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SUMMARY

This paper presents a class of limited memory preconditioners (LMP) for solving linear systems of equations
with symmetric indefinite matrices and multiple right-hand sides. These preconditioners based on limited
memory quasi-Newton formulas require a small number k of linearly independent vectors and may be used
to improve an existing first-level preconditioner. The contributions of the paper are threefold. First, we
derive a formula to characterize the spectrum of the preconditioned operator. A spectral analysis of the
preconditioned matrix shows that the eigenvalues are all real and that the LMP class is able to cluster at least
k eigenvalues at 1. Secondly, we show that the eigenvalues of the preconditioned matrix enjoy interlacing
properties with respect to the eigenvalues of the original matrix provided that the k linearly independent
vectors have been prior projected onto the invariant subspaces associated with the eigenvalues of the original
matrix in the open right and left half-plane, respectively. Third, we focus on theoretical properties of the Ritz-
LMP variant, where Ritz information is used to determine the k vectors. Finally, we illustrate the numerical
behaviour of the Ritz limited memory preconditioners on realistic applications in structural mechanics that
require the solution of sequences of large-scale symmetric saddle-point systems. Numerical experiments
show the relevance of the proposed preconditioner leading to a significant decrease in terms of computational
operations when solving such sequences of linear systems. A saving of up to 43% in terms of computational
effort is obtained on one of these applications.

KEY WORDS: limited memory; linear systems; preconditioners; Ritz vectors; symmetric indefinite
matrices

1. INTRODUCTION

The numerical solution of sequences of linear algebraic systems is frequently required in many
applications in computational science and engineering. For small to medium-scale problems, algo-
rithms related to (sparse or dense) direct methods based on Gaussian elimination are usually
employed. When the coefficient matrix is fixed, these methods are especially relevant because the
factorization can be performed once for all and reused all along the sequence. In the general case
where both the left-hand and right-hand sides are changing, it is known that preconditioned Krylov
subspace methods are the method of choice for large-scale problems. Indeed, the operators in subse-
quent linear systems have most often similar spectral properties. Hence, a first possible approach to
design efficient numerical methods is to extract information generated during the solution of a given
linear system to improve the convergence rate of the Krylov subspace method during the subsequent
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solutions. Deflated and augmented Krylov subspaces [1–4] or Krylov subspace methods with recy-
cling [5–8] have been proposed in this setting. We refer the reader to [9–12] for a comprehensive
theoretical overview on these methods and to references therein for a summary of applications,
where the relevance of these methods has been shown. An alternative consists in exploiting informa-
tion generated during the solution of a given linear system to improve a preconditioner when solving
the next linear system in the sequence. This is the main subject that we want to address in this paper.

When the coefficient matrices in the sequence are symmetric positive definite, Morales and
Nocedal [13] have proposed a preconditioner which has the form of a limited memory quasi-Newton
matrix [14]. This automatic preconditioner generated using information from the conjugate gradient
method only [15, 16] does not require explicit knowledge of the coefficient matrix and is therefore
suitable for problems where only products of the matrix times a vector can be computed, as in data
assimilation. In [13], Morales and Nocedal have then used the conjugate gradient method in combi-
nation with this preconditioner to solve the original symmetric positive definite linear systems aris-
ing in the sequence. The effectiveness of this approach has been tested within a Hessian-free Newton
method for optimization and by solving certain linear systems arising in finite element models.
We note that this contribution extends earlier attempts in this direction; see, for example, [17, 18].
More recently, Gratton, Sartenaer, and Tshimanga [19] have concentrated on the case where a first
preconditioner (called first-level preconditioner hereafter), able to cluster most eigenvalues at 1 with
relatively few outliers, is already available. In order to improve the efficiency of this first-level pre-
conditioner, they have analyzed a class of second-level preconditioners, called the limited memory
preconditioners (LMP), aiming at capturing directions (in a low-dimensional subspace) which have
been left out by the first-level preconditioner and are slowing down the convergence of the conjugate
gradient method. These preconditioners require a small number k of linearly independent vectors
and can be seen as a block variant of the BFGS updating formula for quadratic problems [20, 21]. A
spectral analysis of the preconditioned matrix has shown that the LMP class is able to cluster at least
k eigenvalues at 1 and that the eigenvalues of the preconditioned matrix enjoy interlacing properties
with respect to the eigenvalues of the original matrix. The efficiency of the preconditioner has been
shown on a real-life application in data assimilation [19, 22].

When the coefficient matrices in the sequence are symmetric indefinite, the approaches existing in
the literature are either based on recycling Krylov subspace methods (see, e.g., [9, 23]) or on updates
of preconditioners (of inexact constraint type [24, 25] or of approximate inverse type [26], respec-
tively). Our main objective in this paper is to propose an extension of the LMPs to be used when the
coefficient matrices are symmetric indefinite. To the best of our knowledge, we are unaware of any
proposition in this direction. This setting is highly relevant, because sequences of symmetric indefi-
nite matrices arise in many applications (solution of certain nonlinear systems of partial differential
equations (PDE), numerical optimization, partial differential equations-constrained optimization to
name a few). As in the symmetric positive definite case, this limited memory preconditioner can
be either directly applied to the original linear system or in combination with an existing precon-
ditioner. In this paper, we simply aim at providing a first theoretical analysis and at showing the
relevance of the proposed approach on practical large-scale applications in structural mechanics,
when a first-level preconditioner is already available.

The paper is organized as follows. In Section 2, we first present the class of LMPs developed
in the symmetric positive definite case studied in [19] and [22]. We extend their definition to the
symmetric negative definite case and briefly introduce the variant of LMP, where approximated
spectral information based on Ritz vectors is used. In Section 3, the main theoretical section of the
paper, we extend the class of LMPs to the symmetric indefinite case and expose our three main
contributions. First, we derive a formula to characterize the spectrum of the preconditioned operator.
A spectral analysis of the preconditioned matrix shows that the eigenvalues are all real and that the
LMPs class is able to cluster at least k eigenvalues at 1. Secondly, we show that the eigenvalues
of the preconditioned matrix enjoy interlacing properties with respect to the eigenvalues of the
original matrix provided that the k linearly independent vectors have been prior projected onto
the invariant subspaces associated with the eigenvalues of the original matrix in the open right
and left half-plane, respectively. Third, we focus on theoretical properties of the Ritz-LMP variant,
where Ritz information is used to determine the k vectors. We explore in Section 4 the numerical



performance of the limited memory preconditioner on possibly large-scale applications in structural
mechanics. In this particular context, sequences of linear systems with indefinite matrices of saddle-
point structure have to be solved. We show that the limited memory preconditioner based on Ritz
information yields a significant decrease in terms of computational operations when solving such
sequences of large-scale linear systems. A saving of up to 43% in terms of computational effort -
at approximately the same memory cost - is obtained with respect to the original method on one of
these applications. Concluding remarks and perspectives are finally proposed in Section 5.

2. LIMITED MEMORY PRECONDITIONERS FOR SYMMETRIC DEFINITE MATRICES

In this section, we briefly review the main properties of the LMPs for linear systems involving
symmetric (positive or negative) definite matrices. Then, we recall the notion of Ritz limited mem-
ory preconditioner, which will play a central role in the analysis. First, we detail notation used
throughout the paper.

