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A B S T R A C T

Chitosan/biomimetic apatite thin films were grown in mild conditions of temperature and pressure by
Combinatorial Matrix-Assisted Pulsed Laser Evaporation on Ti, Si or glass substrates. Compositional
gradients were obtained by simultaneous laser vaporization of the two distinct material targets. A KrF*
excimer (l = 248 nm, tFWHM= 25 ns) laser source was used in all experiments. The nature and surface
composition of deposited materials and the spatial distribution of constituents were studied by SEM, EDS,
AFM, GIXRD, FTIR, micro-Raman, and XPS. The antimicrobial efficiency of the chitosan/biomimetic
apatite layers against Staphylococcus aureus and Escherichia coli strains was interrogated by viable cell
count assay.
The obtained thin films were XRD amorphous and exhibited a morphology characteristic to the laser

deposited structures composed of nanometric round shaped grains. The surface roughness has
progressively increased with chitosan concentration. FTIR, EDS and XPS analyses indicated that the
composition of the BmAp-CHT C-MAPLE composite films gradually modified from pure apatite to
chitosan.
The bioevaluation tests indicated that S. aureus biofilm is more susceptible to the action of chitosan-

rich areas of the films, whilst the E. coli biofilm proved more sensible to areas containing less chitosan.
The best compromise should therefore go, in our opinion, to zones with intermediate-to-high chitosan

concentration which can assure a large spectrum of antimicrobial protection concomitantly with a
significant enhancement of osseointegration, favored by the presence of biomimetic hydroxyapatite.
1. Introduction

Natural polymers are currently employed to obtain tailored
systems for drug passive/active targeting in order to decrease the
incidence of the side effects (Kim et al., 2008). The natural
polymers exhibit the major advantage of biodegradability inside
the human body, not requiring removal or additional manipulation
(Nair and Laurencin, 2006). Due to their excellent biocompatibility
and cost-effectiveness they can be used as pharmaceutical
excipients (Chifiriuc et al., 2014).
* Corresponding author.
E-mail address: ion.mihailescu@inflpr.ro (I.N. Mihailescu).
Among natural polymers used for drug delivery, chitosan (CHT)
is a highly biodegradable, non-toxic and biocompatible cationic
polysaccharide synthesized from chitin by alkaline deacetylation
(Vllasaliu et al., 2012; Sogias et al., 2012; Derakhshandeh and Fathi,
2012; Gan and Wang, 2007). The chitosan potential to be used as an
antimicrobial agent (Martins et al., 2014), was stressed upon
together with delivery of antibiotics, such as beta-lactams (e.g.,
penicillins, cephalosporins), aminoglycosides and daptomycin
(Noel et al., 2008; Grumezescu et al., 2012; Grumezescu et al.,
2011).

Nevertheless, CHT application in anti-infective strategies is
limited because of its low solubility at neutral or basic pH. For this
reason, the focus has been recently moved to the design of
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antimicrobial films consisting of CHT and its derivatives. They
demonstrated excellent inhibitory activity against a wide spectrum
of Gram-positive and Gram-negative bacteria, including food
contaminants (Kong et al., 2010; Dutta et al., 2009; Leceta et al.,
2013; Dai et al., 2011).

Recent studies revealed the potential of CHT/hydroxyapatite
(HA) composites to be used as coatings on titanium surface in order
to increase the osseointegration capacity of bone implants (Ma
et al., 2014; Li et al., 2015). There exist however, a few studies only,
aiming to evaluate the anti-biofilm activity of such coatings, an
aspect of key importance for the prevention and control of
implant-associated infections.

Many authors have reported the preparation of mixtures of
calcium phosphates (CaP) and CHT in the form of powders (Yoshida
et al., 2004), membranes (Ito et al., 1999), scaffolds (Zhang and
Zhang, 2002), or microspheres (Sivakumar et al., 2002). Neverthe-
less, only few publications were focused on developing procedures
allowing the concomitant preparation of a composite material
containing the two components, which is expected to ensure a
more intimate contact between them (Hu et al., 2004; Davidenko
et al., 2010; Thein-Han and Misra, 2009).

CHT-CaP composite films have been synthesized by several
methods like: pulsed electrochemical deposition (Jia et al., 2016a),
electrophoretic deposition (Zhong et al., 2015), plasma spraying
(Song et al., 2011), or co-precipitation method (Peña et al., 2006).

