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Agroecosystem management and biotic interactions: a review
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Stéphane de Tourdonnet & Marie Gosme & Michel Bertrand & Jean Roger-Estrade &

Jean-Noël Aubertot & Adrien Rusch & Natacha Motisi & Céline Pelosi & Thierry Doré

Abstract Increasing the use of synthetic fertilisers and
pesticides in agroecosystems has led to higher crop yields,
accompanied by a decline in biodiversity at the levels of field,
cropping system and farm. Biodiversity decline has been
favoured by changes at landscape level such as regional farm
specialisation, increases in field size, and the removal of
hedgerows and woodlots. The loss of biodiversity in agro-

ecosystems has increased the need for external inputs because
beneficial functions are no longer provided by beneficial
species as natural enemies of crop pests and ecosystem
engineers. This trend has led to a strong reliance on
petrochemicals in agroecosystems. However, many scientists
have been arguing for more than two decades that this
reliance on petrochemicals could be considerably reduced by
a better use of biotic interactions. This article reviews
options to increase beneficial biotic interactions in agro-
ecosystems and to improve pest management and crop
nutrition whilst decreasing petrochemical use. Four agro-
nomic options are presented. First, it has been shown that the
choice of cultivar, the sowing date and nitrogen fertilisation
practices can be manipulated to prevent interactions between
pests and crop, in either time or space. Nevertheless, the
efficacy of these manipulations may be limited by pest
adaptation. Second, beneficial biotic interactions may result
from appropriate changes to the habitats of natural enemies
and ecosystem engineers, mediated by soil and weed
management. Here, knowledge is scarce, and indirect and
complex effects are poorly understood. Third, changes
achieved by crop diversification and, fourth, by landscape
adaptation are promising. However, these practices also
present drawbacks that may not necessarily be outweighed
by beneficial effects. Overall, these four management
approaches provide a powerful framework to develop
sustainable agronomic practices.
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1 Introduction

Cropping systems must be continually adapted to meet farm-
ers’ needs and new objectives in a changing socioeconomic
context (Boiffin et al. 2001). Modern agriculture, which was
developed to increase productivity to meet demands for food
and fibre, has led to an oversimplification of crop diversity at
the field, cropping system, farm and landscape levels, with
increasing reliance on petrochemical inputs and decreasing
use of beneficial biotic interactions (Altieri 1999; Stoate et al.
2001). There is growing evidence to suggest that natural
habitat fragmentation due to changes in land use and high
levels of agrochemical inputs in crop fields are major causes
of the rapid decrease in general biodiversity in many

agricultural landscapes (Robinson and Sutherland 2002;
Benton et al. 2003; Bianchi et al. 2006; Farwig et al. 2009),
potentially threatening the provision of some services, such as
biological pest control and pollination, whilst having a neutral
effect on other functional groups. Agroecosystems thus have
very low levels of biodiversity, and increasing diversity would
probably add complementary elements and increase agro-
ecosystem functioning and sustainability (Gurr et al. 2003;
Moonen and Bàrberi 2008). The intensification of arable
farming has also had an impact on the other compartments of
the environment: soil, water and air (Anonymous 2005;
Le Roux et al. 2008). The economic rationale has now been
overtaken by environmental issues of concern to society as a
whole, and by a new social context, supported by environ-
mental policy and a social demand for more environment-
friendly agriculture. Some farmers are currently experiment-
ing with different production systems based on fewer
chemical or mechanical inputs, for economic (high input
costs), agronomic (pest resistance to pesticides) or environ-
mental (soil erosion, water pollution, biodiversity loss)
reasons (Warner 2007). For both these farmers and agrono-
mists, a key question is: how can we decrease petrochemical
inputs in agroecosystems to limit their impact on the
environment whilst maintaining the productivity and/or
profitability of agriculture?

The relationships between biodiversity and agroecosystem
functioning are complex and require clarification for each of
the services biodiversity can provide. Their positive effects
depend principally on interactions between biotic components
or between biotic and abiotic components of the agroecosys-
tem, hereafter referred to simply as biotic interactions (sensu
lato). These biotic interactions are of interest in agriculture for
a number of reasons, including the services they provide
through non-chemical pest control and improvements in crop
growth conditions (resulting from changes in soil nutrient
availability and soil structure; Shennan 2008). Our aim in this
review was to explore the extent to which and the ways in
which it is possible to manage agroecosystems so as to
enhance beneficial biotic interactions and decrease the use of
petrochemicals. The list of ecological services and environ-
mental consequences of agroecosystem management consid-
ered here is not exhaustive, as we focus on crop protection
and nutrition but they are the most important processes for
maintaining crop productivity and stability. We also limit our
review to temperate cropping systems, although most of the
principles presented could also be applied to the management
of tropical agroecosystems.

The level at which biotic interactions should be managed
remains unclear as conflicting results have been published.
For instance, the services delivered by beneficial predators
may depend on the morphological, anatomic or metabolic
characteristics of the crop plant, which may facilitate or
hinder their activities. Chang and Eigenbrode (2004) and



Rutledge and Eigenbrode (2003) showed that the predatory
efficacy of the ladybird Hippodamia convergens against
pea aphid, Acyrthosiphon pisum, depends directly on the
thickness of the wax cuticle in peas. If the wax is too thick,
it decreases the adhesion of the ladybird to the leaves,
decreasing the speed of prospection or inhibiting prospec-
tion altogether. Other natural enemies, such as spiders of
the Linyphiidae family or hoverfly larvae, may take over
this role of predation because their movement on leaves is
not hindered by the smooth surface of a thicker wax cuticle.
This clearly demonstrates the importance of plant/insect
interaction and complementarity between beneficial species
(Schmaedick and Shelton 2000). An understanding of these
processes, based on the interactions of organisms in food
webs, makes it possible to manage them directly (by
favouring certain organisms) or indirectly (by modifying
environmental conditions favourable to certain organisms), at
the crop genotype level. Landscape organisation has been
shown to play a very important role as the biological cycle of
pests and natural enemies may take place at a scale larger
than the individual field (in non-crop areas, for example).
Landscape characteristics may also favour or hinder dispersal
and colonisation by these organisms in agroecosystems.
Metapopulation theory, which has been well developed in
ecological approaches, could be used to identify the
landscape characteristics and/or spatial deployment of
cropping practices most likely to reduce the risk of invasion
and persistence of pests in the landscape or to increase the
probability of invasion and persistence of biocontrol agents.

We consider here four types of agroecosystemmanagement
that might improve the use of beneficial biotic interactions: (a)
a single operation/technical choice (e.g. sowing date, fertilisa-
tion rate or choice of crop species sown) for preventing the
spatial and temporal synchronisation of crop and pests, (b) a
set of techniques altering the environment of living organisms
at the field scale, (c) the diversification of crop rotation
through the introduction of a cover crop and (d) characteristics
of the local or regional environment (from hedge management
to the spatial organisation of crops and non-crop habitats). At
each level, a non-exhaustive analysis of the typical biotic
interactions involved and their impact (direct or indirect) on
biological pest control and crop growth conditions was carried
out to identify the main advantages and limitations of
management at these scales.

2 Modifying single practices to prevent the spatial

and temporal synchronisation of crop and pests

Starting from current cropping systems, it might be possible
to reduce pesticide use by modifying individual practices to
separate the crop from pest populations either in space or in
time. Indeed, cropping practices influence the ability of the

plant to attract or to repel pests and the synchronisation of
crop and pest life cycles.

2.1 Effect of sowing date on synchronisation
of the life cycles of the pest and the crop

One of the basic principles underlying pest avoidance is the
desynchronisation of crop susceptibility and the biological
cycle of various pests (Meynard et al. 2003). In this case, a
decrease in biotic interactions (between crop and pest) is
beneficial for crop production. For instance, early sowing
dates have been shown to reduce the injuries caused by
Leptosphaeria maculans, the causal agent of phoma stem
canker on oilseed rape (Aubertot et al. 2004). In this
pathosystem, injury at harvest is most severe if infection
occurs soon after emergence (Brunin and Lacoste 1970). As
the primary inoculum of L. maculans generally peaks
between September and December (West et al. 2002), crops
sown early have a statistically lower risk of being infected
just after their emergence than oilseed rape crops sown later.

