this envelope detector may generate artifacts on TRFs. To avoid

this phenomenon, we have used a different envelope detection method for the restored TRF, i.e., the
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method of [PFG04] based on the detection and interpolation of local maxima.

• Group 1 - Mouse bladder: The observed B-mode image of size 400×256 is shown in Fig. 2.11(a)

and displays a mouse bladder. The US transducer was placed into a small water container to

ensure an efficient transmission of the US waves into the tissues. As there is no US scatterer

in the water, the region located in the upper part of the image in Fig. 2.11(a) appears dark

(no signal). It is also the case for the region located inside the bladder that also contains a

fluid with poor reflection for the US waves. The number of homogeneous regions was set to

K = 3 in this experiment, which is sufficient to represent the anatomical structures of the

image. The number of Monte Carlo iterations was fixed to 10 000 (including 5 000 burn-in

iterations). The parameters of the HMC method for the in vivo data were adjusted to the

same values as in the previous experiments. The regularization parameters for the `2-norm

and `1-norm constraint optimization problems were set to 10 and 54.39 by cross-validation.

Figs. 2.11(b)-2.11(d) display the restored TRFs obtained with the `2, `1 optimization algo-

rithms and the proposed method. The proposed method provides good restoration results,

especially with clearer boundaries. Fig. 2.13(a) shows the marginal MAP estimates of the

labels, which segment the estimated image into several statistically homogeneous regions. The

different anatomical structures of the image can be clearly recovered. Note that the two regions

corresponding to fluids are identified with the same estimated label.

• Group 2 - Skin melanoma: The second in vivo image (of size 400 × 298) represents a skin

melanoma tumor acquired in the same conditions as previously, shown in Fig. 2.11(e). Water-

based gel was placed between the US probe and the skin of the patient. It represents the dark

regions in the upper part of the image in Fig. 2.11(e). The rest of the tissues corresponds

to the skin layers. The number of homogeneous regions was fixed to K = 4. The number of

Monte Carlo iterations was fixed to 20000 (including 10000 burn-in period) for this example.

The regularization parameters for the `2-norm and `1-norm constraint optimization problems

were set to 1 and 1.2× 103 by cross-validation. Figs. 2.11(f)-2.11(h) display the restored TRFs

with the different methods (`2, `1 optimization algorithms and proposed method). Note that
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Fig. 2.11(h) shows an improved contrast between the tumor and the healthy skin tissue when

compared to the observed B-mode image in Fig. 2.11(e). The tumor boundaries are better

defined on the deconvolved image with the proposed method compared to the observed B-mode

image. To better visualize the improved transition between the tumor and the healthy skin

tissue, we show in Fig. 2.12 two vertical profiles passing through the tumor, corresponding to

the blue line in Fig. 2.11(e), extracted from our result and observation. One can remark the

sharper slopes obtained on the deconvolved image in the neighbourhood of tumor boundaries,

i.e., around positions 200 and 300. The marginal MAP estimates of the labels for this image

are shown in Fig. 2.13(b). The four estimated labels correspond to the water-gel (light blue),

the tumor (yellow) and the skin tissues (the two shades of red).

• Group 3 - Healthy skin tissue: The last in vivo US data represents a healthy skin image shown

in Fig. 2.11(i), which is of size 832 × 299. The number of homogeneous regions was set to

K = 2. The number of Monte Carlo iterations was fixed to 6000 including a burn-in period

of 2000 iterations). The regularization parameters for the `2-norm and `1-norm constraint

optimization problems were set to 10 and 1.5 × 104 by cross-validation. The restored TRFs

obtained with the different methods (`2, `1 optimization algorithms and the proposed method)

are displayed in Figs. 2.11(j)-2.11(l). The marginal MAP estimation of the label field is shown

in Fig. 2.13(c).

In addition to the visual inspection, the deconvolution results were evaluated using the RG and

CNR criteria and the CPU time, as reported in Table 2.4. Despite its higher computational complex-

ity, the visual impression and the numerical results confirm that a better contrast and more defined

boundaries between the different tissues is achieved with the proposed method. It is interesting to

note that in addition to the restored image, our algorithm also provides a segmentation result. To our

knowledge, there is no other existing method in US imaging able to achieve this joint segmentation

and deconvolution performance.
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Observed B-mode `2 `1 Proposed

(a) (b) (c) (d)

(e) (f) (j) (h)

(i) (j) (k) (l)

Figure 2.11: From up to down: 1st row corresponds to the mouse bladder; 2nd row is for the skin
melanoma; 3rd row is for the healthy skin tissue. From left to right: Observed B-mode image,
Restored B-mode images with `2-norm, `1-norm and the proposed method. The regions selected for
computing CNR are shown in the red boxes in the observed B-mode images.
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Figure 2.12: Vertical profiles passing through the skin tumor, extracted from the observed and
restored images of the skin melanoma (group 2).
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Figure 2.13: Marginal MAP estimates of labels. (Left) is the label map for the mouse bladder. The
estimated labels in blue correspond to liquid regions whereas the other labels represent tissue regions
with different statistical properties. (Middle) is the label map for the skin melanoma. The four
estimated labels correspond to the water-gel (light blue), the tumor (yellow) and the skin tissues
(the two shades of red). (Right) is the label map for the healthy skin tissue. The skin tissue appears
in red.
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Table 2.4: Deconvolution Quality for the real US data
Group group 1 - Mouse bladder group 2 - Skin melanoma group 3 - Healthy skin tissue

Metrics RG CNR Time (s) RG CNR Time (s) RG CNR Time (s)

Observation - 1.08 - - 1.17 - - 1.30 -

`2 3.82 1.00 0.006 3.01 1.09 0.007 1.07 3.01 0.007

`1 3.29 1.11 5.07 4.63 1.19 3.53 2.09 2.47 22.30

Proposed 3.94 0.94 3904.8 10.01 1.35 1303.4 2.59 2.23 6585.8

2.5 Conclusions

In this chapter, we proposed a new Bayesian method for joint deconvolution and segmentation of

medical ultrasound images. This method assumed that the ultrasound image can be divided into

regions with statistical homogeneous properties. Based on this assumption, a Potts model was intro-

duced for the image labels. Independent generalized Gaussian priors were also assigned to the tissue

reflectivity functions of each homogeneous region of the image. According to the author’s knowledge,

it is the first time a joint segmentation and deconvolution method is proposed for ultrasound images.

The proposed method showed very interesting restoration results when compared to more classical

optimization methods based on `2-norm or `1-norm regularizations.



Chapter 3

Fast Single Image Super-resolution

Part of this chapter has been adapted from the journal paper [ZWB+16a] and the conference paper
[ZWB+16c].
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3.1 Introduction

As stated in the introduction, the image formation model for single image super-resolution can be

written as

y = SHx + n (3.1)

69
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where the vectors x ∈ RNh and y ∈ RNl are the high resolution (HR) and low resolution (LR) images,

the matrices H ∈ RNh×Nh and S ∈ RNl×Nh are the blurring and decimation matrices. In this chapter,

we propose a general method based on reconstruction techniques which is valid for both natural

and medical ultrasound images. Existing reconstruction-based techniques used to solve the single

image SR include the first order gradient-based methods [SSXS08, SSXS11, TLBL10, YWHM10], the

iterative shrinkage thresholding-based algorithms [BT09] (also called forward-backward algorithms),

proximal gradient algorithms and other variable splitting algorithms that rely on the augmented

Lagrangian (AL) scheme. The AL-based algorithms include the alternating direction method of

multipliers (ADMM) [NWY10, MBD15, MBK12, MO08], the split Bregman (SB) methods [YLTV15]

(known to be equivalent to ADMM in certain conditions [YOGD08]) and their variants.

Particularly, Ng et. al. [NWY10] proposed an ADMM-based algorithm to solve a TV-regularized

single image SR problem, where the decimation and blurring operators are split and solved iteratively.

Due to this splitting, the cumbersome SR problem can be decomposed into an up-sampling problem

and a deconvolution problem, that can be both solved efficiently. Yanovsky et. al. [YLTV15]

proposed to solve the same problem with an SB algorithm. However, the decimation operator

was handled through a gradient descent method integrated in the SB framework. Sun et. al.

[SSXS08, SSXS11] proposed a gradient profile prior and formulated the single image SR problem

as an `2-regularized optimization problem, further solved with the gradient descent method. Yang

et. al. [YWHM10] proposed a learning-based algorithm for the single image SR by seeking a sparse

representation using the patches of LR and HR images, followed by back projecting through a gra-

dient descent method. Despite the efficiency of these methods, it is still appealing to deal with the

single image SR problem in a non-iterative or more efficient way.

This chapter aims at reducing the computational cost of these methods by proposing a new ap-

proach handling the decimation and blurring operators simultaneously by exploring their intrinsic

properties in the frequency domain. It is interesting to note that similar properties were explored

in [RTLF10, SKM11] for multi-frame SR. However, the implementation of the matrix inversions

proposed in [RTLF10, SKM11] is less efficient than those proposed in this work, as it will be demon-

strated in the complexity analysis conducted in Section 3.3. More precisely, this chapter derives a
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closed-form expression of the solution associated with the `2-penalized least-squares SR problem,

when the observed LR image is assumed to be a noisy, subsampled and blurred version of the HR

image with a spatially invariant blur. This model, referred to as `2 − `2 in what follows, underlies

the restoration of an image contaminated by additive Gaussian noise and has been used intensively

for the single image SR problem, see, e.g., [YWHM10, SSXS08, EV08] and the references mentioned

above. The proposed solution is shown to be easily embeddable into an AL framework to handle non-

Gaussian priors (i.e., non-`2 regularizations), which significantly lightens the computational burdens

of several existing SR algorithms.

3.2 Image Super-resolution Formulation

3.2.1 Model of Image Formation

Consider the image formation model (3.1), two additional basic assumptions about the blurring and

decimation operators are introduced. These assumptions have been widely used for image deconvo-

lution or image SR problems (see, e.g., [EF97a, FREM04, ZEP12, YWHM10]) and are necessary for

the proposed fast SR framework.

Assumption 1. The blurring matrix H is the matrix representation of the cyclic convolution oper-
ator, i.e., H is a block circulant matrix with circulant blocks (BCCB).

This assumption has been widely used in the image processing literature [LS04, RTLF10, SKM11].

It is satisfied provided the underlying blurring kernel is shift-invariant and the boundary conditions

make the convolution operator periodic. Note that the BCCB matrix assumption does not depend

on the shape of the blurring kernel, i.e., it is satisfied for any kind of blurring, including motion blur,

out-of-focus blur, atmospheric turbulence, etc. Using the cyclic convolution assumption, the blurring

matrix and its conjugate transpose can be decomposed as

H = FHΛF (3.2)

HH = FHΛHF (3.3)
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where the matrices F and FH are associated with the Fourier and inverse Fourier transforms (sat-

isfying FFH = FHF = INh) and Λ = diag{Fh} ∈ CNh×Nh is a diagonal matrix, whose diagonal

elements are the Fourier coefficients of the first column of the blurring matrix H, denoted as h.

Using the decompositions (4.24) and (4.25), the blurring operator Hx and its conjugate HHx can

be efficiently computed in the frequency domain, see, e.g., [Ng06, EF97b, ZBKT16].

Assumption 2. The decimation matrix S ∈ RNl×Nh is a down-sampling operator, while its conjugate
transpose SH ∈ RNh×Nl interpolates the decimated image with zeros.

Figure 3.1: Effect of the up-sampling matrix SH on a 3× 3 image and of the down-sampling matrix
S on the corresponding 9× 9 image (whose scale up factor equals 3).

Once again, numerous research works have used this assumption [RTLF10, SKM11, YWHM10,

ZEP12]. Fig. 3.1 shows a toy example highlighting the roles of the decimation matrix S and its

conjugate transpose SH . The decimation matrix satisfies the relationship SSH = INl . Denoting

S , SHS, multiplying an image by S can be achieved by making an entry-wise multiplication with

an Nh ×Nh mask having ones at the sampled positions and zeros elsewhere.

3.2.2 Problem formulation

Similar to traditional image reconstruction problems, the estimation of an HR image from the ob-

servation of an LR image is an ill-posed problem. This ill-posedness is classically overcome by incor-

porating some appropriate prior information or regularization term. The regularization term can be

chosen from a specific task of interest, the information resulting from previous experiments or from a

perceptual view on the constraints affecting the unknown model parameters [Rob07, GCS+13]. Var-

ious priors or regularizations have already been advocated to regularize the image SR problem in the



3.3 - Proposed fast super-resolution using an `2-regularization 73

literature, including: (i) traditional generic image priors such as Tikhonov [NMG01, WDT15b, EV08],

total variation (TV) [NWY10, AD05, MO08] and priors prompting sparsity in transformed domains

[BD06, NPK+07, JJC04, FN03], (ii) more recent image regularizations such as the gradient profile

prior [SSXS08, SSXS11, TLBL10] or Fattal’s edge statistics [Fat09] and (iii) learning-based priors

[RB05, ZW11]. The fast approach proposed in the next section is shown to be adapted to many of

the existing regularization terms.

Assuming that the noise n in (3.1) is AWGN and incorporating a proper regularization to the

target image x, the maximum a posteriori (MAP) estimator of x for the single image SR can be

obtained by solving the following optimization problem

min
x

1
2 ‖y− SHx‖22︸ ︷︷ ︸

data fidelity

+ τ φ(Ax)︸ ︷︷ ︸
regularization

(3.4)

where ‖y− SHx‖22 is a data fidelity term associated with the model likelihood and φ(Ax) is related

to the image prior information and is referred to as regularization or penalty [EHN96]. Note that

the matrix A can be the identity matrix when the regularization is imposed on the SR image itself,

the gradient operator, any orthogonal matrix or normalized tight frame, depending on the addressed

application and the properties of the target image. The role of the regularization parameter τ is to

weight the importance of the regularization term with respect to (w.r.t.) the data fidelity term. The

next section derives a closed-form solution of the problem (3.4) for a quadratic regularizing operator

φ(·) when the assumptions 1 and 2 hold.

3.3 Proposed fast super-resolution using an `2-regularization

Before considering more complicated regularizations investigated in Section 3.4, we first consider the

basic `2-norm regularization defined by

φ(Ax) = ‖Ax− v‖22 (3.5)

where the matrix AHA is assumed, unless otherwise specified, to be invertible. Typical examples

of appropriate matrices A include the Fourier transform matrix, the wavelet transform matrix, etc.
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When using this `2-norm regularization, a generic form of a fast solution to problem (3.4) will be

derived in Section 3.3.1. Then, two particular cases of this regularization widely used in the literature

will be discussed in Sections 3.3.2 and 3.3.3.