2.1. Notation

We denote k:k2 the Euclidean norm, Ik 2 Rk�k the identity matrix of dimension k and 0i;j 2 Ri�j

the zero rectangular matrix with i rows and j columns. In addition, the superscript T denotes the
transpose operation, whereas ƒ.A/ corresponds to the set of eigenvalues of a given square matrix
A, A 2 RN�N . Given a subspace S of finite dimension, we denote the range of S by R.S /, the
null space of S by N .S /, the orthogonal complement of S by S ? and AjS the restriction of the
matrix A to the subspace S . If V and W denote complementary subspaces of a vector space, we
denote PV;W the projection operator onto V along W . PV;W is the unique projection operator with
range R.PV;W/ D V and null space N .PV;W/ DW [27].

2.2. Limited memory preconditioners for symmetric positive definite matrices

Many problems in computational science and engineering require the solution of a sequence of
linear systems of type Axi D bi ; i D 1; : : : ; I with A 2 RN�N being symmetric positive definite,
xi 2 RN and bi 2 RN . For large-scale problems, the conjugate gradient method [28] is generally
the method of choice for solving such a sequence, where A could represent either the original or
an already preconditioned operator. The convergence behaviour of the conjugate gradient method
can be potentially improved with the notion of limited memory preconditioner defined next [19,
Definition 2.1].

Definition 1
Let A be a symmetric positive definite matrix of order N and assume that S 2 RN�k is of full
column rank, with k 6 N . The symmetric matrix H of order N defined as

H D
�
IN � S

�
STAS

��1
STA

� �
IN � AS

�
STAS

��1
ST
�
C S

�
STAS

��1
ST (1)

is called the limited memory preconditioner (LMP).

H is a symmetric positive definite preconditioner [19, Lemma 3.3] satisfying HAS D S , that is,
the limited memory preconditioner is able to cluster at least k eigenvalues of HA at 1. In addition,
the eigenvalues of the preconditioned matrix HA enjoy interlacing properties with respect to the
eigenvalues of the original matrix A. This central result on the clustering of the spectrum of the
preconditioned matrix HA is stated in Theorem 1 given next [19, Theorem 3.4].

Theorem 1
Let the positive real numbers �1; � � � ; �N denote the eigenvalues of A sorted in nondecreasing order.
Then, the set of eigenvalues �1; � � � ; �N of HA can be split in two subsets



�j 6 �j 6 �jCk for j 2 ¹1; � � � ; N � kº;
�j D 1 for j 2 ¹N � k C 1; � � � ; N º:

In addition, the condition number of HA can be bounded as follows

maxjD1;��� ;N �j
minjD1;��� ;N �j

6 max¹1; �N º

min¹1; �1º
: (2)

2.3. Limited memory preconditioners for symmetric negative definite matrices

As required later in Section 3, we consider the extension of LMPs to the case of symmetric negative
definite matrices. A straightforward adaptation of Theorem 1 is given next as a corollary.

Corollary 1
Let A be a symmetric negative definite matrix of order N and assume that S 2 RN�k is of full
column rank, 6 N . Let H denote a symmetric matrix of order N given by (1) in Definition 1. Let
the negative real numbers �1; � � � ; �N denote the eigenvalues of A, sorted in nondecreasing order.
Then, the set of eigenvalues �1; � � � ; �N of HA can be split in two subsets

�j 6 �j 6 �jCk for j 2 ¹1; � � � ; N � kº;
�j D 1 for j 2 ¹N � k C 1; � � � ; N º:

In addition, the condition number of HA can be bounded as follows

maxjD1;��� ;N j�j j

minjD1;��� ;N j�j j
6 max¹1; j�1jº

min¹1; j�N jº
: (3)

2.4. Ritz limited memory preconditioner (Ritz-LMP)

In Theorem 1, we note that the nonexpansion of the spectrum ofHA is valid for any set of k linearly
independent vectors. In [19], three particular forms of LMPs have been proposed and analyzed
(the spectral-LMP, the Ritz-LMP, and the quasi-Newton-LMP, respectively). These preconditioners
are either based on eigenvectors, Ritz vectors or descent directions, respectively. Ritz vectors are
approximations of eigenvectors that are particularly useful when considering the solution of large-
scale linear systems or eigenproblems; see, for example, [29, Section 5.7.1], [30] and the references
therein. For sake of clarity, we recall their definition next [31].

Definition 2
A scalar � is called a Ritz value of A with respect to a subspace L if there exists a nonzero vector
´ 2 L, called a Ritz vector, such that A´ � �´ ? L, where orthogonality is considered with respect
to the canonical inner product.

Ritz pairs (�; ´) can be cheaply obtained from the Lanczos process and we refer the reader to [31]
for further details related to their computation.

3. LIMITED MEMORY PRECONDITIONERS FOR SYMMETRIC INDEFINITE MATRICES

In this section, we expose the main theoretical properties of the LMP applied to the solution of
symmetric indefinite linear systems.

3.1. Definition

We address the solution of a sequence of linear systems of type Axi D bi ; i D 1; : : : ; I with
A 2 RN�N being symmetric indefinite, xi 2 RN and bi 2 RN . Preconditioned iterative methods
will be considered for such a purpose. In this setting, our main interest will be to analyze the class
of LMPs defined next.



Definition 3
Let A be a symmetric indefinite matrix of order N . Assume that S 2 RN�k , with k 6 N , is such
that STAS is nonsingular and denote S D R.S/. The symmetric matrix H defined as

H D
�
IN � S

�
STAS

��1
STA

� �
IN � AS

�
STAS

��1
ST
�
C S

�
STAS

��1
ST (4)

is called the limited memory preconditioner in the indefinite case.

3.2. Spectrum of AH

We aim at characterizing the spectrum of the preconditioned operator AH in the indefinite case.
This first contribution is stated in Theorem 2.

Theorem 2
Let A be a symmetric indefinite matrix of order N and H be given by (4) in Definition 3. Assume
that the columns of Z 2 RN�k form an orthonormal basis for S and that the columns of Z? 2
RN�.N�k/ form an orthonormal basis for S ?. The spectrum of the preconditioned operator AH is
then given by

ƒ.AH/ D ¹1º [ƒ
�
ZT?PS?;ASAZ?

�
:

Proof
A direct calculation leads to

AH D PS?;ASAPS?;AS C IN � PS?;AS ;

with PS?;AS D IN �AS.S
TAS/�1ST the oblique projection onto S ? along AS . To determine

the spectrum of AH we consider the matrix ŒZ;Z?�T AH ŒZ;Z?� which is congruent to AH

ŒZ;Z?�
T AH ŒZ;Z?� D

�
ZTAHZ ZTAHZ?
ZT?AHZ ZT?AHZ?

�
:

Because R.PS?;AS / D S ?, N .IN � PS?;AS / D S ? and the fact that Z has orthonormal
columns, we obtain

ŒZ;Z?�
T AH ŒZ;Z?� D

�
Ik 0k;N�k

ZT?AHZ ZT?PS?;ASAZ?