On the other hand, over the past decades, laser techniques
proved a high potential for the fabrication of antimicrobial coatings
for orthopedic implants for medical applications such as the bone
tissue replacement or treatment of osteoporosis or osteolytic
tumors (Jia et al., 2016b; Simchi et al., 2011).

Furthermore, the laser-based technologies are exhibiting a lot of
advantages, as they allow for the fabrication of a wide-range of
different biomaterials, with a fairly uniform spreading of material
over rather large areas, controlled film thickness (with an accuracy
of 1 Å), good adhesion to substrate (Blind et al., 2005; Duta et al.,
2013; Mihailescu et al., 2016), and specific surface properties (Sima
and Mihailescu, 2013). Moreover, these deposition methods imply
a low material consumption, and ensure the stoichiometry
preservation of the growing films (Eason, 2006; Yu et al., 2014;
Cristescu et al., 2012). In the same time, remarkable efforts were
recently paid to the development by combinatorial processing of
new biomaterials with innovative properties. Usually, the fabrica-
tion of a composite layer is carried out by premixing of biopolymer
solutions followed by heating of coating (Meredith et al., 2000) or
film casting/solvent evaporation (Li et al., 2012). The combinatorial
technology for the blending of two different biomaterials
(Torricelli et al., 2015; Sima et al., 2014; Axente et al., 2014; Sima
et al., 2012) is based on Matrix-Assisted Pulsed Laser Evaporation
(MAPLE) method. This newly developed technique – Combinatori-
al-MAPLE (C-MAPLE) – stands for a simple, single step, fabrication
route which can easily limit the time of manipulation and
biomaterials consumption.

The aim of this study was to synthesize thin coatings containing
natural biopolymer chitosan combined with biomimetic apatite
(Eichert et al., 2007; Grossin et al., 2010; Visan et al., 2014) directly
on titanium implants by C-MAPLE technique.

As known, a biomaterial used for bone substitution should
possess a set of ineluctable properties. They are:

(i) An identical chemical composition to the natural bone (which
is a complex structure of organic and inorganic materials
(Dorozhkin, 2009)). For this purpose, the nonstoichiometric
biomimetic apatite (BmAp) (Eichert et al., 2007; Grossin et al.,
2010; Visan et al., 2014), has been used as model for the basic
constituent of the inorganic part of the bone, and chitosan
(CHT), a natural biopolymer, with a similar chemical structure
to the glycosaminoglycan, the prevalent extracellular matrix
of the bone and cartilage, as the organic phase of bone
(Vllasaliu et al., 2012).

(ii) A good mechanical strength. The coatings were therefore
deposited on titanium (Ti) medical implants, thus harmo-
niously combing the excellent mechanical features of Ti with
the biomimetics of the organic-inorganic biofunctional layers
(Agarwal and García, 2015). This will confer stability and
reliability to the medical device assembly.

(iii) Biocompatibility. From this point of view, both CHT and BmAp
exhibit excellent cytocompatibility and remarkable osteocon-
ductive properties, respectively (Song et al., 2011; VandeVord
et al., 2002).

(iv) Resistance to microbial colonization, particularly during the
osseointegration period. In this regard, CHT shows a higher
antibacterial activity against a broad spectrum of microbial
agents (Lee et al., 2009). It is therefore expected that the
composite structures of polymer (CHT)/ceramic (BmAp) will
exhibit a double function: antimicrobial protection and
enhancement of osteoblast cell proliferation, opening new
promising opportunities for developing a new generation of
orthopedic implants.

To the best of our knowledge, this is the first attempt to
synthesize a composition gradient between CHT and BmAp by laser
co-evaporation of the two distinct cryogenic targets followed by a
co-deposition process.

2. Materials and methods

2.1. Materials

CHT with a low molecular weight was purchased from Sigma-
Aldrich, while the biomimetic apatite powder, with a particle size
<25 mm, was prepared by the co-precipitation method in
accordance with a previously described protocol (Visan et al.,
2014). Solutions consisting of 2% CHT and 1% BmAp in deionized
water were prepared. All target solutions were poured into a
copper target holder, pre-cooled at 173 K, and subsequently frozen
by immersion in liquid nitrogen for 15 min.