Plant pathogens are not the only organisms with a
biological cycle related to the crop cycle. For example,
some weeds can germinate and emerge at any time in the
year (e.g. Geranium spp., Raphanus raphanistrum L.),
whereas others have preferential periods of emergence. For
instance, Adonis aestivalis L. and Alopecurus myosuroides

Huds. preferentially germinate and emerge during autumn
or winter, whereas Atriplex patula L. and Chenopodium

album L. preferentially germinate and emerge during spring
(Bailly et al. 1977). Using this life cycle trait, Chauvel et al.
(2001) tested several alternative cropping systems for
controlling A. myosuroides that had acquired resistance to
herbicides of the FOP chemical family (aryloxyphenoxy
propionates). One of the most efficient methods for
controlling the resistant weed was found to be the
introduction of spring crops into crop rotations that
previously included only winter crops. Indeed, the intro-
duction of spring crops led to the soil tillage in the spring,
destroying weeds that had emerged during the winter.

Animal pests are also susceptible to temporal shifts,
creating an offset between their life cycle and the crop
cycle. For instance, late-sown winter cereals are less
susceptible to cereal aphids (principally Rhopalosiphum

padi (L.)), which carry the nonspecific barley yellow dwarf
virus (BYDV). Maize constitutes a major reservoir of both
the virus and its aphid vectors (Vialatte et al. 2006); as it
matures, aphids (which may be infected) move in search of
green hosts, often early-sown winter wheat or barley. Thus,
the late sowing of winter cereals (about 2 weeks after the
usual sowing date) or the early sowing of spring cereals
reduces BYDV damage because plants emerge and com-
plete the highly vulnerable seedling stage of development
whilst temperatures are too low for aphid activity.



2.2 Effect of cultivar choice and nitrogen fertilisation
on pest attraction/repulsion and resistance to diseases

Fine-scale identification of the determinants of insect–plant
interactions is often used to develop sustainable pest
management strategies (Pickett et al. 1997). Certain types
of insect behaviour, such as host searching, food finding
and oviposition, are known to be affected by visual signals,
such as colour, size, leaf structure, plant architecture and
chemical signals. The chemical cues from plant that affect
the behavioural responses of insects are classified into
several categories, including attractants, arrestants, stimu-
lants, repellents and deterrents (Ahuja et al. 2010). We will
deal here with attractants, which orient insects towards the
source, and repellents, which orient insects away from the
source. Several studies have investigated the ways in which
plant characteristics affect not only the behaviour of
herbivore insects but also that of their natural enemies and
the ways in which attraction or repulsion can be used to
decrease insect survival. These plant characteristics may be
modified by several practices, including the choice of
variety and fertilisation.

For example, the host searching and oviposition behav-
iours of various oilseed rape pests are known to be affected
by morphological and olfactory signals. Common pollen
beetles (Meligethes aeneus F. and Meligethes viridescens

F.) are attracted by the yellow colour of the flowers and by
degradation products of glucosinolates (isothiocyanates;
Free and Williams 1978). They have also been shown to
adjust the number of eggs laid per bud and the amount of
resources allocated to each egg for larval development as a
function of the potential capacity of the plant to meet the
needs of the larvae (Hopkins and Ekbom 1996, 1999).
Ulmer and Dosdall (2006a) assessed the effects of eight
different Brassicaceae species on cabbage seedpod weevil
(Ceutorhynchus obstrictus) behaviour. They found that the
cabbage seedpod weevil preferred Brassica carinata for
feeding and oviposition. Larval development occurred most
rapidly on Brassica rapa and larval weight was highest on
Brassica napus. These authors also demonstrated that high
levels of specific glucosinolates were associated with
longer development times or lower weight, demonstrating
the effects of chemical signals on pest populations. Another
pest of oilseed rape crops, the cabbage root fly (Delia
radicum (L.)), has also been shown to select the most
favourable plants for oviposition on the basis of stem
diameter (Dosdall et al. 1996; Valantin-Morison et al.
2007). Various studies have shown that the host location
and feeding behaviour of the cabbage root fly and the
diamondback moth (Plutella xylostella) are oriented by
glucosinolates and volatile isothiocyanate compounds (de
Jong and Städler 1999; Hurter et al. 1999; Renwick et al.
2006). In cereals too, the selection of a host plant by pests

such as the wheat stem sawfly (Cephus cinctus Norton) is
known to be influenced by plant height, developmental
stage and the volatile compounds released by wheat (Piesik
et al. 2008). Moreover, differences in natural enemy
populations are also observed between species or cultivars.
For example, Jönsson et al. (2005) demonstrated that the
observed differences in the temporal occurrence of three
parasitoid species attacking pollen beetles reflected differ-
ences in their response to olfactory and visual plant stimuli.
Finally, direct defence mechanisms may be constitutively
present or induced upon aphid attack, potentially resulting
in significant differences in aphid survival between culti-
vars (Broekgaarden et al. 2008). In such cases, proteins and
secondary metabolites with direct defensive effects, such as
lectins and protease inhibitors, may have an antibiotic effect
on aphids. Furthermore, the antixenosis and antibiosis
properties of certain varieties of wheat against aphids act
in synergy with the natural enemies of aphids. Bhuiyan and
Wratten (1994) showed that a larger proportion of aphids
fell to the ground from awned wheat varieties than from
awnless wheat varieties. Similarly, Gowling (1988) found
that the visit of a natural enemy to an aphid colony resulted
in the fall of a significantly larger number of aphids from a
semi-resistant wheat cultivar than from a susceptible wheat
cultivar. Gowling and van Emden (1994) provided insight
into a complementary mechanism operating in this type of
situation. Following the fall of the aphid from the leaf,
significantly fewer aphids try to climb back up semi-
resistant varieties than susceptible varieties, increasing the
likelihood of predation by ground-dwelling polyphagous
predators (Losey and Denno 1998). All these studies
provide evidence that the morphological and chemical
characteristics of the plant play an important role in host
selection, oviposition behaviour, survival and subsequent
crop damage.

Thus, innovative management measures involving culti-
vars or species of different attractiveness and repulsiveness
can be used in a stimulo-deterrent diversionary strategy.
Push–pull strategies are used to repel the pest from the
resource (i.e. commercial crop fields), using stimuli that
elicit host plant finding, and to attract pests to trap crops
(usually in field borders) using attractive stimuli (Cook
et al. 2007). Trap crops may be attractive to pest
populations because their growth stage, architecture, cultivar
or species is favourable. For example, turnip rape has been
found to be a preferred host plant for several oilseed rape pests
in both laboratory and field conditions (Hokkanen 1989;
Nilsson 1994; Cook et al. 2002, 2006; Valantin-Morison and
Quere 2006). Barari et al. 2005 have also demonstrated the
trap effect of turnip rape on the pest Psylliodes and on
natural enemies. The trap crop effect of turnip rape is
effective when both species have closed buds, but not when
both species are flowering.



The amount and timing of nitrogen application may have
a major effect on the attractiveness of the crop to pests by
modifying plant chemical cues and architecture. Nitrogen
fertilisation affects the glucosinolate content of the seeds
(Milford and Evans 1991) or aerial parts (Markus et al.
1996) of cruciferous crops. The application of large
amounts of nitrogen may induce the production of large
flower buds, providing more favourable conditions for
female pollen beetles. However, high levels of nitrogen
fertilisation also result in the production of larger numbers
of secondary racemes, enabling the plant to compensate for
pollen beetle attacks. Increasing the availability of nitrogen
to crop plants may have different effects on different types
of pests. Higher levels of nitrogen nutrition favour sap-
sucking pests over leaf grazers. Fertiliser application
increases the concentration of chemical compounds in cell
vacuoles, making plant tissues less appetising and less
digestible (Mattson 1980). Leaf grazers ingest plant tissues
in their entirety, including the vacuoles (Letourneau 1988;
Funderburk et al. 1994; Altieri and Nicholls 2003), whereas
sap-sucking pests insert their stylets between cells to reach
the phloem, avoiding the vacuoles and the potentially
harmful chemical compounds they contain (Mattson 1980).