�
; (5)

which completes the proof. We deduce that 1 is an eigenvalue of AH at least of multiplicity k.
Furthermore, we note that the spectrum of PS?;ASA can be characterized via the inverse of A as
recently shown in [9, Corollary 3.25]

ƒ
�
PS?;ASA

�
D ¹0º [ƒ

��
ZT?A

�1Z?
��1�

:

Because N .PS?;ASA/ D S , ƒ
�
ZT?PS?;ASAZ?

�
can be also characterized by the relation

ƒ
�
ZT?PS?;ASAZ?

�
D ƒ

��
ZT?A

�1Z?
��1�

:

�

Theorem 2 is valid for any set of k linearly independent vectors such that STAS is nonsingular.
We further note that the characterization of the spectrum of AH given in Theorem 2 holds for
any invertible operator A, see [9, Theorem 3.24]. As shown in Theorem 2, the eigenvalues of AH
are located on the real axis. The question of the sign of the eigenvalues of AH is addressed more
precisely next.



3.3. Sign of the eigenvalues of AH and inertia of H

In light of (5), the spectrum of AH is made of at least k eigenvalues equal to one and of eigenvalues
ofZT?PS?;ASAZ?. Hence, to investigate the sign of the eigenvalues ofAH , we need to determine
the inertia of ZT?PS?;ASAZ? as stated next in Theorem 3. Similarly, the inertia of H is charac-
terized in Theorem 4. We recall that the inertia of a symmetric matrix B is a triplet of nonnegative
integers (denoted as In.B/ D .m; ´; p/), where m, ´ and p are the number of negative, zero, and
positive elements of ƒ.B/ [32].

Theorem 3
LetA be a symmetric indefinite matrix of orderN andH be given by (4) in Definition 3. The inertia
of ZT?PS?;ASAZ? is then given by

In
�
ZT?PS?;ASAZ?

�
D In.A/ � In

�
STAS

�
:

Proof
We consider the symmetric matrix B defined as

B D ŒZ;Z?�
T A ŒZ;Z?�;

or equivalently

B D

�
ZTAZ ZTAZ?
ZT?AZ ZT?AZ?

�
:

We remark thatB andA have the same inertia due to Sylvester’s law of inertia [32]. BecauseZTAZ
is nonsingular due to Definition 3, we can apply the Haynsworth inertia additivity formula [33]
to obtain

In.B/ D In
�
ZTAZ

�
C In

�
ZT?AZ? �Z

T
?AZ

�
ZTAZ

��1
ZTAZ?

�
;

that also reads

In.B/ D In
�
ZTAZ

�
C In

�
ZT?PZ?;AZAZ?

�
:

Because ZTAZ and STAS have the same inertia and PZ?;AZA D PS?;ASA, we obtain the
final result. �

Theorem 3 is helpful if the symmetric and indefinite operator A admits l negative eigenvalues
where l 6 k << N . In such a case, if S 2 RN�k is known such that STAS admits l negative
eigenvalues, Theorem 3 states that AH admits only real positive eigenvalues. We conclude this
section by characterizing the inertia of H .

Theorem 4
Let A be a symmetric indefinite matrix of order N and H be given by (4) in Definition 3. Assume
that the columns of W 2 RN�k form an orthonormal basis for AS and that the columns of W? 2
RN�.N�k/ form an orthonormal basis for .AS /?. The inertia of H is then given by

In.H/ D In
�
STAS

�
C In

�
W T
? P

T
S?;AS

PS?;ASW?

�
:

Proof
Similarly as in Theorem 3, we consider the symmetric matrix C defined as

C D ŒW;W?�
T H ŒW;W?�;

or equivalently



C D

�
W TS.STAS/�1STW W TS.STAS/�1STW?
W T
? S.S

TAS/�1STW W T
? HW?

�
:

C andH have the same inertia due to Sylvester’s law of inertia. By applying the Haynsworth inertia
additivity formula, we obtain after calculation

In.H/ D In
�
STAS

�
C In

�
W T
?

�
H � S

�
STAS

��1
ST
�
W?

�
:

Because

H D P T
S?;AS

PS?;AS C S
�
STAS

��1
ST ;

the proof is complete. �

An important consequence of Theorem 4 is that the number of negative eigenvalues ofH is equal
to the number of negative eigenvalues of STAS , because W T

? P
T
S?;AS

PS?;ASW? is symmetric
positive definite.

3.4. Nonexpansion of the spectrum of AH

In this section, we investigate the question related to the nonexpansion of the spectrum of AH . In
general, this property does not hold any longer in the indefinite case as illustrated by this simple
example

A D

�
2 0

0 �1

�
; S D

�
1

1

�
; H D

�
3 5

5 9

�
; ƒ.AH/ D ¹�4º [ ¹1º:

The second contribution of this paper is to show that a nonexpansion property of the spectrum
of AH holds provided that the k linearly independent vectors defining S have been prior pro-
jected onto the invariant subspaces associated with the eigenvalues of A in the open right and
left half-plane, respectively. This second contribution is stated in Theorem 5 with help of prepara-
tory Lemmas 1-4. These projection operators involving the matrix sign function of A are defined
next [34].

Definition 4
Let A 2 RN�N be a symmetric indefinite matrix of order N and let X 2 RN�N denote the
matrix sign function‡ of A defined as X D .A2/�

1
2A. Let IC.A/ and I�.A/ denote the invariant

subspaces associated with the eigenvalues in the right and left half-plane, respectively. We define
PC.A/ D .IN C X/=2 as the projection operator onto IC.A/ and P�.A/ D .IN � X/=2 as the
projection operator onto I�.A/, respectively.

We denote by QC 2 RN�NC (Q� 2 RN�N�) an orthonormal basis of IC.A/ (I�.A/, respec-
tively) and byQ 2 RN�N the orthonormal matrix defined asQ D ŒQC;Q�� with N D NCCN�.
Given QS 2 RN�k , S D ŒSC; S�� (SC 2 RN�kC , S� 2 RN�k� with k D kCCk�; k 6 N ) consists
of k projected vectors obtained as

SC D QCQ
T
C

h
Qsi1 ; � � � ; QsikC

i
; (6)

S� D Q�Q
T
�

�
Qsj1 ; � � � ; Qsjk�

	
; (7)

where
h
Qsi1 ; � � � ; QsikC

i ��
Qsj1 ; � � � ; Qsjk�

	�
corresponds to kC (k�, respectively) distinct columns of QS .

Equivalently, we can write

‡A (being symmetric indefinite) has no eigenvalues on the imaginary axis, so that the matrix sign function ofA is defined.



SC D QC QSC; QSC 2 RNC�kC ; QSC D Q
T
C

h
Qsi1 ; � � � ; QsikC

i
; (8)

S� D Q� QS�; QS� 2 RN��k� ; QS� D Q
T
�

�
Qsj1 ; � � � ; Qsjk�

	
: (9)

The main goal of the next developments is to show that a property of nonexpansion of the spec-
trum of HA can be obtained by solving two tractable subproblems related to either IC.A/ or
I�.A/. We first prove that IC.A/ and I�.A/ are H -invariant, by showing Lemma 1 and Lemma 2
successively.