3.3.1 Proposed closed-form solution for the `2 − `2 problem

With the regularization (3.5), the problem (3.4) transforms to

min
x

1
2‖y− SHx‖22 + τ‖Ax− v‖22 (3.6)

whose solution is given by

x̂ = (HHSH + 2τAHA)−1(HHSHy + 2τAHv) (3.7)

with S = SHS.

Direct computation of the analytical solution (3.7) requires the inversion of a high dimensional

matrix, whose computational complexity is of order O(N3
h). One can think of using optimization or

simulation-based methods to overcome this computational difficulty. The optimization-based meth-

ods, such as the gradient-based methods [SSXS11] or, more recently, the ADMM [NWY10] and SB

[YLTV15] method approximate the solution of (3.6) by iterative updates. The simulation-based

methods, e.g., the Markov Chain Monte Carlo methods [FOG15, OFG12, GMI15], are drawing sam-

ples from a multivariate posterior distribution (which is Gaussian for a Tikhonov regularization)

and compute the average of the generated samples to approximate the minimum mean square error

(MMSE) estimator of x. However, simulation-based methods have the major drawback of being

computationally expensive, which prevents their effective use when processing large images. More-

over, because of the particular structure of the decimation matrix, the joint operator SH cannot

be diagonalized in the frequency domain, which prevents any direct implementation of the solution

(3.7) in this domain. The main contribution in this chapter is proposing a new scheme to compute

(3.7) explicitly, getting rid of any statistically sampling or iterative update and leading to a fast SR

method.

In order to compute the analytical solution (3.7), a property of the decimation matrix in the

frequency domain is first stated in Lemma 1.
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Lemma 1 (Wei et al., [WDT15b]). The following equality holds

FSFH = 1
d
Jd ⊗ INl (3.8)

where Jd ∈ Rd×d is a matrix of ones, INl ∈ RNl×Nl is the Nl × Nl identity matrix and ⊗ is the
Kronecker product.

Using the property of the matrix FSFH given in Lemma 1 and taking into account the assump-

tions mentioned above, the analytical solution (3.7) can be rewritten as

x̂ = FH
(1
d
ΛHΛ + 2τFAHAFH

)−1
F
(
HHSHy + 2τAHv

)
(3.9)

where the matrix Λ ∈ CNl×Nh is defined as

Λ = [Λ1,Λ2, · · · ,Λd] (3.10)

and where the blocks Λi ∈ CNl×Nl (i = 1, · · · , d) satisfy the relationship

diag{Λ1, · · · ,Λd} = Λ. (3.11)

The readers may refer to the Appendix C.1 for more details about the derivation of (3.9) from (3.7).

To further simply the expression (3.9), we propose to use the following Woodbury inverse formula.

Lemma 2 (Woodbury formula [Hag89]). The following equality holds conditional on the existence
of A−1

1 and A−1
3

(A1 + A2A3A4)−1

= A−1
1 −A−1

1 A2(A−1
3 + A4A−1

1 A2)−1A4A−1
1

(3.12)

where A1, A2, A3 and A4 are matrices of correct sizes.

Taking into account the Woodbury formula of Lemma 2, the analytical solution (3.9) can be

computed very efficiently as stated in the following theorem.

Theorem 1. When Assumptions 1 and 2 are satisfied, the solution of Problem (3.6) can be computed
using the following closed-form expression

x̂ = 1
2τ FHΨFr− 1

2τ FHΨΛH
(
2τdINl + ΛΨΛH

)−1
ΛΨFr (3.13)

where r = HHSHy + 2τAHv, Ψ = F
(
AHA

)−1
FH and Λ is defined in (3.10).



76 Chapter 3 - Fast Single Image Super-resolution

Proof. See Appendix C.1.

Complexity Analysis

The most computationally expensive part for the computation of (3.13) in Theorem 1 is the imple-

mentation of FFT/iFFT. In total, four FFT/iFFT computations are required in our implementation.

Comparing with the original problem (3.7), the order of computation complexity has decreased sig-

nificantly from O(N3
h) to O(Nh logNh), which allows the analytical solution (3.13) to be computed

efficiently. Note that [RTLF10, SKM11] also addressed image SR problems by using the properties of

S in the frequency domain, where Nl small matrices of size d× d were inverted. The total computa-

tional complexity of the methods investigated in [RTLF10, SKM11] is O(Nh logNh+Nhd
2). Another

important difference with our work is that the authors of [RTLF10] and [SKM11] decomposed the

SR problem into an upsampling (including motion estimation which is not considered in this work)

and a deblurring step. The operators H and S were thus considered separately, requiring two `2
regularizations for the blurred image (referred to as z in [RTLF10]) and the ground-truth image

(referred to as x in [RTLF10]). On the contrary, this work considers the blurring and downsampling

jointly and achieve the SR in one step, requiring only one regularization term for the unknown image.

It is worthy to mention that the proposed SR solution can be extended to incorporate the warping

operator considered in [RTLF10, SKM11], which can also be modelled as a BCCB matrix. This is

not included in this manuscript but will be considered in future work.

In the sequel of this section, two particular instances of the `2-norm regularization are considered,

defined in the image and gradient domains, respectively.

3.3.2 Solution of the `2 − `2 problem in the image domain

First, we consider the specific case where A = INh and v = x̄, i.e., the problem (3.6) reduces to

min
x

1
2‖y− SHx‖22 + τ‖x− x̄‖22. (3.14)

This implies that the target image x is a priori close to the image x̄. The image x̄ can be an

estimation of the HR image, e.g., an interpolated version of the observed image, a restored image
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obtained with learning-based algorithms [YWHM10] or a cleaner image obtained from other sensors

[WDT15a, WDT15b, EV08]. In such case, using Theorem 1, the solution of the problem (3.14) is

x̂ = 1
2τ r− 1

2τ FHΛH
(
2τdINl + ΛΛH

)−1
ΛFr (3.15)

with r = HHSHy + 2τ x̄.

Algorithm 2 summarizes the implementation of the proposed SR solution (3.15), which is referred

to as fast super-resolution (FSR) approach.

Algorithm 2: FSR with `2-regularization in the image-domain: implementation of the analyt-
ical solution (3.15)
Input: y, H, S, x̄, τ , d

// Factorization of H (FFT of the blurring kernel)

1 H = FHΛF;
// Compute Λ

2 Λ = [Λ1,Λ2, · · · ,Λd];
// Calculate FFT of r denoted as Fr

3 Fr = F(HHSHy + 2τ x̄);
// Hadamard (or entrywise) product in frequency domain

4 xf =
(

ΛH
(
2τdINl + ΛΛH

)−1
Λ
)

Fr;

// Compute the analytical solution

5 x̂ = 1
2τ

(
r− FHxf

)
;

Output: x̂

3.3.3 Solution of the `2 − `2 problem in the gradient domain

Generic image priors defined in the gradient domain have been successfully used for image recon-

struction, avoiding the common ringing artifacts see, e.g., [SSXS08, SSXS11, TLBL10]. In this part,

we focus on the gradient profile prior proposed in [SSXS11] for the single image SR problem. This

prior consists of considering the regularizing term ‖∇x − ∇̄x‖22. Thus the problem (3.6) can be

formulated as follows

min
x

1
2‖y− SHx‖22 + τ‖∇x− ∇̄x‖22 (3.16)
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where ∇ is the discrete version of the gradient ∇ := [∂h, ∂v]T and ∇̄x is the estimated gradient

field. More explanations about the motivations for using the gradient field may be found in [SSXS08,

SSXS11]. For an image x ∈ Rm×n, under the periodic boundary conditions, the numerical definitions

of the gradient operators are

(∂hx)(i, j) =


x(i+ 1, j)− x(i, j) if i < m

x(m, j)− x(1, j) if i = m

(3.17)

(∂vx)(i, j) =


x(i, j + 1)− x(i, j) if j < n

x(i, n)− x(i, 1) if j = n

(3.18)

where ∂h and ∂v are the horizontal and vertical gradients. The gradient operators can be rewritten

as two BCCB matrices Dh and Dv corresponding to the horizontal and vertical discrete differences

of an image, respectively. Therefore, two diagonal matrices Σh and Σv (CNh×Nh) are obtained by

decomposing Dh and Dv in the frequency domain, i.e.,

Dh = FHΣhF and Dv = FHΣvF. (3.19)

Thus, the problem (3.16) can be transformed into

min
x

1
2‖y− SHx‖22 + τ‖Ax− v‖22 (3.20)

with A = [DT
h ,DT

v ] ∈ R2Nh×Nh and using the notation ∇̄x = v = [vh,vv]T ∈ R2Nh×1. Note that the

invertibility of AHA is violated here because of the periodic boundary assumption. Thus, adding a

small `2-norm regularization τσ‖x‖22 (where σ is a very small constant) to (3.20) can circumvent this

invertibility problem while keeping the solution close to the original regularization. Using Theorem

1, the analytical solution of (3.20) (including the additional small `2-norm term) is given by (3.13)

with Ψ =
(
ΣH

h Σh + ΣH
v Σv + σINh

)−1
.

The pseudocode used to implement this solution is summarized in Algorithm 3.
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Algorithm 3: FSR with `2-regularization in the gradient-domain: implementation of the ana-
lytical solution of (3.16)
Input: y, H, S, Dh, Dv, ∇̄x, τ , d

// Factorizations of matrices H, Dh, Dv

1 H = FHΛF;
2 Dh = FHΣhF;
3 Dv = FHΣvF;

// Compute Λ and Ψ
4 Λ = [Λ1,Λ2, · · · ,Λd];
5 Ψ = (ΣH

h Σh + ΣH
v Σv + σINh)−1;

// Calculate FFT of r denoted as Fr
6 Fr = F(HHSHy + 2τDHv);

// Hadamard (or entrywise) product in the frequency domain

7 xf =
[
ΨΛH

(
µdINl + ΛΨΛH

)−1
ΛΨ

]
Fr;

// Compute the analytical solution

8 x̂ = 1
2τ

(
FHΨFr− FHxf

)
;

Output: x̂

3.4 Generalized fast super-resolution

As mentioned previously, a large variety of non-Gaussian regularizations has been proposed for

the single image SR problem, in both image or transformed domains. Many SR algorithms, e.g.,

[NWY10, YLTV15], require to solve an `2 − `2 problem similar to (3.6) as an intermediate step.

This section shows that the solution (3.13) derived in Section 3.3 can be combined with existing SR

iterative methods to significantly lighten their computational costs.
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3.4.1 General form of the proposed algorithm

In order to use the analytical solution (3.13) derived for the `2-regularized SR problem into an ADMM

framework, the problem (3.4) is rewritten as the following constrained optimization problem

minx,u
1
2‖y− SHx‖22 + τφ(u)

subject to Ax = u. (3.21)

The AL function associated with this problem is

L(x,u,λ) = 1
2‖y− SHu‖22 + τφ(u) + λT (Ax− u) + µ

2 ‖Ax− u‖22

or equivalently

L(x,u,d) = 1
2‖y− SHu‖22 + τφ(u) + µ

2 ‖Ax− u + d‖22. (3.22)

To solve problem (3.21), we need to minimize L(x,u,d) w.r.t. x and u and update the scaled dual

variable d iteratively as summarized in Algorithm 4.

Note that the 3rd step updating the HR image x can be solved analytically using Theorem 1.

The variable u is updated at the 4th step using the Moreau proximity operator whose definition is

given by

proxλ,φ(ν) = arg min
x
φ(x) + 1

2λ‖x− ν‖
2. (3.23)

The generic optimization scheme given in Algorithm 4, including the non-iterative update of the

HR image following Theorem 1, is detailed hereafter for three widely used regularization techniques,

namely for the TV regularization [NWY10], the `1-norm regularization in the wavelet domain [JJC04]

and the learning-based method in [YWHM10].

3.4.2 TV regularization

Using a TV prior, problem (3.4) can be rewritten as

min
x

1
2‖y− SHx‖22 + τφ(Ax) (3.24)
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Algorithm 4: Proposed generalized fast super-resolution (FSR) scheme

Input: y, S, H, d, τ ;
1 Set k = 0, choose µ > 0, u0, d0;
2 Repeat
3 xk+1 = arg minx ‖y− SHx‖22 + µ‖Ax− uk + dk‖22;
4 uk+1 = arg minu τφ(u) + µ

2‖Axk+1 − u + dk‖22;
5 dk+1 = dk + (Axk+1 − uk+1);
6 until stopping criterion is satisfied.

where the regularization term is given by

φ(Ax) = ‖x‖TV =
√
‖Dhx‖2 + ‖Dvx‖2 (3.25)

with A = [Dh,Dv]T ∈ R2Nh×Nh . We can solve (3.24) using Algorithm 4, with the auxiliary variable

u = [uh,uv]T ∈ R2Nh×1 such that Ax = u. The resulting fast SR algorithm can be summarized into

the following iterative three-step procedure

For k = 0, 1, . . .
xk+1 ∈ arg minx

1
2‖y− SHx‖22 + µ

2‖Ax− uk + dk‖22

uk+1 ∈ arg minu τ
√
‖uh‖2 + ‖uv‖2 + µ

2‖Axk+1 − u + dk‖22

dk+1 = dk + (Axk+1 − uk+1).

(3.26)

The optimization problems required to update x and u at each iteration are detailed below

• Update x: Use the closed-form expression resulting from Theorem 1 according to Algorithm 3.

• Update u: Denoting ν = [νh,νv] ∈ RNh×2 where νh =
(
Dhxk+1 + dkh

)
and νv =

(
Dvxk+1 + dkv

)
,

use the generalized 2D soft-shrinkage operator [NWY10] (proxλ,‖·‖ : R2 → R2) defined as

proxλ,‖·‖(ν[i]) = max(0, ‖ν[i]‖ − τ/µ) ν[i]
‖ν[i]‖ (3.27)

where ν[i] if the ith row of the matrix ν, i = 1, · · · , Nh.

The resulting pseudocodes of the proposed fast SR approach for solving (3.24) are detailed in

Algorithm ??, which is reported in Appendix C.2.
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3.4.3 `1-norm regularization in the wavelet domain

Assuming that x can be decomposed as a linear combination of wavelets (e.g., as in[BD06]), the SR

can be conducted in the wavelet domain. Denote as x = Wθ the wavelet decomposition of x, where

θ ∈ RNh×1 is the vector containing the wavelet coefficients and multiplying by the matrices WH and

W (∈ RNh×Nh) represent the wavelet and inverse wavelet transforms (satisfying WWH = WHW =

INh). The single image SR with `1-norm regularization in the wavelet domain can be formulated as

follows

min
x

1
2‖y− SHx‖22 + τ‖Ax‖1 (3.28)

where A = WH . By introducing the additional variable u = WHx, the problem (3.28) can be solved

using Algorithm 4. The resulting fast SR algorithm can be summarized into the following iterative

three-step procedure

For k = 0, 1, . . .
xk+1 ∈ arg minx

1
2‖y− SHx‖22 + µ

2‖Ax− uk + dk‖22

uk+1 ∈ arg minu τ‖u‖1 + µ
2‖Axk+1 − u + dk‖22

dk+1 = dk + (Axk+1 − uk+1).