Plants harbour many non-pathogenic fungi and bacteria,
both above and below ground, providing protection against
diseases. Endophytic fungi, which colonise plant leaves
without causing symptoms, have been shown not only to
improve biotic (herbivores) and abiotic (mineral and
drought) stress resistance in grasses (Malinowski and
Belesky 2000) but also to increase resistance to airborne
diseases (Arnold et al. 2003). The efficacy of endophytes
could potentially be improved by plant breeding as host
genotype influences endophyte species richness and com-
munity composition (Pan et al. 2008). The antagonistic
effects of some bacterial and fungal species against
soilborne diseases (particularly for the genera Pseudomo-

nas, Bacillus and Trichoderma) have long been recognised,
and the suppression of particular diseases by the soil is
observed after the continuous cultivation of some crops, as
for take-all in wheat (Hornby 1998). It has been suggested
that the defence strategy developed by plants against
soilborne pathogens may involve rhizosphere microorgan-
isms (microorganisms closely associated with roots) antag-
onistic to these pathogens (Cook 1995). Indeed, the
composition and function of the rhizosphere microorganism
community are controlled by root exudates specific to
particular plant species (Fuente et al. 2006; Broeckling
et al. 2008), or even particular cultivars. Thus, the use of
varieties able to sustain large populations of microorgan-
isms and/or to select antibiotic-producing microorganisms
may decrease the risk of root diseases.

Figure 1 summarises the desynchronisation effects
achieved in time and space by modifying the attractiveness
and repulsiveness of the crop to pests. Even modifications
to single practices, such as those discussed in this section,
may provide an opportunity to reduce the injury caused by
pests. Crop/pest desynchronisation in time is a simple but
effective measure. Unfortunately, several recent changes in
crop management have instead synchronised crop and pest
cycles. This is the case, for example, for winter cereal
production, for which earlier sowing dates have been
introduced in Western Europe to maximise radiation
interception. Knowledge is accumulating about the molec-
ular aspects of crop–pest interactions, in addition to the
ecological aspects. This knowledge provides a source of
innovations for the design of new crop management
systems. However, there are four limitations to this first
type of action. First, some of the biological processes involved
are far from simple, and their positive mobilisation may
require parameterisation of the effects of cropping techniques.
Second, if systematically used, these approaches may cease to
be effective due to pest adaptation. Third, there are clearly
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interactions between crop management techniques, limiting
the effects of single techniques. Finally, conflicts may occur at
farm level. For example, organisational constraints may limit
the choice of sowing date, and quality objectives may limit the
choice of varieties.

3 Modifying the environment of living organisms

at the field scale to enhance biological pest control

and nutrient use efficiency

Many technical solutions have been envisaged for the
management of crops so as to provide a more favourable
environment for beneficial organisms, the natural enemies
of pest species and ecosystem engineers (Jones et al. 1994)
which have effects on the physical and chemical environ-
ment favouring nutrient influx into the crop.

In Section 3.1, devoted to pest control, we provide two
examples of such solutions. The first, the effect of the
tillage system on soil biota and organism habitat, is based
on considerable amounts of experimental data; conversely,
the use of weeds for natural pest control is an almost
entirely new field of investigation. In Section 3.2, we focus
on the effect of soil management on earthworm habitat and
communities in cultivated fields as a means of enhancing
nutrient use efficiency. Earthworms are a key species of
ecosystem engineers.

3.1 Effects of no-till systems and weed control on organism
habitat and interactions between pests and natural enemies

Soil tillage practices affect organic matter composition, soil
moisture and the structure of the soil surface (Holland
2004). In particular, a mulch is formed in the absence of
tillage. Several studies have shown that the accumulation of
organic matter at the soil surface almost always leads to an
increase in the diversity of generalist predators (ground
beetles, spiders and rove beetles; Hanna et al. 2003;
Mathews et al. 2004; Schmidt et al. 2004; Pullaro et al.
2006). This diversity seems to depend directly on ascending
control by saprophagous communities of springtails (Chen
and Wise 1999; Ferguson and Joly 2002). This often leads
to a decrease in the populations of certain crop pests, such
as aphids, caterpillars and Colorado beetle (Zehnder and
Hough-Goldstein 1990; Brust 1994; Schmidt et al. 2004;
Pullaro et al. 2006). According to Landis et al. (2000), the
presence of decomposing organic matter at the surface of
the soil provides the predators with alternative prey when
there are no crop pests present in the plot. Kendall et al.
(1991) even showed, in winter barley crops, that the
amount of straw remaining at the soil surface was positively
correlated with the diversity of polyphagous predators and
negatively correlated with BYDV infection levels (due to

greater predation on vector aphids by these predators). A
similar phenomenon was observed following the applica-
tion of organic matter to plots (Landis et al. 2000). Weed
populations may also decrease in size in the presence of a
mulch due to an increase in the number of seed-eating
ground beetles (Harrison et al. 2003; Pullaro et al. 2006).
Furthermore, the presence of sufficiently large amounts of
residues after the harvesting of the crop creates an
unfavourable environment for weed germination and
establishment. Annual weed species with small seeds
requiring light for germination are the most sensitive to
surface residues, whereas large-seeded annual and perennial
weeds are fairly insensitive (Teasdale and Rosecrance
2003). Weed suppression effects decrease during the course
of the season as the residues decompose. However, mulch
application may also have a negative effect on the crop, by
increasing slug populations, for example (Mabbett 1991).

Weed management in low-input or organic cropping
systems leads to changes in the number and diversity of
weeds present in the plot (Hyvönen et al. 2003; Hyvönen
2007). Several studies have shown that leaving some weeds
may make it possible to decrease the abundance of crop
pests. This decrease results from an increase in regulation
by natural enemies as weeds can provide these enemies
with resources, some of which are weed-specific, such as
pollen and nectar, alternative prey and hosts (Andow 1990;
Häni et al. 1998; Norris and Kogan 2005). However, weed
flowers may also attract certain pests, such as common
pollen beetles (M. aeneus and M. viridescens), seeking to
feed on flowers after their emergence from winter oilseed
rape and before their departure for overwintering sites
(Balachowsky 1962).

3.2 Effects of soil management on earthworm habitat
and communities: consequence for nutrient use efficiency

Attention is increasingly being paid to the soil macrofauna
due to its major contribution to nutrient cycling in
agroecosystems. We illustrate this role of ecosystem
engineers, with the example of earthworms, considering
their major effects on soil fertility and the effects of crop
management on their populations.

Earthworms are particularly important for nutrient
cycling because they decompose organic matter (Edwards
and Bohlen 1996) and increase the availability of some
mineral elements (phosphorus, for example). Earthworms
also affect soil structure and microbiological activity. The
channels they create increase soil porosity (Lavelle 1997)
and infiltration, favouring root development (Jégou et al.
2002). Through their burrowing activities, earthworms mix
the various soil horizons and help incorporate organic
matter into the soil (Cluzeau et al. 1987). Earthworm
activity also increases the microbial biomass (Cluzeau et al.



1994; Aira et al. 2003), thus affecting the mineralisation of
organic matter. Depending on the ecological group to which
they belong, earthworms have different effects on soil
structure: anecic worms form large subvertical tunnels,
endogeic worms burrow more horizontally quite close to
the surface, and epigeic worms remain at the surface and
thus have no effect on soil structure. Similarly, the effects
of these groups on the fate of crop residues are different:
endogeic species are geophagic and ingest already decom-
posed organic matter, whereas anecic and epigeic species
feed on the organic matter at the soil surface.

Thus, earthworms improve several aspects of soil
fertility, both physical and chemical, and this is beneficial
for plant growth. In controlled conditions, it has been
shown that the presence of earthworms has a positive effect
on plant growth. Scheu (2003), reviewing 83 studies,
concluded that 79% showed a positive response to the
presence of earthworms, with only 9% showing a negative
response and no significant effect in 12%. However, it is
more difficult to demonstrate such a response in field
conditions because populations are often much smaller than
those used for experimentation in the laboratory. In some
cases, earthworms can be introduced directly into the field,
which has a positive effect (Scheu 2003). However, major
differences between species are observed (Shuster et al.
2003), and the fate of the introduced worms must be
studied before this technique is applied to commercial fields
(Nuutinen et al. 2006). In the meantime, it is possible to
favour earthworm populations and their activity through
crop management.