Lemma 1
Define T 2 RN�N as T D S.STAS/�1ST , TC 2 RN�N as TC D SC

�
STCASC

��1
STC and

T� 2 RN�N as T� D S�.ST�AS�/
�1ST� , respectively. T can be decomposed as

T D TC C T�:

Proof
Because IC.A/ and I�.A/ are A-invariant and orthogonal subspaces, the relation ST�ASC D
0k�;kC holds. Hence, STAS can be written as

STAS D ŒSC; S��
TAŒSC; S�� D

�
STCASC 0kC;k�
0k�;kC ST�AS�

�
:

Because STCASC and ST�AS� are nonsingular, we deduce

S.STAS/�1ST D ŒSC; S��

 �
STCASC

��1
0kC;k�

0k�;kC
�
ST�AS�

��1
!
ŒSC; S��

T ;

D SC
�
STCASC

��1
STC C S�

�
ST�AS�

��1
ST� ;

which completes the proof. �

Lemma 2
IC.A/ and I�.A/ are H -invariant

8v 2 IC.A/ Hv 2 IC.A/; (10)

8v 2 I�.A/ Hv 2 I�.A/: (11)

Proof
Because of Lemma 1 and orthogonality of IC.A/ and I�.A/, we obtain

8v 2 IC.A/ T v D TCv;

meaning that T v 2 IC.A/. We also deduce that AT v 2 IC.A/ because IC.A/ is A-invariant.
Furthermore, Hv can be simply written as

Hv D .IN � TA/.IN � AT /v C T v:

Hence, we deduce relation (10), that is, IC.A/ is H -invariant. A similar proof leads to the H -
invariance of I�.A/. �

Lemma 3 states a similarity property that is central in the analysis of ƒ.HA/.

Lemma 3
Let AC D QT

CAQC 2 RNC�NC
�
A� D Q

T
�AQ� 2 RN��N�

�
denote the orthogonally projected

restriction of A with respect to the basis QC (Q�, respectively). Let HC D QT
CHQC 2 RNC�NC�

H� D Q
T
�HQ� 2 RN��N�

�
denote the orthogonally projected restriction of H with respect to

the basis QC (Q�, respectively). Then QTHAQ admits the following decomposition



QTHAQ D

�
HCAC 0NC;N�
0N�;NC H�A�

�
:

As a consequence, ƒ.HA/ D ƒ.HCAC/ [ƒ.H�A�/.

Proof
Because IC.A/ and I�.A/ are A-invariant and orthogonal subspaces, the relation QT

�AQC D
0N�;NC holds. QTAQ can then be written as

QTAQ D

�
AC 0NC;N�

0N�;NC A�

�
:

Furthermore, due to the H -invariance of IC.A/ (Lemma 2) and the orthogonality of Q, we
deduce that QT

�HQC D 0N�;NC . Thus, we obtain

QTHQ D

�
HC 0NC;N�

0N�;NC H�

�
;

which leads to

QTHAQ D

�
HCAC 0NC;N�
0N�;NC H�A�

�
:

This similarity relation immediately implies that ƒ.HA/ D ƒ.HCAC/ [ƒ.H�A�/. �

Consequently, we must now focus on the analysis of HCAC and H�A�, respectively. In Lemma
4, we show that HC and H� are both of limited memory preconditioner type.

Lemma 4
Define QTC 2 RNC�NC as QTC D QSC

�
QSTCAC

QSC
��1 QSTC and QT� 2 RN��N� as QT� D

QS�
�
QST�A�

QS�
��1 QST� , respectively, with QSC; QS� given by relations (8, 9), respectively. HC and H�

can be written as

HC D .INC �
QTCAC/.INC � AC

QTC/C QTC; (12)

H� D .IN� �
QT�A�/.IN� � A� QT�/C

QT�: (13)

As a consequence, HC and H� are both LMP.

Proof
Using successively Lemma 1, equations (8) and (9), the definition of QTC and AC, and the
orthogonality of Q, we obtain

HC D
�
QT
C �Q

T
CTCA

�
.QC � ATCQC/CQ

T
CTCQC;

HC D
�
QT
C �

QTCQ
T
CA

� �
QC � AQC QTC

�
C QTC;

HC D
�
QT
C �

QTCQ
T
CA

�
QQT

�
QC � AQC QTC

�
C QTC;

HC D
�
InC �

QTCAC
� �
InC � AC

QTC
�
C QTC:

Relation (13) can be obtained by a similar proof. BecauseAC is symmetric positive definite, relation
(12) reveals that HC is a limited memory preconditioner related to the symmetric positive defi-
nite case (see Definition 1). Similarly, A� being symmetric negative definite, H� defines a limited
memory preconditioner related to the symmetric negative definite case (see Corollary 1). �

Based on the previous developments (Lemmas 1–4), we finally state the main result related to the
nonexpansion of the spectrum of HA.



Theorem 5
Let A be a symmetric indefinite matrix of order N , H be given by (4) in Definition 3 based on
S D ŒSC; S�� consisting of kC (k�) vectors projected onto the positive (negative, respectively)
invariant subspace of A, IC.A/ (I�.A/, respectively). Then the following properties hold

(a) Let the positive real numbers �C1 ; � � � ; �
C
NC

denote the eigenvalues of AC sorted in nondecreas-

ing order. Then, the set of eigenvalues �C1 ; � � � ; �
C
NC

of HCAC can be split in two subsets

�Cj 6 �
C
j 6 �

C
jCkC

for j 2 ¹1; � � � ; NC � kCº;

�Cj D 1 for j 2 ¹NC � kC C 1; � � � ; NCº:
(14)

(b) Let the negative real numbers ��1 ; � � � ; �
�
n�

denote the eigenvalues of A� sorted in nondecreas-
ing order. Then, the set of eigenvalues ��1 ; � � � ; �

�
N�

of H�A� can be split in two subsets

��j 6 ��j 6 ��jCk� for j 2 ¹1; � � � ; N� � k�º;

��j D 1 for j 2 ¹N� � k� C 1; � � � ; N�º:
(15)

(c) In addition, the condition number of HA, �.HA/, can be bounded as follows

�.HA/ 6
max

°
1; �CNC ; j�

�
1 j
±

min
°
1; �C1 ; j�

�
N�
j
± : (16)

Proof
Because HC and H� are LMP (see Lemma 4), Properties (a) and (b) are direct consequences
of Theorem 1 and Corollary 1, respectively. Furthermore, a direct application of Theorem 1 and
Corollary 1 leads to the following inequalities

�Cmax D max
jD1;��� ;NC

�Cj 6 max
°
1; �CNC

±
;

�Cmin D min
jD1;��� ;NC

�Cj > min
®
1; �C1

¯
;

��max D max
jD1;��� ;N�

j��j j 6 max ¹1; j��1 jº ;

��min D min
jD1;��� ;N�

j��j j > min
®
1; j��N� j

¯
:

Property (c) is then easily deduced from Lemmas 3 and 4, because

max
®
�Cmax; �

�
max

¯
min

®
�Cmin; �

�
min

¯ 6 max
°
1; �CNC ; j�

�
1 j
±

min
°
1; �C1 ; j�

�
N�
j
± :

�

3.5. Ritz limited memory preconditioner

As shown in Theorem 5, the use of projected vectors in the limited memory preconditioner insures
a nonexpansion property of the spectrum of the preconditioned operator, which is an attractive fea-
ture. Nevertheless, using the exact sign function ofA or matrix functions that approximate sign.A/ QS
can be computationally too expensive for large-scale problems. Consequently, approximate spec-
tral information based on Ritz vectors (information that is cheaply available) is usually chosen
to select the k columns of QS . This leads to the Ritz limited memory preconditioner (Ritz-LMP)
that is analyzed in Theorem 6 and Corollary 2, respectively. In Section 4.2, we will later numeri-
cally investigate the performance of the Ritz-LMP preconditioner and of the LMPs preconditioner
based on either exact spectral information (spectral-LMP) or projected Ritz information (Projected
Ritz-LMP). First, we detail a property of the Ritz vectors in Lemma 5.



3.5.1. Characterization of the Ritz vectors. Given A 2 RN�N symmetric, the application of the
Lanczos method [15, 16] leads to the Lanczos relation

AVl D VlTl C vlC1
�
tlC1;le

T
l

�
; v1 D b=kbk2 (17)

where Vl D Œv1; � � � ; vl � has orthonormal columns and Tl 2 Rl�l is a symmetric tridiagonal
matrix. Determining the Ritz pairs of A with respect to R.Vl/ requires the solution of the standard
eigenvalue problem

TlY D Y‚ (18)

with Y T Y D Il , Y D Œy1; � � � ; yl � and ‚ 2 Rl�l diagonal. .�i ; Vlyi ) is called a Ritz pair, �i a Ritz
value and Vlyi the corresponding Ritz vector. Given 1 6 k 6 l , we select k Ritz pairs and define
QS 2 RN�k as

QS D VlYl;k (19)

with Yl;k 2 Rl�k as Yl;k D Œy1; � � � ; yk�. We note that QS has orthonormal columns, that is, QST QS D
Ik . We prove in the next lemma that R. QS/ is an invariant subspace of a matrix different from A.

Lemma 5
Assume that l iterations of the Lanczos method have been performed so that the Lanczos relation
(17) holds. Define the symmetric matrix �A 2 RN�N as

�A D �vlC1
�
tlC1;le

T
l

�
V Tl � Vl

�
tlC1;lel

�
vTlC1: (20)

Assume that QS 2 RN�k has been defined as in relation (19). Then, QS D R. QS/ is an invariant
subspace of .AC�A/ and

.AC�A/ QS D QS‚k;

with ‚k D diag.�1; � � � ; �k/.

Proof
A simple calculation gives

.AC�A/Vl D VlTl :

Postmultiplying by Yl;k leads to

.AC�A/ QS D QS‚k;

with ‚k D diag.�1; � � � ; �k/. �

3.5.2. Characterization of the Ritz limited memory preconditioner. According to relation (5) of
Theorem 2, we need to analyze .P QS?;A QSA/j QS? to characterize the Ritz-LMP. This is detailed next
in Theorem 6. A consequence is then stated in Corollary 2.

Theorem 6
Let A be a symmetric indefinite matrix of order N and �A be given by (20) in Lemma 5. Assume
that QS 2 RN�k has been defined as in relation (19). Then,

k.P QS?;.AC�A/ QSA � P QS?;A QSA/j QS?k2 D t
2
lC1;l

ˇ̌̌
ˇ̌ kX
iD1

y2
l;i

�i

ˇ̌̌
ˇ̌ ;

with yl;i D eTl yi .



Proof
We consider the oblique projection P QS?;.AC�A/ QS onto QS ? along .AC�A/ QS defined as

P QS?;.AC�A/ QS D IN � .AC�A/
QS
�
QST .AC�A/ QS

��1 QST :
Because

�
QST .AC�A/ QS

��1
D ‚�1

k
we obtain

P QS?;.AC�A/ QS D IN �
QS QST D P QS? :

Furthermore, P QS?;.AC�A/ QSA can be written as

P QS?;.AC�A/ QSA D P QS?;A QSA ��A
QS.‚k/

�1 QSTA;

D P QS?;A QSA ��A
QS
�
QST �‚�1k

QST�A
�
:

We note that QST�A QS D 0k because ŒVl ; vlC1� is an orthonormal basis. Hence, P QS?.�A
QS/ D

�A QS which leads to

�
P QS?;.AC�A/ QSA � P QS?;A QSA

�
j QS? D �A

QS‚�1k
QST�A: (21)

Relation (20) yields

�A QS‚�1k
QST�A D t2lC1;l

�
eTl Yl;k‚

�1
k Y

T
l;kel

�
vlC1v

T
lC1:

Using the relations kuvT k2 D kuk2kvk2 and kvlC1k2 D 1 yields



�A QS‚�1k QST�A

2 D t2lC1;l
ˇ̌̌
ˇ̌ kX
iD1

y2
l;i

�i

ˇ̌̌
ˇ̌ ;

which completes the proof. �

Corollary 2
There exist nonnegative scalar quantities m1; � � � ; mN�k and � 2 R such that

	i

��
P QS?;A QSA

�
j QS?

�
D 	i

��
P QS?A/j QS?

��
Cmi�; i D 1; � � � ; N � k; (22)

with m1 C � � � CmN�k D 1 and � D t2
lC1;l

eT
l
Yl;k‚

�1
k
Y T
l;k
el .

Proof
Relation (21) in Theorem 6 reveals that

.P QS?;A QSA/j QS? D
�
P QS?;.AC�A/ QSA

�
j QS? � �vlC1v

T
lC1; (23)

with the scalar quantity � defined by � D t2
lC1;l

eT
l
Yl;k‚

�1
k
Y T
l;k
el . This shows that .P QS?;A QSA/j QS?

is equal to .P QS?A/j QS? perturbed by a rank-one matrix. Hence, the application of Theorem 8.1.8
[32] shows the existence of nonnegative scalar quantities mi such that

	i

��
P QS?;A QSA

�
j QS?

�
D 	i

��
P QS?A/j QS?

��
Cmi�; i D 1; � � � ; N � k;

with m1 C � � � CmN�k D 1, which completes the proof. �



If the columns of QZ? 2 RN�.N�k/ form an orthonormal basis for QS ?, the spectrum of
P QS?Aj QS? is then given by

ƒ.P QS?Aj QS?/ D ƒ
�
QZT?A

QZ?
�
: (24)

Relations (22) and (24) yield a simple characterization of the Ritz-LMP preconditioner which
reveals that the scalar � is an important quantity to monitor numerically. Indeed, when j� j is small,�
P QS?;A QSA

�
j QS? is spectrally close to .P QS?A/j QS? .