(3.29)

The optimization problems required to update x and u at each iteration are detailed below

• Update x: Use the closed-form expression resulting from Theorem 1 according to Algorithm 2.

• Update u: The MAP estimator of u can be calculated by the following soft-thresholding oper-

ator

proxλ,|·|(ν) = max(0, |ν| − λ)sign(ν) (3.30)

where ν is an element from the vector ν = Ax + d.

The corresponding pseudocodes of the resulting fast SR algorithm with an `1-norm regularization

in the wavelet domain are detailed in Algorithm 11 proposed in Appendix C.2.
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3.4.4 Learning-based `2-norm regularization

The effectiveness of the learning-based regularization for image reconstruction has been proved in

several studies. In particular, Yang et. al. [YWHM10] solved the single image SR problem by jointly

training two dictionaries for the LR and HR image patches and by applying sparse coding (SC).

Interestingly, the HR image x0 obtained by sparse coding was projected onto the solution space

satisfying (3.1), leading to the following optimization problem

x̂ = arg min
x

1
2‖y− SHx‖22 + τ‖x− x0‖22. (3.31)

This optimization problem was solved using a gradient descent approach in [YWHM10]. However,

it can benefit from the analytical solution provided by Theorem 1 that can be implemented using

Algorithm 2.

3.5 Experimental Results

This section demonstrates the efficiency of the proposed fast SR strategy by testing it on various

images with different regularization terms. The performance of the single image SR algorithms is

evaluated in terms of reconstruction quality and computational complexity. Given the ability of our

algorithm to solve the SR problem with less complexity than the existing methods, one may expect

a gain in computational time and convergence properties. All the experiments were performed using

MATLAB 2013A on a computer with Windows 7, Intel(R) Core(TM) i7-4770 CPU @3.40GHz and

8 GB RAM. It is interesting to note that the proposed algorithm is not just applicable to the

ultrasound images, but is also appropriate for the natural images. Color images were processed using

the illuminate channel only, as in [YWHM10]. Precisely, the RGB images were transformed into

YUV coordinates and the color channels (Cb,Cr) were up-sampled using bicubic interpolation. In

the illuminate channel, the HR image was blurred and down-sampled in each spatial direction with

factors dr and dc. The resulting blurred and decimated images were then contaminated by AWGN

of variance σ2
n with a blurred-signal-to-noise ratio defined by

BSNR = 10 log10

(
‖SHx− E(SHx)‖22

Nσ2
n

)
(3.32)
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where N is the total number of pixels of the observed image and E(·) is the arithmetic mean operator.

Unless explicitly specified, the blurring kernel is a 2D-Gaussian filter of size 9× 9 with variance

σ2
h = 3, the decimation factors are dr = dc = 4 and the noise level is BSNR = 30dB.

The performances of the different SR algorithms are evaluated both visually and quantitatively

in terms of the following metrics: RMSE, PSNR, ISNR and MSSIM. The definitions of these metrics,

widely used to evaluate image reconstruction methods, have been given in Chapter 2. Note that the

observation y has to be interpolated (bicubic interpolation is implemented here) to have the same

size as the HR image when calculating the ISNR for SR problems. Note also that it is not appropriate

to compute the ISNR for bicubic interpolation since it is always 0.

3.5.1 Fast SR using `2-regularizations

`2 − `2 model in the image domain

• Gaussian blurring kernel

We first explore the single image SR problem with the “pepper” image and standard Tikhonov

regularization corresponding to the optimization problem formulated in (3.14). The size of the

ground truth HR image shown in Fig. 3.2(b) is 512 × 512. Fig. 3.2 also displays the restored

images with bicubic interpolation, the proposed analytical solution given in Algorithm 2 and

the ADMM of [NWY10] adapted to a Gaussian prior. The prior mean image x̄ (approximated

HR image) is the up-sampled version/bicubic interpolation of the LR image (Case 1) with

restoration results in Figs. 3.2(d) and 3.2(e), whereas x̄ is the ground truth (Case 2) with

restoration results in Figs. 3.2(f) and 3.2(g). The regularization parameter was τ = 1 in Case 1

and τ = 0.1 in Case 2. The numerical results corresponding to this experiment are summarized

in Table 3.1. The visual impression and the numerical results show that the reconstructed HR

images obtained with our method are similar to those obtained with ADMM. However, the

proposed FSR method performs much faster than ADMM. More precisely, the computational

time with our method is divided by a factor of 60 for Case 1 and by a factor of 80 for Case 2.

Note also that the restored images obtained with Case 2 (x̄ is the ground truth) are visually

much better than the ones obtained with Case 1 (x̄ is the interpolated LR image), as expected.
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(a) Observation† (b) Ground truth (c) Bicubic interpolation

(d) Case 1: ADMM (e) Case 1: Algorithm 2 (f) Case 2: ADMM (g) Case 2: Algorithm 2

Figure 3.2: SR of the pepper image when considering an `2 − `2-model in the image domain: visual
results. The prior image mean x̄ is defined as the bicubic interpolated LR image in Case 1 and as
the ground truth HR image in Case 2.
†Note that the LR images have been scaled for better visualization in the figures of this chapter (i.e., the actual LR images contain

d times fewer pixels than the corresponding HR images).

Table 3.1: SR assessment of the pepper image when considering an `2−`2-model in the image domain.
Method PSNR (dB) ISNR (dB) MSSIM Time (s.)

Bicubic 25.37 - 0.59 0.002

Case 1

ADMM 29.26 4.01 0.67 1.92

Algorithm 2 29.27 4.01 0.67 0.02

Case 2

ADMM 53.84 29.27 1 0.5

Algorithm 2 53.74 29.55 1 0.02
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Figure 3.3: SR of the “pepper" image when considering the `2 − `2 model in the image domain:
RMSE as functions of the regularization parameter τ for various noise levels (1st column), blurring
kernel sizes (2nd column) and decimation factors (3rd column). The results in the 1st column were
obtained for dr = dc = 4 and 9× 9 kernel size; in the 2nd column, dr = dc = 4 and BSNR= 30 dB;
in the 3rd column, the kernel size was 9× 9 and BSNR= 30 dB.

The performance of the proposed method has been also evaluated with various experimental

parameters, namely, the BSNR level, the size of the blurring kernel and the decimation factors.

The corresponding RMSEs are depicted in Figs. 3.3 as functions of the regularization parameter

τ for the two considered scenarios (Cases 1 and 2). Note that the same performance is obtained

by the ADMM-based SR technique since it solves the same optimization problem.

• Motion blurring kernel

This paragraph considers a dataset composed of images that have been captured by a camera

placed on a tripod, whose Z-axis rotation handle has been locked and X- and Y-axis rotation

handles have been loosen [LWDF09]. The corresponding dataset is available online1. The

observed LR image, motion kernel and corresponding SR results are shown in Figs. 3.4. The

size of the motion kernel is 19 × 19. As in the previous paragraph, the prior image x̄ is

1Available online at http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.zip

http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.zip
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the bicubic interpolation of the LR image in Case 1, while x̄ is the ground truth in Case 2.

The regularization parameter is set to τ = 0.01 and τ = 0.1 in Cases 1 and 2, respectively.

Quantitative results are reported in Table 3.2 and show that the proposed method provides

competitive results w.r.t. the other methods, while being more computational efficient.

(a) Observation† (b) Ground truth (c) Bicubic interpolation

(d) Case 1: ADMM (e) Case 1: Algorithm 2 (f) Case 2: ADMM (g) Case 2: Algorithm 2

Figure 3.4: SR of the motion blurred image when considering an `2− `2-model in the image domain:
visual results. The prior image mean x̄ is defined as the bicubic interpolated LR image in Case 1
and as the ground truth HR image in Case 2.

`2 − `2 model in the gradient domain

This section compares the performance of the proposed fast SR strategy with the gradient profile

regularization proposed in [SSXS08]. As shown in Section 3.3.1, Theorem 1 allows an analytical SR

solution to be computed. The “face” image (of size 276×276) shown in Fig. 3.5 (b) was used for these

tests. In this experiment, ∇̄x was calculated using the reference HR image and the regularization

parameters were set to τ = 10−3 and σ = 10−8. The proposed method is compared with the ADMM

and the CG method (instead of the gradient descent (GD) method initially proposed in [SSXS11] since

CG has shown to be much more efficient than GD in this experiment). The restored images using
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Table 3.2: SR assessment of the motion blurred image using an `2 − `2-model in the image domain.
Method PSNR (dB) ISNR (dB) MSSIM Time (s.)

Bicubic 21.15 - 0.91 0.002

Case 1

ADMM 27.11 5.96 0.96 0.11

Algorithm 2 27.11 5.96 0.96 0.01

Case 2

ADMM 53.23 32.08 1 0.42

Algorithm 2 53.23 32.08 1 0.01

bicubic interpolation, ADMM, the CG method and the proposed Algorithm 3 are shown in Fig. 3.5.

The corresponding numerical results are reported in Table 3.3. These results illustrate the superiority

of the approach in terms of computational time. This significant difference can be explained by the

non-iterative nature of the proposed method compared to CG and ADMM. Moreover, all the three

methods converge to the same global minima as shown by the objective curves in Fig. 3.6. The

convergence of the objective curves is in agreement with the visual and numerical results.

Table 3.3: SR of the face image when considering an `2−`2-model in the gradient domain: quantitative
results.

Method PSNR (dB) ISNR (dB) MSSIM Time (s.)

Bicubic 26.84 - 0.49 0.001

ADMM 42.82 15.98 0.98 0.71

CG 42.82 15.98 0.98 0.35

Algorithm 3 42.82 15.98 0.98 0.009
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(a) Observation† (b) Ground truth (c) Bicubic interpolation

(d) ADMM (e) CG [SSXS08] (f) Algorithm 3

Figure 3.5: SR of the face image when considering an `2 − `2-model in the gradient domain: visual
results.
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Figure 3.6: SR of the face image when considering an `2−`2-model in the gradient domain: objective
functions.
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(a) Observation† (b) Ground truth (c) Bicubic interpolation

(d) SC [YWHM10] (e) SC+GD [YWHM10] (f) SC+Algorithm 2

Figure 3.7: SR of the face image when considering an `2 − `2-model in the gradient domain: visual
results.

Learning-based `2-norm regularization

This section studies the performance of the algorithm obtained when the analytical solution of

Theorem 1 is embedded in the learning-based method of [YWHM10]. The method investigated

in [YWHM10] computed an initial estimation of the HR image via sparse coding (SC) and used a

back-projection (BP) procedure to improve the SR performance. The BP operation was performed

by a GD method in [YWHM10]. Here, this GD step has been replaced by the analytical solution

provided by Theorem 1 and Algorithm 2. The image “zebra” was used in this experiment to com-

pare the performance of both algorithms2. The LR and HR images (of size 300 × 200) are shown

2For comparison purpose, the authors used the MATLAB code corresponding to [YWHM10] available at http:
//www.ifp.illinois.edu/~jyang29.

http://www.ifp.illinois.edu/~jyang29.
http://www.ifp.illinois.edu/~jyang29.
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in Fig. 3.7 (a) and 3.7 (b). The regularization parameter was set to τ = 0.1. The restored images

shown in Figs. 3.7 (c)-(f) were obtained using the initial SC estimation proposed in [YWHM10],

the back-projected SC image combined with the gradient descent (GD) algorithm of [YWHM10]

(referred to as “SC + GD”) and the proposed closed-form solution (referred to as “SC + Algorithm

2"). The corresponding numerical results are reported in Table 3.4. The restored images obtained

with the two back-projection approaches are clearly better than the restoration obtained with the

SC method. While the quality of the images obtained with these projection approaches is similar,

the use of the analytical solution of Theorem 1 allows the computational cost of the GD step to be

reduced significantly.

Table 3.4: SR of the zebra image when considering a learning-based `2-norm regularization: quanti-
tative results.

Method PSNR (dB) ISNR (dB) MSSIM Time (s.)

Bicubic 18.98 - 0.37 0.001

SC [YWHM10] 19.15 0.16 0.38 170.9

SC+GD [YWHM10] 20.76 1.78 0.47 170.9+1.23

SC+Algorithm 2 29.99 1.88 0.48 170.9+0.01

3.5.2 Natural images: Embedding the `2− `2 analytical solution into the ADMM

In this second group of experiments, we consider two non-Gaussian priors that have been widely

used for image reconstruction problems: the TV regularization in the spatial domain and the `1-

norm regularization in the wavelet domain. In both cases, the analytical solution of Theorem 1

is embedded into a standard ADMM algorithm inspired from [NWY10] (the resulting algorithms

referred to as Algorithms 10 and 11 are detailed in Appendix C.2). The stopping criterion for both

implementations is chosen as the relative cost function error defined as

|f(xk+1)− f(xk)|
f(xk) (3.33)
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where f(x) = 1
2‖y − SHx‖22 + τφ(Ax). Note that other stopping criteria such as those studied in

[BPC+11b] could also be investigated. The 512×512 images “Lena", “monarch" and “Barbara" were

considered in these experiments. The observed LR images and the HR images (ground truth) are

displayed in Fig. 3.8 (first two columns).

TV-regularization

The regularization parameter was manually fixed (by cross validation) to τ = 2 × 10−3 for the

image “Lena”, to τ = 1.8 × 10−3 for the image “monarch” and to τ = 2.5 × 10−3 for the image

“Barbara”. Figs. 3.8 show the SR results obtained using the bicubic interpolation (third column),

ADMM based algorithm of [NWY10] (fourth column) and Algorithm 10 (last column). As expected,

the ADMM reconstructions perform much better than a simple interpolation of the LR image that

is not able to solve the upsampling and deblurring problem. The results obtained with the proposed

algorithm and with the method of [NWY10] are visually very similar. This visual inspection is

confirmed by the quantitative results provided in Table 3.5. However, the proposed algorithm has the

advantage of being much faster than the algorithm of [NWY10] (with computational times reduced

by a factor larger than 2). Moreover, Fig. 3.9 illustrates the convergence of the two algorithms. The

proposed single image SR algorithm (Algorithm 10) converges faster and with less fluctuations than

the algorithm of [NWY10]. This result can be explained by the fact that the algorithm in [NWY10]

requires to handle more variables in the ADMM scheme than the proposed algorithm.