Earthworm populations are affected principally by
temperature and humidity (Whalen and Parmelee 1999;
Pelosi et al. 2008). Food resources are also an essential
factor determining the average number of earthworms
present in a given soil (Curry 1998). The addition of
organic matter to the soil favours earthworm populations
(Anderson et al. 1983). Conversely, decreases in organic

matter levels have a negative effect on populations (Mele
and Carter 1999; Hendrix et al. 1992). Leroy et al. (2007)
compared farmyard manure, cattle slurry and various
composts and also reported a slight effect of the quality of
the organic matter, and Scown and Baker (2006) observed
differences in the abundance of earthworms exposed to
dung from various farm animals. The distribution of
organic matter also influences the relative abundance of
the different ecological groups in the community. Thus, soil
tillage, particularly ploughing, is clearly the technique with
the strongest impact on earthworm populations (Chan
2001). Ploughing influences earthworm populations not
only by changing the distribution of organic matter, but also
through other reported effects: death of earthworms directly
wounded by the plough, destruction of earthworm habitats
and exposure to predators. Anecic earthworms are more
affected than endogeic species, which benefit from the
burial of the surface organic matter (Nuutinen 1992).
Ploughing therefore affects earthworm population density,
biomass and species diversity. A negative effect of soil
compaction has been reported (Langmaack et al. 1999),
although this effect is less frequently described. The
passage of vehicles in wet conditions may have a direct
effect on earthworms located under the wheel tracks as
worms tend to come up to the surface in such conditions
(Buck et al. 2000). Negative effects of pesticides have also
been reported in some cases, with a high level of variation
(Edwards and Bohlen 1996) as a function of the type of
active ingredient, the climatic conditions during spreading
and the earthworm species considered. Epigeic worms,
which live at the surface, are more exposed to pesticides
than anecic and endogeic species.

Thus, several crop management techniques have positive
or negative effects on earthworm populations. However,
techniques cannot be considered separately and the effects
on earthworm populations of the entire cropping system
must be studied. Pelosi et al. (2009), in a study of several
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cropping systems with different levels of productivity,
intensities of soil tillage and pesticide use, showed a clear
effect of cropping system on the composition of ecological
group communities. Anecic worms were favoured by a
direct drilling system with the maintenance of permanent
crop cover throughout the year, whereas endogeic worms
tended to be favoured by conventional crop management
(including pesticide use and ploughing) and in the organic
cropping system (with mouldboard ploughing). The ratio-
nale of cropping systems aiming to preserve or maintain
earthworm populations is based on two main elements:
increasing carbon resources and managing soil structure,
with tillage as limited as possible, whilst avoiding soil
compaction. Different means of achieving the objective of
maximising carbon return to the soil exist: the application
of manure is an obvious method, but it is also possible to
keep crop residues in the field whenever possible. Another
way of increasing carbon resources for the macrofauna is to
maximise carbon fixation by photosynthesis through high
levels of production and avoiding periods of bare soil by
planting cover crops (see Section 4). It is also possible to
introduce temporary grasslands, covering the soil for
several years, into the crop rotation. It is not always
possible to avoid deep soil tillage, especially ploughing,
due to the large number of functions of this operation (weed
management, water circulation, decompaction). However, a
better knowledge of the dynamics of earthworm popula-
tions, possibly based on models such as that presented by
Pelosi et al. (2008), makes it possible to optimise the
schedule of tillage operations, thereby minimising their
impact on earthworm populations. For example, interven-
tions may be scheduled to coincide with periods during
which earthworms are less susceptible, such as diapause,
particularly during cold periods.

Figure 2 summarises the effects of crop management on
habitats, for the pest management and improved nutrient
use strategies, outlined in this section. Many studies have
already focused on the effect of tillage (or no tillage) on
pests and their natural enemies. Both negative and positive
effects have been reported, and further research is required
to establish the balance between these effects. However,
several items have now been evaluated to help farmers
evaluate the balance between benefits and risks when they
stop ploughing, for example. The situation is very different
when considering the effect of weed management on
natural pest control. Few empirical or theoretical data are
available. Many farmers are used to trying to eradicate
weeds from their fields and are not accustomed to consider
the role of weeds in establishing habitats for natural
enemies (or for controlling pests). Furthermore, most
agronomic research is based on experimental data acquired
in plots from which weeds are carefully removed. These
two examples clearly illustrate the imbalance in our

knowledge of the effects of cropping practices on beneficial
biodiversity. These effects are least well known for more
indirect methods, opening up new avenues of research.
Both the positive effects of earthworms on some of the
major processes underlying nutrient availability and the
main drivers of earthworm abundance (tillage and the
supply of organic matter to the soil) are now well
documented. However, these effects are poorly quantified,
and little is known about the effects of earthworm species
and age. It therefore remains difficult to provide farmers
with support for decisions relating to practices. When is it
appropriate to till the soil or to weed? How much organic
matter should be supplied, and when? Is it better to bury the
residues or to leave them on the surface?

4 Introducing a cover crop to modify biotic interactions

in agroecosystems

The introduction of a cover crop is an example of the third
type of agroecosystem modification considered in this paper:
managing crop rotation and diversification. Cover crops,
which are not generally harvested, can improve resource
availability and the growth conditions of the crop or decrease
the impact of pests. Cover crops fall into two categories: (a)
annuals grown during an off-season that are killed before
planting a cash crop, providing a mulch (some of the effects of
which are described in Section 3.1), and (b) living mulches
that grow at the same time as the cash crop, for all or part of
the growing season, resulting in an intercropping system.

4.1 Effect of a cover crop on soil physical and chemical
properties, for better crop nutrition

Cover crops contribute to the accumulation of organic
matter in the upper layers of the soil (Roldan et al. 2003;
Alvear et al. 2005; Diekow et al. 2005; Madari et al. 2005).
This has been shown to result in better soil surface
aggregation because of the relationship between aggregate
stability and total organic carbon content in soil aggregates
(Ball et al. 1996; Chenu et al. 2000; Pagliai et al. 2004).
Cover crops also help promote biological soil tillage via
their root development. Changes in soil structure related to
root growth have been reported by several authors
(Cresswell and Kirkegaard 1995). Root action can decrease
soil bulk density near the surface or change pore size
distribution without increasing total porosity (Henderson
1989; Rosolem et al. 2002). Whalley et al. (2005) analysed
images of thin soil sections and showed the number of large
pores to be greater in the rhizosphere than elsewhere because
of root growth, microbial activity, and the repeated wetting
and drying of the soil at the root–soil interface (Gregory
2006). Carof et al. (2007a) observed larger functional pores



and larger numbers of tubules in a no-till/cover crop system
and attributed these properties to root activity. This greater
biological activity in the surface layers helps increase
aggregate stability and nitrogen mineralisation (Hu et al.
1995; Kiem and Kandeler 1997; Hatfield and Prueger 1996).

Cover crops have been promoted as a means of
maximising the efficient use of available nitrogen in
subsequent crops in agricultural systems, decreasing the
risk of environmental problems associated with the nitrate
contamination of surface and groundwater whilst potential-
ly increasing profitability by reducing the need for nitrogen
fertiliser (Hartwig and Ammon 2002; Wang et al. 2008).
Legume cover crops can fix nitrogen, some of which is
available for subsequent crops. However, the full benefit of
cover crops depends on the synchronisation of cover crop
nitrogen mineralisation and the nitrogen demands of the
subsequent crop. Living mulches can be used to recycle
nutrients and to fix nitrogen, but often compete too strongly
with the main crop, decreasing crop growth and yield.
Cover crop selection is therefore an important aspect of the
design and optimisation of these intercropping systems
(Hollander et al. 2007a, b).