3.5.3. Computational cost and memory requirements of the Ritz-LMP. Finally, we briefly detail the
computational cost related to the application of the Ritz-LMP to a given vector and also specify
the memory requirements. It is known that an application of the standard limited memory precondi-
tioner to a vector has a complexity of 8kN operations [19]. Nevertheless, by exploiting the Lanczos
relation (17), a significant reduction of this complexity can be obtained. Indeed, Theorem 4.3 in [19]
shows that the Ritz-LMP H reads as

H D IN C S
�
‚�1k � Ik

�
ST � S!vTlC1 � vlC1!

TST C S!!TST ; (25)

where the components of ! D .!1; � � � ; !k/T are defined as

!i D
tlC1;lyl;i

�i
; .i D 1; � � � ; k/: (26)

Later, we define the vector s! 2 RN as s! D S!. Hence, the application of the preconditioner H
to a given vector of length N costs .4k C 9/N floating point operations as detailed in Algorithm
1. In addition, the storage requirements related to the Ritz-LMP variant consist of k C 2 vectors of
length N (vlC1, s! and S 2 RN�k) and of k scalars (corresponding to the Ritz values).

Algorithm 1 Application of the Ritz Limited Memory Preconditioner H to a given vector x: y D
Hx

1: ˛1 D s
T
! x (costs 2N flops)

2: ˛2 D �˛1 C v
T
lC1

x (costs 2N flops)
3: ´ D S.‚�1

k
� Ik/S

T x (costs 4kN flops)
4: y D x C ´ � ˛2s! � ˛1vlC1: (costs 5N flops)

4. APPLICATIONS TO SOLID AND STRUCTURAL MECHANICS

We illustrate the numerical behaviour of LMPs on applications in solid and structural mechanics
that require the solution of symmetric saddle-point linear systems. Numerical simulations have been
performed within the framework of the open-source software Code_Aster§ (version 12.3.0), which
is a general purpose finite element code developed at EDF (Electricité de France). For more than
20 years, Code_Aster serves as the simulation tool used by the engineering departments of EDF
to analyze the various components of the power generation facilities and to produce safety analysis.
To solve nonlinear problems in structural mechanics, Code_Aster mostly relies on Newton-type
methods, where the approximate solution of linear systems by preconditioned Krylov subspace
methods is handled through the PETSc¶ (version 3.4.3) library. We first detail relevant properties of
the saddle-point linear systems to be solved, before presenting detailed numerical results.

§http://www.code-aster.org
¶http://www.mcs.anl.gov/petsc/



4.1. Sequence of saddle-point systems

We consider a sequence of linear systems of saddle-point type

Ki yi D ci”
�
Gi BT

B 0m;m

��
ui
vi

�
D

�
fi
gi

�
; i D 1; � � � ; I; (27)

where Gi 2 Rn�n, B 2 Rm�n, fi 2 Rn, gi 2 Rm and m < n. Later we call ui the physical
unknowns and vi the Lagrange multipliers. The stiffness matrices Gi (i D 1; � � � ; I ) are symmetric
positive semidefinite because they are related to the discretization of an unconstrained mechanical
problem (i.e., with no essential boundary conditions). The deficiency of Gi can be large. Indeed, it
is known that an upper bound of the dimension of N .Gi / corresponds to the number of rigid body
motions of subbodies of materials contained within the finite element mesh. Here, these motions
correspond to three translations and three rotations for each subbody [35]. We further assume that
B is of full row rank (rank.B/ D m) and that N .Gi / \ N .B/ D ¹0º, 8i 2 ¹1; � � � ; I º. These
assumptions make sure the existence and uniqueness of the solution of each linear system in the
sequence [36]. We also note thatB is a very sparse matrix in our setting. Indeed, B is usually related
to the dualization of the boundary conditions. These relations are local in the sense that they involve
adjacent nodes of the mesh. Unless stated, B admits only one nonzero coefficient per row due to
Dirichlet boundary conditions. In this case, BTB is a diagonal matrix.

In general, Krylov subspace methods are only feasible in combination with a preconditioner
when considering large-scale problems [37]. In this study, we consider a specific block diagonal
symmetric positive definite preconditioner based on the augmented Lagrangian method [36, 38–40]

M1 D

0
@G1 C 
BTB 0n;m

0m;n
1



Im

1
A ; 
 > 0: (28)

We note that the (1,1) block of M1 in (28) is positive definite because G1 is positive definite on

N .B/. The choice 
 D
kG1k2

kBk22
has been found to perform well in practice [38] and approxima-

tion of this quantity will be used later. Spectral studies of the preconditioned operator have been
performed notably in [39, 41]. M�1

1 K1 has eigenvalues 1 of multiplicity n, �1 of multiplicity
dim.N .G1// with remaining eigenvalues lying in the interval .�1; 0/ [39, Theorem 2.1]. Because
inverting exactlyG1C
BTB is too demanding in terms of both computational operations and mem-
ory requirements for large-scale problems, we consider a factorized approximate preconditioner of
the form M1 � LLT based on the incomplete Cholesky factorization of G1 C 
BTB written as
G1C 
B

TB � LLT [37]. We deduce the final formulation of the symmetric preconditioned linear
system Ai xi D bi denoted as

Ai xi D bi”
�
L�1 0

0
p

Im

��
Gi B

T

B 0

��
L�T 0

0
p

Im

��
wi
´i

�
D

�
L�1 0

0
p

Im

��
fi
gi

�
:

(29)

Application of a Krylov subspace method (without any second level preconditioner) for the solution
of (29) is later referred to as ‘No-LMP’. We note that the same approximate first-level preconditioner
M1 � LLT is used through the sequence. LMPs combined with Krylov subspace methods will
be used to solve the sequence of linear systems (29) approximately. As mentioned in Section 3.5,
we extract k approximations of eigenvectors known as Ritz vectors when solving the first linear
system in this sequence to deduce S 2 RN�k . We note that S is used in the whole sequence, even
in the case of changing matrices (as in Section 4.4). Hence, with this choice, the limited memory
preconditioner H is then defined once for all as

H D
�
InCm�S

�
STA1S

��1
STA1

��
InCm�A1S

�
STA1S

��1
ST
�
CS

�
STA1S

��1
ST : (30)



In all the applications considered, we always select the Ritz vectors corresponding to the smallest
in modulus Ritz values. Because positive or negative Ritz values can occur in practice, H is a sym-
metric indefinite preconditioner due to Theorem 4. Hence, we use the symmetric indefinite matrix
H as a right preconditioner of GMRES(`) for the approximate solution of the remaining linear
systems in the sequence (29). We consider a value for the restart parameter equal to ` D 30. A zero
initial guess x0i is always chosen and the iterative method is stopped when the Euclidean norm of
the residual normalized by the Euclidean norm of the right-hand side satisfies the following relation

jjbi �Aixki jj2
jjbi jj2

6 10�8: (31)

The numerical results have been obtained on Aster5, a IBM IDATAPLEX computer located at EDF
R&D Data Center (each node of Aster5 is equipped with 2 Intel Xeon E5 � 2600, each running
12 cores at 2.7 Ghz). Physical memory available on a given node (24 cores) of Aster5 ranges from
64 GB to 1 TB. This code was compiled by the Intel compiler suite with the best optimization
options and linked with the Intel MKL BLAS and LAPACK subroutines. Both iteration counts and
measure of computational effort will be reported. This numerical study has been performed in a
serial environment and we refer the reader to [42] for additional numerical experiments on a parallel
distributed memory computer. Our main interest is to analyze the efficiency of the limited memory
preconditioner for the solution of the sequence of saddle-point systems where both the matrices and
the right-hand sides may change. A small-scale problem is considered first, while two large-scale
configurations will be analyzed later in Sections 4.3 and 4.4. Problems with a given matrix and
multiple right-hand sides are considered in Sections 4.2 and 4.3, while a sequence of linear systems
with varying matrices is addressed in Section 4.4.