`1-norm regularization in the wavelet domain

This section evaluates the performance of Algorithm 11, which is compared with a generalization

of the method proposed in [NWY10] to an `1-norm regularization in the wavelet domain. The

motivations for working in the wavelet domain are essentially to take advantage of the sparsity of

the wavelet coefficients. All experiments were conducted using the discrete Haar wavelet transform

and the Rice wavelet toolbox [BCN+]. For both implementations, the regularization parameter was

adjusted by cross validation, leading to τ = 2 × 10−4 for the image “Lena”, τ = 1.8 × 10−4 for the

image “Monarch” and τ = 2.5× 10−4 for the image “Barbara”.
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Observation Ground truth Bicubic ADMM [NWY10] Algorithm 10

Figure 3.8: SR of the Monarch, Lena and Barbara images when considering a TV-regularization:
visual results.
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Figure 3.9: SR of the Monarch, Lena and Barbara images when considering a TV-regularization:
objective function (left) and ISNR (right) vs time.
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ADMM [NWY10] Algorithm 11

Figure 3.10: SR of the Monarch, Lena and Barbara images when considering a `1-norm regularization
in the wavelet domain: visual results.
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Table 3.5: SR of the Monarch, Lena and Barbara images when considering a TV-regularization:
quantitative results.

Image Method PSNR (dB) ISNR (dB) MSSIM Time (s) Iter.

Monarch

Bicubic 23.11 - 0.75 0.002 -

ADMM [NWY10] 29.49 6.38 0.84 78.95 812

Algorithm 10 29.38 6.28 0.83 19.81 170

Lena

Bicubic 25.80 - 0.57 0.002 -

ADMM [NWY10] 30.81 5.00 0.66 35.67 372

Algorithm 10 30.91 5.11 0.66 20.63 164

Barbara

Bicubic 22.71 - 0.48 0.002 -

ADMM [NWY10] 24.80 2.09 0.56 13.85 148

Algorithm 10 24.84 2.13 0.56 8.36 73

Figs. 3.10 show some SR reconstruction results with an `1-norm minimization in the wavelet

domain. The HR images obtained with Algorithm 11 and with the algorithm of [NWY10] adapted to

the `1-norm prior are visually similar and better than a simple interpolation. The numerical results

shown in Table 3.6 confirm that the two algorithms provide similar reconstruction performance.

However, as in the previous case (TV regularization), the proposed algorithm is characterized by much

smaller computational times than the standard ADMM implementation. The faster and smoother

convergence obtained with the proposed method (Algorithm 11) can be observed in Fig. 3.11. Note

that the fluctuations of the objective function and PSNR values (versus the number of iterations)

obtained with the method of [NWY10] are due to the variable splitting, which requires more variables

and constraints to be handled than for the proposed method.
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Table 3.6: SR of the Monarch, Lena and Barbara images when considering a `1-norm regularization
in the wavelet domain: quantitative results.

Image Method PSNR (dB) ISNR (dB) MSSIM Time (sec.) Iter.

Monarch

Bicubic 23.11 - 0.75 0.002 -

ADMM [NWY10]∗ 27.08 3.97 0.74 34.08 400

Algorithm 11 27.13 4.03 0.74 15.02 177

Lena

Bicubic 25.80 - 0.57 0.002 -

ADMM [NWY10] 30.09 4.29 0.62 38.48 450

Algorithm 11 30.21 4.41 0.63 14.25 164

Barbara

Bicubic 22.71 - 0.48 0.002 -

ADMM [NWY10] 24.66 1.95 0.52 34.13 400

Algorithm 11 24.70 2.00 0.53 14.83 171

∗The algorithm of [NWY10] was originally proposed for SR using a TV regularization. This algorithm has been modified by the

authors to solve the `1-norm penalized optimization problem.
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Figure 3.11: SR of the Monarch, Lena and Barbara images when considering an `1-norm regulariza-
tion in the wavelet domain: objective function (left) and PSNR (right) vs time.
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3.5.3 Medical ultrasound images: Embedding the `2 − `2 analytical solution into
the ADMM framework

Finally, the proposed SR algorithm was tested on in vivo US data using `p-norm regularization. The

image displayed in Fig. 3.12(a) is a mouse kidney image acquired with a probe of 25MHz central

frequency. We carried out SR experiments on the region located inside the red box, shown in Fig.

3.12(b). The up-sampling factors were set to dr = dc = 2. The PSF was estimated directly from

the data following [MA03]. The regularization parameter τ was set to 0.1 in this section. For the

real data, we compared the proposed algorithm with a classical ADMM implementation [MBK12].

The restored images obtained with the proposed method are shown in Figs. 3.12(c)-(f), while the

ones estimated with the classical method are shown in Figs. 3.12(g)-(j). The numerical results are

reported in Table 3.7. According to the graphical and numerical results, the restored images with

the proposed algorithm and the classical method are similar in terms of RG. However, the proposed

algorithm needs less CPU time and a reduced number of iterations (when compared to the classical

method) to converge.

Table 3.7: SR of the real US image
`p Method RG Time (s) Iters.

p = 2
Proposed 1.78 0.009 -

Classical 1.78 0.53 55

p = 1
Proposed 16.26 2.42 190

Classical 16.50 2.58 199

p = 4
3

Proposed 9.72 0.76 28

Classical 10.04 1.12 37

p = 3
2

Proposed 5.55 0.31 14

Classical 5.72 0.75 33
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Figure 3.12: In vivo US image and the restored images with the proposed and classical methods
using `p norm regularizers.
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3.6 Conclusion

This chapter studies a new fast single image super-resolution framework based on the widely used

image formation model. The proposed super-resolution approach computed the super-resolved image

efficiently by exploiting intrinsic properties of the decimation and the blurring operators in the

frequency domain. A large variety of priors can be handled in the proposed super-resolution scheme

for both medical ultrasound and natural images. Specifically, when considering an `2-regularization,

the target image was computed analytically, getting rid of any iterative steps. For more complex

priors (i.e., non `2-regularization), variable splitting allowed this analytical solution to be embedded

into the augmented Lagrangian framework, thus accelerating various existing schemes for single

image super-resolution. Results on several medical ultrasound and natural images confirmed the

computational efficiency of the proposed approach and showed its fast and smooth convergence.



102 Chapter 3 - Fast Single Image Super-resolution



Chapter 4

Blind-deconvolution of ultrasound
images

Part of this chapter has been adapted from the conference papers [ZBKT15] and [ZWB+16b].
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4.1 Introduction

The linear model considered in the introduction and Chapter 2 was given by

y = Hx + n. (4.1)

where the vectors y, x and n are the tissue reflectivity function (TRF) to be estimated, the observed

RF ultrasound image and the measurement noise respectively, the huge matrix H is associated with

the system point spread function (PSF). Several blind or semi-blind deconvolution methods have been

previously proposed in the ultrasound literature using the linear model (4.1), see e.g., [CE07]. The

103
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existing methods for ultrasound image blind deconvolution can be roughly divided into two categories.

The first group involves a pre-estimation of the PSF, followed by one of the classical non-blind

deconvolution algorithms. The homomorphic filter technique [JL94, Tax95, MA01] is a traditional

method for the PSF estimation, which falls into this group. More recently, a hybrid method based

on inverse filtering for PSF estimation has been explored [MT07, DM11]. The second class of blind

deconvolution algorithms includes simultaneously estimation of the PSF and the ultrasound image.

Most of the existing works fall in group 2 are using non-parametric model for the PSF estimation,

see e.g., [JT08, YZX12a, RPD+15].

In this chapter, we follow the second category to estimate the ultrasound TRF and the PSF

jointly. In order to estimate the PSF, two strategies are studied in this chapter. First, a Gaussian

prior is proposed for the PSF and the blind deconvolution problem is formulated in a Bayesian

framework. An MCMC technique is proposed to jointly estimate the PSF and the ultrasound TRF

due to the intractability of the target distribution. Second, a parametric model for the US imaging

system PSF is proposed. This model requires a few parameters to be estimated instead of all the

PSF. The formulated problem in an optimization framework is then solved using a block-coordinate

based iterative method.

Considering the ill-posedness of US image deconvolution problem, different regularization terms

for the US TRF based on their a priori knowledge are derived in order to regularize the ill-posed prob-

lem [MR15]. Several widely considered regularizers include the Laplace distribution [MT07, YZX12a],

the Gaussian distribution [JT08], the TV regularizer [MBK12] and the Huber model recently pro-

posed in [MR15]. However, the `2-norm regularized optimization problem always produces over-

smoothed results, the TV method produces piecewise smooth results, and the `1-norm regularized

optimization method is known to yield sparse results [YZX12a]. In this chapter, a generalized Gaus-

sian distribution/`p-norm (0 < p 6 2) regularization term is proposed for the US TRF [ZWB+16b],

which has been shown to be relative to US RF images [Ale10]. Moreover, it contains the traditional

Gaussian and Laplacian regularization terms.
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4.2 Blind deconvolution using a Gaussian prior for the PSF

Following the problem formulation in Chapter 2, we first study the case of a Gaussian prior for

the PSF. Moreover, a mixture of generalized Gaussian distributions based on a hidden label field is

proposed for the US TRF as in Chapter 2.

Given the linear US image formation model (4.1), an efficient implementation of the matrix-vector

product is obtained by using the direct and inverse Fourier transforms as follows

Hx = FT [Fh. ∗ Fx] = FT [h̃. ∗ x̃] (4.2)

where the matrices F and FT correspond to Fourier and inverse Fourier transforms, .∗ is the

Hadamard product, h is the first row of H and φ̃ = Fφ is the Fourier transform of the vector

φ. The relation (4.2) is based on the property of circulant matrices (which has been illustrated in

Appendix A), i.e., H = FTΣHF, where ΣH = diag(h̃). The goal of the blind deconvolution problem

studied here is to estimate the reflectivity image x and the PSF h by using a hierarchical Bayesian

model. It is interesting to note that this work is an extension of [ZBKT16], where the PSF was

estimated in a pre-processing step.

4.2.1 Hierarchical Bayesian model

The hierarchical Bayesian model proposed in this work requires to define appropriated prior distribu-

tions for the unknown vector Θ = (x,h). The joint posterior distribution of Θ can then be calculated

from the product of the likelihood function and the prior distributions. The likelihood function and

the prior distributions considered in this section are then investigated.

Likelihood

Assuming an AWGN sequence with covariance matrix σ2
nIN×N , the likelihood function associated

with model (4.1) is

p(y|Θ) = 1
(2πσ2

n)N/2
exp

(
− 1

2σ2
n

‖y−Hx‖22
)

(4.3)

where ‖ · ‖2 is the usual `2-norm.
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Priors

A. Reflectivity image: As stated in Chapter 2, we assume that the pixels of the US image are inde-

pendent random variables distributed according to generalized Gaussian distributions (GGDs)

as in Chapter 2. Moreover, the pixels of the US image belonging to different homogeneous

regions are supposed to be distributed according to GGDs with different parameters. This as-

sumption makes sense in applications such as tumor detection, where the tumor and the image

background are characterized by different sets of parameters. Precisely, we introduce a label

vector z ∈ RN×1 to map the image into the different homogeneous regions. The ith label is

such that zi = k if and only if the corresponding pixel xi belongs to the class k ∈ {1, ...,K}.

The conditional distribution of the pixel xi is defined as

xi|zi = k ∼ GGD(ξk, γk)

where ξk and γk are the shape and scale parameters of the kth class. Conditioned on the label

vector, we obtain the following prior for the reflectivity image

p(x|z, ξ,γ) =
K∏
k=1

1[
2γ1/ξk

k Γ(1 + 1/ξk)
]Nk exp

−‖xk‖ξkξk
γk

 (4.4)

where ‖xk‖ξ = (∑Nk
i=1 |xi|ξ)1/ξ denotes the `ξ-norm, xk contains all the pixels assigned to class

k, the shape and scale parameter vectors are denoted as ξ = (ξ1, ..., ξK) and γ = (γ1, ..., γK)

with γk =
[√

σ2
kΓ(1/ξk)/Γ(3/ξk)

]ξk
(σ2
k is the variance of class k), Nk is the number of pixels

in class k and Γ(·) is the gamma function.

B. Point Spread Function: Due to the relationship between the blurring matrix H and the PSF

h, which has been illustrated in Appendix A, we estimate the PSF h instead of the big matrix

H. Also, the convolution model is expressed in the Fourier domain (see (4.2)), thus a Gaussian

prior is chosen as the prior of h̃, the Fourier transform of the firs t row of H [MBBK13]

p(h̃) = 1
(2πσ2

h)N/2
exp

(
− 1

2σ2
h

‖h̃− h̃0‖22

)
(4.5)

where h̃0 is the Fourier transform of the first row of the circulant matrix H0, which is an initial

estimation of the PSF (for instance obtained with the method of [JL94]).
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C. Noise variance: In the presence of AWGN, it is typical to assign a conjugate inverse gamma

prior to the noise variance [ZBKT16], i.e.,

p(σ2
n) = να

Γ(α)
1

(σ2
n)α+1 exp

(
− ν

σ2
n

)
1R+(σ2

n) (4.6)

where 1A(.) is the indicator function on the set A. The two adjustable parameters α, ν make

this prior very flexible and appropriate for many applications.

Hyperpriors

The priors introduced above depend on some hyperparameters to be fixed a priori or estimated

within the algorithm. In this chapter, the hyperparameters to be estimated are the GGD parameters

ξ, γ of the prior distribution for the ultrasound TRF. Note that the label field can be fixed in

advance for simulated images or be estimated jointly using the method proposed in Chapter 2. We

denote the hyperparameter vector to be estimated as Φ = {ξ,γ}. The hyperprior of Φ is defined as

p(Φ) = p(ξ)p(γ) with

p(ξ) =
K∏
k=1

p(ξk) =
K∏
k=1

1
31[0,3](ξk) (4.7)

p(γ) =
K∏
k=1

p(γk) =
K∏
k=1

1
γk

1R+(γk). (4.8)

We should notice that the choices above cover all the possible values of the shape and scale parameters

that one may encounter in practical situations [CPT+10]. Note that the priors/hyperpriors are the

same as in Chapter 2 except the Gaussian prior for the PSF.

