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Nonlinear Dynamic Inversion for Redundant Systems using the EKF
Formalism

Hélène Evain1, Mathieu Rognant1, Daniel Alazard2 and Jean Mignot3

Abstract— This paper presents an allocator for over-actuated
systems based on the Extended Kalman Filter (EKF). The main
advantages of the proposed approach are the greater flexibility
in handling the constraints and its real-time capabilities. Based
on the literature, theoretical convergence results, which ensure
the convergence towards the local optimal values looked for, are
presented. Another formulation of the kinematic equations of
redundant systems that meet some constraints is also proposed
in order to go through and/or avoid singularities. The two
formulations are combined and applied to an academic example
(a planar redundant manipulator arm).

Keywords: redundant actuators, allocation, non-linear dy-
namic inversion, EKF, singularities.

I. INTRODUCTION

When a system is over-actuated, control allocation meth-
ods are needed to divide the work over the actuators, in order
to generate the required forces or torques on the system.
Moreover, depending on the configuration of the actuators,
internal singularities can occur (configurations where it be-
comes impossible to create a force in a direction even if the
maximum capacity of the actuators is not reached). Other
issues control allocation must face are the saturations of the
actuators and the suitability for real-time implementation.
These control allocation problems include the control of
multi-DOFs (degrees of freedom) manipulator arms, cable
robots and submarines. We propose to focus only on the
allocation problem (see Fig. 1), and not on the closed-loop
regulation. In this paper, vectors are written in bold small
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Fig. 1. Block diagram of a typical control loop

letters and the matrices are in bold capital letters.
Let’s first write a general controllable nonlinear system

(1). {
ẋ = f(x) + G(x)u

y = h(x)
(1)
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where x ∈ Rn is the state, u ∈ Rm the control input,
y ∈ Rl the controlled output, f ∈ Rn,h ∈ Rl differentiable
functions, and G ∈ Rn×m a matrix function. m ≥ l for an
over-actuated (redundant) system.

In a classic nonlinear dynamic inversion, extensively stud-
ied for the past thirty by researchers like A. Isidori in [1] for
instance, the successive Lie derivatives of y are calculated
so that the input appears explicitly, assuming the nonlinear
system has a relative degree.

For a system of relative degree one, one can write:

ẏ = J(x)ẋ (2)

with J ∈ Rl×n the jacobian matrix of h. It then derives :

J(x)G(x)u = ẏ − J(x)f(x) (3)

If J(x)G(x) is invertible, then the solution is:

u = (J(x)G(x))−1(−J(x)f(x) + ẏ) (4)

where ẏ is imposed to follow specifications. In a general
case, J(x)G(x) is a l×m matrix and can be rank-deficient
for some values of x. Then its inversion can be carried out
using the approach developped in this paper. For simplicity,
this paper focuses on the case where f is the null function,
G is the identity matrix and m = n ≥ l. It comes down to
the pure allocation problem where ẋ = u.

Therefore, this paper focuses on computing ẋ which has
to respect (2) with a given ẏ, as well as saturation constraints
and avoiding/passing singularities. The literature on the topic
is rather extensive, but only methods that can be implemented
in real-time are mentionned here. For a comprehensive
survey of usual allocation methods (also called kinematic
control), see the work of B. Siciliano and L. Sciavicco [2]
[3] for example. The most common method is the Moore-
Penrose (MP) pseudo-inversion:

ẋ = JT (JJT )−1ẏ = J†ẏ (5)

However, when the matrix JJT becomes non-invertible, the
system is in a singularity and (5) fails to compute ẋ. To avoid
this issue, L. Sciavicco and B. Siciliano [4] propose to use
the Jacobian transpose which always exists instead of the MP
pseudo-inverse. In addition, stability results are given with
this formulation for closed-loop systems. Another possiblity
is to add a term in the MP formulation so that the inversion
becomes always possible (6): it is the Singular Robust
Inverse method (SRI) (or Damped Least-Square solution),
first introduced by [5] [6].

