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Abstract This study presents a generic TITOP (Two-Input Two-Output Port) model of a
substructure actuated with embedded piezoelectric materials as actuators (PEAs), previously
modeled with the FE technique. This allows intuitive assembly of actuated flexible substructures
in large flexible multi-body systems. The modeling technique is applied to an illustrative example
of a flexible beam with bonded piezoelectric strip and vibration attenuation of a chain of flexible
beams.
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1. INTRODUCTION

Piezoelectric actuators and sensors (PEAs) have been
widely used in the field of system control design of large
flexible structures. However, the design of control systems
involving PEAs requires an accurate knowledge of the
electro-mechanical behaviour of the system for vibration
dynamics, transfers between the inputs and the outputs
and non-linear effects such as hysteresis and creep effect.
In order to integrate PEAs in the controlled structure, a
design procedure including virtual prototyping of piezoele-
ments integrated with the structure needs to be developed.

Macroscopic PEAs models are divided in two main cat-
egories. In the first category, the behaviour of a PEAs
is decoupled in several contributions such as hysteresis,
vibration dynamics and creep based on physical laws. The
most well-known model structure of PEAs is the electro-
mechanical model proposed in Goldfarb and Celanovic
(1997), in which all effects are taken into account. In this
category, other models only consider vibration dynamics
with Finite Element (FE) models (Piefort and Preumont
(2001)) or static behaviour (Smits et al. (1991)). The
second category does not decouple the different behaviours
of the PEA, all effects are considered simoultaneously.
However, they are only accurate over small frequency
ranges, what seriously limit their usage.

This study presents a PEAs modelisation technique that
allows considering piezoelectric actuated flexible substruc-

tures linked with other substructures. Taking advantage
of the TITOP modeling technique Perez et al. (2015b);
Alazard et al. (2015); Perez et al. (2015a), the method
casts in state-space form the FE model of an actuated flexi-
ble substructure in order to consider the acceleration-loads
transfer within a flexible-multibody system. This supposes
an extension of the TITOP modeling technique to piezo-
electric materials, completing the available modeling tech-
niques for flexible multibody control. Section 2 introduces
the main equations of a piezoelectric FE model. Then,
Section 3 explains how to obtain the Two-Input Two-
Output Port(TITOP) model through Component Modes
Synthesis (CMS) and the double-port approach. Then, an
application for a beam with bonded piezoelectric strip is
illustrated. Finally, application to vibration attenuation of
a chain of flexible beams is performed and conclusions are
stated.

2. FINITE ELEMENT MODELING OF A
PIEZOELECTRIC COMPONENT

As stated in IEEE and Engineers (1988), the constitutive
linear equations of an element piezoelectric material read:
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where {T} is the stress vector, {S} the deformation
vector,{E} the electric field, {D} the electric displace-
ment, [c] the elasticity constants matrix, [ε] the dielectric
constants matrix, [e] the piezoelectric constants, with su-
perscripts E , S and T indicating static conditions for E, S
and T respectively.

The dynamic equations of a piezoelectric continuum can
be discretized in elements and written in the finite element
formulation as follows (Piefort and Preumont, 2001):[
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where the element coordinates {q}, the applied voltage
{φ}, the electric charge {γ} and external forces {f} are
related through the element mass matrix, [Mqq], the
element stiffness matrix, [Kqq], the piezoelectric coupling
matrix [Kqφ] and the capacitance matrix [Kφφ]. Upon
carrying out the assembly of each piezoelectric element,
we get the global system of equations:[
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where the global coordinates {u}, the global applied volt-
age {v}, the electric charge {g} and external forces {F}
are now related through the global mass matrix, [Muu], the
global stiffness matrix, [Kuu], the piezoelectric coupling
matrix [Kuv] and the capacitance matrix [Kvv].

3. TITOP MODELING OF THE PIEZOELECTRIC
COMPONENT

The Two-Input Two-Output Port (TITOP) model is a
linear modeling tool developed with the objective of pro-
viding fundamental bricks for the modeling and assembly
of flexible multibody systems. As demonstrated in Perez
et al. (2015b), the TITOP model is as accurate as other
accepted methods (the assumed modes method), more
robust to variations in boundary conditions and it is ap-
plicable in cases of small deformation and large overall
motion, as in a two-link flexible arm or a satellite with
flexible appendages. In this study, an extension to the
case of piezoelectric components is proposed in order to
complete the modeling tools. This is done through the
application of the Component Modes Synthesis (CMS)
transformation to Eqns. (5) and (6), then casting the
resulting transformation into a state-space representation
for the desired inputs-outputs.