4.2. Mechanical bearing

We first focus on a linear problem in solid mechanics related to the computation of the displacement
of a mechanical bearing. In this experiment, the bearing is subject to an external pressure on its left
part, while embedded on the right part. The computational mesh is shown in Figure 1.

The moderate dimension of the problem (n D 7305, m D 228, N D 7533) allows us to
compute the spectrum of A and the matrix sign function of A. Thus, we will be able to investigate the
behaviour of the limited memory preconditioner with S based either on exact eigenvectors (spectral-
LMP), Ritz vectors (Ritz-LMP) or projected Ritz vectors (Projected Ritz-LMP) as introduced in
Section 3.5. As shown in Figure 2 (left part), the spectrum of A exhibits clusters at �1 and 1 (in
agreement with the theory) and eigenvalues close to 0. Exact eigenvectors related to eigenvalues
of smallest modulus and Ritz vectors related to Ritz values of smallest modulus are considered
next. As an illustration, Figure 2 (right part) shows the spectrum of AH , when a limited memory
preconditioner based on k D 20 Ritz vectors (Ritz LMP) is selected.

Figure 3 shows the convergence history of GMRES(30) for these different variants of LMPs with
increasing values of k (k D 5; 20; 30, respectively). We note that the use of the limited memory
preconditioner leads to a significant decrease in terms of numbers of iterations. The combination of
the augmented Lagrangian preconditioner with the limited memory preconditioner is thus successful

Figure 1. Mesh of the mechanical bearing.



Figure 2. Mechanical bearing: spectrum of A (left part) and spectrum of AH (right part), where H
corresponds to a limited memory preconditioner (Ritz LMP) with k D 20 Ritz vectors.

Figure 3. Mechanical bearing: convergence history of GMRES(30). Four preconditioning methods are com-
pared: no second level preconditioning (No LMP, dashed line), limited memory preconditioners based
on Ritz vectors (Ritz LMP, circle), on projected Ritz vectors (projected Ritz LMP, square) and on exact

eigenvectors (spectral LMP, diamond).



on this application. Using eigenvectors of A for S leads to the minimal number of iterations in all
situations. More interestingly, we also note that using Ritz or projected Ritz vectors for S leads to a
very similar convergence behaviour on this model example. This fact is in agreement with the theory
presented in Section 3.5 and illustrates that in practice it is sufficient to consider Ritz vectors only,
because they are good approximations of projected Ritz vectors. We further note that the value of
j� j given in relation (23) is equal to 0.0335, 0.075, and 0.079 for k D 5; 20; 30, respectively. We
will thus consider only the Ritz-LMP variant based on Ritz vectors related to Ritz values of smallest
modulus in the next sections.

4.3. Containment building of a nuclear reactor

In this section, we investigate the mechanical properties of a containment building of a nuclear reac-
tor of a Water Pressurized Reactor power plant. This building protects both the reactor from external
aggressions and the environment if an internal accident occurs. Robust and accurate numerical sim-
ulations are thus required for both design and safety analysis. We consider an advanced mechanical
modeling that takes into account numerous prestressing tendons, whose role is to improve the global
resistivity of the structure (see Figure 4). The containment building is subject to gravity and to an
internal pressure. The whole loading is gradually applied into four successive steps. Each pitch of
loading then corresponds to a specific linear system in the sequence, where only the right-hand side
has changed (i.e., A1 D � � � D A4). The physical part of the solution consists of gridded fields
of displacement. The introduction of Lagrange multipliers stems from the imposition of kinematic
relations modeling perfect adhesion between the prestressing tendons and the concrete [43] and
to the dualization of the boundary conditions. In this setting, B admits either five or one nonzero
entries per row, respectively. This study is known to be complex for different reasons. First, from
a mechanical point of view, the modeling is rather advanced with a mixing of three-dimensional
elements for the concrete and of one-dimensional elements for the wires. Moreover, because the
prestressing tendons are attached to the concrete thanks to dualized linear relations, the number of
Lagrange multipliers is really important (m D 158; 928 for a global size of N D 442; 725). The
number of nonzero entries of G1 and G1C 
BTB is 7079238 and 8343685, respectively. Secondly,
the occurrence of a large number of prestressing tendons (more than 600 here) induces a nullspace
of large dimension for the stiffness matrix (larger than 3600, see Section 4.1). This numerical study
is thus challenging and serves as a relevant realistic test case in structural mechanics to investigate
the efficiency of preconditioners for Krylov subspace methods.

In this experiment, we set 
 to 2; 4684 � 1011 and consider a level of fill equal to 8 in the
incomplete Cholesky factorization of the .1; 1/ block of M1. Actually, with a lower level of fill

Figure 4. Containment building: three-dimensional mesh (left part) and location of the prestressing tendons
on the surface (right part).



Figure 5. Containment building: convergence history of preconditioned GMRES(30) for the last three linear
systems in the sequence. Case of limited memory preconditioners (Ritz LMP) with k D 5, 20, or 30 Ritz

vectors associated to the smallest in modulus Ritz values.

the preconditioned Krylov subspace method can hardly converge. However, even with this value of
fill, the required memory is around 7 Go, while state-of-the-art sparse direct solvers require at least
10 Go for the complete factorization of the .1; 1/ block of M1.

Figure 5 shows the evolution of the Euclidean norm of the relative residual for the last three
linear systems in the sequence (I D 2; 3; 4). In this experiment, we consider LMP with a varying
number of Ritz vectors (k D 5; 20; 30, respectively). Whatever the linear system considered in
the sequence, the smallest number of iterations is obtained when selecting a large value of Ritz
vectors (k D 30). In addition, we show in Table I the cumulative iteration count over the last three
linear systems, the total number of floating point operations|| and the memory requirements, both
provided by PETSc, respectively. We note that selecting S based on k D 30 Ritz vectors leads
to a decrease of 47% in terms of cumulative iteration count and to a decrease of 43% in terms of
computational operations. This satisfactory result comes at a price of a very moderate increase in
memory requirements (3%), because the limited memory preconditioner only needs the storage of
.k C 2/ vectors of size N as detailed in Section 3.5.3.

4.4. Polycrystalline aggregate

The polycrystalline aggregate problem is especially used as an homogenization method to
obtain macroscopic constitutive laws of a material from microscopic considerations only. In this

||In PETSc one floating point operation corresponds to one operation of any of the following types: multiplication,
division, addition, or subtraction.