Joint posterior function

Using Bayes’ rule, the joint posterior distribution of our model is proportional to the product of the

likelihood and the priors. Precisely, the following result can be obtained

p(Θ,Φ|y) ∝ p(y|Θ,Φ)p(Θ,Φ)

∝ p(y|x, h̃, σ2
n, ξ,γ)p(x, h̃, σ2

n, ξ,γ)

∝ p(y|x, h̃, σ2
n)p(x|ξ,γ)p(h̃) (4.9)
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where the different probability density functions (pdfs) have been defined in (4.3), (4.4) and (4.5).

Closed-form expressions of the Bayesian estimators associated with the posterior (4.9) are difficult

to obtain. In such situation, one can use simulation methods which generate samples distributed

according to the posterior of interest and use these samples to compute the estimators of the unknown

model parameters. The next section studies a hybrid Gibbs sampler to sample (4.9).

4.2.2 Hybrid Gibbs Sampler

The hybrid Gibbs sampler is one of the most popular MCMC methods, which generates samples from

a Markov chain whose target distribution is the distribution of interest (here, the distribution (4.9)).

More precisely, each step of the sampler consists of generating samples according to the conditional

distributions associated with the target distribution. The generated samples, after removing the

burn-in period, are averaged to compute the MMSE estimates of the different unknown parameters.

The hybrid Gibbs sampler implemented in this section is summarized in Algorithm 5.

Algorithm 5: Hybrid Gibbs Sampler
/* Initialization */

1 /* Sampling procedure */

2 for i = 1 : Nmc do
3 Sampling x according to (4.10) with an HMC method.
4 Sampling h̃ according to (4.13).
5 Sampling σ2

n according to (4.15).
6 Sampling ξ according to (4.16) using a Metropolis Hastings move with a truncated

Gaussian proposal.
7 Sampling γ according to (4.17).
8 end

The associated conditional distributions are detailed as follows.
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• Reflectivity image x: The conditional distribution of the US reflectivity image is

p(x|y, σ2
n,H,Φ) ∝ p(y|x, σ2

n,H,Φ)p(x|Φ)

∝ exp

− 1
2σ2

n

‖y−Hx‖22 −
K∑
k=1

‖xk‖ξ
k

ξk

γk

 . (4.10)

Generating samples from (4.10) is complicated due to the high dimensionality of the image x

and to the non-quadratic term ‖xk‖ξ
k

ξk
. In this work, we propose to use a Hamiltonian Monte

Carlo (HMC) method for this generation since this method has shown interesting results in the

case of non-blind deconvolution in Chapter 2.

• Point Spread Function: We propose to sample h̃ instead of H in this section. The likelihood

function can be rewritten as follows

p(y|x, σ2
n,Φ, h̃) = 1

(2πσ2
n)N/2

exp
(
− 1

2σ2
n

‖ỹ−ΣH x̃‖22
)

= 1
(2πσ2

n)N/2
exp

(
− 1

2σ2
n

‖ỹ−ΣX h̃‖22
)

(4.11)

where ΣH = diag(h̃) and ΣX = diag(x̃). Combining with the prior of h̃, the conditional

distribution of h̃ is given by

p(h̃|y,x, σ2
n,Φ) ∝ p(y|x, σ2

n,Φ, h̃)p(h̃)

∝ exp
(
− 1

2σ2
n

‖ỹ−ΣX h̃‖22
)

exp
(
− 1

2σ2
h

‖h̃− h̃0‖22

)
. (4.12)

The conditional distribution (4.12) is a multivariate Gaussian distribution

N (m̃post, R̃post) (4.13)

with

R̃−1
post = I

σ2
h

+ |ΣX |2

σ2
n

, m̃post = R̃post

(
h̃0
σ2
h

+ ΣX
T ỹ

σ2
n

)
(4.14)

where the subscript “post” stands for “posterior”. Note that (4.13) is easy to sample and that

the circulant matrix H can be easily obtained from h̃ by inverse Fourier transform and cyclic

shift.
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• Noise variance: The conditional distribution of the noise variance σ2
n is

p(σ2
n|y,x,ξ,γ,H) ∝ p(y|x, σ2

n, ξ,γ,H)p(σ2
n)

∝
1

(σ2
n)N2 +α+1

exp
(
− 1

2σ2
n

‖y−Hx‖22 −
ν

σ2
n

)
.

It is corresponds to the inverse gamma distribution

IG
(
α+ N

2 , ν + 1
2‖y−Hx‖22

)
(4.15)

• Hyperparameters:

A. Shape parameter ξ: Assuming a priori independence between the different shape parameters,

the conditional distribution of parameter ξk can be obtained as follows

p(ξk|Θ,γ, ξ−k) ∝ p(y|x, σ2
n,H, ξ,γ)p(xk|ξk, γk)p(ξk)

∝ aNkk exp

−‖xk‖ξkξk
γk

1[0,3](ξk) (4.16)

where ξ−k = (ξ1, ..., ξk−1, ξk+1, ..., ξK) for k ∈ {1, ...,K} and where xk contains all the pixels

assigned to the kth class. The conditional distribution (4.16) is sampled using a random walk

Metropolis Hastings (RWMH) proposal [Has70], which has been detailed in Chapter 2.

B. Scale parameter γ: Assuming the different scale parameters are a priori independent, the

conditional distributions of the scale parameters of the proposed GGDs can be written

p(γk|Θ, ξ,γ−k) ∝ p(y|x, σ2
n,H, ξ,γ)p(xk|ξk, γk)p(γk)

∝ IG
(
Nk

ξk
, ‖xk‖ξkξk

)
(4.17)

where γ−k = (γ1, ..., γk−1, γk+1, ..., γK) for k ∈ {1, ...,K}. Drawing samples from the inverse

gamma distribution (4.17) is straightforward.

4.2.3 Simulation results

In this section, we present results obtained with synthetic and real US images to validate the perfor-

mance of the proposed algorithm.
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Simulated US images

The US images have been generated following the approach described in [NPK+07]. Specifically, the

RF image is obtained by 2D convolution of a reflectivity image (of size 50× 50) shown in Fig. 4.1(a)

and a known PSF (of size 11 × 11) simulated by Field II (developed by Jensen et. al. [Jen96]),

highlighted in Fig. 4.2(a). The samples of x are independent and identically distributed according

to GGDs with different parameters inside and outside the disk located in the center of the image

(GGD(ξin = 1.8, γin = 50) and GGD(ξout = 0.6, γout = 0.4)). Moreover, the RF image is contaminated

by an AWGN corresponding to a blurred-signal-to-noise-ratio (BSNR) of 40dB.

Figs. 4.1 show the images estimated by the proposed method and the method of [ZBKT14].

Note that the method of [ZBKT14] requires to estimate the PSF in a preprocessing step using the

algorithm in [JL94] and that it was shown to provide better deconvolution results than the EM

algorithm in [APMS11]. The objective of this experiment is to evaluate whether the performance of

the joint estimation of the image and PSF can be improved or not when compared to the case where

the PSF is estimated in a preprocessing step. Visually, one can observe that the reflectivity image

estimated with our method is very similar to the true one, both in native and B-mode representations.

Quantitative results reported in Table 4.1 show (in terms of ISNR, NRMSE and PSNR) that we

obtain a better performance with the proposed method when compared to [ZBKT14]. Note that the

higher the values of ISNR, PSNR, the better the performance. Conversely, the lower the NRMSE,

the better.

Table 4.1: Performance of reflectivity image estimation.
Methods ISNR(dB) NRMSE(dB) PSNR(dB)

Proposed 8.7597 0.8018 18.5373

[ZBKT14] 4.1089 1.3696 18.0123

The results in Fig. 4.2 allow the performance of the PSF estimation to be appreciated. Figs.

4.2(b), 4.2(c) display the estimated PSFs obtained with the method of [ZBKT14] and our approach.

The interest of estimating the PSF jointly with the image is confirmed by the quantitative metrics

provided in Table 4.2 comparing the true PSF with its estimates obtained with the proposed method
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Observation Ground truth x Proposed x̂ [ZBKT14] x̂

Figure 4.1: Observation, ground truth and estimated US images (top: RF images, bottom: B-mode
images).
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Figure 4.2: Ground truth and estimated PSFs.

Table 4.2: Performance of PSF estimation.
Methods NRMSE(dB) PSNR(dB)

Proposed 0.7392 9.2301

[ZBKT14] 0.7805 8.7575

and the method of [ZBKT14].
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Real US images

In order to validate the performance of the proposed algorithm, a group of real US images has been

considered in this section. Fig. 4.3(a) shows the observation of a healthy skin tissue in B-mode.

Figs. 4.3(b), 4.3(c) display the estimated PSFs using the homomorphic technique [JL94, MA01] and

the proposed method. Fig. 4.3(d) shows the estimated US TRF using the non-blind deconvolution

method of [ZBKT16] and the estimated PSF in Fig. 4.3(b). The restored US TRF using the proposed

method is given in Fig. 4.3(e). The visual inspection of the results confirms similar results between

the restored US TRF. However, in terms of the resolution gain (RG), the obtained US TRF with the

proposed method outperforms the US TRF estimated from the non-blind deconvolution in [ZBKT16].

The estimation of the label field provided by our method is displayed in Fig. 4.3(f), where the skin

tissue appears in red.

(a) Bmode image (b)Homomorphic (c) Proposed

(d) Non-blind (RF = 2.090)(e) Proposed (RG = 2.325) (f) Estimated labels

Figure 4.3: Blind deconvolution of real US image which corresponds to healthy skin tissue. (a) is
the observation; (b),(c) are the estimated PSFs using the homomorphic technique and the proposed
method; (d), (e) are the restored US TRF using non-blind deconvlution method and the proposed
method; (f) is the estimated labels jointly.
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4.3 Blind deconvolution using a parametric model for the PSF

It is interesting to note that the blind deconvolution strategy in last section is time consuming. In

order to reduce the computational burden and estimate the PSF and US TRF more efficiently, a

parametric model for the PSF is explored in this section. The idea of blind deconvolution using a

parametric model for the PSF has been studied in [YZX12b], where a Gaussian function modulated

by a sinusoidal function was proposed to model the US PSF.

4.3.1 Parametric model of the PSF

Assuming that the ultrasound impulse response is a modulated band limited signal, we propose the

following parametric model for the PSF in an US imaging system

hp(i, j) ≡ e(i, j) cos[ω0ta(i) + φ] (4.18)

with

e(i, j) = tζa(i) exp[−αt2
a(i)− βt2

l (j)] (4.19)

where the parametric model of PSF “hp” and the envelope of this model “e” belong to Rq×r, the

integers i ∈ {1, · · · , q}, j ∈ {1, · · · , r} denote the pixel locations, ω0 = 2πf0 is the central frequency of

the transducer (assumed to be known in advance), φ is the phase of the system PSF, the parameters

α, β, ζ determine the shape of the PSF envelope, the vectors ta and tl are the temporal axes along

the axial and lateral directions (i.e., the vertical and horizontal directions in a 2D US image). Thus,

the vectors ta ∈ Rq×1 and tl ∈ R1×r determine the size of the PSF. Fig. 4.4 shows a simulated PSF

with the parametric model (4.18).

With the a priori knowledge of the size of the PSF1, there are just a few parameters, i.e., φ, α, β, ζ

to estimate instead of the whole PSF pixels.

• ζ: The value of ζ can be determined by cross validation. More precisely, the value of ζ is fixed

to 3 for both simulated and in vivo US data in this chapter.
1The values of q and r or the size of the PSF are always assumed to be known in advance in the problem of US

image deconvolution. Moreover, since the size of the PSF is usually much smaller compared with the size of images
(i.e., q � m, r � n), zero padding of the PSF is necessary for the convolution in the frequency domain. Without loss of
generality, all the PSFs mentioned in this chapter hereinafter have been zero padded for the convolution computation.
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Figure 4.4: Simulated PSF with the proposed parametric model (4.18).

• α and β: We introduce the following vector θ = {α, β} as the envelope shape parameters that

will be estimated in this section. Since the estimation of the two envelope shape parameters is

ill-posed, we propose the following two constraints for them

ρ(α) = ı[αmin,αmax](α) (4.20)

%(β) = ı[βmin,βmax](β) (4.21)

where ρ(α) and %(β) are two indicator functions on the sets [αmin, αmax] and [βmin, βmax].

• φ: The estimation of phase term φ can be complicated since the phase is wrapped into [−π, π]

[MA01]. In this section, we estimate the phase term as the traditional cepstrum-based method,

i.e., the minimum phase assumption [JL94]. It is also interesting to note that it is possible to

avoid the estimation of φ by dealing with demodulated signals following [YZX12b].
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4.3.2 Optimization Problem Formulation

Taking into account the parametric model for the PSF (4.18), we formulate the US image blind

deconvolution problem as follows

minx,θ Ψ(x,h) + τϕ(x) + ρ(α) + %(β)

subject to h = hp (4.22)

where Ψ(x,h) is the data fidelity term, ϕ(x) is the regularization term for the TRF and τ is the

corresponding regularization parameter which weight the importance between the data fidelity term

and the regularization term. Under the assumption of additive white Gaussian noise (AWGN), we

have

Ψ(x,h) = 1
2‖y−Hx‖2. (4.23)

In order to calculate the convolution Hx, we hereinafter recall the basic assumption on the PSF

used in this section, which has also been considered in Section 3.2 and the literature therein.

Assumption 1. The blurring matrix H represents a cyclic convolution, i.e., H is a block circulant
matrix with circulant blocks (BCCB).

Using the cyclic convolution assumption, the blurring matrix and its conjugate transpose can be

decomposed as

H = FHΛF (4.24)

HH = FHΛHF (4.25)

where Λ = diag{Fh} ∈ CN×N is a diagonal matrix, whose diagonal elements are the eigenvalues of

the matrix H or the Fourier coefficients of the first column of the blurring matrix H, i.e., h. Using

this assumption, the linear operation Hx can also be rewritten as below

Hx = FHΛFx

= FHdiag{Fh}Fx

= FHdiag{Fx}Fh

= Xh (4.26)
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where X = FHdiag{Fx}F is a block circulant matrix with circulant blocks. Note that (4.26) will be

used for the estimation of the PSF.

4.3.3 BCD-based algorithms

In order to solve the problem (4.22), we propose a proximal alternating minimization approach, which

is within the block-coordinate descent (BCD) framework. Algorithm 6 summarizes the proposed BCD

strategy, where each sub-step is addressed using proximal forward-backward (PFB) algorithm. Note

that the convergence analysis of the proximal alternating linearized minimization (PALM) algorithm

has been studied in [BST14].