2.2. C-MAPLE deposition process

C-MAPLE technique was used for the fabrication of a composi-
tional map of the two compounds (i.e., CHT and BmAp). In the
experiments, an excimer laser source (KrF*, l = 248 nm, tFWHM=
25 ns) operated at 10 Hz frequency repetition rate was used for the
cryogenic targets evaporation. As deposition substrates were used:
12 mm diameter Ti (grade 4) disks, Si wafers or glass slides. In order
to obtain uniform coatings, the targets were permanently rotated
(80 rpm). This way, the drilling was avoided and the expulsion of
materials is promoted in a proper way, ensuring a uniform
deposition. In C-MAPLE experiments, the two targets (e.g., CHT and
BmAp) were simultaneously evaporated by the laser beam, which
was divided into two beams (Fig. 1a) by an optical splitter. The two
beams were focused in parallel onto the surface of each target,
containing the frozen solutions to be irradiated.

The used method allows to combine two different biomaterials
and to select the best solvent/concentration to be used for the two
compounds. In our experiments, after preliminary studies,
deionized water was chosen as solvent and the concentrations
of 1 and 2 wt.% were used for CHT and BmAp substances,
respectively. We also performed a parametric study on optimum
laser energy (70, 100, 120 and 150 mJ) for which the materials are
deposited unaltered. The selected laser energy was: 100 mJ in the
case of CHT target and of 70 mJ for the BmAp one.



Fig. 1. (a) C-MAPLE experimental setup. (b) Schematic representation of the coating with compositional gradient obtained by C-MAPLE.
In a configuration with a distance between the plasma centers
of 30 mm, one obtains a 60 mm long deposition with edges
consisting of CHT and of BmAP only, and in-between discrete areas
of CHT-BmAp blended compositions. The soft mixing of the two
compounds evaporated from the two distinct targets can result in
the deposition of a continuous and uniform film with a
composition gradient, as depicted schematically in Fig. 1b.

The coated samples areas deposited onto the substrate array
composed of five consecutive 12 mm Ti disks are further denoted
S1 to S5; where S1 stands for the coating area having CHT as major
component, S5 represents the coating area with richer content of
BmAp. S2 ! S3 ! S4 series indicates blended coating areas with
decreasing CHT/BmAp ratios. For comparison reasons, simple CHT
and BmAp films have been also deposited on the same type of
substrates.

Depending on the laser parameters and polymeric-ceramic
composition, the thickness of C-MAPLE coating, as determined by
profilometry, was in the (1–2) mm range. The obtained thickness
value was calculated as the average of three independent
measurements.

2.3. Physico-chemical characterization techniques

(a) The general surface morphology of the deposited films was
investigated by scanning electron microscopy (SEM) using a
Hitachi S3400 Electron Microscope. The investigations were
carried out in high vacuum at an acceleration voltage of 25 kV.
The samples were coated with a thin Au film in order to reduce
electrical charging during analysis.

(b) Further surface morphology insightful analysis has been
performed in multiple areas of the blended coating by atomic
force microscopy (AFM) in non-contact mode using an NT-MDT
NTEGRA Probe NanoLaboratory system (NT-MDT NSG01
cantilever with tip radius of 10 nm).

(c) Compositional analyses have been carried out by energy-
dispersive X-ray spectroscopy (EDS) with SiLi EDAX Inc.
detector (attachment of SEM apparatus).

(d) The structure of the simple CHT and BmAp MAPLE films was
investigated by grazing incidence X-ray diffraction (GIXRD)
using a Bruker D8 Advance diffractometer, in parallel beam
setting, with Cu Ka (l = 1.5418 Å) incident radiation. The
incidence angle was set to 2�, and the scattered intensity was
scanned within the 2u range (20–45)�, with a step size of 0.04�,
and 40 s per step.

(e) Fourier transform infrared (FTIR) spectroscopy was used for
analyzing the functional groups present in the C-MAPLE coating
deposited on the 60 mm long Ti plate. The analyses were
performed in different regions of the films, at separation
distances of �2 mm, with a Perkin Elmer Spectrum BX II
spectrometer, in attenuated total reflection mode (ATR) using a
Pike-MIRacle diamond head of 1.8 mm diameter. The spectra
were collected in the range 4000–550 cm�1, by recording 128
individual scans at a resolution of 4 cm�1.

(f) The micro-Raman analysis of the starting powders and C-
MAPLE coatings has been performed with a Horiba Jobin Yvon
Labram HR 800 spectrometer, in the 3800–100 cm�1 range. A
laser excitation wavelength of 632.8 nm has been used in the
case of powders. The C-MAPLE film deposited on the 60 mm
long glass plate has been exposed to a continuous laser
radiation provided by an Argon diode laser at 532 nm with a
power of 12 mW. The samples were placed in an Olympus BX
41 microscope and focused by an objective 50 x with long
distance numerical aperture of 0.75, which gives the system a
lateral resolution of 1 mm and an axial resolution of 4.5 mm.
The mappings were carried out using an XYZ motorized stage
with an accuracy of 0.1 mm. The size of mapping areas was of
(80 � 100) mm2, with a measurement pitch of 1 mm.

