
 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 16570 

To cite this version: Fabacher, Emilien and Alazard, Daniel and Ankersen, Finn and Lizy-
Destrez, Stéphanie and de Mijolla, Léonore Control of Magnetic Space Tug. (2016) IFAC-
PapersOnLine, vol. 49 (n° 17). pp. 278 - 283. ISSN 2405-8963 

To link this article: http://dx.doi.org/10.1016/j.ifacol.2016.09.048 
 



Control of Magnetic Space Tug

Emilien Fabacher ∗ Daniel Alazard ∗ Finn Ankersen ∗∗
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Abstract: Magnetic tugging of a target satellite without thrust capacity can be interesting
in various contexts. In this paper, the dynamics of such a 2-satellites formation is derived
and linearised about a nominal configuration which is not necessarily constant. Analytical
expressions are given for the different forces and torques differentials. Two LQ-based controllers
are given, depending on the capacity of the target to control its own attitude. Linear simulations
of the closed loop system are realised and compared with the full order non-linear model. The
results obtained are promising and consistent with previous research.
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1. INTRODUCTION

Satellite tugging can be motivated by various reasons: de-
orbiting or re-orbiting, necessary in the case of satellites
end-of-life; orbit control for formations of several satellites
in which only one is equipped with thrusters; or to finalize
launches, in which case this manoeuvre would replace the
last stage of the launcher.

Several means can be considered to modify the orbit of
a satellite by tugging it with another satellite. Indeed,
one could simply dock a chaser/tug satellite to the tar-
get/tugged satellite. Contactless solutions however could
be more interesting, as they could provide a way to avoid
standardized interfaces and hazardous docking phases.
They may also help preventing the creation of new debris.

In the same context as Voirin et al. (2012), we propose
using magnetic forces to tug the target. Indeed many
satellites, especially in Low Earth Orbit, are equipped with
Magnetic Torque Bars (MTQs), used for attitude control.
A chaser equipped with a powerful magnetic dipole could
generate forces and torques on the target.

Electromagnetic Formation Flying has been studied since
the beginning of the 21st century. Schweighart (2005)
computed the dipoles to apply to make a N-satellites
formation follow a given trajectory in free space; Elias
et al. (2007) gave a way to control the relative position of
a formation, while controlling each satellite attitude with
reaction wheels; Sakai et al. (2008) solved the guidance to
keep the same position in time and suggested to modulate
the dipole with sine waves to avoid the problem caused
by the constant torque due to the Earth magnetic field;
Ahsun et al. (2010) improved the work done by Elias
et al. (2007) and applied an idea similar to Sakai et al.
(2008). Recently, Huang et al. (2016) started looking for
configurations enabling to reduce the total momentum on
a 2-satellites formation.

? E. Fabacher wishes to thank Airbus DS and the European Space
Agency for the financial support provided for his NPI PhD.

All the previously cited references assumed the dipoles to
be located at the center of mass of the satellites, and
supposed all satellites equally capable of steering their
dipole and controlling their attitude. In this study, we
consider a lever-arm on the target dipole, and assume
both the value and orientation of the target dipole fixed
in its body frame. The target attitude will be supposed
uncontrolled in some examples. Finally, a constant thrust
from the chaser is considered, which changes the dynamics
compared to the given references.

In a paper to be published, the authors will demonstrate
the existence of nominal relative configuration trajecto-
ries enabling to magnetically tug a target satellite, while
avoiding accumulating angular momentum because of the
Earth magnetic field, without waving the dipoles.

This paper focuses on the control of the formation around
these configuration trajectories. The system considered is
described in section 2; the equations of motion are derived
in section 3; they are linearised in section 4 while the efforts
are differentiated in section 5; finally, section 6 presents
two possible controllers.

2. SYSTEM DESCRIPTION

The system considered is composed of a target satellite
denoted by the subscript T and a chaser satellite sub-
scripted C. As presented in Fig. 1, the target is equipped
with an MTQ turned on which dipole is equal to the

constant µT = [0 500 0]
T

A m2 in its body frame (value
reached by Sentinel 2 satellite for example 1 ), located

at the body-frame constant position γµT = [1 0 0]
T

m;
the target mass is mT = 2300 kg; its inertia tensor is
JT = diag ([1300 1100 700]) kg m2. The chaser is charac-
terised by mC = 1000 kg; JC = 700 I3 kg m2, where I3
is the identity matrix. Its dipole is located at its center of
mass (γµC = 0).