ẋ = JT (JJT + W)−1ẏ (6)



with W a matrix to tune. The main difficulty is to choose W.
Different possibilities exist, including the use of the Singular
Value Decomposition [7], or methods to take constraints into
account [8]. These methods are therefore more robust to
singularities, but create errors and do not ensure the passing
of the singularities.

A more general solution of (2) is:

ẋ = J†ẏ + (I− J†J)xv (7)

with xv an arbitrary vector. (I−J†J) is a projection into the
null-space of J. It is called the gradient method since xv is
often calculated by optimizing different cost functions, as in
[9] which maximizes the dynamic manipulability.

Other methods that do not create errors include the
“Extended Jacobian” where constraints are added in the J
matrix. J. Bailleuil in [10] for instance worked on possible
constraint formulations. However, the main issues are that
constraints have to be well modelled because they need to
be always verified, and numerical singularities can occur [2].
C.W. Wampler [11] studied in depth the inverse kinematics
functions, in particular the reduction of the workspace in
domains where no singularities exist and the problem can be
inverted (see also [12]). [13] propose a task-priority based
method. However, the main issue with these methods is that
they reduce the capabilities of the system by restricting the
workspace and imposing hard constraints.

Optimization solutions are also provided in the literature.
In particular, T. Fossen and T. Johansen [14] give a survey of
possible optimizations for controlling underwater vehicles.
Quadratic optimization with constraints is presented, with
multi-parametric quadratic resolutions methods for instance
[14]. Nonlinear optimization also exists, which can be trans-
formed into linear programming problems [14]. Another
optimization method is the use of the Karush-Kuhn-Tucker
conditions [15] after defining an optimization problem. An
iterative algorithm is then proposed. These methods give
optimal solutions, but require a high load of calculation.

Finally, different methods are nowadays proposed, like the
Cyclic Co-ordinate Descent where each actuator is moved
independently from the others and the Triangulation [16].
They are fast but cannot handle global constraints. Alterna-
tives methods based on Neural Networks are also proposed,
as well as hybrid methods that mix numerical and analytical
calculations [17].

In this paper, the Extended Kalman Filter (EKF) formalism
is used to do nonlinear dynamic inversions for redundant
systems. It can take constraints into account in a new way
and can be easily implemented in real-time. A comparison
with respect to the methods listed before is outlined, an ex-
ample of theoretical implementation and convergence proofs
are presented. Then, a new formulation of the kinematic
equations is proposed, which can better handle the singu-
larities. It is well adapted for mechanical systems with some
assumptions, and is compatible with the EKF. Finally, the
EKF and the singularities-bypassing method are applied on
an academic redundant manipulator arm example.

II. PROPOSED ALLOCATION METHOD : THE
EXTENDED KALMAN FILTER

A. Advantages of the method and comparisons

To the best knowledge of the authors, using the EKF for
allocation has not been done before. This method minimizes
the same criterion as a SRI, of the type r = 1

2 (m −
Cv)TR−1(m−Cv) + 1

2 (v− vd)P−1(v− vd) with: (i) m
the measurements (ẏ in the SRI case), (ii) v the estimation of
the state variables (ẋ in the SRI case), (iii) vd the predicted
value of v, (iv) C the jacobian matrix of the measurement
equations (J in the SRI case) and (v) P and R weight
matrices. In the EKF, the gain matrix P is updated with a
weight matrix Q and a prediction model, so as to minimize
the covariance of the estimation errors.

The EKF also provides more flexibility than methods
where constraints are added in the jacobian matrix [10].
Indeed, as some equations may not be exactly verified,
they can be more or less weighted through matrices R
and Q. It can be useful if the modelling is not perfect,
especially when taking constraints into account, or simplified
models of dynamics. Also, the possibility of time-varying
these matrices gives a flexibility and can act as a task-
priority controller since it enables the system to emphasize
on different equations depending on the current configuration
of the system.

The formulation is not very far from the optimization
problems, nevertheless the solution proposed (the usual al-
gorithm to solve the EKF) can be carried out in real-time, it
is therefore a powerful tool.

Finally, another interesting point is the convergence results
that already exist for EKFs, and which can be applied to help
tuning the gains so as to remain optimal and convergent.