The spectrum of each point was acquired through a 600 line/
mm grating, with a spectral resolution of 1 cm�1 and collected with
a quantum well detector cooled to �60 �C double Pelletier’s effect
(Synapse CCD). A certified silicon standard allowed calibrating
frequency equipment using with the first order of silicon line at
520.7 cm�1. Each point on the map was acquired with an
integration time of 20 s and 1 accumulation. A baseline correction
processing was performed using the Labspec 5 software.

� X-ray photoelectron spectroscopy (XPS) analysis was performed
using a Thermo Scientific K-Alpha apparatus. Photoemission
spectra are recorded using Al Ka = 1486.71 eV monochromatized
radiation. The X-ray spot diameter on the sample surface is of
400 mm. The pass energy was fixed at 30 eV for narrow scan, and
at 170 eV for survey scans. The background signal was removed
using the Shirley method. Atomic concentrations were deter-
mined from photoelectron peak areas using the atomic
sensitivity factors, taking into account the transmission function
of the analyzer. Photoelectron peaks were analyzed and
deconvoluted using a Lorentzian/Gaussian (L/G = 30) peak
fitting.

2.4. Antimicrobial assays

2.4.1. Microbial strains and growth conditions
Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 8739

were purchased from American Type Culture Collection (ATCC, US).
Glycerol stocks were streaked on LB agar to obtain 24 h cultures to
be used for all further studies.



2.4.2. Biofilm development
Monospecific biofilm development was assessed at different

times of exposure, using sterile 6 well plates (Nunc). Sterile coated
and reference bare Ti discs were inoculated on their surface with
50 mL bacterial suspension of �0.5 McFarland density correspond-
ing to 1–3 * 107 density. The samples were allowed to incubate at
37 �C in humid atmosphere and have been observed after three
time periods (6 h, 24 h and 48 h) to assess the temporal dynamics of
developed biofilms. After incubation, the samples were carefully
washed with sterile saline buffer to remove any unattached
microbial cells and then immersed in 1 mL sterile saline buffer in
Eppendorf tubes to reach biofilm detachment by vigorous
vortexing. The resulting biofilm–detached cell suspensions were
further serially ten-fold diluted and 10 mL of each serial dilution
were plated in triplicate on LB agar.

After 6 h, 24 h and 48 h of incubation at 37 �C, viable cell counts
were performed and the number of colony forming units (CFU)/mL
for each sample were estimated.
Fig. 2. SEM micrographs recorded in various regions of the CHT-Bm
3. Results and discussion

3.1. SEM, AFM, and EDS observations

The optimal cellular response (cellular adhesion, spreading, and
proliferation) is of great significance for tissue and medical
engineering and is dependent on surface morphology and
composition (Surmenev, 2012; Spencer, 2011).

The general surface morphology of the CHT-BmAp film has been
first investigated by SEM. Fig. 2 displays the characteristic
topological features of the C-MAPLE film in various surface regions
of interest: far-most CHT rich region (S1), CHT-BmAp blended
regions (with CHT decreasing from S2 to S4), and far-most BmAp
rich region (S5).

SEM micrographs (Fig. 2) showed that the C-MAPLE blended
coatings have a homogeneous spongy appearance all over the
substrate, which is known to be beneficial for cell adhesion (Boyan
et al., 1999; Chang and Wang, 2011; Willershausen et al., 2014; Zhu
Ap coating obtained by C-MAPLE (magnification bar = 4 mm).



Fig. 3. Surface roughness (RRMS) evolution with the distance from the C-MAPLE film
CHT-rich edge.
et al., 2015). Although, CHT particulates preserve their spherical
morphology, while elongated filiform structures were also noticed
in the blended regions of the film (i.e., S2–S4). It was stated that
these threadlike structures could support some toughness
improvements similar to the one provided by fibre reinforcing
in the composite materials, ensuring the desired mechanical
behavior for tissue substitution (Mikhailov et al., 2014).