Algorithm 6: Overall Algorithm
Input: Observation y, Initial estimation h0, τ , Parameters of PSF model α0, β0

// Update x with a known PSF

1 x̂ ∈ arg minx Ψ(x,h) + τϕ(x);
// Update h by estimating α, β with a known TRF

2 α̂, β̂ ∈ arg minα,β Ψ(x,h) + ρ(α) + %(β);
3 ĥ = hp(α̂, β̂);
Output: x̂, ĥ

Estimation of the TRF x

Considering AWGN, the sub-optimization problem to estimate the TRF x can be formulated as

below

x̂ ∈ arg min
x

Ψ(x,h) + τϕ(x). (4.27)

The problem (4.27) is a typical non-blind deconvolution problem. In this section, a GGD is considered

as a prior for x as explained in the next paragraph.

`p-norm regularizer Given a generalized Gaussian prior for the ultrasound TRF and AWGN, the

problem (4.27) can be written as below

x̂ ∈ arg min
x

1
2‖y−Hx‖2 + τ‖x‖pp (4.28)
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where ‖x‖p = p
√
|x1|p + · · ·+ |xN |p and 0 < p ≤ 2. The PFB method implemented to solve (4.27) is

defined by the following recursions

For j = 0, 1, . . . , J − 1 x̄j = xj − γxA
−1
x ∇xΨ(xj ,h),

xj+1 = proxγ−1
x Ax,ϕ

(x̄j)

(4.29)

where Ax = ‖HHH‖, proxγ−1
x ,ϕ : Rn → Rn is a component-wise application of the proximity operator

associated with the function ϕ, defined as

proxγ−1
x ,ϕ(x̄) = arg min

x

1
2γx
|x̄− x|2 + τϕ(x) (4.30)

where ‖ · ‖ is the usual Euclidean norm, x and x̄ represent any component of the vectors x and x̄

respectively.

Theorem 2. The optimization problem

arg min
x

1
2γ |x̄− x|

2 + τ |x|p, (4.31)

has an analytical solution that can be computed as follows

proxγ−1,|·|p(x̄) =

x∗sgn(x̄)max(0, |x̄| − χ) 0 < p ≤ 1

x∗sgn(x̄) 1 < p ≤ 2
(4.32)

with a thresholding χ given by

χ = [2λ(1− p)]
1

2−p + λp[2λ(1− p)]
p−1
2−p (4.33)

where λ = τγ, x∗ is the positive root of the equation

x+ λpxp−1 = |x̄|. (4.34)

Proof. See Appendix D.

Fig. 4.5 shows the graph of the proximity operator when 0 < p ≤ 2. Note that (4.32) is also

valid when p > 2 even if we are just interested in p ∈ (0, 2] in this chapter. Note that the soft (hard)
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Figure 4.5: Graph of proximity operator of | · |p (0 < p ≤ 2).

thresholding can be recovered as the special cases of (4.32) when p→ 1 (p→ 0). We recall that the

soft-thresholding operator is defined by

proxγ−1,|·|(x̄) = max(0, |x̄| − χ)sgn(x̄) (4.35)

where χ = τγ. We should also note that when p ≥ 1, the problem (4.28) is convex and can be solved

by a variety of existing algorithms, including the ADMM (alternating direction method of multipliers)

[BPC+11a], ISTA (iterative shrinkage-thresholding algorithm), FISTA (fast ISTA) [BT09], TwIST

(two step ISTA)[BDF07] and so on.

Estimation of the PSF h

As discussed above, we can estimate the PSF by calculating the MAP estimators of the PSF envelope

parameters α and β by solving the following sub-optimization problem

α̂, β̂ ∈ arg min
α,β

Ψ(x,h) + ρ(α) + %(β)

∈ arg min
α,β
‖Xh− y‖2 + ρ(α) + %(β) (4.36)
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It is obviously not possible to find a closed-form solution for (4.36). Thus, an iterative method should

be considered. More specifically, we propose a PFB algorithm (4.37) to estimate α, β.

For i = 0, 1, . . . , I − 1

ᾱi = αi − γαA−1
α (x,hi)∇αΨ(x,hi),

αi+1 = proxγ−1
α Aα(x,hi),ρ(ᾱi),

β̄i = βi − γβA−1
β (x,hi)∇βΨ(x,hi),

βi+1 = proxγ−1
β
Aβ(x,hi),%(β̄i),

(4.37)

where Aα(x,hi) = Aβ(x,hi) = L(x)IN with L(x) = ‖XHX‖2 and IN ∈ RN is an identity matrix.

Since the functions ρ(α) and %(β) are two indicator functions on convex sets, the proximity operators

reduce to the Euclidean projection onto the corresponding convex sets. Define ∇αΨ(x,hi) and

∇βΨ(x,hi) as the gradient of the function Ψ with respect to α and β, which can be calculated as

below

∇αΨ(x,hi) =
〈
∂Ψ
∂hi ,

∂hi
∂α

〉

=
〈
XH(Xhi − y),−c� t2

a � exp(−αt2
a) exp(−βt2

l )
〉

(4.38)

∇βΨ(x,hi) =
〈
∂Ψ
∂hi ,

∂hi
∂β

〉

=
〈
XH(Xhi − y),−c� exp(−αt2

a)(t2
l � exp(−βt2

l ))
〉

(4.39)

where “�” is the Hadamard product, the vector c = (c(1), · · · , c(N))T with its element c(n) =

tζa(n) cos(ω0ta(n) + ϕ) (n = 1, · · · , N) and 〈·, ·〉 represents the inner product between two vectors.

Alternating Optimization Approach

The pseudo code of the algorithm that we propose for estimating the parameters of the PSF model

and the ultrasound TRF jointly is given below. Note that the PALM algorithm in [BST14] can be

recovered as a special case of the proposed algorithm when J = I = 1.
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Algorithm 7: Proposed Algorithm
Input: Observation y, Initial estimation h0, τ , Parameters of PSF model α0, β0

1 for k = 0,1, . . . do
2 xk,0 = xk, hk,0 = hk;

// Update x
3 for j = 0,1, . . . ,J do
4 x̄k,j = xk,j − γxA

−1
x ∇xΨ(xk,j ,hk);

5 xk,j+1 = proxγ−1
x Ax,ϕ

(x̄k,j);
6 end

// Update h
7 xk+1 = xk,J ;
8 for i = 0,1, . . . ,I do
9 ᾱk,i = αk,i − γαA−1

α ∇αΨ(xk+1,hk,i);
10 αk,i+1 = proxγ−1

α Aα,ρ
(ᾱk,i);

11 β̄k,i = βk,i − γβA−1
β ∇βΨ(xk+1,hk,i);

12 βk,i+1 = proxγ−1
β
Aβ ,ρ

(β̄k,i)

13 end
14 αk+1 = αk,I , βk+1 = βk,I ;
15 hk+1 = hp(αk+1, βk+1);
16 until meet the stopping criterion
17 end

Output: x̂ = xk+1, ĥ = hk+1

4.3.4 Simulation results

In order to study the performance of the proposed algorithm, experiments have been conducted on

simulated and in vivo ultrasound images. Moreover, a comparison with a non-blind deconvolution

algorithm, where the PSF is estimated in a pre-processing step using the cepstrum-based algorithm

[MA03, JL94] has been conducted. For simulated US images, the performance of different algorithms

can be evaluated by the NRMSE. However, the ground truth for the ultrasound TRF and PSF are

not available for real US images. Thus, the resolution gain (RG) and visually inspection have been
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used to evaluate the performance of TRF estimation quantitatively for the real images.

Simulated US images

Simulated ultrasound image x of size 275× 75 has been generated according to generalized Gaussian

distribution, as shown in Fig. 4.6(a). More details about this generation can be found in Chapter

2. The observed image shown in Fig. 4.6(e) has been blurred by a simulated PSF (displayed in

Fig. 4.6(b)) using the parametric model (4.18) and contaminated by an additive white Gaussian

noise with BSNR= 30 dB. Figs. 4.6(c), 4.6(d) display the estimated PSFs using the cepstrum-based

method described in Chapter 1 and the proposed method. Figs. 4.6(f)-4.6(h) show the restored

ultrasound TRFs using the true PSF, the estimated PSFs obtained with the cepstrum-based method

and the proposed method respectively. Moreover, the prior used for the TRF is an `p-norm with

p = 0.5 for all experiments related to simulated images. The TRFs estimated using the true PSF and

the proposed method are visually very similar. The PSF obtained with the proposed method is also

closer to the true PSF than the estimated PSF using the cepstrum-based method. The quantitative

results displayed in Table 4.3 confirm the visual impression in terms of NRMSE. To conclude, the

proposed blind deconvolution algorithm seems to provide better performance than the one obtained

with the non-blind deconvolution algorithm using a PSF estimated with cepstrum-based method.

Table 4.3: Simulated US images: Performance of blind deconvolution using parametric PSF model.
NRMSE

Method Prior x h

Non blind with (f) `0.5 0.97 0

Non blind with (g) `0.5 1.44 1.70

Proposed `0.5 1.09 0.04

Real US images

The proposed blind deconvolution algorithm has also been tested on real US images using an `p-

norm regularization. In this experiment, an ultrasound image representing a mouse kidney has been
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Figure 4.6: Blind deconvolution of simulated US images using a parametric model for the PSF.

acquired with a probe with 25 MHz central frequency, as shown in Fig. 4.7(a). The value of p has

been fixed to 0.5, 1, 1.5 and 2 for the experiments of in vivo US images. The restored ultrasound

TRFs shown in Figs. 4.7(b)-(i) are obtained with the non-blind (cepstrum-based method) and the

proposed algorithms. In Figs. 4.7, the estimated TRFs using the proposed algorithm and the

non-blind deconvolution method have clearer boundaries than the observed image in Fig. 4.7(a).

Moreover, the smoothness of the restored images is proportional the the value of p according to the

results presented in Fig. 4.7. The RG of the restored image is inversely proportional to the value of

p.

4.4 Conclusion

This chapter studied two strategies for the blind deconvolution of medical ultrasound images. In the

first strategy, a hierarchical Bayesian model for the joint estimation of an ultrasound image and the

system PSF was proposed. In order to solve this ill-posed problem, generalized Gaussian priors were
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assigned to the reflectivities of homogeneous regions in the image and a Gaussian prior was chosen

for the PSF. The results obtained on simulated US data clearly highlight the interest of updating

the PSF during the deconvolution process. In the second strategy, a parametric model was proposed

for the system PSF such that a few parameters related with the model were estimated instead

of the whole PSF, which reduced the computational time significantly. Moreover, an alternating

optimization method based on the forward-backward splitting technique was implemented to address

the formulated problem, where the proximity operator of the `p-norm function was studied. Note

that the second strategy is much more efficiency in terms of the computational time compared with

the first strategy. A more detailed comparison with be conducted in the future.
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(a) Observation (b) Non-blind (`0.5) (c) Proposed (`0.5)

(d) Non-blind (`1) (e) Proposed (`1)

(f) Non-blind (`1.5) (g) Proposed (`1.5)

(h) Non-blind (`2) (i) Proposed (`2)

Figure 4.7: Blind deconvolution of real US images using a parametric model for the PSF.
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Conclusions and perspectives

Conclusions

The objective of this thesis was to improve the medical ultrasound image quality by post-processing

techniques. The main difficulty of medical ultrasound image restoration is its granular appearance due

to speckle noise. In this thesis, we exploited the statistical properties of speckle to build new image

restoration techniques. More precisely, the statistical characteristics of ultrasound radio-frequency

images were modelled by generalized Gaussian distributions. Our main contributions related to the

restoration techniques are summarized below Based on the statistical analysis of ultrasound radio-

frequency images, several post-processing techniques are proposed.

The first work studied in Chapter 2 proposed a hierarchical Bayesian model for joint deconvolution

and segmentation of medical ultrasound images. According to the statistical analysis of medical

ultrasound radio-frequency images, a generalized Gaussian distribution was proposed as prior for

the tissue reflectivity function/image to be estimated. Also, a hidden label field within the spatial

information of the tissue reflectivity function was introduced for the segmentation purpose. The

proposed priors were combined with the likelihood to provide a joint posterior distribution. This

posterior was too complicated to compute analytical expression or the Bayesian estimators. Thus, a

Gibbs sampler was investigated. Also, a Hamiltonian Monte Carlo algorithm was embedded into the

Gibbs sampler to sample the high dimension tissue reflectivity function efficiently. Compared with the

existing techniques for ultrasound image deconvolution, the proposed Bayesian framework joint the

deconvolution and segmentation problems in a elegant way. Moreover, simulation results conducted

both on simulated images and real ultrasound images showed that the deconvolution performance

127
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benefited from the segmentation information. In this sense, the proposed method is competitive with

the state-of-the-art techniques for image deconvolution.

Chapter 3 proposed a novel method for single image super-resolution. This method can be imple-

mented not only for medical ultrasound images but also for piece-wise constant/natural images. Sin-

gle image super-resolution aims at estimating a high resolution image from a blurred, down-sampled

and noisy observation. Compared with the existing methods for single image super-resolution, e.g.,

first order gradient or splitting based algorithm, the proposed method was able to give an analytical

solution for the `2 − `2 problems/Tikhonov regularized quadratic problems. Moreover, in order to

handle more generic image priors, the analytical solution was embedded into an traditional alternat-

ing direction methods of multipliers (ADMM) framework. Numerical experiments showed that the

novel method using the proposed analytical solution for single image super-resolution problems can

increase the computational efficiency significantly than the existing methods.

Chapter 4 studied blind deconvolution of ultrasound images, which is an additionally ill-posed

problem. Thus, two strategies were investigated. First, a hierarchical Bayesian framework was firstly

proposed, where a Gaussian prior was introduced for the system point spread function. Due to the

intractability of the joint posterior distribution, a Markov chain Monte Carlo method was explored.

Simulations conducted showed that the proposed method was competitive with the existing non-blind

ultrasound image deconvolution method. In order to reduce the computational burden, a parametric

model for the PSF is explored in a second step. A few parameters of the model were estimated instead

of the whole pixels of blurring kernel. Moreover, an alternating optimization method was proposed

for the formulated problem. Compared with the first strategy, the computational complexity was

reduced significantly. The experiments demonstrated the performance and efficiency of the proposed

method.

Future work

The open issues and perspectives resulting from this thesis are listed in what follows.

Regularizations: It is well known that the inverse problems are ill-posed/ill-conditioned. Thus,

various priors/regularizations have been considered in our works and the relative references to address
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this problem. However, the regularization parameters are fixed in the optimization methods of this

thesis. It is interesting how to tune these parameters adaptively.

Ultrasound image segmentation: Up to now, the segmentation of medical ultrasound images

remains under exploration widely. Even through a variety of algorithms have been developed for

medical ultrasound image segmentation, it is still an interesting track [BHA+14]. For instance,

ultrasound image segmentation combined with machine learning techniques, or image segmentation

using more precise anatomical information of the object of interest, e.g., atlas-based segmentation

methods.