B. The Extended Kalman Filter

This new allocation method uses the Extended Kalman
Filter (EKF) that was initially introduced by [18]. It is
commonly used to estimate state variables based on the eval-
uation of differents equations. It is a local optimal observer
for nonlinear systems. The discrete formulation is chosen
here to remain consistent with the next section, however
continuous implementations can be carried out. Let’s take
the first-order approximation of (2):

∆y = J(x)∆x with

{
∆y = y(t)− y(t− Ts)
∆x = x(t)− x(t− Ts)

(8)

with Ts a chosen sampling period. The goal of EKF is to
estimate an optimal ∆x for a desired ∆y.

The estimated variables in the EKF can be chosen simply
as (9):

v =

[
v1

v2

]
with

{
v1 = ∆x

v2 = y
(9)

v1 is a vector of dimension n and v2 of dimension l.



Considering a reference model f1 on the internal states dy-
namics as well as equation (8), the Kalman model becomes:{

v1(t+ Ts) = f1(v1(t),v2(t)) + εv1
v2(t+ Ts) = J(x)v1(t) + v2(t) + εv2

(10)

where the state evolution errors εv1 and εv2 are neglected in
the prediction model and sized by the covariance matrix Q.
f1 can be any function associated with the studied system. In
the general case, the prediction equations read : v̂(t+Ts) =
fk(v̂(t)). The Jacobian matrix associated with this model is
denoted F and is of size (n+ l)× (n+ l):

F =
∂fk
∂v

(11)

The measurement equation (m is the measurement vector)
is:

m =

[
m1

m2

]
= r(v)+εm with

{
m1(t) = v2(t) + εm1

m2(t) = fm(v1(t)) + εm2

(12)
m1 is the reference input yc sent by the controller for
instance (Fig. 1). To ensure the observability of the EKF,
the second equation of (12) is added, and can be used to
model additional constraints (e.g. saturations). Perturbations
εm1 and εm2 are sized by the covariance matrix R. Let us
denote C = ∂r

∂v .
The EKF theory provides a local optimal estimate v̂. The

parameters that need to be set in this filter are P0 the initial
covariance matrix on the estimate errors, R and Q. The
equations of evolution of the discrete EKF are not given
here, but can be easily found in the literature [18].

The method gives the best least-square solution of the
problem posed. Since the equations are deterministic, the
solution is a compromise between the different equations that
can include constraints on the system. The different weights
give the importance of each equation.

C. Convergence results

1) Existing results: The convergence of the allocator is
an important point to verify. Some results already exist for
allocation methods, as the Jacobian transposed [4], already
cited. The convergence of the error dynamics was proven
in a closed-loop. Another result by T. Johansen [19] shows
the exponential global convergence of a closed-loop which
contains an exponentially stable controller and an asymp-
toticly optimal allocator. [20] gives a generic form of an input
allocation with a first-order dynamics that is internally stable,
with different characteristics and with saturation constraints.

Therefore, some methods have a stability proof, but not
all. Moreover, except for the last one, they are closed-loop
results. The method from [20] seems to be less friendly for
adding constraints (except saturations). This paper focuses
only on the open-loop local convergence of the allocator.
Therefore, it gives an interesting result whatever the con-
troller used, as well as when there is no controller. The
Lyapunov function for the proof is from [21] and can be
used to show the global stability of the closed-loop system.

2) Theory: [21] gives the conditions for the EKF to be
a local uniform asymptotic observer, and thus for v̂ (resp.
v̂2) to tend to v (resp. y). In our case, these conditions will
guarantee the proposed allocation method to converge. These
conditions are :

• F is invertible at each time step.
• The following norms are bounded :|| F ||, || F−1 ||,
|| C ||, || R ||,|| Q ||,||| ∂F/∂v |||,||| ∂C/∂v |||.