Further, the roughness (RRMS) of the CHT-BmAp films have been
inferred by AFM analyses. The evolution of the grains roughness
along the substrate length is depicted in Fig. 3. One notices that a
progressive increase of roughness (RRMS) occurs with the CHT
concentration in the C-MAPLE composite films.

Fig. 4 presents characteristic EDS spectra collected from various
regions of CHT-BmAp C-MAPLE blended film, starting with the CHT
rich region. One can observe the progressive decrease of C-Ka and
N-Ka lines with distance from the CHT rich edge, which is
indicative of its gradual decrease of concentration in the sample.
The Ca/P molar ratio for each combinatorial surface was in the
range �1.3–1.5, thus lower than the stoichiometric theoretical
value of hydroxyapatite (i.e., 1.67), pointing to the calcium-
deficient state of biomimetic apatite synthesized.

3.2. GIXRD investigation

In the case of simple MAPLE films the only diffraction maxima
(Fig. 5) pertain to the Ti substrate (ICDD: 00-044-1294) and to a
titanium sub-oxide phase (TiO) (ICDD: 01-086-2352), visible due
to the low thickness of the MAPLE films. The presence of TiO phase
on the Ti surface might be the result of substrate manufacturing
Fig. 4. EDS spectra collected in various regio
process. For BmAp film, a fairly pronounced hump has been
observed in the (25–35)� 2u range, where crystalline hydroxyapa-
tite [HA, Ca10(PO4)6(OH)2] compounds exhibit their most intense
lines. It is thus suggested that the BmAp MAPLE thin film is in
amorphous state within the sensitivity limit of the employed XRD
apparatus. No such halo has been revealed in the case of CHT
MAPLE thin film. One may account this to the lower electron
density of chitosan with respect to HA, determining a lower
scattered intensity, hard to discriminate from the background
noise.

3.3. FTIR spectroscopy studies

The FTIR spectra of BmAp, HA (pure and highly crystalline), and
CHT powders are presented comparatively in Fig. 6a and b. One can
notice the broader aspect of the IR bands in the case of BmAp
powder with respect to the pure and highly crystalline HA
material. Besides the characteristic (Markovic et al., 2004; Sima
et al., 2010) n4 bending, n1 symmetric stretching and n3 asymmetric
stretching vibration bands of orthophosphate units of HA (Table 1),
the BmAp powder elicited supplemental IR bands peaking at �872,
1418, 1480 and 1635 cm�1. The well-defined band at �872 cm�1

could be attributed to the superimposed contributions of the n2
bending modes of carbonate groups and the vibrations exhibited
by hydrogen phosphate ions (HPO4)2– (characteristic to non-
apatitic domains). The weak band at �1635 cm�1 belongs to the
bending mode of water molecules. It denotes the existence of
hydration, and correlates well with the very broad band ranging
from 3600 to 2500 cm�1, engendered by the stretching vibrations
of adsorbed water molecules. The broad IR absorbance maxima of
the BmAp powder spectrum, and the absence of the libration
(�628 cm�1) and stretching (�3571 cm�1) modes of structural
(OH)� groups, point towards an apatite-like compound with a
reduced degree of (short-range) order.

The IR spectrum (Fig. 6a and b) of the CHT powder displays an
intricate envelope with multiple vibration maxima. The two
prominent bands, situated in the wave numbers regions (i) 3600–
2500 cm�1 and (ii) 1100–950 cm�1, are ascribed to the (i)
overlapped stretching vibrations of adsorbed water and N��H
bonds, and to the (ii) symmetric stretching vibrations of C��O
bonds in groups like COH, COC and CH2OH, respectively (Katti et al.,
2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012).
The low intensity, but sharp bands, centred at (iii) �1150 cm�1 and
(iv) �890 cm�1, are related to the (iii) asymmetric stretching
vibrations of C��O, and (iv) wagging vibrations of C��H bonds of
the saccharide groups of chitosan (Paluszkiewicz et al., 2011; Silva
et al., 2012). The peaks at 1650, 1591 and 1316 cm�1 are
ns of CHT-BmAp C-MAPLE blended film.



Fig. 5. Comparative GIXRD patterns of simple BmAp/Ti film, simple CHT/Ti film
and bare Ti substrate.
characteristic to the vibrations of amides I, II and III groups, whilst
the bands at 1420 and 1376 cm�1 are assigned to the symmetric
deformation modes of CH3 (Katti et al., 2008; Yuan et al., 2010;
Paluszkiewicz et al., 2011; Silva et al., 2012).