Multi-frame image super-resolution: In Chapter 3, a method for single image super-resolution

has been explored. However, it is very interesting to deal with multi-frame image super-resolution

since it is reasonable to assume that more information in the observations can help in restoration of a

high resolution images. Thus, how to address multi-frame image super-resolution with the proposed

method is an interesting track.

3D image analysis: All the methods proposed methods in this thesis aim at 2D images. How

to extend the proposed methods to 3D images or develop new techniques especially for 3D images

are of interest.

Other medical applications: Other medical image applications include not only ultrasound

image analysis, e.g., motion estimation, processing specific data (brain, cardiac disease, breast, etc.)

but also other medical image modalities, e.g., MRI, CT.
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Appendix A

Computation of blurring operator

Consider the following linear image formation model

y = h~ x (A.1)

where x ∈ Rm×n is the ground truth/image to be estimated, y ∈ Rm×n is the observed image and

h ∈ Rp×q is a spatially invariant blurring operator. A more widely used representation of the image

formation model (A.1) is given by the matrix-vector formation as below

y = Hx (A.2)

where x and y (∈ RN×1, N = m×n) are column stacked vectors obtained by lexicographical ordering

of x and y. The blurring matrix H is associated with the blurring operator h. As stated in Chapter

1, the blurring matrix H is a block circulant matrix with circulant blocks (BCCB) when cyclic

boundary is considered [Gar06].

A.1 Block circulant matrix with circulant blocks

A matrix is called BCCB if each row of blocks is a periodic shift of its previous row of blocks and

every block is a circulant matrix, see e.g., Fig. A.1.

Consider an example where the images x, y ∈ R5×5 and the blurring operator h ∈ R3×3 are

133
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Figure A.1: A BCCB matrix of size 9× 9.

showed in (A.3).

x =



x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55


, h =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 and y =



y11 y12 y13 y14 y15

y21 y22 y23 y24 y25

y31 y32 y33 y34 y35

y41 y42 y43 y44 y45

y51 y52 y53 y54 y55


.

(A.3)

In order to use the forward model (A.1) to calculate the observation y, the blurring operator

is rotated and its center is placed over each element in matrix x. Then an element by element

multiplication and summation are performed.

x55h33 x51h32 x52h31 x53 x54 x55 x51

x15h23 x11h22 x12h21 x13 x14 x15 x11

x25h13 x21h12 x22h11 x23 x24 x25 x21

x35 x31 x32 x33 x34 x35 x31

x45 x41 x42 x43 x44 x45 x41

x55 x51 x52 x53 x54 x55 x51

x15 x11 x12 x13 x14 x15 x11



(A.4)



A.2 - Spectral decomposition 135

The BCCB matrix ∈ R25×25 in the linear model for image deblurring is then given by

H =



H2 H1 © © H3

H3 H2 H1 © ©

© H3 H2 H1 ©

© © H3 H2 H1

H1 © © H3 H2


(A.5)

where © ∈ R5×5 is a matrix with all entries equal to 0 and the block Hk ∈ R5×5 is defined as

Hk =



h2k h1k 0 0 h3k

h3k h2k h1k 0 0

0 h3k h2k h1k 0

0 0 h3k h2k h1k

h1k 0 0 h3k h2k


(A.6)

A.2 Spectral decomposition

A.2.1 General definitions

In mathematics, a matrix A is normal is AHA = AAH where (·)H is the conjugate operator. A

normal matrix is diagonalizable by a unitary matrix1 as below

A = UΛUH (A.7)

where Λ is a diagonal matrix whose elements are the eigenvalues of A.

A.2.2 Spectral decomposition of a BCCB matrix

Any BCCB matrix H is normal and has a spectral decomposition of the form

H = FHΛF (A.8)
1A matrix U is unitary is UH = U−1
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where F is 2D unitary discrete Fourier transform. Thus, the linear model (A.2) can be implemented

by

y = ifft2D(fft2D(x) · fft2D(h)) (A.9)

where zero-padding is necessary to make sure all the images in (A.9) of the same size.
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Appendices of Chapter 2

B.1 Determinations of the conditional distributions of the noise
variance and scale parameters

Inverse gamma distribution A univariate inverse gamma distribution with shape parameter α

and scale parameter β denoted as IG(α, β) has the following pdf

p(x) = βα

Γ(α)x
−α−1 exp

(
−β
x

)
ıR+(x) (B.1)

where ıC is an indicator function on the set C. The conditional distribution of the noise variance

and of the GGD scale parameters of the joint posterior distribution, i.e., (2.14) and (2.18) are inverse

gamma distributions that are derived hereinafter.

Conditional distribution of the noise variance

p(σ2
n|y,x, ξ,γ, z) ∝ p(y|x, σ2

n, ξ,γ, z)p(σ2
n)

∝
1

(2πσ2
n)N2

exp
(
−‖y−Hx‖22

2σ2
n

)
× να exp

(
−ν/σ2

n

)
Γ(α)(σ2

n)α+1

∝ (σ2
n)−α−N/2−1 × exp

[
− 1
σ2
n

(
ν + 1

2‖y−Hx‖22
)]

.

We can recognize the following inverse gamma distribution

IG
(
α+N/2, θ + 1

2‖y−Hx‖22
)
.
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Conditional distribution of the scale parameters

p(γk|x, ξ, z,γ−k) ∝ p(xk|ξk, γk, zk)p(γk)

∝ aNkk exp

−‖xk‖ξkξk
γk

 1
γk
IR+(γk)

∝ γ
−Nk/ξk−1
k exp

−‖xk‖ξkξk
γk

 .
We can recognize the following inverse gamma distribution

IG
(
Nk

ξk
, ‖xk‖ξkξk

)
.

B.2 Sampling the shape parameters with an RWMH Algorithm

In order to sample the shape parameter ξk following (2.16), we generate a candidate using a proposal

and accept or reject this candidate with an appropriate acceptance ratio. The proposal used in

this manuscript is a truncated Gaussian distribution whose mean is ξ(t)
k (the value of the parameter

generated at the previous iteration) and whose variance δ is adjusted in order to obtain a suitable

average acceptance ratio, i.e.,

ξ∗k ∼ N (ξ(t)
k , δ)I(0,3)(ξ∗k). (B.2)

This candidate is then accepted or rejected according to the following ratio

ρ = min
{
p(ξ∗k|x,γ, z, ξ−k)
p(ξtk|x,γ, z, ξ−k)

, 1
}
. (B.3)

We propose to adjust the stepsize δ every 100 iterations to achieve a reasonable acceptance rate

(30%− 90%) [Per15]. Specifically, if the acceptance ratio during the previous 100 iterations is larger

than 90% (respectively smaller than 30%), than the variance δ is decreased (respectively increased) of

20% compared to its previous value. Note that to ensure the homogeneity of the Markov chain after

the burn-in period, this tuning procedure is only executed during the burn-in period. The stepsize

is then fixed during the following iterations.

The algorithm used to sample ξk is finally divided into three procedures that are summarized in

Algorithm 8.
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Algorithm 8: Adjusted RWMH Algorithm
/* Initialization */

1 Choose an initial value ξ0;
/* Candidate Generation */

2 for t = 1 : NMC do
3 ξ∗k ∼ N (ξ(t)

k , δ)I(0,3)(ξ∗k);
/* Accept/Reject Procedure */

4 if rand 6 ρ then
5 ξ

(t+1)
k = ξ∗k;

6 else
7 ξ

(t+1)
k = ξ

(t)
k ;

8 end
9 Adjust δ in order to obtain a suitable acceptance rate.

10 end

B.3 Sampling the TRF using an Hamiltonian Monte Carlo Algo-
rithm

B.3.1 HMC Algorithm

The main idea of the Hamiltonian Monte Carlo(HMC) algorithm is to introduce a vector of momen-

tum variables p ∈ RN that is independent of x and to sample the pair (x,p) instead of just sampling

x. The conditional distribution of (x,p) can be written

p(x,p|y, σ2
n, ξ,γ, z) = p(x|y, σ2

n, ξ,γ, z)p(p).

The Hamiltonian of the system is defined as

H(x,p) , − log p(x,p|y, σ2
n, ξ,γ, z) = U(x) + V (p)

where V (p) and U(x) are the kinetic and potential energies of the Hamiltonian system. They are

defined as

V (p) = 1
2pTp and U(x) = − log[p(x|y, σ2

n, ξ,γ, z)].
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At the iteration #t, the HMC consists of two steps:

• generate a candidate pair (p(?),x(?)) from the current state (p(t),x(t)) using a discretizing

method, such as the leapfrog and Euler methods;

• accept or reject the candidate with the probability ρ

ρ = min{exp[H(p(t),x(t))−H(p(?),x(?))], 1}. (B.4)

In our experiments, we have considered the leapfrog discretizing method due to its better performance

compared to the Euler method, also noticed in [Nea11]. The three steps of the leapfrog method are

defined as

pi(t+ ε/2) = pi(t)−
ε

2
∂U

∂xi
[x(t)]

xi(t+ ε) = xi(t) + εpi(t+ ε/2)

pi(t+ ε) = pi(t+ ε/2)− ε

2
∂U

∂xi
[x(t+ ε)]

where ε is a so-called stepsize and L is the number of leapfrog iterations. We should note that U(x)

is not differentiable when ξk 6 1. To deal with this problem, a smoothing approximation has been

considered, i.e., | · | ≈
√
·2 + ε, with ε � 1. The algorithm based on the leapfrog discretization and

this approximation is summarized in Algorithm 9. Compared to other MCMC algorithms, the HMC

method has the noticeable advantage to generate efficiently a candidate x even in the case of a high

dimensional and complicated distribution.

B.3.2 Tuning the parameters ε and L

The performance of the HMC algorithm mainly depends on the values of the parameters ε (stepsize)

and L (number of leapfrog steps). Fortunately, these two parameters can be tuned independently

in most applications [Nea11]. It is recommended to select a random number of leapfrog steps L

to avoid possible periodic trajectories [Nea11]. In our algorithm, L is sampled uniformly in the

interval [50, 70]. The leapfrog stepsize ε has been adjusted in order to ensure a reasonable average

acceptance rate any 100 iterations. Specifically, when the acceptance rate is too large, ε should
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be decreased and vice versa. The range of the acceptance rate has been set to 30% − 90% in the

burn-in period. Note that the tuning of ε is just carried out during the burn-in period to ensure the

Markov chain is homogeneous after the burn-in period. The acceptance rate generally belongs to the

interval 60%− 80% when the Markov chain has converged, while the acceptance rate is around 25%

in standard MH moves for high dimensional target distributions [GCC11].

Algorithm 9: Adjusted HMC Algorithm
/* Initialization */

1 x(0) = y;
2 for t = 1 : NMC do

/* Candidate generation */

3 p(t,0) ∼ N(0, IN×N );
/* Leapfrog Method */

4 for i = 1 : L do
5 Set p(t,i) = p(t,i) − ε

2
∂U

∂x(t,i) x(t,i);
6 Set x(t,i) = x(t,i) + εp(t,i);
7 Set p(t,i) = p(t,i) − ε

2
∂U
∂x x(t,i);

8 end
9 p(∗) = p(t,L);

10 x(∗) = x(t,L);
/* Accept/Reject Procedure */

11 Compute ρ with (B.4)
12 if rand 6 ρ then
13 x(t+1) = x(∗);
14 else
15 x(t+1) = x(t);
16 end
17 Adjust ε in order to obtain a suitable acceptance rate.
18 end
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Appendix C

Appendices of Chapter 3

C.1 Derivation of the analytical solution (3.13)

The computational details for obtaining the result in (3.13) from (3.7) are summarized hereinafter.

First, denoting r = HHSHy + 2τAHv, the solution (3.7) is

x̂ = (HHSH + 2τAHA)−1r

= FH
(
ΛHFSFHΛ + 2τFAHAFH

)−1
Fr. (C.1)

Based on Lemma 1, ΛHFSFHΛ is computed as

ΛHFSFHΛ

= 1
d
ΛH (Jd ⊗ INl) Λ (C.2)

= 1
d
ΛH

((
1d1Td

)
⊗ (INlINl)

)
Λ (C.3)

= 1
d
ΛH (1d ⊗ INl)

(
1Td ⊗ INl

)
Λ (C.4)

= 1
d

ΛH [INl , · · · , INl︸ ︷︷ ︸
d

]T

[INl , · · · , INl︸ ︷︷ ︸

d

]Λ

 (C.5)

= 1
d
ΛHΛ. (C.6)

Note that (C.3) was obtained from (C.2) by replacing Jd by 1d1Td , where 1d ∈ Rd×1 is a vector of

ones. Obtaining (C.4) from (C.3) is straightforward using the following property of the Kronecker

product ⊗

AB ⊗ CD = (A⊗ C)(B ⊗D).
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In (C.5), Λ ∈ RNh×Nh whereas [INl , · · · , INl ] ∈ RNl×Nh and [INl , · · · , INl ]
T ∈ RNh×Nl are block

matrices whose blocks are equal to the identity matrix INl . The matrix Λ ∈ RNl×Nh in (C.6) is given

by

Λ = [INl , · · · , INl ]Λ

= [INl , · · · , INl ]diagΛ1, · · · ,Λd

= [INl , · · · , INl ]


Λ1 · · · 0

... . . . ...