• Let’s call k(p,q) = r(p)− r(q)−C(p)(p−q). There
exists a scalar m such that

| k(p,q) |≤ m ||| ∂C/∂v ||| | p− q |2

• The system is uniformly observable, or equivalently (F,
C) verify the uniform observability condition given in
[21], taken from the article of J.J. Deyst and C.F. Price
[22], as long as the estimation errors are small enough.
That gives boundaries on the estimation covariance error
matrix.

• The last condition ensuring the Lyapunov function V =
(v̂ − v)TP−1(v̂ − v) to be decreasing is omitted for
brevity and is detailed in [21].

That gives conditions and a proof of the convergence of
the nonlinear dynamic inversion proposed. With this proof,
it is possible to size the covariance matrices of the EKF and
to ensure convergence when additional constraints (that can
depend on the configuration of the system) are added. Never-
theless, this formulation does not ensure that the singularities
will be passed. As in the SRI formulations, a solution always
exists, but for the convergence proof, well-conditionned
matrices are needed, that is not always the case with the
matrix J. Moreover, there may be a lack of stability in the
vicinity of a singularity because our variational formulation
of (10) may not be representative enough: if a singularity-
avoidance is needed and is not well-modelled, the system
cannot search in the null-space of J and then the errors
created make the system go outside the stability region. That
is why it is proposed to improve the model implemented in
the EKF, so as the optimal value towards which the system
converges always exists. The second-order Taylor expansion,
which will help passing the singularities, is now studied.

III. A SINGULARITY-HANDLING FORMULATION

Let’s first express differently (2), by doing a Taylor
expansion to the second-order approximation:

∆y = h(x + ∆x)− h(x)

= J(x)∆x + 1
2

∑n
i=1(∆xi)

∂2h(x)
∂xi∂x

∆x + o(∆x)2

(13)
Let’s denote Hi = ∂2h

∂xi∂x
= ∂J

∂xi
and define the matrix H as

the concatenation of the columns number i in the matrices
Hi (14). Its size is l × n.

H =
[
H1(:, 1) H2(:, 2) . . . Hi(:, i) . . . Hn(:, n)

]
(14)

with Hi(:, i) referring to the ith column of Hi.



Then, (13) can be written as:

∆y = J(x)∆x+
1

2
H(x)∆2x+

1

2

n∑
j=1

(∆xj)H
′
j∆x+o(∆2x)

(15)
with H′j the matrix Hj whose column j is replaced by a
null vector and ∆2x the vector composed of the components
∆x2i .

Let’s call M the (l × 2n) matrix defined in (16).

M =
[
J(x) H(x)

]
(16)

In the case of manipulator arms, since the direct kinematic
model is composed of sinus and cosinus of the xi, then each
column vector of J is rotated by π/2 in H, and so the
vectors J(:, i) and H(:, i) are perpendicular to each other
for any i. A vector s is then a singular direction to M if and
only if it is perpendicular to all vectors of M (equivalently
sTM = 01×2n). It means that all vectors of M are in the
same hyperplane, hence that we have a planar manipulator
arm. If the system is intrinsically 3-D, that guarantees that
M is full rank for any x.

The main assumption in this paper is that the matrix M
defined in (16) is always of rank l whatever the values of
x. From the robotic example given above, this assumption
is verified in many mechanical systems.

Another advantage of using M is that the search of the best
solution also takes into account the null-space of J through
H and therefore will help pass and/or avoid the singularities.
See the work of K. Yamada and I. Jikuya [23] for theoretical
research and proofs on the usefulness of this formulation.

This matrix M supposed regular is then used to invert the
relation (15) rewritten as (17).

∆y− 1

2

n∑
j=1

(∆xj)H
′
j∆x = M(x)

[
∆x

1
2∆2x

]
+o(∆2x) (17)

o(∆2x) is assumed to be negligible compared to the other
terms (assumption true if the time step is small enough).

Then, our goal is to find the vector
[

∆x
1
2∆2x

]
that verifies

(17) and that also verifies the obvious internal relationship.
It should be noticed that the input of the equation (17) is

∆y− 1
2

∑n
j=1(∆xj)H

′
j∆x, the first term being the reference

input assumed to be available from the controller, and the
second term is considered to be a feed-forward from the
previously calculated x and ∆x.
H′i are in general not null for manipulator arms. The

theoretical study of the null-space of JJT and the associated
singularities is then more complicated, however it can be
noticed that this formulation enables us to avoid numerical
singularities, and still search into the null-space of JJT to
bypass the kinematic singularities.