4.2 Effect of a cover crop on weed communities

The principal goal of cover crops is to control weeds by
replacing an unmanageable weed population with a
manageable cover crop. This is accomplished by adjusting
the phenology of the cover crop such that it occupies the
available niches before they can be occupied by weed
populations. As weeds and living mulch plants compete for
the same resources, weeds can be suppressed by introduc-
ing living mulches into cropping systems (Teasdale et al.
2007). Undersown cover crops may decrease weed infes-
tation in three ways (Phatak 1992; Bastiaans et al. 2002):
preventing weed seed germination and emergence, decreas-
ing weed growth and development, and decreasing the
number of seeds present in the weed seed bank in the soil
by limiting seed recruitment and increasing seed predation.
The cover crop exerts its effects by rapidly occupying the
open space between the rows of the main crop. Weed seed
germination may be inhibited by complete light interception
(Phatak 1992) by the cover crop or by the secretion of
allelopathic chemicals (White et al. 1989; Inderjit and
Keating 1999; Borek and Morra 2005; Hoagland et al.
2008). Allelopathy was initially defined as the effect of one
plant on another through the release of biomolecules (Rice
1984). This definition was subsequently broadened to
include effects on other organisms, including microorgan-
isms in particular. Once the weed seedlings become
established, competition for resources is the main mecha-
nism of weed suppression by the cover crop (Teasdale
1998; Hollander et al. 2007b). However, it is difficult to

distinguish experimentally between allelopathy and mech-
anisms involving competition for growth resources. Several
of the requirements for breaking dormancy and promoting
weed seed germination in soils (light with a high red-to-far
red ratio and high daily range of soil temperatures) are
decreased more strongly by living mulches than by
desiccated residues (Teasdale and Daughtry 1993). Once
established, living mulches can also use the light, water and
nutritional resources that would otherwise be available to
weeds.

Ideally, the cover crop should suppress weed establish-
ment during the critical period during which emerging
weeds are likely to cause crop yield losses (Buhler et al.
2001). However, the major obstacle to the adoption and use
of living mulches is their lack of selectivity: a living mulch
that is competitive enough to suppress weeds may also
decrease crop growth and yield, although this does not
occur in all cases (Ateh and Doll 1996). Much of the
research on living mulches has focused on developing
approaches for achieving selectivity between weeds and the
associated crop, including (a) sowing the living mulch so
that its peak growth does not occur during the period in
which competition would have the greatest impact on crop
yield, (b) increasing the density of the crop population to
increase the competitiveness of the crop relative to the
living mulch, (c) suppressing the living mulch during crop
growth so as to make it less competitive with the crop
(Teasdale 1998; Teasdale et al. 2007; Hollander et al.
2007b).

4.3 Effect of a cover crop on pest communities

According to the Resource Concentration Hypothesis
(Tahvanainen and Root 1972), the probability of crop pests
finding their host plant is higher in monocultures of a single
plant species (corresponding to the maximum concentration
of the resource) than in stands consisting of a mixture of
several species (in which the crop is diluted among other
plant resources; Tahvanainen and Root 1972; Root 1973).
This hypothesis therefore predicts a negative relationship
between plant diversity and the level of invertebrate
phytophagy (Root 1973) regardless of interactions with
the natural enemies of pest species, constituting one of the
advantages of species mixture (Malézieux et al. 2009).
Many studies have tried to test this hypothesis: (a) through
relationships between plant diversity and the diversity of
phytophagous arthropods (Mulder et al. 1999; Koricheva
et al. 2000; Haddad et al. 2001), (b) through relationships
between the two extreme states (monoculture versus
polyculture) and the size of phytophagous arthropod
populations (Russell 1989; Andow 1991; Finch and Collier
2000), or (c) through relationships linking the density of a
single plant host species and the structure of the phytoph-



agous population (Rhainds and English-Loeb 2003; Joshi
et al. 2004). In contrast, few studies have investigated the
effects of gradients of plant diversity on levels of
phytophagy (Mulder et al. 1999; Pfisterer et al. 2003;
Scherber et al. 2006; Unsicker et al. 2006). Many of these
studies have been the subject of reviews (Risch et al. 1983;
Andow 1986) and of a meta-analysis (Tonhasca and Byrne
1994) showing that crop diversification leads, in 52–70% of
cases, to a decrease in pest density. Since the publication of
these reviews, several authors have added to the debate
about the consequences of crop diversification for pests
(Coll and Bottrell 1995; Theunissen et al. 1995; Roininen
et al. 1996; Schellhorn and Sork 1997; Harmon et al. 2003;
Hooks and Johnson 2003; Aquilino et al. 2005; Costamagna
and Landis 2006; Gianoli et al. 2006; Bjorkman et al. 2007;
Schmidt et al. 2007). Seven of these papers reported that
crop diversification successfully decreased the populations
of some or all pests; four found that crop diversification had
no effect, and one found that it led to an increase in the pest
population. This trend suggests that the density of crop pests
generally decreases in response to diversification of the
plants growing on the plots. However, this trend should not
be allowed to conceal the variability of the effects of crop
diversification on pests or the moderate nature of these
effects, even when positive.

Diversifying crops to control pests, as described above,
may be considered a “passive process” of control for crop-
damaging organisms. Active processes may further increase
the benefits of crop diversification, particularly for disease
control. Such processes include changing the population of
specific rhizosphere organisms, which may influence crop
pathogens through competition, antagonism or suppression
(Kirkegaard et al. 2008). Allelopathy is another example of
an active process. The allelopathic properties of some cover
crops species, such as Brassica crops, are increasingly
viewed as an efficient way of controlling several soilborne
pests and diseases. The use of these species as cover crops
to control soilborne pests and diseases is called biofumiga-
tion (Angus et al. 1994). This process involves growing a
Brassica crop (known as the break crop) during the
intercrop period and then grinding it up and incorporating
the residues into the soil. The direct noxious effect of
allelochemicals has been clearly demonstrated in several
organisms, but there is increasing evidence to suggest that
other mechanisms, such as changes in the structure of soil
microbial communities, may have an indirect effect on
pathogens, in the long term (Yulianti et al. 2007; Mazzola
et al. 2007). Motisi et al. (2009) recently observed temporal
changes in the efficiency of control of the soilborne
pathogen Rhizoctonia solani by Brassica juncea residues.
It was suggested that the observed convex quadratic trend
might result from (a) an initial decrease in efficiency due to
the rapid disappearance of the allelochemicals released by

the residues and (b) a subsequent increase due to the
delayed release of the remaining allelochemicals by the
residues and/or a delay in the activation of microbial
communities (because of the initially detrimental effect of
allelochemicals) which respond to the incorporation of
additional organic matter. Hence, one of the important
features of biofumigation seems to be its ability to suppress
soilborne diseases through biological control by antagonis-
tic microflora organisms. Biofumigation is considered an
interesting alternative to synthetic chemicals and, in
principle, an environment-friendly method suitable for use
in integrated pest management strategies. However, the
efficiency of this technique at field scale seems to vary
between studies. The implementation of this technique in
current farming systems would require improvements in our
understanding of the mechanisms involved in disease
control, including the mechanisms by which a biofumigant
crop acts on the soil environment (physical and biological
components) in particular.

Many studies have shown that planting a cover crop in
perennial and annual cropping systems may improve pest
control (Altieri et al. 1985; Meyer et al. 1992; Wyss 1995;
Pfiffner and Wyss 2004; Prasifka et al. 2006; Schmidt et al.
2007). In addition to the properties of living and dead
mulches cited above (principally, the improvement of
biological pest control by natural enemies, the decrease in
pest damage due to crop dilution and the allelopathic effects
against soilborne diseases), another mechanism has been
observed. The prospecting and approach behaviour of pests
is severely affected by the release of allelochemical
substances from the decomposing (Mabbett 1991) or living
(Finch and Collier 2000) mulch, decreasing the efficiency
of crop host plant localisation. However, cover crops may
also aggravate pest damage or favour new pests if the cover
crop provides the pests with a key resource (Pfiffner and
Wyss 2004). Indeed, pest population increases seem to
occur more frequently with living than with dead mulches
(Meyer et al. 1992; Costello and Altieri 1995).