1 http://emits.sso.esa.int/emits-doc/ESTEC/Sentinel-1-FP7-
Industry-Day-Nov-07.pdf
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Fig. 1. Vectors and frames used in this article.

For a given vector x, x is the norm of the vector, x̂ is
the unitary vector associated, ẋ is its time derivative in
the specified reference frame. [x×] is the skew-symmetric
matrix denoting the cross-product x×, · denotes the scalar
product. Four frames are used in this article; I, an inertial
frame centred on the Earth; O, the orbital frame centred
on the center of mass of the formation; Bi, the body frame
linked to satellite i (target if no i specified).

3. DYNAMICS

3.1 Relative Position Dynamics

Law describing the evolution of the relative position s
between the target and the chaser has been showed in
Fabacher et al. (2015). In inertial frame, this evolution
is given by:

d2s

dt2

∣∣∣
I

= − µ

r3
Ms +

FCth
mC

−
FTεµ
mCT

(1)

where M is the Jacobian matrix describing the lineari-
sation of the Earth gravity with regard to the position
around the center of mass of the formation, and can be
obtained from Wie (1998). µ is the standard gravitational
parameter of the Earth; r is the distance between the
center of the Earth and the formation’s center of mass;
FCth is the force created by the chaser’s thrusters; FTεµ is
the magnetic force created by the chaser’s magnetic dipole
on the target’s magnetic dipole; mCT is the reduced mass
of the system (mCT = mCmT

mC+mT
).

Differentiating twice s in the orbital frame gives (2):

d2s

dt2

∣∣∣
I

=
d2s

dt2

∣∣∣
O

+ω×(ω × s)+2ω× ds

dt

∣∣∣
O

+
dω

dt

∣∣∣
O
×s (2)

where ω is the rotational rate vector from inertial to
orbital frame. We define η = dω

dt which, as ω, depends
on the position of the formation in its orbit. The equation
of the relative motion in the orbital frame is therefore:

s̈+ω×(ω × s)+2ω×ṡ+η×s+
µ

r3
Ms =

FCth
mC

−
FTεµ
mCT

(3)

3.2 Attitude Dynamics

In the body frame, the evolution of the attitude of one of
the satellites is classically described by:

J
dωB/I

dt
+ ωB/I × JωB/I =

∑
τ (4)

In the case of Electromagnetic Formation Flight,
∑
τ can

be developed in:∑
τ = τ εµ + τ γ + τ εµE + τ rw + τ g + τ p (5)

with τ εµ the torque on the satellite due to the magnetic
field created by the other satellite; τ γ = γµT × Fεµ the
torque created by the cross product of the satellite center
of mass to dipole lever-arm with the magnetic force created
by the other satellite; τ εµE the torque on the satellite
due to the Earth magnetic field; τ rw the torque created
by a reaction wheel system (or other similar devices); τ g
the torque due to the gravity gradient; τ p the rest of the
perturbing torques.

3.3 Nominal States

The guidance of the formation is developped in Fabacher
et al. (2015) and will be further studied in a future refer-
ence. Because r, ω, η and the Earth magnetic field vary
in orbit, the nominal parameters states also depend on
the time. They solve the system of differential equation
formed by (3), (4) adapted for the chaser and (4) adapted
for the target. In the scope of this article, we will consider
that for every time t, a nominal configuration trajec-
tory has been found and is described by a combination(
s, ṡ,θC ,ωB/OC ,θT ,ωB/OT ,FCth , τCrw ,µC , τTrw

)
nom

(t).

4. LINEARISATION: DYNAMICS AND KINEMATICS

In this section, the dynamics equations are differentiated
around a nominal trajectory. The aim is to obtain a time-
varying state space system representation which will be
used to synthesize controllers.

4.1 Translational Motion

Let’s differentiate (3):

δ̈s + 2
[
ω×
]
δ̇s +

([
ω×
]2

+
[
η×
]

+
µ

r3
M
)
δs

=
δFCth
mC

−
δFTεµ
mCT

(6)

δFTεµ is the differentiation of the magnetic force consid-
ered in the problem. Part of it comes from the relative
position, the rest comes from the control inputs δµC .