To our best knowledge, only the article [23] uses the
second-order Taylor expansion for control. However, the

method proposed in article [23] to find
[

∆x
1
2∆2x

]
is rather

costly since it is not analytically solvable and requires an

iterative procedure at each sample time. It is hardly gener-
alizable to greater numbers of actuators since the resolution
of the equations in the Gröbner bases can become of very
high order. Using the EKF formalism as presented before
enables us to estimate ∆x and ∆2x that verify their intrinsic
relationship and verifies equation (17) in only one iteration at
each time step. For instance, it is possible to modify the EKF
presented before by adding ∆2x as new estimated variables.
The term 1

2

∑n
j=1(∆xj)H

′
j∆x can be considered as a known

input perturbation in the model.
The combination of the EKF and this formulation gives

a new tool that can efficiently invert the dynamic equation
(1), take constraints into account with flexibility, handle the
singularities, with convergence results that help tuning the
parameters of the EKF.

IV. APPLICATION

A. Modelling

To apply the proposed method, let’s consider the simple
case of a 2-DOFs manipulator arm moving in a reference
plane supposed fixed (ur,vr) (see Fig. 2). The manipulator
has 3 arms linked by 3 revolute joints. The objective is to
control the end-effector position (y1, y2). The parametriza-
tion is chosen relative : the angles between the arms are the
controlled parameters, called q1, q2 and q3. The length of
the arms are noted l1, l2 and l3. In the (ur,vr) plane, the

Fig. 2. Parametrization of the system studied

dynamics of the system (assumed rigid) has the form (18),
taken from the book of W. Khalil and E. Dombre [24].

q̈ = −A−1(q)Cq(q̇,q) + A−1(q)u (18)

with A the inertia matrix and Cq the quadratic velocity
vector including the Coriolis and the centrifugal forces. The
joints are controlled by imposing a torque vector u.

To identify to (1), let us denote x =

[
q
q̇

]
.

The kinematic equations read:

y =

[
y1
y2

]
= h(q), ẏ =

[
ẏ1
ẏ2

]
= J(q)q̇ (19)

∆q is computed by using the EKF and the singularity-
handling formulation. Indeed, the estimated variables of the
EKF were chosen as (20). The prediction equations and the



measurement equations are (20) and (21).
v1 = ∆q

v2 = ∆2q

v3 = ∆y

and


v̂1(t+ Ts) = 2

3 v̂1(t)

v̂2(t+ Ts) = 4
9 v̂2(t)

v̂3(t+ Ts) = 1
2 v̂3(t) + 1

2w(t)
(20)

with w the reference input ∆yc.
In (20), the internal state dynamics of reference model f1

is (2/3, 4/9, 1/2) and is chosen in the following way: the
first two equations of (20) are used to limit the maximal
accelerations of the joints. The third equation of (20) was
chosen to keep the F matrix (11) invertible as required for
the convergence proof, and take into account the reference
input w(t).
m1 =

∑n
j=1(∆qj)

H′
j

2 ∆q = −Jv1 − H
2 v2 + v3(t) + εm1

m2 = 03×1 = −v2
1 + v2 + εm2

m3 = k = v1 + εm3

(21)
The first two equations of (21) are imposed by the constraints
on the problem. Let’s develop the choice of k:

k = k1
[
I3×3 03×3

]
N
[
11×3 01×3

]T
(22)

with N = I−M†M, the projection on the null-space of M =[
J(q) H(q)

]
. This operation is always defined because of

the regularity of M. k1 is defined as:

k1 =
|| w ||
wmax

q̇satTs (23)

with wmax the maximal norm of w, q̇sat the maximal
allowable speed of the joint angles and Ts the sampling
period. (22) is relevant for two aspects : it takes into account
the saturation constraint, which depends on the distance to
the reference value (via w), thus not creating movement
when the system has reached its goal. In addition, projecting
the obtained value on the null-space of M avoids creating
errors (because these components are associated with the
null-space of J) and it helps steering the system out of initial
singularities, when the system has no speed. Adding a term
in the null-space of M is also interesting because v2 gives
components along H which comprises a part of the null-
space of J complementary to the null-space of M, therefore
expanding the search in the null-space of J.