Table I. Containment building: cumulative iteration count over the sequence of linear
systems, floating point operations and memory requirements for different limited memory

preconditioners. Case of k D 5, 20 or 30 Ritz vectors.

No LMP LMP, k D 5 LMP, k D 20 LMP, k D 30

Total iteration count 509 389 343 272
Iteration count decrease (%) � 24 33 47
Flops (�1011) 4.764 3.6946 3.342 2.7041
Flops decrease (%) � 22 29 43
Memory (Mo) 6686 6722 6823 6891
Memory increase (%) � 0.5 2 3

Figure 6. Polycrystalline aggregate: unstructured mesh of the representative elementary volume (left part)
and detailed view of some grains of the polycrystalline aggregate (right part).

Figure 7. Polycrystalline aggregate: sketch of the boundary conditions.

framework, numerical simulations are performed at a mesoscopic scale in a simple geometry (a cube
named representative elementary volume). One thousand points are randomly distributed in this
cube and Voronoi cells are created using perpendicular bisector planes. Each cell then represents a
grain which has its own constitutive law. The cells are finally discretized with tetrahedra leading to
a global three-dimensional unstructured mesh (see Figure 6 for an illustration).



We impose a traction loading on a given face of the cube and specify zero displacement boundary
conditions on the other faces as shown in Figure 7.

All these boundary conditions are dualized, leading to a sequence of saddle-point systems of
the form (27) with changing matrices. To evaluate the numerical performance of the LMP, we aim
at performing these simulations on different meshes. Thus, a coarse mesh (N D 56561 with
n D 54567 and m D 1994), an intermediate mesh (N D 425222 with n D 417525 and
m D 7697) and a fine mesh (N D 3298601 with n D 3268359 and m D 30242) are
considered in this study. We note that the proportion of Lagrange multipliers is always less than 1%
and that the simulation on the finest mesh is considered as a real computational challenge in practice.
Newton’s method is employed because of the nonlinearity of the constitutive law of the structure
[44]. As expected, it is found that the total number of Newton’s iterations is mesh-dependent (7, 9,
14 iterations are required on the coarse, intermediate and fine mesh, respectively). Finally, we set

 to 1:052 � 105, 7:6101 � 104 and 7:3267 � 104 on the coarse, intermediate and fine mesh,
respectively. Similarly, we set the level of fill for the incomplete Cholesky factorization of the .1; 1/
block of M1 to 4 in the three cases.

Table II collects the results for the three different simulations. Using only a first-level precon-
ditioner in combination with GMRES(30) (No LMP) is not a scalable approach due to the strong
increase in terms of cumulative number of iterations. Nevertheless, whatever the level of mesh
refinement, we observe that the use of the limited memory preconditioner leads to a significant
decrease both in terms of cumulative number of iterations over the whole Newton’s sequence and of
computational operations. A decrease of 18% in terms of floating point operations at a price of a low
memory increase (only 0:2%) is indeed obtained on the fine mesh calculation which is a rather sat-
isfactory result. Larger gains are obtained for the simulations on the coarse and intermediate meshes
(bold values in Table II). On this application, choosing 5 Ritz vectors leads to the best strategy in
terms of floating point operation reduction. Considering a larger number of Ritz vectors reduces the
cumulative number of iterations as shown in Figure 8. Nevertheless, this choice leads to a larger
cost in terms of computational operations.

Table II. Polycrystalline aggregate: cumulative iteration count over the complete Newton’s sequence,
floating point operations and memory requirements for different preconditioners. Results are given for

three different levels of mesh refinement (coarse, intermediate and fine, respectively).

No LMP LMP, k D 5 LMP, k D 20 LMP, k D 30

Coarse mesh Total iteration count 354 235 227 222
Iteration count decrease (%) � 33.5 36 37.5
Flops (�1010) 2.0785 1.4293 1.4647 1.4875
Flops decrease (%) � 31 29.5 28.5
Memory (Mo) 1137 1140 1146 1151
Memory increase (%) � 0.2 0.8 1.2

Interm. mesh Total iteration count 1316 1033 1027 1019
Iteration count decrease (%) � 21.5 22 22.5
Flops (�1011) 6.5841 5.3049 5.605 5.686
Flops decrease (%) � 19.5 15 13.5
Memory (Mo) 8286 8305 8358 8387
Memory increase (%) � 0.2 0.8 1.2

Fine mesh Total iteration count 6002 4835 4651 4614
Iteration count decrease (%) � 20 22.5 23
Flops (�1012) 2.4735 2.0414 2.0591 2.1058
Flops decrease (%) � 18 17 15
Memory (Mo) 65613 65787 66165 66416
Memory increase (%) � 0.2 0.8 1.2



Figure 8. Polycrystalline aggregate (fine mesh calculation): convergence history of preconditioned
GMRES(30) at three different iterations of the Newton’s method (2nd iteration, 7th iteration and 14th itera-
tion). Case of limited memory preconditioners (Ritz LMP) with k D 5, 20, or 30 Ritz vectors associated to

the smallest in modulus Ritz values.

5. CONCLUSIONS

We have proposed a class of LMPs for the solution of linear systems with symmetric indefinite
matrices and multiple right-hand sides. This preconditioner based on limited memory quasi-Newton
formulas can be either directly employed on the original linear system or can improve an existing
first-level symmetric preconditioner as well. In addition, this method is especially worth considering
when the solution of a sequence of linear systems with slowly varying left-hand sides is considered.

We have derived a formula to characterize the spectrum of the preconditioned operator. We have
shown that the eigenvalues of the preconditioned operator are real-valued (with at least k eigenvalues
equal to 1). Furthermore, we have shown that the eigenvalues of the preconditioned matrix enjoy
interlacing properties with respect to the eigenvalues of the original matrix provided that the k
linearly independent vectors have been prior projected onto invariant subspaces associated with
the eigenvalues of the original matrix. Then, we have studied the Ritz-LMP variant, where Ritz
information is used to determine the k vectors.

Finally, the Ritz-LMP variant has proved to be efficient in terms of both preconditioner applica-
tions and computational operations on problems related to structural mechanics, where sequences
of large-scale symmetric indefinite saddle-point linear systems have to be solved. Numerical exper-
iments have highlighted the relevance of the proposed preconditioner that leads to a significant
decrease in terms of computational operations. A saving of up to 43% in terms of computational
effort - at approximately the same memory cost - is obtained with respect to the original method on
one of these applications.



Although not reported in the manuscript, the proposed limited memory preconditioner formula
has been also implemented in a parallel distributed memory environment within Code_Aster . In
practice, this straightforward extension allows us to consider selected large-scale industrial prob-
lems in a limited amount of computational time on a moderate number of cores. This is especially
useful in an industrial setting. Finally, we would like to mention that current investigations focus on
the derivation and analysis of preconditioner update formulas, in the case where the original precon-
ditioned matrix is not symmetric. In addition, when the original matrix is symmetric, this extension
would also allow us to consider a broader class of first-level preconditioners and to provide a com-
plete picture of the performance of preconditioned Krylov subspace methods. This is a topic of a
forthcoming study.
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