A complete assignment of the FTIR bands is presented in Table 1.
Fig. 6c and d display the comparative spectra recorded for the

pure (CHT and BmAp) layers and blended (CHT-BmAp) thin film (in
Fig. 6. Comparative FTIR spectra of CHT, BmAp, and crystalline HA powders (a,b), and sim
groups (b,d) regions. For a better visual evaluation, the spectra were normalized to the
two regions situated close to CHT- and BmAp-rich edges of the
film) deposited on titanium substrate. As a general observation, the
spectra of pure CHT and BmAp layers elicit less defined IR
envelopes with broader bands with respect to the parent powders,
thus indicating a decreased structural order. This was to be
expected for films synthesized at room temperature in non-
equilibrium conditions by a physical vapor deposition method,
such as MAPLE. However, remarkably, all major vibration bands of
CHT and BmAP were detected in the case of films, furthermore
having similar intensity ratio and featuring only slight wavelength
shifts. The other minor vibration bands (observed more clearly in
the case of powders) are assumed to be present, but overlapped to
the broader, yet convoluted, major peaks. The conservation of
similar levels of hydration (for both types of films) as the ones
found in the parent materials can be also emphasized.

The blended CHT-BmAp film was analyzed in various regions
situated on a median line, starting from the CHT-rich region,
taking advantage of the ATR diamond head with a window area of
2.54 mm2. In this way the compositional evolution of the blended
film was unveiled (Fig. 7a and b). One can notice that even in the
regions situated in the BmAp-richer edge of the film, the CHT
bands are dominant (Figs. 6 and 7). This suggests that the CHT
plume was superior expanded, whilst the BmAp was better
confined, due to their different ablation and/or volatilization
rates. However, the (large) shifts to intermediate positions and
the shape of the peaks situated in the 1200–800 cm�1 region are
suggesting that an interaction of CHT molecules with BmAp is
ple CHT, BmAp, and CHT-BmAp films (c,d) in the fingerprint (a,c) and functional
 intensity of the most prominent band centred at �1040–1010 cm�1.



Fig. 7. FTIR spectra of simple CHT and BmAp films in comparison with the “punctual” spectra collected at a separation distance of �2 mm on the surface of CHT-BmAp C-
MAPLE film, in the fingerprint (a) and functional groups (d) regions. For a better visual evaluation, the spectra were normalized to the intensity of the most prominent band
centred at �1040–1010 cm�1.
occurring. As expected, with the increase of the distance from the
BmAp-richer edge of the film, the BmAp vibration bands start
fading, whilst the CHT bands become more and more pronounced,
and are progressively shifted to the positions recorded in the case
of the pure CHT film (Fig. 7a and b). Concomitantly, one can
observe a continuous change of the vibration bands shape, which
evolves from a CHT-BmAp intermingled spectrum to an IR
envelope allure closely resembling the one of pure CHT (Fig. 7a
and b).

3.4. Micro-Raman spectroscopy investigations

Similar vibration bands to the ones revealed by FTIR inves-
tigations (Fig. 7a and b and Table 1) have been also identified by
micro-Raman analyses for the CHT and BmAp source materials.
(results not shown here). However, in the case of Raman spectra
the symmetric stretching bands are the dominant ones.

In perfect agreement with the FTIR results, the Raman spectra
evidenced that the BmAp material elicit along combinatorial
trajectory a decreased ordering (indicated by the broader aspect of
the bands) and a certain level hydration with respect to the pure
and crystalline HA.

3.5. XPS analysis

XPS analysis confirmed the chemical composition of the CHT-
BmAp C-MAPLE composite films. XPS survey spectra collected on
the surface of CHT-BmAp samples (not presented) indicated the
presence of C 1s, O 1s, N 1s, Ca 2s, Ca 2p, P 2 s and P 2p
photoelectron peaks.

Fig. 8 shows the atomic ratio N 1s/(N 1s + Ca 2p) evolution
depending on the position along the CHT-BmAp blended sample.
As predicted, the atomic ratio (N 1s/N 1s + Ca2p) is decreasing from
CHT to BmAp compounds, evidencing the composition gradient of
the combinatorial films.

3.6. Antimicrobial activity assay

Composite biomaterials comprising Ap and polymers have
shown promising features for bone tissue engineering. Previous
studies have proven the high antimicrobial activity of CHT/Ap
composite particles (Ignjatovi�c et al., 2016; Shi et al., 2016).
However, the most of the chitosan containing coatings reported in
the literature have been obtained by using electrophoretic
deposition or hydrothermal fabrication methods (Seuss et al.,
2014; Pishbin et al., 2014; Long et al., 2014).