0 · · · Λd


(C.7)

= [Λ1,Λ2, · · · ,Λd]. (C.8)

As a consequence, (C.1) can be written as in (3.9), i.e.,

x̂ = FH
(1
d
ΛHΛ + 2τFAHAFH

)−1
Fr (C.9)

= FH

[
1
2τΨ− 1

2τΨΛH
(
dINl + 1

2τΛΨΛH
)−1

ΛΨ 1
2τ

]
Fr (C.10)

= 1
2τ FHΨFr− 1

2τ FHΨΛH
(
2τdINl + ΛΨΛH

)−1
ΛΨFr (C.11)

where Ψ = F
(
AHA

)−1
FH . The Lemma 2 is adopted from (C.9) to (C.10) with A1 = 2τFAHAFH ,

A2 = ΛH , A3 = 1
dI and A4 = Λ. Note that the matrices A1 and A3 are always invertible, implying

that the Woodbury formula can be applied.
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C.2 Pseudo codes of the proposed fast ADMM super-resolution
methods for TV and `1-norm regularizations

Algorithm 10: FSR with TV regularization
Input: y, H, S, τ , d, Dh and Dv

1 Set k = 0, choose µ > 0, d0, u0;
// Factorization of matrix H

2 H = FHΛF;
3 Λ = [Λ1,Λ2, · · · ,Λd];

// Factorization of matrices Dh and Dv

4 Dh = FHΣhF;
5 Dv = FHΣvF;
6 Ψ = (ΣH

h Σh + ΣH
v Σv)−1 ;

7 Repeat
// Update x using Theorem 1

8 ρh = ukh − dkh;
9 ρv = ukv − dkv ;

10 Fr = F(HHSHy + µDhρh + µDvρv);

11 xf =
(

ΨΛH
(
µdINl + ΛΨΛH

)−1
ΛΨ

)
Fr ;

12 xk+1 = 1
µFHΨFr− 1

µFHxf ;
// Update u using the vector-soft-thresholding operator

13 ν = [Dhxk+1 + dkh,Dvxk+1 + dkv] ;
14 uk+1[i] = max{0, ‖ν[i]‖2 − τ/µ} ν[i]

‖ν[i]‖2
;

// Update the dual variables d
15 dk+1 = dk + (Axk+1 − uk+1);
16 k = k + 1;
17 until stopping criterion is satisfied;

Output: x̂ = xk.
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Algorithm 11: FSR with `1-norm regularization in the wavelet domain
Input: y, H, S, τ , d

1 Set k = 0, choose µ > 0, d0, u0;
// Factorization of matrix H

2 H = FHΛF;
3 Λ = [Λ1,Λ2, · · · ,Λd];
4 Repeat

// Update θ using Theorem 1

5 Fr = F(HHSHy + µW(uk − dk);

6 xf =
(

ΛH
(
µdINl + ΛΛH

)−1
Λ
)

Fr ;

7 xk+1 = 1
µFr− 1

µxf ;
// Update u using the soft-thresholding operator

8 ν = WHxk+1 + dk ;
9 uk+1 = max{0, |ν| − τ/µ}; // |ν| , [|ν1|, · · · , |νM |]T ∈ RM×1

// Update the dual variables d
10 dk+1 = dk + (WHxk+1 − uk+1);
11 k = k + 1;
12 until stopping criterion is satisfied;

Output: x̂ = xk.
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Calculation of proximity operators

D.1 Definition

Let f : RN → (−∞,+∞] be a proper and lower semicontinuous function. For every x ∈ RN , the

minimization problem

arg min
y
f(y) + 1

2‖x− y‖2 (D.1)

admits a unique solution, which is defined as proxf (x). The operator proxf : RN → RN thus defined

is the proximity operator of f . We often encounter the proximity operator of the scaled function τf ,

where τ > 0, which can be expressed as

proxτf (x) = arg min
y
f(y) + 1

2τ ‖x− y‖2 (D.2)

This is also called the proximity operator of f with parameter τ .

D.2 Proximity operator of |x|p

Since proximity operator is an element-to-element arithmetic, we just calculate the proximity operator

for a scalar hereinafter. Denoting P (x) , 1
2 |w − x|

2 + τ |x|p, calculating the proximity operator of

| · |p can be formulated as below

proxτ |·|p(w) = arg min
x
P (x), (D.3)

We note that this problem has been explored in different applications, e.g., in [ALP02, MS12,

ZMZ+13] for 0 < p ≤ 1 and in [CCPW07, CP11] for p ≥ 1.

In order to solve (D.3), we first note that the variables satisfy the relationship sgn(x) = sgn(w).

Otherwise, the problem P (x) is minimized at x = 0. In the following, we just consider x > 0 without
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loss of generality. Since P (x) is differential when x > 0, by setting P ′(x) = 0, we have

g(x) , x+ τpxp−1 = |w| (D.4)

Thus, finding the minimizer of the problem (D.3) has been transferred into looking for the solution

of the equation g(x) = |w|.

• 0 < p ≤ 1

In order to find the solution of the equation g(x) = |w|, we calculate the first and second order

derivatives of g(x) as below

g′(x) = 1− τp(1− p)xp−2

g′′(x) = τp(1− p)(2− p)xp−3 > 0

By setting g′(x) = 0, we get the critical point of g(x), i.e., xc = [τp(1− p)]
1

2−p . Since g′′(x) > 0

for all x > 0, g(x) is convex for x > 0, as shown in Fig. D.1. Furthermore, by denoting as

x∗ > 0 a minimizer of P (x), we should make sure that P (x∗) ≤ P (0), i.e.,

P (x∗) = 1
2 |x∗ − w|

2 + τxp∗

= 1
2w

2 + 1
2x

2
∗ − x∗|w|+ τxp∗

= P (0) + 1
2x

p
∗(2τ + x2−p

∗ − 2x1−p
∗ w)

= P (0) + 1
2x

p
∗(2τ + x2−p

∗ − 2τp− 2x2−p
∗ )

= P (0) + 1
2x

p
∗(2τ(1− p)− x2−p

∗ )

= P (0) + 1
2x

p
∗(x2−p

a − x2−p
∗ ) (D.5)

Thus, by denoting xa = [2τ(1− p)]
1

2−p , we have P (x∗) ≤ P (0) iff x∗ ≥ xa, which is equivalent

to |w| ≥ g(xa) since g(x) is strictly increasing for x > xc. Thus,

proxτ |·|p(w) =


0 |w| < g(xa)

x∗sgn(w) |w| ≥ g(xa)
(D.6)
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Figure D.1: Plot of g(x) for x > 0.

or equivalently

proxτ |·|p(w) = x∗sgn(w)max(0, |w| − χ) (D.7)

where χ = g(xa) = [2τ(1−p)]
1

2−p +τp[2τ(1−p)]
p−1
2−p and x∗ is the solution of equation g(x) = |x|

which satisfies x∗ ≥ xa. However, we note that there are two solutions to g(x) = |x|, how to

determine x∗ which satisfies x∗ ≥ xa(larger solution) seems challenging. In [MS12], a fixed

point iteration method is proposed to calculate x∗ from the following iteration

xk+1 = f(xk) where f(x) = |w| − τpxp−1 (D.8)

with the initial condition x0 ∈ {xa, |w|}.

• 1 < p ≤ 2

Because the problem (D.3) is strongly convex when 1 < p ≤ 2, we have

prox|·|p(w) = x∗sgn(w) (D.9)

where x∗ is the unique solution to g(x) = |w| which satisfies x∗ > 0. We should also note that

(D.9) is validate for p > 2, but we are just interested in 0 < p ≤ 2 in this thesis. Moreover,

calculating the closed-form solution to g(x) = |w| is complicated even though x∗ is a unique

positive solution. Thus, a Newton method is proposed to find the root of g(x) = |w| (The
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fixed point method mentioned above is not valid here since its convergence condition cannot

be guaranteed for p > 1 [FB85]). Besides, the analytical solution of (D.3) when p = {4/3, 3/2}

is calculated in [CCPW07].

In summary, we have the proximity operator for the problem (D.3) is defined as

prox|·|p(w) =


x∗sgn(w)max(0, |w| − χ) 0 < p ≤ 1

x∗sgn(w) 1 < p ≤ 2
(D.10)



Appendix E

Proximal hamiltonian Monte Carlo
(PHMC) method

E.1 Proximal Metropolis adjusted Langevin algorithm

The proximal Metropolis adjusted Langevin algorithm (PMALA) was proposed by Pereyra in [Per15]

to handle high-dimensional models used in several challenging problems such as image deconvolu-

tion, audio compressive sensing and so on. The basic idea of [Per15] is to combine the traditional

MALA and the proximal technique which is well-known to handle the non-differential functions effi-

ciently. The Metropolis adjusted Langevin algorithm (MALA), which comes from the discretization

of the ordinary Langevin diffusion can be expressed with the following first-order Euler discretisation

technique [RT96]

xn+1 = xn + ε

2
∂U

∂xn (xn) +
√
εdn (E.1)

where U(x) is the target distribution, d is the realization of a zero mean Gaussian noise and ε is the

stepsize. To form a Markov chain, it may be more convenient to rewrite (E.1) as a state transition

as below

xn+1|xn ∼ N
(

xn + ε

2
∂U

∂xn (xn), εdn
)

(E.2)

where xn + ε
2
∂U
∂xn (xn) is the proposal density of the Markov chain. The PMALA is based on a new

proposal density based on proximity operator that can be expressed as follows

xn+1|xn ∼ N
(
proxε/2U (xn), εdn

)
(E.3)
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After a candidate x∗ has been generated by using (E.2) or (E.3), we accept this candidate with

probability

ρ = min
{
p(x∗)q(xn|x∗)
p(xn)q(x∗|xn) , 1

}
(E.4)

where p(x) = exp (−U(x)) and

q(x∗|xn) = pN (x∗|xn + ε

2
∂U

∂xn (xn), εdn) (MALA) (E.5)

or

q(x∗|xn) = pN (x∗|proxε/2U (xn), εdn). (PMALA) (E.6)

Note that the generated samples have a better mixing property and higher effective sample size

(lower autocorrelation) compared with the traditional MALA for deconcolution problem, as shown

in [Per15]. However, the computation time could increase due to the evaluating of the proximal

operator (if the proximal operator is easy to be calculated, the computation time would not increase).

We also note that Schreck et. al. [SFCM14] proposed another proximal based MALA algorithm for

Bayesian variable selection.

E.2 Proximal Hamiltonian Monte Carlo algorithm

The HMC algorithm is another efficient sampling method for high dimensional problems (for an

extensive review see [Nea11]). In HMC, an auxiliary momentum variable q which is independent and

identically distributed i.i.d. according to a Gaussian distribution is introduced. The negative joint

log density of (x,q) is defined as follows

H(x,q) = U(x) +K(q) (E.7)

whereK(q) = 1
2qTq. The physical analogy ofH(x,q), U(x) andK(q) are the Hamiltonian, potential

energy and kinetic energy respectively. A discretizing leapfrog integrator which is employed to
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approximate the Hamiltonian’s equations is expressed as below

qn(i+ ε/2) = qn(i)− ε

2
∂U

∂xn (xn(i)) (E.8)

xn(i+ ε) = xn(i) + εqn(i+ ε/2) (E.9)

qn(i+ ε) = qn(i+ ε/2)− ε

2
∂U

∂xn (xn(i+ ε)) (E.10)

where ε is the leapfrog stepsize. Denoting δ = εL (L is the number of leapfrog steps), the generated

candidate state is

(x∗,q∗) = (xn(δ),qn(δ)). (E.11)

Thus, the generated candidate is accepted with the ratio

ρ = min {exp[H(xn,qn)−H(x∗,q∗)], 1} . (E.12)

In [CBCT15], a proximal Hamiltonian Monte Carlo (PHMC) algorithm is proposed for a denoising

problem. The proposed PHMC algorithm is based on a modified leapfrog method, which is given as

below

qn(i+ ε/2) = qn(i) + proxε/2U (xn(i))− xn(i) (E.13)

xn(i+ ε) = xn(i) + εqn(i+ ε/2) (E.14)

qn(i+ ε) = qn(i+ ε/2) + proxε/2U (xn(i+ ε))− xn(i+ ε) (E.15)

E.3 Generalization to deconvolution problem

The deconvolution problem that we are considering has the following cost function

U(x) = f(x) + φ(x) (E.16)

where f(x) is the data fidelity term, which is highly related to the statistical properties of the noise.

Under an additive white Gaussian noise (AWGN) assumption, the data fidelity term is expressed as

f(x) = 1
2σ2

n

‖y−Hx‖22 (E.17)
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which is a quadratic and differential term. The second term in (E.16) φ(x) is the regulariza-

tion/penalty term which depends on the properties of the image to be restored.

In this section, we generalize the PMALA and PHMC algorithms to be applied to a deconvolu-

tion problem based on the forward-backward (FB) splitting method. In the PMALA and PHMC

algorithms mentioned above, the main problem is to calculate proxε/2U (x). However, it is not possible

to calculate this proximal operator in deconvolution problems due to the presence of the blurring

kernel. One solution is to approximate it with a one-step forward-backward splitting algorithm, i.e.,

proxε/2U (x) ≈ prox
ε
2
φ

(
x− ε

2∇f(x)
)

(E.18)

We also note that this approximation has been implemented in [Per15] for an image deconvolution

problem with a total variation (TV) prior.

With the approximation (E.18), we can generalize the Euler discretization method (in PMALA)

and the Leapfrog discretization method (in PHMC) to obtain (E.19) and (E.20) respectively

• PMALA

xn+1 = proxε/2φ

(
xn − ε

2∇f(xn)
)

+
√
εdn. (E.19)

• PHMC

qn(i+ ε/2) = qn(i) + proxε/2φ

(
xn(i)− ε

2∇f(xn(i))
)
− xn(i)

xn(i+ ε) = xn(i) + εqn(i+ ε/2)

qn(i+ ε) = qn(i+ ε/2) + proxε/2φ

(
xn(i+ ε)− ε

2∇f(xn(i+ ε))
)
− xn(i+ ε) (E.20)

Thus, the forward-backward based MALA and HMC algorithms for image deconvolution are

summarized in Algorithms 12 and 13.
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Algorithm 12: PMALA Algorithm
/* Initialization Procedure */

1 x0 = y;
2 for n = 0 : NMC − 1 do

/* Candidate generation Procedure */

3 xn+1 = proxε/2φ

(
xn − ε

2∇f(xn)
)

+ εdn;
4 x∗ = xn+1;

/* Accept/Reject Procedure */

5 Compute ρ with (E.4)
6 if rand 6 ρ then
7 xn+1 = x∗;
8 else
9 xn+1 = x(t);

10 end
11 Adjust ε in order to obtain a suitable acceptance rate.
12 end
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Algorithm 13: PHMC Algorithm
/* Initialization Procedure */

1 x0 = y;
2 for n = 0 : NMC − 1 do

/* Candidate generation Procedure */

3 x0(0) = x0;
4 q0(0) ∼ N(0, IN×N );
5 for i = 0 : L− 1 do
6 Compute qn(i+ ε/2) = qn(i) + proxε/2φ

(
xn(i)− ε

2∇f(xn(i))
)
− xn(i);

7 Compute xn(i+ ε) = xn(i) + εqn(i+ ε/2);
8 Compute

qn(i+ ε) = qn(i+ ε/2) + proxε/2φ

(
xn(i+ ε)− ε

2∇f(xn(i+ ε))
)
− xn(i+ε);

9 end
10 q∗ = qn(δ);
11 x∗ = xn(δ);

/* Accept/Reject Procedure */

12 Compute ρ with (E.12)
13 if rand 6 ρ then
14 xn+1 = x∗;
15 else
16 xn+1 = x(t);
17 end
18 Adjust ε in order to obtain a suitable acceptance rate.
19 end
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