δFTεµ =
∂FTεµ
∂s

δs +
∂FTεµ
∂µC

δµC (7)

Similarly, δFCth is the differentiation of the thruster force
considered in the problem. It is considered as a control
input. The previous equation can be derived in a state
space representation as follows:[

δ̇s

δ̈s

]
= As

[
δs

δ̇s

]
+ Bs

[
δFCth
δµC

]
(8)

With:

As =

[
03 I3

−
(

[ω×]
2

+ [η×] + µ
r3 M

)
−2 [ω×]

]

+

[
03 03

− 1
mCT

∂FTεµ
∂s 03

] (9)

and

Bs =

[
03 03

1
mC

I3
−1
mCT

∂FTεµ
∂µC

]
(10)



4.2 Attitude Motion

For each satellite, the motion is linearised around ω̇B/Inom ,
ωB/Inom and the attitude in the orbital frame represented
by θnom. Linearising (4) and restricting to first order terms
then yields:

J ˙δωB/I +
([
ωB/Inom

×]J −
[
JωB/Inom

×]) δωB/I =
∑

δτ

(11)
As

ωB/I = ωB/O + ωO/I = ωB/O − ωŷO (12)

the rotation rate vector is given in the body frame by Wie
(1998):

ωB/IB = C2θ̇ − ωPO→B [0 1 0]
T

(13)

with (using the 321 Euler angles convention):

C2 =

[
1 0 − sin θ2
0 cos θ1 sin θ1 cos θ2
0 − sin θ1 cos θ1 cos θ2

]
(14)

As ωB/O = C2θ̇, linearising (13) yields:

δωB/IB = (C3 − ωC1) δθ + C2δ̇θ (15)

where, with si = sin θi and ci = cos θi, C1 and C3 are
defined by:

C1 =

[
0 −s2s3 c2c3

c1s2s3 − c3s1 c2s1s3 c3s1s2 − c1s3
−c1c3 − s1s2s3 c1c2s3 s1s3 + c1c3s2

]
(16)

C3 =

[
∂C2

∂θ1
θ̇

∣∣∣∣∣∂C2

∂θ2
θ̇

∣∣∣∣∣∂C2

∂θ3
θ̇

]
(17)

We then have:

δ̇θ = C−12 (ωC1 − C3) δθ + C−12 δωB/I (18)

The state space representation of the linearised attitude
dynamics of satellite i is hence:[

δ̇θi
˙δωiB/I

]
= Aiθ

[
δθi
δωiB/I

]
+ Biθδui (19)

With:

Aiθ =

[
C−12i

(ωC1i − C3i) C−12i

J−1i
∂
∑
δτ i

∂θi
−J−1i

([
ωiB/I

×]Ji−[JiωiB/I×])
]

(20)
And the matrix Biθ depends on the actuators considered.
In the frame of magnetic tugging, we will consider that the
actuators used for the control of the attitude are both the
magnetic dipole of the chaser δµC , and a dedicated AOCS
(Attitude and Orbit Control System), composed either of
reaction wheels or of control momentum gyroscopes for
which the torque δτ irw will be the controlled input:

δui =

[
δτ irw
δµC

]
(21)

The expression of the matrix Biθ is then:

Biθ =

[
03 03

J−1i J−1i
∂τ iεµ
∂µC

]
(22)

The reference frame is the orbital frame, therefore, the
parameters measured are δθ and ωB/O. The measure
equation is therefore:

y =

[
I3 03

ωC1i I3

]
︸ ︷︷ ︸

Ciθ

[
δθi
δωiB/I

]
(23)

4.3 Coupled Linear Dynamics

In the previous sections, the evolution of the attitude of
both satellites have been linearised, as well as the dynamics
of the relative position. However, in this linearisation,
the couplings between these three different dynamics have
been neglected. In this section, the complete linear model
of the formation is therefore developed.