During this studies, the antibiofilm properties of the C-MAPLE
deposited coatings containing CHT and BmAp in various ratios have
been tested using two microbial strains, which are representative
for the Gram positive (S. aureus) and Gram negative (E. coli)
bacterial infections. Such pathogens could contaminate the
orthopedic implants by route of exogenous or endogenous
infections, leading to the occurrence of implant-associated
infections, which are hard to treat and could often lead to implant
failure. S. aureus, together with S. epidermidis accounts for 30% to
two thirds of all implant-related infections, while among Gram-
negative bacteria, the etiology is dominated by E. coli (Sendi et al.,
2011; Campoccia et al., 2006; Esposito and Leone, 2008). However,
little is known about the virulence features of E. coli strains
involved in prosthetic infections. A recent study has revealed that
no specific pathogenic signature or increased ability to form
biofilms in vitro were detected in E. coli strains isolated from
orthopedic infections, as compared to fecal isolates (Crémet et al.,
2012).

The biofilm formation is a multi-stage process starting with the
initial attachment of bacterial cells, followed by cell aggregation



Table 1
The assignment of FTIR bands of chitosan and hydroxyapatite.

Position (cm�1) Band assignment

563–557
601–600

Bending n4 of (PO4)3� groups (Markovic et al., 2004; Sima et al., 2010)

628 Libration of structural (OH)� groups (Markovic et al., 2004; Sima et al., 2010)
872–867 Bending n2 of (CO3)2� groups (Markovic et al., 2004; Sima et al., 2010)

Stretching of (HPO4)2� (Markovic et al., 2004)
897–895 Wagging of C��H bonds of the saccharide structure of chitosan (Yuan et al., 2010; Silva et al., 2012)
963–942 Symmetric stretching n1 of (PO4)3� groups (Markovic et al., 2004; Sima et al., 2010)
994–993
1034–1026
1068–1061

Symmetric stretching of C��O bonds in COH, COC and CH2OH groups (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012)

1018–1002
1096–1087

Asymmetric stretching n3 of (PO4)3� groups (Markovic et al., 2004; Sima et al., 2010)

1155–1150 Asymmetric stretching of C��O��C bonds of the saccharide structure of chitosan (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva
et al., 2012)

1262 Stretching of (C��O��H) bonds (Yuan et al., 2010)
Rocking of NH2 (Katti et al., 2008)

1317–1315 Stretching of (��CH3) of amide III groups (Katti et al., 2008; Yuan et al., 2010)
1376–1375
1420–1417

Symmetric deformation of (��CH3) (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012)

1427–1418
1480

Asymmetric stretching n3 of (CO3)2� groups (Markovic et al., 2004; Sima et al., 2010)

1591–559 Stretching of (��N��H) of amide II groups (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012)
1635–1610 Bending of water molecules (Markovic et al., 2004)
1650–1640 Stretching of (��C¼O��) of amide I groups (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012)
2871–2870 Symmetric stretching n2 of (C��H) bonds in (��CH3) groups (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012)
2922 Symmetric stretching of aliphatic (C��H) bonds (Peng et al., 2008)
2977 Asymmetric stretching of (��CH3) (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012)
3288–3286
3357–3355

Stretching vibrations of (N��H) bonds (Katti et al., 2008; Yuan et al., 2010; Paluszkiewicz et al., 2011; Silva et al., 2012)

3571 Stretching of structural (OH)� groups (Markovic et al., 2004)
3600–2500 Stretching vibrations of (O��H) bonds in adsorbed water molecules (Markovic et al., 2004)
and accumulation in multiple cell layers, biofilm maturation and
biofilm cells detachment (Arciola et al., 2015). In our study, the
development of biofilms consisting of the Gram-positive S. aureus
and the Gram-negative E. coli followed a different dynamic on the
tested samples. Thus, both S. aureus and E. coli biofilms grown on
the control (bare Ti substrate) revealed a similar dynamic, i.e., a
decreasing trend of biofilm embedded viable cells, quantified at
the three consecutive point intervals (Fig. 9). These results are
suggesting that the high surface roughness of bare Ti substrate
required for an improved osseointegration favors the rapid and
firm adhesion of S. aureus and E. coli cells. This behavior supports
the leading position held by these species in the etiology of
implant-associated infections.