3.1 Component Modes Synthesis Transformation

The Component Modes Synthesis transformation allows
separating the different contributions of elastic body dis-
placements into rigid body, redundant boundaries and
internal elastic displacements. The resulting equations are
easier to manipulate since rigid-body and elastic displace-
ments appear uncoupled in the transformed stiffness ma-
trix. The fundamentals of Component Modes Synthesis
were stated by Hurty (1965) in 1965 and then recalled
later by Craig Jr (2000), the reader might consult those
references if more information about CMS is desired.

The global coordinates {u} are then partitioned into three
main sets: rigid-body coordinates, r, redundant boundary
coordinates, c, and fixed-interface normal modes, n. Ap-
plying this division, Eqns. (5) and (6) result:
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where [M ], [K], {u} and {F} have been partitioned into
their contributions to rigid-body, redundant boundaries
and fixed-boundary displacements. The “tilde” load term,
F̃r and F̃c, denotes the force resulting from the connection
to adjacent structures at the boundary points.

In CMS, physical displacements can be expressed in terms
of generalized coordinates by the Rayleigh-Ritz coordinate
transformation Craig Jr (2000):

{
un
uc
ur

}
= [Φ]

{
ηn
ηc
ηr

}
=

[
φnn φnc φnr
0cn Icc φcr
0rn 0rc Irr

]{
ηn
ηc
ηr

}
(9)

where the component-mode matrix [Φ] is a matrix of
preselected component modes including: fixed-constraint
modes,n, redundant boundary modes, c, and rigid-body

modes, r. Pre-multiplying by [Φ]
T

, substituting Eqn. (9)
into Eqns. (7) and (8) and considering that neither interior
forces nor external forces apply (Fn = Fc = Fr = 0), Eqn.
(7) yields:
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with the new coupling matrix coefficients:

K̂nv = φnnKnv (12)

K̂cv = Kcv + φcnKnv (13)

K̂rv = Krv + φrcKcv + φrnKnv (14)

Equations (10) and (11) are the most generalized expres-
sion for a FE model of a piezoelectric component trans-
formed through the CMS method. Section 3.2 will show
how to take advantage of this form in order to simply
model an accurate piezoelectric component for control of
flexible multi-body systems.
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Figure 1. Illustration of a generic substructure with
bonded piezoelectric material

3.2 Actuated TITOP State-Space Realization

The purpose of a TITOP state-space realization (Perez
et al., 2015b) of Eqns. (10) and (11) is to model the
piezoelectric component as a substructure connected with
two different structures in chain-like assembly through
two connection points, P and Q. This is useful in order
to consider the actuation provoked by the piezoelectric
component to the rest of the structure, modeled as a
flexible multibody system.

As shown in Fig. 1, the flexible piezoelectric component A
is linked to the parent structure P at the point P and to
a child substructure Q at the point Q. It is assumed that
the only external loads applied to A are the interactions
with P at point P and with Q at point Q, as hypothesis
on Eqn. (10) states. Voltage v can be applied to the piezo
in order to provoke a electric field, and the electric charge
g is an available measure.

The main problem is how to consider the electro-
mechanical coupling between P, A, Q and electric states.
The mechanical overlapping between substructures is ex-
pressed as an acceleration-load transfer through the com-
mon boundaries, called the double-port approach, pro-
posed by Alazard et al. (2015) and Perez et al. (2015a).
With this approach, both points, P and Q, suffer an
acceleration-load transfer, in such a way that the accel-
eration is transferred to the next substructure in the chain
(Q in this case) and the load is transmitted to the previous
substructure in the chain ( the parent P structure).

A generalization of the double-port approach is presented
in this study for the piezoelectric FE CMS transformation.
The existing electro-mechanical coupling between loads-
accelerations and voltage-charge is considered through the
augmentation of the classic double-port model with an
additional electric input, the applied voltage v, and with
an additional output, the electric charge, g, such that:

{
üQ

FA/P,P
g

}
=
[
GAP,Q(s)

]
{
FQ/A,Q
üP
v

}
(15)

Therefore Eqn. (15) relates the accelerations suffered at
connection point P , loads at connection point Q and the
applied voltage v to the acceleration at connection pointQ,
transmitted force to the previous substructure P and the
measured electric charge g. An assignment of the different
degrees of freedom is performed in order to distribute the
acceleration-load transfer: rigid-body displacements are
those of connection point P and the redundant constraint

displacements those of connection point Q. Thus the
accelerations read:

üP = η̈r

üQ = η̈c + φcr η̈r
(16)

Equation (16) implies that the rigid motion is supported
by point P and the constrained motion of connection point
Q is a result of the rigid body motion in P transported
to point Q (φcrη̈r) plus the constrained motion due to
flexibility (η̈c).