Figure 3 illustrates the beneficial effects of cover crops
described above. The introduction of a cover crop increases
the diversity of the plants growing on the field. Previous
studies have shown that this diversification, by modifying
biotic and abiotic components, provides important services,
such as capturing soil nutrients and preventing their loss,
nitrogen fixation by legumes, increasing soil carbon levels
and associated improvements in soil physical and chemical
characteristics, increasing biological activity and diversity
and suppressing weeds and pests (Lal et al. 1991; Hartwig
and Ammon 2002). These services can improve resource
availability and the growth conditions of the crop or
decrease the impact of pests, thereby increasing crop
productivity. Nevertheless, the introduction of a cover crop
may also decrease resource availability (competition with



the main crop for light, nutrients and water) or favour new
pests and diseases, thereby decreasing crop productivity
(Teasdale et al. 2007; Carof et al. 2007b. Shili-Touzi et al.
2009). In this review, we show that the trade-off between
the services and deleterious effects resulting from the
introduction of a cover crop can be managed through
agricultural practices (choice of the cover crop species,
sowing and destruction dates, etc.), but the reported
efficiency of these techniques differs between studies. The
main reason for this variability is the sensitivity of biotic
interactions to environmental conditions at the field scale
(Altieri et al. 1985). The use of this technique in current
farming systems therefore requires improvements in our
understanding of the mechanisms involved, making it
possible to identify indicators and rules for determining
the best trade-off, taking into account the local environ-
mental conditions, the means of the farmer and production
objectives.

5 Taking into account the non-crop habitats in rural

landscapes

Modern agricultural landscapes generally vary from extreme-
ly simple structures, which mainly consist of arable fields, to
highly complex landscapes, comprising interconnected semi-
natural habitats. Due to a range of farming practices, such as
soil tillage, sowing, pesticide applications, mineral fertilisa-
tion or harvest, arable fields may be seen as relatively
ephemeral habitats subject to frequent disturbances. Semi-
natural habitats, or non-crop habitats—such as hedgerows,
field margins, fallow land or woodlots—are less prone to
perturbation than annual crops and thus provide more stable
habitats. The main reason for taking large scales into account
in biotic interactions is that many species (pests, and natural
enemies, diseases) live and reproduce within these two types

of habitat. It is therefore important to understand how these
landscape features influence biotic interactions. In this
section, we will first describe the role of these non-crop areas.
We will then identify the relevant landscape characteristics for
biotic interactions and, finally, discuss the practical impact in
terms of biological control.

5.1 The effects of non-crop habitats on pests, their natural
enemies and diseases

Crop habitats are often considered to be detrimental for
many animal species, including the natural enemies of
phytophagous insects (Bianchi et al. 2006), whereas non-
crop habitats are thought to favour beneficial species
directly or indirectly by providing important life support
functions. Non-crop habitats have been found to affect
arthropod populations directly by providing them with
shelter. Indeed, several studies have shown that herbaceous
vegetation and woody habitats provide a more moderate
microclimate than crop fields, protecting natural enemies
against temperature variations (Rahim et al. 1991). Dyer
and Landis (1996) comparing the longevity of the parasit-
oid Eriborus terebrans in maize fields and various non-
field habitats, found greater longevity in woodlots than in
maize fields. It has been shown that the levels of parasitism
of insect pests are higher close to the edges of fields
bordering non-crop habitats than in the centre of fields due
to a moderately mild microclimate and the availability of
nectar (Altieri and Schmidt 1986; Landis and Haas 1992;
Thies and Tscharntke 1999). Non-crop areas are also
known to provide natural enemies and pests with adequate
overwintering habitats, increasing winter survival and thus
favouring crop colonisation in the spring.

Non-crop areas may also influence natural enemy
populations by supplying food resources for many insects
(Bugg and Pickett 1998). In particular, predators and
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parasitoids are thought to make use of sugar-rich materials
derived from plants, such as nectar, pollen or honeydew, to
cover their energy requirements (Jervis et al. 1993;
Wäckers et al. 2005). Several studies have demonstrated
that more diverse vegetation, including flowering weeds,
results in a greater availability of pollen and nectar, leading
to higher densities of predators, such as carabid beetles and
syrphid flies (Lys et al. 1994; Hausammann 1996;
Sutherland et al. 2001). Experimental studies have also
demonstrated that nectar feeding increases the survival
and fecundity of various natural enemies of pests (Winkler
et al. 2006, 2009; Tompkins et al. 2010). Many hyme-
nopteran parasitoid species have been found to feed on
floral nectar (Jervis et al. 1993; Wäckers 2001), with
higher levels of nectar availability associated with higher
rates of parasitism (Berndt et al. 2006; Ellis et al. 2005;
Stephens et al. 1998). More generally, the presence of
floral resources in semi-natural habitats has been found to
affect the diversity, distribution and abundance of para-
sitoids (Marino et al. 2006). Semi-natural habitats may
also increase food resources in the form of alternative
hosts and prey (Landis et al. 2000; Denys and Tscharntke
2002; Thomas 2002). This enhances biological pest
control by providing additional hosts and prey at times
when these species are present at low density in fields,
thereby increasing the fitness of natural enemies of pests.
For example, Corbett and Rosenheim (1996) found that
the presence of semi-natural habitats supporting alterna-
tive hosts significantly increased the density of the egg
parasite Anagrus epos at the field and landscape levels.

Few studies have investigated the effects of non-crop
habitats on diseases caused by fungi and bacteria. As a
result, the role of landscape effects in disease epidemiology
remains largely unknown for most crop diseases (Plantegenest
et al. 2007), apart from those in which the pathogen’s life
cycle includes two different host species. For example, the
barberry (Berberis vulgaris) eradication programme has
successfully improved wheat stem rust control (Campbell
and Long 2001).

5.2 Relevant landscape characteristics for biotic interactions

As shown by the examples above, non-crop habitats may
play different roles at different periods in the year (e.g.
overwintering habitat, source of alternative prey, pollen or
nectar) and organisms can move between crop and non-
crop habitats. All the ecological functions provided by
these non-crop areas affect population dynamics. Land-
scape ecology has described a framework for understanding
the ecological processes operating in a landscape (Dunning
et al. 1992). The authors identified four types of processes:
landscape complementation, landscape supplementation,

source/sink dynamics, and neighbourhood effects. We
summarise here the main hypothesis connecting landscape
patterns and population dynamics.

Landscape complementation occurs when a species
requires different non-substitutable resources in its life cycle.
The presence of a resource in one habitat is complemented
by the presence of another resource in a nearby habitat,
resulting in larger populations being supported in the vicinity
of these habitats. The organism must travel between two
different resources at some point in its life cycle. This
process is particularly well illustrated by species requiring
specific winter habitats, such as pests of winter oilseed rape:
pollen beetle, cabbage seed pod weevil (Ulmer and Dosdall
2006b; Alford et al. 2003). The landscape supplementation
hypothesis states that the population of a patch may be
higher if that patch is located close to other patches of the
same resource. In this process, resources within the
landscape are substitutable, increasing their accessibility.
Source/sink relationships occur when habitats serve as
sources of emigrants, which disperse to less productive
habitats called sinks. Subpopulations in the patches of sink
habitat would become extinct without this immigration.
Finally, neighbourhood effects occur when a species is
more strongly influenced by the characteristics of contigu-
ous patches than by those of patches located further away.

These types of processes have been illustrated in recent
studies highlighting the crucial role of the interface between
crop and semi-natural areas in population dynamics.
Important resources available in non-crop areas allow
beneficial arthropod populations to increase in size and to
spill over into crop fields (Tscharntke et al. 2007). Indeed,
several studies have demonstrated that semi-natural habitat
patches adjacent to arable fields affect top-down control
(Bianchi and Wäckers 2008; Olson and Wäckers 2007).
However, Rand et al. (2006) demonstrated that the direction
of spillover effects is determined principally by the primary
productivity of habitats, and spillover may therefore occur
from crop areas towards non-crop habitats. Indeed, arable
fields represent high-resource habitats for populations of
the natural enemies of pests during part of the year,
allowing beneficial arthropod populations to increase in
size and then to migrate to less productive areas by passive
diffusion. The brutal destruction of the habitat due to
harvesting leads to the active emigration of predators from
the cultivated habitats towards more stable semi-natural
habitats. Thus, most natural enemies rely on the resources
provided by semi-natural environments (according to Keller
and Häni 2000, with nine in every ten beneficial species
requiring non-crop environments at some point in their life
cycle, whereas this is the case for only one in two pest
species), and some regularly travel between these habitats
and the crop. This is observed particularly in highly



fragmented European landscapes in which the presence of
beneficial species in crops increasingly depends on the
regular arrival of individuals from semi-natural habitats to
recolonise the plot (Schmidt et al. 2005). Thus, both
landscape composition (the proportion of non-crop habitats)
and configuration (the spatial location of these habitats) are
important factors influencing the dynamics of insect pest
and natural enemy populations.