The convergence results of the EKF were used to tune
the parameters R, Q and P0: Q = 4.0.10−6I and P0 =
5.10−5I. As for R, a valid interval for its singular values has
been computed. R = diag([10−5, 10−5, 1.23.10−5]). Indeed,
a lower confidence appears on the last measurement since
the last equation does not model perfectly the saturation
constraint. The estimates v are all initialized at 0.

The block diagram summarizing the implementation of the
application is given in Fig. 3.

B. Simulations

In the simulation, u = Kw(∆q/Ts−q̇m) (with Kw a gain
matrix and q̇m the measured joint velocities). It is assumed
that q and q̇ are measured.

Numerical application : The 3 beams are uniform with
the same mass per unit of length (3.39kg/m). l1 = l2 =
l3 = 0.4m, and for each joint Kw = 3Nms/rad, q̇sat =
10 rad/s and Ts = 0.001s.
w is taken as the distance between the required position

and the current position of the end-effector, with a saturation
calculated from the saturation of q̇sat and the maximal
singular value of J. The value of the saturation obtained
is wsat = 0.015m.

The system is initially in a singular folded configuration:
q1 = 0, q2 = π, q3 = π rad. The final state is another
singular state (y1i, y2i) = (−(l1 + l2 + l3), 0) which is in the
initial singular direction. The motion created by the proposed
allocator is given in Fig. 4. After 31s, a new singular state is

Fig. 4. Trajectory of the manipulator arm for the first movement. Solid
green : initial state. Solid black : final state. Dashed lines : intermediate
states (red, blue and green for arm (1), (2) and (3) respectively).

required: (y1f , y2f ) = (0, 0). This part of the motion is given
in Fig. 5. The joints motion and end-effector positions versus
time are in Fig. 6. Even if beginning in a folded singular

Fig. 5. Trajectory of the manipulator arm for the second movement. Solid
lines : final state.

configuration, the limits of the workspace has been reached
with an error of less than 0.0003m and the system has gone
back to a singular position, hence the allocation method
manages the worst cases. The maximal error of the end-
effector along the vr-axis is less than 1 cm. The time spent to
escape from a singular position is due to the reconfiguration
in the null-space of J that does not create movement for
the end-effector. In addition, other singularities were avoided
along the trajectory (the (0,0) point for instance).

V. CONCLUSION
The method proposed to allocate over-actuated systems is

real-time and has stability proofs. The different parameters
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Fig. 3. Block diagram of the whole system

Fig. 6. (a) Angles q (b) End-effector position with respect to time.

can be tuned to ensure the convergence, the time response as
well as the priority among the different equations. Another
formulation for singularity-passing and avoiding has been
proposed, which has proven efficient on the given example.
The forthcoming work will now focus on a better integration
of the constraints in the formulation in particular cases, as
well as a study on the sensitivity of the method on parameter
uncertainties. In addition, a comparison with other existing
techniques will be carried out.

REFERENCES

[1] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer Verlag,
London, 1989.

[2] B. Siciliano, “Kinematic Control of Redundant Robot Manipulators”,
Journal of Intelligent and Robotic Systems, vol. 3, pp. 201-212, 1990.

[3] B. Siciliano and L. Sciavicco, Modeling and Control of Robot
Manipulators, 2nd edition, Springer-Verlag, London, 2000.

[4] L. Sciavicco and B. Siciliano, “Solution Algorithm to the Inverse
Kinematic Problem for Redundant Manipulators” IEEE Journal of
Robotics and Automation, vol. 4, no. 4, pp. 403-410, 1988.