In the same way, loads are received and transmitted by
appendage A with the following directions:

FA/P,P = −F̃r
FQ/A,Q = F̃c

(17)

Using the relations given in Eqns. (16) and (17) in com-
bination with Eqn. (10), a state-space representation can
be obtained for the piezoelectric component A:
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where A, B, C, D and Dδ are the short hand notation of
the following state-space matrices:
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with

M̂Q =

[
M̂nn M̂nc

M̂cn M̂cc

]
; K̂Q =

[
K̂nn 0nc
0cn K̂cc

]
;

D̂Q =

[
D̂nn 0nc
0cn D̂cc

]
; Dδ =

[
0cc φcr 0cv
−φTcr M̂rr K̂rv
0vc 0vr 0vv

]
;

(23)

Equation (18) with Eqns. (19), (20), (21), (22) and (23)
form the double-port model,

[
GAP,Q(s)

]
, of the flexible

piezoelectric component A in chain-like assembly, called
actuated Two-Input Two-Output Port (TITOP)
model. This model allows to interconnect different flexible
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Figure 3. Beam element with bonded piezoelectric strap

substructures in chain-like assembly taking into account
flexible motions. A simplified scheme of the TITOP model
is shown in Fig. 2. In the 6 degrees of freedom case with one
piezoelectric strip,

[
GAP,Q(s)

]
, of the flexible substructure

A is a 13×13 transfer matrix (that is, r = 6, v = 1, c = 6,
g = 1). It should be noticed that the measured charge is
denoted gc and not g because only relative displacement
between connection point P and connection point Q is
measured for the sake of input/output simplicity.

The physical interpretation of Eqn. (18) is as follows.
The rigid-body displacements of the appendage A are
transmitted by its connection point P through the whole of
the appendage, and this excites the fixed-boundary natural
modes (the modes obtained when clamping the appendage
at point P and Q) through the modal participation ma-
trices,

[
M̂rn

]
and

[
M̂rc

]
, and thus the constraint point

Q. These natural modes produce a load transmitted to
substructure P modifying the load that appendage A will
induce to P, which depends on the load received at point
Q, FQ/A,P , the acceleration received at point P , {üP } and
the natural modes. In addition, voltage v modifies these
transfers by increasing or reducing the transferred loads
at P and Q, and the measured electric charge gc responds
to displacements changes either by mechanical interaction
(through load application) or by electric field application
(voltage).

4. MODELING APPLICATION

As an illustrative example, let consider a beam linking
two substructures at both ends with a piezoelectric strip
which has been appropriately bonded to one side, as seen
in Fig. 3. The thickness of the piezoelectric strip is tp,
with a width denoted by wp, Young’s modulus Ep, density
ρp and cross-section inertia Ip. The piezoelectric strip is
used as an actuator by controlling the voltage v applied to
the electrodes creating a constant electric field E3 = v/tp
across the thickness of the laminate.

The beam is modeled with a classic FE decomposition
in several beam elements of length l. The beam has the
same geometrical properties as the piezoelectric strip but
denoted without the p subindex: t,w,E,ρ and I. Since the

piezoelectric laminate is glued to the beam, the mass and
stiffness matrices of a beam element can be obtained as a
sum of the contributions of the beam and the piezoelectric
material. Thus:[
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+
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The matrices of Eqns. (24) and (25) are detailed in
Appendix A, obtained with classical FE decomposition
with beam elements. With further FE decomposition to
the piezoelectric strip, the following coupling matrix and
capacitance matrix are obtained:
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where d31 is the piezoelectric constant under constant
stress which relates the shrinkage observed in the direction
1 when an electric field E3 is applied along the direction of
polarization 3. The coefficient εT33 is the dielectric constant
of the material.

The global mass, stiffness, coupling and capacitance matri-
ces are obtained by appending the elements matrices along
the diagonal. Common node points between two points
are simply added together. As an example the casting of
stiffness matrices is given bellow for a 2× 2 case:
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Obtaining the global piezoelectric coupling matrix is more
complicated since it depends on the desired profile of
voltages for the piezoelectric strips. If the same voltage
is applied among all the strips then the assembly is
straightforward:
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]
;
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]
;
[
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]2

=
[
k2vv
]
→
[
Kvv
]
=
[
k1vv + k2vv

]
(30)

After FE assembly, the complete FE model of the beam
with bonded piezoelectric material is obtained. CMS is
applied to the FE model as seen in Section 3.1 and the
TITOP model is obtained following the indications in
Section 3.2. Figures 4 and 5 show the frequency response
of a beam with piezoelectric strip discretised in 3 elements
and properties extracted from the data of Table B.1. The
first resonant frequency appears at 68 Hz, fast enough for
the majority of large flexible systems.