Similarly for diseases, it has been predicted that not only
the proportion of the landscape occupied by the host crop
but also the spatial configuration of field plots (size and
distance between plots of host crops, in interaction with
dispersal distance) should affect the dynamics of plant
disease epidemics (Gubbins et al. 2000). Diseases spreading
within and between agricultural fields in a landscape can be
studied within a metapopulation framework (Gilligan 2002).
Theoretically, it is possible to predict the probability of
colonisation and disease extinction in individual subpopula-
tions (e.g. fields) and at the landscape scale as a function of
disease transmission (within and between subpopulations),
host replacement or removal rates and the number and size
of subpopulations (Park et al. 2001). This theory has been
tested in natural and semi-natural habitats, with wild plant
patches as subpopulations (Burdon et al. 1995; Ericson et al.
1999), but it has yet to be tested in agricultural systems, with
fields as subpopulations (Gilligan 2008).

For determination of the level at which pest management
strategies should be implemented, it is necessary to identify
the scale at which species respond to landscape context.
Species life history traits, such as the ability to disperse,
body size, perceptual range and trophic position, are
assumed to be key elements of the reaction of populations
to spatial context (Tscharntke et al. 2007). Species of higher
trophic levels are generally considered to experience the
landscape at larger spatial scales and to be less affected by
local habitat quality than species of lower trophic levels
(Tscharntke et al. 2007). According to Tscharntke et al.
(2005), this appears to be true only if there is a positive
correlation between trophic level and body size. Natural
enemies of the same trophic level may operate at different
spatial scales due to their dispersal abilities and specialisa-
tion. For example, generalist predators respond to larger
spatial scale than specialist predators (Tscharntke et al.
2005). To make matters worse, the ability to disperse is not
a species-specific fixed trait, but more an individual trait
that can display variation within and between populations
of the same species and be affected by the configuration of
the landscape itself because landscape context exerts
selective pressure on dispersal ability (Baguette and van
Dyck 2007). Thus, the spatial arrangement of crop and non-
crop habitats in the landscape affects both dispersal and
colonisation abilities.

5.3 Practical implications

One of the main ways in which non-crop habitat effects can
be used for pest control is through the implementation of
buffer zones (hedgerows, beetle banks, adjacent field
margins, field boundaries, conservation strips). Indeed, it is
now known that the lack of adequate food in agricultural
landscapes is one of the major factors limiting populations of
beneficial insects (Wäckers et al. 2005). Several insect
species consume nectar and pollen to provide energy for
maintenance and fecundity, so the provision of food supple-
ments is one approach to increasing the sizes of populations
of beneficial species (Colignon et al. 2004; Rebek et al.
2006). Many studies have been carried out in English- and
German-speaking countries on single-species flowering
strips (e.g. White et al. 1995; Hickman and Wratten 1996;
Petanidou 2003; Pontin et al. 2006) and flower strips
composed of several species (Sutherland et al. 2001; Scarratt
et al. 2004; Rebek et al. 2005; Luka et al. 2006; Pontin et al.
2006) and their effects on flower-dependent specialist
predators and parasitoids. It has often been reported that
the effects of these strips on the biodiversity of beneficial
species depend heavily on the types of plant present. In
Switzerland, major studies have been carried out since the
start of the 1990s to determine the species composition of
flower strips most favourable for all sorts of beneficial
zoophagous species (Nentwig 1992, 1998; Nentwig et al.
1998; Wäckers 2004). Field margins with a naturally diverse
flora harbour the greatest abundance and diversity of
arthropods (Lagerlöf and Wallin 1993). In a recent study,
Carvell et al. (2007) compared the efficacy of various field
margins for enhancing the diversity and abundance of
bumblebees. They found that uncultivated margins sown
with mixtures containing nectar- and pollen-producing plants
were more effective at providing bumblebee forage than
margins sown with a grass mixture. Many studies have
shown that the effects of these buffer zones depend strongly
on their age. Flower strips favouring the development of
flower-dependent specialist predators and parasitoids also
make very good refuges for ground-dwelling beneficial
species 2–3 years after the planting of several tussock
grasses (Nentwig 1988; Frank and Nentwig 1995; Pfiffner
and Luka 2000; Meek et al. 2002; Frank et al. 2007). Beetle
banks appear to retain a dense vegetation structure, with a
high species richness and diversity, 3 years after implemen-
tation and over a period of more than 10 years (Thomas et al.
2002). Field margins or conservation strips harbour natural
enemies of pollen beetles if they are more than 6 years old,
as observed by Büchi (2002) and Thies and Tscharntke
(1999). These results are also confirmed by the significant
differences in parasitism rates and pollen beetle damage
observed in 6-year-old field margins (Thies et al. 2003).



There is growing evidence that complex landscapes are
often associated with a greater diversity of natural enemies,
but few studies have dealt with the real impact of this
biodiversity on pest control. Bianchi et al. (2006) reviewed
numerous studies concerning the effect of landscape
complexity on pest and natural enemy populations. They
found that more complex landscapes with high proportions
of semi-natural habitats were associated with higher levels
of natural enemy populations than simple landscapes in
74% of studies and with lower levels of pest damage in
45% of studies. They suggested that the effects of
increasing landscape complexity on various natural enemies
ranged from an increase in oviposition rates by a factor of
1.6 to an increase in parasitism rates by a factor of 10.
However, only ten studies considered the consequences for
pest pressure. In 45% of these studies, pest pressure was
found to be lower in structurally complex landscapes: lower
aphid densities, thrips densities, and fewer symptoms and
lower levels of crop damage caused by pollen beetle were
reported. Moreover, landscape complexity did not affect
pest pressure in 40% of the studies, in some cases due to a
higher rate of pest establishment associated with higher
rates of pest mortality inflicted by natural enemies. Recent
studies on the diversity of natural enemies have often
concluded that increasing the species richness of predators
results in the more efficient suppression of herbivorous
pests (Snyder et al. 2006; Cardinale et al. 2003).

All recent studies of population dynamics and trophic
interactions at the landscape scale have provided strong

evidence that biotic interactions should be considered at a
larger scale than a single patch of habitats. Figure 4 shows
the main ways in which these landscape effects act.
Nevertheless, three types of difficulties have been identified:

1. In most landscape-scale studies, pest damage and
effective biotic interactions are not taken into account,
resulting in gaps in our knowledge about the real
effects of non-crop habitats on pest control and yield
losses. As a result, although the role of large-scale
processes has been highlighted, it remains unclear how
best to make use of landscape effects and to implement
integrated pest management strategies at this scale.

2. For the implementation of efficient integrated pest
management schemes involving a reconfiguration of
the landscape, it is of crucial importance to know the
scale at which species respond to landscape pattern.
This is particularly difficult to determine as this scale
may differ between species, and even between pop-
ulations of the same species.

3. Landscape-scale studies have mostly neglected the
diversity of farming practices that may affect popula-
tion dynamics at the field scale and/or dispersal ability.
Thus, a more precise description of crop management
and cropping systems at the landscape scale may
highlight ways to maximise biotic interactions.

The complexity of biotic interactions within the
agroecosystem (multiple trophic levels, acting at multiple
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spatial scales and affected by multiple farmers’ decisions)
suggests that the modelling of ecological processes at
rural landscape scale may be necessary to determine
whether or not it is possible to regulate pests in this way
within the rural landscape and how to optimise this
management. Much remains to be done to elucidate the
processes acting at the landscape scale, to transform this
knowledge into quantitative relationships and to design a
new spatial organisation of crops, cropping practices and
non-crop habitats enhancing the biological control of
pests and diseases.