We consider the state vector defined by

x =
[
δs δ̇s δθC δωCB/O δθT δωTB/O

]T
(24)

and the control input

u = [δFCth δτCrw δµC δτTrw ]
T

(25)

Then the linearised (time dependent) system G (t) is:

ẋ = A (t) x + B (t) u

y = C (t) x
(26)

A (t, s (t) ,θC (t) ,θT (t) , ...) =

As

03 03 03 03

−1
mCT

∂FTεµ
∂θC

+ 1
mC

∂FCth
∂θC

03
−1

mCT

∂FTεµ
∂θT

03

03 03
ACθ

03 03

J−1
C

∂τCεµ
∂s

03 J−1
C

∂
∑

τC

∂θT
03

03 03 03 03
ATθJ−1

T

∂τTεµ
∂s

03 J−1
T

∂
∑

τT

∂θC
03


(27)

B (t, ...) =



03 03 03 03

1
mC

I3 03
−1
mCT

∂FTεµ
∂µC

03

03 03 03 03

03 J−1C J−1C
∂τCεµ
∂µC

03

03 03 03 03

03 03 J−1T
∂τTεµ
∂µC

J−1T


(28)

C (t, ...) =

[
I6

CCθ
CTθ

]
(29)

5. LINEARISATION: FORCES AND TORQUES

5.1 Linearised Forces

The two forces FTεµ and FCth depend on the relative
position and orientation of the satellites in the formation.
Indeed, the thrust FCth is created by the chaser relatively
to its own body frame, therefore the thrust in the orbital
frame evolves with the attitude of the chaser. The mag-
netic force created by the chaser on the target depends on
every state of the formation: attitude of the chaser which
drives the orientation of the chaser dipole, attitude of the
target which modifies both the orientation and position
(because of the lever-arm) of the target dipole, and relative
distance between the two satellites.

Let’s assess
∂FCth
∂θC

.

FCthO = PBC→OFCthB (30)

which immediately yields:

∂FCthO
∂θCi

=
∂PBC→O

∂θCi
FCthB (31)



Let’s assess
FTεµ
∂s . Magnetic forces in the “far field” range

are classically described by:

FTεµ =
3µ0

4πd4

((
µC · d̂

)
µT +

(
µT · d̂

)
µC

+ (µC · µT ) d̂ − 5
(
µC · d̂

)(
µT · d̂

)
d̂

) (32)

This expression can be written

FTεµ =
3µ0

4π
ΨTµC =

3µ0

4π
ΨCµT (33)

with Ψi depending on both the dipole i considered and
d = γµT − s the distance between the two dipoles:

Ψi (µi,d) = − 5

d7
(µi · d)

 d2x dxdy dxdz
dxdy d2y dydz
dxdz dydz d2z

+
(µi · d)

d5
I3

+
1

d5

 2µixdx µixdy + µiydx µixdz + µizdx
µixdy + µiydx 2µiydy µiydz + µizdy
µixdz + µizdx µiydz + µizdy 2µizdz


(34)

Therefore the differentiation of the magnetic force with
regard to the relative position is:

∂FTεµ
∂si

= −3µ0

4π

∂ΨC

∂di
µT (35)

Let’s now differentiate FTεµ with regard to the attitudes
of both spacecraft, in the orbital frame.

FTεµO =
3µ0

4π
ΨTOPBC→OµCB (36)

yields:
∂FTεµO
∂θCi

=
3µ0

4π
ΨTO

∂PBC→O

∂θCi
µCB (37)

As d depends on θT via γµT we have to compute:

∂dO
∂θTi

=
∂PBT→O

∂θTi
γµTB

(38)

then the differentiation
∂FTεµO
∂θTi

is:

∂FTεµO
∂θTi

=
3µ0

4π

 ∑
j∈{x,y,z}

∂ΨCO

∂dOj

∂dOj
∂θTi

PBT→O

+
3µ0

4π
ΨCO

∂PBT→O

∂θTi
µTB

(39)

5.2 Linearised Torques

Amongst the different torques applying to both satellites
and given in (5), only the perturbation torque is supposed
to be constant with regards to the different parameters. All
the others depend on the relative position s and attitudes
θC and θT . In this section, they are linearised.

Torques on both satellites: gravity gradient and Earth
magnetic

To begin, let’s assess
∂τ ig
∂θi

. The torque due to the gravity
gradient is given for each satellite by:

τ gB =
3µ

r3
ẑOB × JẑOB (40)

which yields:

∂τ gB
∂θi

=
3µ

r3

(∂PO→B

∂θi

[
0
0
1

]×JBPO→B

[
0
0
1

]

+

PO→B

[
0
0
1

]×JB
∂PO→B

∂θi

[
0
0
1

]) (41)

The magnetic torques depend on the three state parame-
ters. The torque created by a magnetic field B1 on a dipole
µ2 is given by:

τ 1/2 = µ2 × B1 (42)

where in the “far-field” domain, the field B1 generated by
the dipole µ1 can be expressed by:

B1 =
µ0

4πd3

(
3
(
µ1 · d̂

)
d̂ − µ1

)
(43)

This expression can also be written:

B1 =
µ0

4π
Γµ1 (44)

where Γ (d) is the matrix defined by:

Γ (d) =
3

d5

 d2x dxdy dxdz
dxdy d2y dydz
dxdz dydz d2z

− 1

d3
I3 (45)

For both satellites, the linearised magnetic torque due to
the Earth is then given by:

∂τ εµEB
∂θi

=
[
µB
×] ∂PO→B

∂θi
BEO (46)

Torques on chaser: magnetic torque from the target
Similarly to (46), here is the magnetic torque on the chaser
due to the target linearised with regard to the chaser’s
attitude:

∂τCεµBC
∂θCi

=
µ0

4π

[
µCB
×] ∂PO→BC

∂θCi
ΓOµTO (47)

Because of the lever-arm γµT existing between the CoM
of the target and the position of its dipole, the expression
of the magnetic torque on the chaser due to the target,
linearised with regard to the target’s attitude is quite
different:
∂τCεµBC
∂θTi

=
µ0

4π

[
µCB
×]PO→BC

(
ΓO

∂PBT→O

∂θTi
µTB

+
∑

j∈{x,y,z}

(
∂ΓO
∂dOj

∂dOj
∂θTi

)
µTO

) (48)

The differentiation of this torque with regard to the
relative position is given by:

∂τCεµBC
∂si

= −µ0

4π

[
µCB
×]PO→BC

∂ΓO
∂dOj

µTO (49)

Torques on target: magnetic torque from the chaser
Here is the expression of the magnetic torque on the target
due to the chaser, linearised with regard to the target’s
attitude:
∂τTεµBT
∂θTi

=
µ0

4π

[
µTB
×](∂PO→BT

∂θTi
ΓOµCO

+ PO→BT

∑
j∈{x,y,z}

(
∂ΓO
∂dOj

∂dOj
∂θTi

)
µCO

) (50)



Again because of the lever-arm γµT , the expressions of the
linearised magnetic torque due to the other satellite differ

between both spacecraft. Here is given
∂τ εµC/TBT

∂θCi
:

∂τTεµBT
∂θCi

=
µ0

4π

[
µTB
×]PO→BTΓO

∂PBC→O

∂θCi
µCBC

(51)

The differentiation of this torque with regard to the
relative position is given by:

∂τTεµBT
∂si

= −µ0

4π

[
µTB
×]PO→BT

∂ΓO
∂dOj

µCO (52)

Torques on target: lever-arm torque from the chaser
The differentiation of the torque due to the lever-arm, with
regard to the attitude of the target is given by:

∂τTγBT
∂θTi

=
3µ0

4π

[
γµT
×](∂PO→BT

∂θTi
ΨCOµTO

+ PO→BT

∑
j∈{x,y,z}

(
∂ΨCO

∂dOj

∂dOj
∂θTi

)
µTO

+ PO→BTΨCO

∂PBT→O

∂θTi
µTB

) (53)

The linearisation of this torque with regards to the chaser
attitude is given by:
∂τTγBT
∂θCi

=
3µ0

4π

[
γµT
×]PO→BTΨTO

∂PBC→O

∂θCi
µCBC

(54)

And the linearisation with regards to the relative position
is:

∂τTγBT
∂si

= −3µ0

4π

[
γµT
×] ∂ΨC

∂dOi
µT (55)

6. CONTROL OF THE FORMATION AROUND
NOMINAL

The previous sections have derived a linearised model of
the dynamics around a given trajectory briefly described
in section 3.3. This linear model is time dependent, be-
cause the nominal states are not constant in time: their
variations are due to the variations of BEO , r, ω and η
in orbit, and to the different inertias making the guidance
problem a differential problem. This is not much developed
in this paper for lack of space, but will be explained in a
paper to be published by the same authors.

The aim of this section is to evaluate the linearisation
previously derived, as well as to get a first glance on the
behaviour of the closed loop system with two possible
controllers. To do so properly, we should directly compare
the full non-linear model with the Linear Time Varying
(LTV) model derived in the previous sections. However, in
the frame of this preliminary study, we will assume in the
following that the evolution of BEO , r, ω and η are slow
enough for the nominal state to be considered constant
during the simulation. Then G (t) can be approximated by
G (t0), and the non-linear system compared to the Linear
Time Invariant (LTI) plant G (t0).