Fig. 9 In the case of microbial biofilms development on the CHT-
BmAp surfaces, a more pronounced inhibitory effect was generally
Fig. 8. Typical XPS measurement along the composite CHT-BmAp C-MAPLE films.
observed against the Gram-positive S. aureus biofilm, as compared
to E. coli, for all the three tested time intervals (Fig. 10). The S2, S3
and S4 samples inhibited the first stage of S. aureus initial microbial
adherence to the tested surface quantified after 6 h, while none of
the tested samples inhibited the adherence of the Gram-negative E.
coli strain (Fig. 10a). At 24 h, all tested CHT-BmAp samples
decreased the number of S. aureus biofilm embedded cells
(Fig. 10b); the most intensive inhibitory effect being observed
Fig. 9. Graphic representation of the number of viable biofilm embedded (a) S.
aureus and (b) E. coli cells developed on the bare Ti substrate used as control.



Fig. 10. Graphic representation of the number of viable microbial cells adhered to
the surface of CHT-BmAp composite film after (a) 6 h, (b) 24 h and (c) 48 h of
incubation.

Table 2
Synthetic representation of the anti-biofilm efficiency of the CHT-BmAp surfaces
depending on the biofilm species and development stage.

Species S. aureus E. coli

Incubation time 6h 24h 48h 6h 24h 48h

S1 x x x
S2 x x x x
S3 x x x x x
S4 x x x x x
S5 x x x x
for the S4 sample in the case of S. aureus biofilm. The E. coli biofilm
development was inhibited by the S1–S5 samples, but the most
intensive antibiofilm effect was noticed for S4 and S5 (Fig. 10b).

An intensive anti-biofilm effect was exhibited after 48 h against
S. aureus in the case of all CHT-BmAp tested samples (Fig. 10c) but
the most significant activity was observed for S1 and S2 samples.
The E. coli biofilm was inhibited only by S3–S5 samples, the most
intensive effect being noticed for S5 (Fig. 10c).

Taken together, the results regarding the anti-biofilm effect of
the obtained coatings exhibited against both biofilm types and for
the three tested intervals recommend S3 and S4 as the most
promising compositions, assuring an anti-biofilm protection on a
long period of time against both bacterial species (Table 2).

Although the mechanisms of antimicrobial action of CHT are not
elucidated, the literature states that its target is at the microbial
cell surface, as suggested by the electron microscopy findings. They
show cellular wall disorganization both in Gram-positive and
Gram-negative bacteria, as well as in fungal strains, due to the
electrostatic interaction of positively-charged—CHT with the
negatively charged bacterial components (proteins, phospholi-
pids) (Cuero, 1999; Muzzarelli et al., 1990; No et al., 2002). This
action mechanism is responsible for a wide spectrum of the
antimicrobial activity of CHT and its derivatives including
filamentous fungi, yeasts and bacteria (Raafat and Sahl, 2009).
Nevertheless, it seems that CHT is more active against Gram-
positive than Gram-negative bacteria, as revealed also by our
study. In this regard, S. aureus biofilm proved to be more
susceptible than E. coli, probably due to the stronger interaction
of CHT with the amino acids rich fraction of the Gram-positive
bacterial wall (Kumar et al., 2005). In exchange, the Gram-negative
strains have a more complex cellular wall due to the negatively-
charged lipopolysaccharides which can act as an additional barrier
in the interaction of chitosan with other structures of the cellular
wall and membrane (Helander et al., 2001).

4. Conclusions

The synthesized CHT-BmAp blended thin films are amorphous,
rough, with a morphology characteristic to MAPLE structures. The
composition gradient of the chitosan-to-biomimetic hydroxyapa-
tite has been confirmed longwise the combinatorial films.

The antimicrobial activity was controlled by the concentration
of chitosan, while the blended structures were better integrated for
quasi-equal presence of the two compounds (i.e., chitosan and
biomimetic apatite). The most efficient antimicrobial activity,
considered as long-term protection against initial adhesion and
biofilms developed by Gram-positive and Gram-negative strains,
was assigned to S3 and S4 samples.

C-MAPLE technique used in this study proves to be a
prospective and viable method for the fabrication of biomimetic
and bioactive antimicrobial orthopedic coatings which resemble
the native bone extracellular matrix (consisting of water, minerals,
fibrous proteins, proteoglycans) and thus, create a favorable living
environment for osteogenic cells, while assuring protection from
microbial colonization.
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