[5] C.W. Wampler, “Manipulator Inverse Kinematic Solutions Based on
Damped Least-Squares Methods”, IEEE Transactions on Systems,
Man and Cybernetics, vol. 61, pp. 93-101, 1986.

[6] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control”, Transactions
of ASME Journal of Dynamic Systems, Measurement and Control, vol.
108, pp. 163-171, 1986.

[7] K.A. Ford and C.D. Hall, “Singular Direction Avoidance Steering for
Control Moment Gyros”, Journal of Guidance, Control and Dynamics,
vol. 3, no. 4, pp. 648-656, 2000.

[8] S. Huang, Y. Peng, W. Wei and J. Xiang, “Clamping Weighted Least-
Norm Method for the Manipulator Kinematic Control: Avoiding Joint
Limits”, Proceedings of the 33rd Chinese Control Conference (CCC),
pp. 8309-8314, 2014.

[9] T. Yoshikawa, “Manipulability of robotic mechanisms”, International
Journal of Robotic Research, vol. 4, no. 2, pp. 3-9, 1985.

[10] J. Baillieul, “Kinematic programming alternatives for redundant ma-
nipulators”, Proceedings of the 1985 IEEE International Conference
on Robotics and Automation, pp. 722-728, 1985.

[11] C.W. Wampler, “Winding number analysis of invertible workspaces for
redundant manipulators”, International Journal of Robotic Research,
vol. 7, no. 5, pp. 22-31, 1988.

[12] H. Kurokawa, “Exact Singularity Avoidance Control of the Pyramid
Type CMG System”, AIAA Guidance and Control Conference, pp.
170-180, 1994.

[13] Y. Nakamura, H. Hanafusa and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators”, Transactions of ASME
Journal of Dynamic Systems, Measurement and Control, vol. 6, no. 2,
pp. 3-15, 1987.

[14] T.I. Fossen and T.A. Johansen, “A Survey of Control Allocation
Methods for Ships and Underwater Vehicles”, 14th Mediterranean
Conference on Control and Automation, pp. 1-6, 2006.

[15] Y. Chen and J. Wang, “Fast and Global Optimal Energy-Efficient Con-
trol Allocation With Applications to Over-Actuated Electric Ground
Vehicles”, IEEE Transactions on Control Systems Technology, vol. 20,
no. 5, pp. 1202-1211, 2012.

[16] W. Song and G. Hu, “A Fast Inverse Kinematics Algorithm for Joint
Animation”, International Conference on Advances in Engineering,
Procedia Engineering, vol. 24, pp. 350-354, 2011.

[17] H. Ananthanarayanan and R. Ordonez, “Real-time Inverse Kinematics
of (2n+1) DOF hyper-redundant manipulator arm via a combined
numerical and analytical approach”, Mechanism and Machine Theory,
vol. 91, pp. 209-226, 2015.

[18] R.E. Kalman and R.S. Bucy, “New Results in Linear Filtering and
Prediction Theory”, Journal of Basic Engineering, pp. 95-108, 1961.

[19] T.A. Johansen, “Optimizing Nonlinear Control Allocation”, IEEE
Conference on Decision and Control, pp. 403-410, 2004.

[20] L. Zaccarian, “Dynamic allocation for input redundant systems”,
Automatica, vol. 45, pp. 1431-1438, 2009.

[21] Y. Song and J.W. Grizzle, “The Extended Kalman Filter as a Local
Asymptotic Observer for Discrete-Time Nonlinear Systems”, Journal
of Mathematical Systems, Estimation, and Control, vol. 5, no. 1, pp.
59-78, 1995.

[22] J.J. Deyst and C.F. Price, “Conditions for asymptotic stability of the
discrete minimum-variance linear estimator”, IEEE trans. Automat.
Control, vol. 13, no. 6, pp. 702-705, 1968

[23] K. Yamada and I. Jikuya, “Directional passability and quadratic
steering logic for pyramid-type single gimbal control moment gyros”,
Acta Astronautica, vol. 102, pp. 103-123, 2014.

[24] W. Khalil and E. Dombre, Modeling, identification and control of
robots, Butterworth-Heinemann, Oxford, 2004.