The nominal parameters used are:
s = [8.15 0.70 0.22]T m; θT = [3 -18 149]T deg;
θC =[0 0 0]T deg; µCO = [-2.29 -8.17 -2.33]T × 105 Am2;

FCthO = [50 0 0]T mN.
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Fig. 2. Poles of open and closed loops (zoom on the origin)

The poles of the open loop system are presented in Fig. 2,
and highlight its instability. To control the formation, two
cases are considered and developed hereafter.

6.1 Control with δτTrw

In the first case, the attitude of the target is assumed
controlled by its AOCS through δτTrw in a decentralised
controller:

δτTrw = K1 [δθT δωT ]
T

(56)

In this case, simulations have showed that there is no need
for the chaser to use δFCth . The rest of the inputs are
controlled by a centralised controller on the chaser:

[δτCrw δµC ]
T

= K2

[
δs δ̇s δθC δωC

]T
(57)

The two state feedback controllers K1 and K2 are
designed using LQ synthesis with minimum energy tuning
of the two submodels of G (see (27)): G13:18,10:12 and
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in dashed line. Chaser in blue-red-yellow, target in
purple-green-cyan when applicable.



G1:12,1:9 respectively, where Gi:j,k:l stands for the minimal
realisation of the subsystems of G between inputs k to
l and outputs i to j. Thus, the design ignores dynamic
couplings between the two subsystems, but they are taken
into account in the simulations presented in Fig. 3. The
poles of the closed loop are presented in Fig. 2.

As it can be seen in Fig. 3, the linear model (in plain lines)
behaves similarly to the non-linear model (in dashed lines).
The behaviour of the system is acceptable when confronted
to an initial perturbation, as long as this perturbation
does not exceed the limits of the linearisation, which seem
tighter on the attitudes. This is consistent with results
foun by Ahsun et al. (2010). The magnetic dipole needed
is consistent with the values given by Schweighart (2005)
and Elias et al. (2007). The torque and angular momentum
storage capacity needed for both satellites lie within the
capacity of devices like the CMG 15-45S by Airbus DS.

6.2 Control without δτTrw

In the second case considered, the target is not assumed to
control its attitude. The controller K3 is designed in the
same way that K1 and K2: an LQ synthesis on G1:18,1:9,
but uses a full state feedback and all controls but δτTrw :

[δFCth δτCrw δµC ]
T

= K3

[
δs δ̇s δθC δωC δθT δωT

]T
(58)

In this case, as it can be seen in Fig. 2, the slowest poles
of the closed loop are still located approximately at the
same frequency and damping as in the previous control
scheme. However, more of them are located at the same
low frequency, which causes a slower convergence of this
system, as shown in Fig. 4, where the simulation is run
with the same initial conditions as in Fig. 3. Moreover,
to control the system without using δτTrw , higher values
are needed for δFCth , of the order of 1 N. In addition,
although the torque needed stays acceptable (of the order
0.5 N m), the angular momentum storage of the chaser
must be increased approximately by a factor 10. To finish,
this controller shows reduced margins when tested with
the non-linear model. The Linear Time Varying behaviour
is currently under investigations.

7. CONCLUSION AND FUTURE WORK

Magnetic tugging is a new concept, which dynamics, guid-
ance and control are complex. In this paper, we have
developed and linearised the non-linear equations describ-
ing the evolution of such a 2-satellites electromagnetic
formation. This linearisation has been showed accurate,
hence validating the linear model.

Two controllers have been shown. The first one is adapted
to a configuration where the target is able to control
its own attitude via its AOCS. This controller shows
satisfying results. In the case where the attitude of the
target has to be controlled by the chaser, the behaviour
of the system is still acceptable, but margins are reduced
and requirements on the actuators increased.

For this early study, the non-linear time varying system
has been approximated by an LTI plant. This gives a first
hint on the efficiency of the controllers proposed, although
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Fig. 4. Evolution of states and control inputs, for control
without δτTrw . Same lines/colors as Fig. 3.

it does not suffice to claim satisfying results for the time-
varying plant. To address this problem, LTV controllers
will have to be designed and tested on the non-linear time-
varying system.
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