100 101 102 103 104 105 106 107

M
a
g
n
it
u
d
e

(d
B
)

-300

-250

-200

-150

-100

-50
From: piezFe

y

  To: piezChar1

g
FQ=A y

g
MQ=A z

Transfer Functions Single-Voltage FQ=A ! g

Frequency (Hz)

Figure 4. Transfer functions between applied loads at Q
(vertical force in solid line, torque in dashed line) and
measured electric charge

100 101 102 103 104 105 106 107

M
a
g
n
it
u
d
e

(d
B
)

-120

-100

-80

-60

-40

-20

0
From: piezVol1  To: piezFr

y

F yA=P

v
M zA=P

v

Transfer Functions Single-Voltage v ! FA=P

Frequency (Hz)

Figure 5. Transfer functions between applied voltage and
loads transmitted at P (vertical force in solid line,
torque in dashed line)

5. CONTROL APPLICATION

As an illustrative example of applications on control of
flexible structures, let consider vibration attenuation of
two flexible beams in chain-like assembly with the same
properties as the one modelised in Section 4. The two
flexible beams can be actuated with piezoelectric strips
bonded at their surface as seen in Fig. 3, and their TITOP
assembly is performed as depicted in Fig. 6.

After assembly, vibration attenuation is addressed with a
rate feeback between the integration of the acceleration
at the end of Beam II, q̈, and the voltage applied at
the piezoelectric strip in Beam I, v1. Controller gain is
tuned so that the first flexible mode is maximaly damped,
which results in 0.2 damping ratio (see Fig. 7). Simulation
of the system response to base acceleration excitation
shows in Fig. 8 that vibrations at the end of Beam II
are adequately attenuated when compared with the open
loop response. Other controller inputs are possible, such
as electric charges g1 and g2 and Beam I acceleration,
but Beam II rate feedback acceleration was chosen since
it offered more controllability.

q̈Base/BeamI FBeamI/Base

BEAM I

FBeamII/BeamI

q̈BeamI/BeamIIFext/BeamI

BEAM II

q̈BeamII/NextSubstructureFext/BeamII

v1

v2
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K

Figure 6. Assembly of two flexible beams actuated through
piezoelectric components with TITOP modeling tech-
nique. Rate feedback through K ensures vibration
attenuation.
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Therefore, the actuated TITOP model is a straightforward
modeling tool for flexible structure control applications.
Indeed, this model is used for piezoelectric component
modelization in a Integrated Control/Structure Design of
a Large Space Structure in Perez et al. (2016).



6. CONCLUSIONS AND PERSPECTIVES

This study has introduced a generic model for an actu-
ated flexible structure with piezoelectric components. The
model, derived from the finite element formulation, is an
extension of the TITOP modeling technique (Perez et al.,
2015b) which allows interconnection with different sub-
structures through acceleration-load transfer among the
connection points. This model inherits the TITOP model’s
accuracy and robustness to changes in boundary condi-
tions, and includes the additional advantage of adding
piezoelectric effects in flexible multibody system assembly.
This has been demonstrated by modeling a beam with
bonded piezoelectric strip and by performing vibration
attenuation to a chain of flexible beams. This technique
is used in different Integrated Control/Structure Design
studies of Large Flexible Structures, such as in Perez et al.
(2016).
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Appendix A. MASS AND STIFFNESS MATRICES

The mass and stiffness matrices of each piezo element are
written as:

[
Mqq
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= ρpApl
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]
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(A.2)

where Ip = wptp(t
2 + tpt+

tp
2 ).

The mass and stiffness matrices of the beam element are
identical as the ones denoted in Eqs. (A.1) and (A.2) but
substituting the piezoelectric strip parameters by those of
the beam.

Appendix B. BEAM PARAMETERS

Table B.1.

Beam Parameters Symbol Value

Number of Elements n 3
Total length L 0.50 m

Element length l = L/n 0.17 m
Thickness t 9.53 mm
Width w 30.00 mm

Volumetric Density ρ 2600 Kg/m3

Elastic modulus E 60 GPa

Piezo Parameters Symbol Value

Number of Elements n 0.5
Element length l = L/n 0.17 m

Thickness tp 2 mm
Width wp 30 mm

Volumetric Density ρp 7600 Kg/m3

Elastic modulus Ep 50 GPa
Piezoelectric Constant d31 -150×10−12 m/V
Dielectric Constant εT33 1.59×10−12 F/m