6 Discussion

From this review, we can conclude that each of the four
approaches described is suitable for the management of
agroecosystems to enhance biotic interactions. Each of
these approaches can also be seen as a level at which
decisions can be taken by the farmers (decision rules for a
single technique, crop management, crop sequence, land-
scape management) and as providing several degrees of
freedom within biological processes for the reorientation of
these processes towards favourable biotic interactions, at
least in terms of crop protection and nutrition. Modifica-
tions affecting plant diversity in particular seem to enhance
biotic interactions particularly effectively. Plant diversity,
which must be considered at several levels (crop in mono-
or pluri-species plant populations, weeds, plants from non-
crop habitats), plays a fundamental role in biotic interactions.
Plants form the first level of the food web, supporting both
pests and natural enemies, which they can then control
(bottom-up regulation: Gurr et al. 2003; Swift et al. 2004).
They also affect the habitats for other taxa from field
(through biological soil tillage and cover crops) to landscape
scale (hibernation shelter for natural enemies).

This review is not exhaustive, focusing on a few typical
examples for each approach. However, it nonetheless
demonstrates that for both crop protection and crop
nutrition, biological processes constitute a wonderful source
of tools on which agronomists and farmers can act. Most of
these tools were unknown to science before the first steps
towards the modernisation of agriculture were taken, half a
century ago. However, farmers have nevertheless empiri-
cally made use of some of these tools, embedding them in
agronomic rules (crop rotations, traditional fertilisation
decision rules, etc.). It is not possible to face the current
challenges of agriculture by simply reverting to these
traditional rules, which applied to a different environment
(e.g. the main pest species were not the same) and gave
yields much lower than those required today. The handling
of biotic interactions is thus both an opportunity and a
necessity.

Although there seems to be an almost infinite range of
ecological processes at our disposal, this review shows that
we remain far from fulfilling our aims. Several limitations
have been identified for some of the approaches considered.
First, qualitative data often exist, but we still lack precise
and quantitative reference data concerning the consequen-
ces of technical changes for biotic interactions. This is
mostly due to the complexity of the responses of agro-
ecosystems to management systems. For example, the
introduction of a new cover crop may affect agroecosys-
tems in several ways. Cover crops may interact with weeds
by both allelopathy and competition. This makes it difficult
to decorrelate processes to evaluate their individual impacts
on crop production. As the scale of study increases, these
confounding effects may increase, involving more temporal
and spatial interactions. Studies at the landscape scale
provide us with insight into the ecological significance of
landscape composition and spatial organisation, making it
possible to understand how pest or disease control could be
strengthened. However, the role of landscape characteristics
in the biocontrol of pests remains a matter of debate (e.g.
Bianchi et al. 2006 for insect pests) because increasing the
natural enemy population in crops does not necessarily
guarantee effective pest control, and the relationships
between crop and non-crop habitats are complex and
sometimes antagonistic (Thies and Tscharntke 1999;
Valantin-Morison et al. 2007). Further studies are therefore
required to quantify the effects of landscape composition
and spatial organisation not only on natural enemies but
also on pest pressure and pest damage. Furthermore, the
impact of crop management changes is often limited, and
such changes may have opposite effects. For example,
mulches may increase the populations of both pests and
their natural enemies. A hierarchy of potential pests should
be generated as a function of what is known about the
history of the field and the surrounding area. This is
necessary because one pest population may benefit from
techniques designed to limit another. Moreover, some of the
studies covered by this review highlight the variability of
the responses observed in terms of biotic interactions:
beneficial, negative or neutral effects. This variability may
make it difficult to establish general trends for a given
biotic interaction in different agroecosystems and pedocli-
matic conditions.

Second, another obvious limitation of most studies is
that they do not consider the goals and constraints of the
farmers (at the farm level) and other stakeholders (at the
landscape level). Some of the most promising decision
rules, even if supported by strong quantitative data, may
remain completely ineffective if they conflict with more
important issues.

Third, the effects of cropping techniques are often
considered separately, although agronomists are well aware



that the effects of a given technique should not be
considered in isolation because, as in any complex system,
there may be interactions between techniques or between
techniques and the environment. The relationship between
sowing date and the severity of phoma stem canker on
oilseed at the end of the crop cycle is a good example
because it is not straightforward and is well documented.
Early sowing dates have been reported to limit the severity
of phoma stem canker in England (Gladders and Musa
1980) and in Western Australia (Khangura and Barbetti
2001). However, late sowing dates have been reported to
generate less severe phoma stem canker in Australia
(MacGee and Emmett 1977) and in Europe (in Germany
and the Netherlands: Scheibert-Bohm 1979; in France:
Lepage and Penaud 1995). In addition, several studies in
Canada have reported a lack of effect of sowing date on
phoma stem canker severity because the inoculum is
released throughout the growing season (Kharbanda and
Tewari 1996). Finally, very early sowing (about 1 month
before the usual date) did not affect the severity of phoma
stem canker in 36 of 49 trials carried out over a 3-year
period in France (Dejoux et al. 2003). Some crops sown
very early even had more severe phoma stem cankers than
crops with a typical sowing date, in 10 of the 49 trials. This
finding may be due to the existence of considerable
variability in the dynamics of primary inoculum production
(Salam et al. 2007), and for a given sowing date, crop
emergence and early seedling development may also be
delayed by unfavourable conditions (e.g. drought). For this
reason, Aubertot et al. (2004) concluded that synchronisa-
tion between primary inoculum production and susceptible
stages of oilseed rape (from the cotyledon stage to the six-
leaf stage) was responsible for severe canker rather than
that early sowing date systematically led to more severe
phoma stem canker. Similar interactions have been reported
for other pests. For instance, Dejoux et al. (1999) showed
that advancing the sowing date of oilseed rape by 15 days
controlled weeds only if soil nitrogen levels were suffi-
ciently high. Furthermore, in some cases, the effect of
sowing date on synchronisation with the life cycle of pests
may be antagonistic for different organisms. Indeed,
Valantin-Morison et al. (2007) showed that early sowing
of winter oilseed rape tended to increase root maggot
(D. radicum) damage, whereas it was associated with a
lower level of attack by cabbage stem flea beetle (Psylliodes
chrysocephala (L.)). Moreover, interactions may exist not
only within a level but also between levels. For example,
landscape composition was the only factor taken into
account in most of the studies we analysed, although the
different cropping systems in farmland and the various types
of crop management (e.g. distribution of resistant varieties,
ploughed area, or frequency of pesticide utilisation) in the

landscape should be considered in analyses of the impact of
agriculture on metapopulations.

In this review, we focus on two ecological services
provided by biotic interactions: non-chemical crop protec-
tion and improvements in crop nutrition. The benefits and
limitations identified define a clear research agenda, which
can probably also be adapted to other services (such as
primary production or pollination). The first step is to
complete our understanding of the responses of biotic
interactions to management. For this purpose, we must
identify the processes involved and the relevant cropping
operations as a function of both the organisms and
interactions considered. For instance, pest management
may concern all levels of the cropping system, whereas
the improvement of crop growth conditions is related to
operations at the field scale, including the field margin.
This agroecological research should focus on systemic
approaches taking into account interactions and quanti-
tative approaches. Several approaches could be useful to
explore the variability of responses: meta-analyses,
modelling and experiments on multiple sites, similar to
those carried out in ecology (e.g. international experi-
mental design for the study of diversity and functional
relationships in grasslands; Spehn et al. 2005). The
second step is to design agroecosystems based on this
knowledge. The opposite effects of the conflicting pro-
cesses these systems entail must be taken into account, but
are all too often neglected. In addition to field and farm
experiments, modelling approaches have been developed
for the ex ante assessment of agroecosystem sustainability
(Sadok et al. 2009).

7 Conclusion

It seems possible to manage biotic interactions in agro-
ecosystems in several ways by modifying single practices,
such as cultivar choice, or entire landscapes. The limiting
factor does not seem to be the ecological processes, but our
ability to quantify their response to management by humans
and to valorise them, taking into account the multiple
interactions occurring between processes and levels of
management. Handling biotic interactions through the
complex assembly of agricultural techniques at various
temporal and spatial scales seems to be a highly promising
but still largely unexplored avenue.
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