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Abstract

Brain parcellation into a number of hemodynamically homogeneous regions
(parcels) is a challenging issue in fMRI analyses. An automatic inference for
the parcels from the fMRI data was proposed in the framework of the joint
parcellation detection estimation (JPDE) model. However, this model still
requires appropriate prior information about the number of parcels and their
shapes provided through an initial parcellation, which is a challenging task
since it generally depends on the subject. In this thesis, we present novel
approaches for hemodynamic brain parcellation. These approaches are moti-
vated by the fact that the hemodynamic response function varies across brain
regions and sessions within subjects, and even among subjects and groups.
The proposed approaches belong to one of two main categories, the subject-
level and group-level fMRI data analysis models. For the subject-level fMRI
data analysis, we propose three models to automatically estimate the opti-
mum number of parcels and their shapes directly from fMRI data. The first
one is formulated as a model selection procedure added to the framework
of the classical JPDE model in which we compute the free energy for the
candidate models, each with different number of parcels, and then select the
one that maximizes this energy. To overcome the computational intensity
associated with the first approach, we propose a second method which re-
lies on a Bayesian non-parametric model where a combination of a Dirichlet
process mixture model and a hidden Markov random field is used to allow
for unlimited number of parcels and then estimate the optimal one. Fi-
nally to avoid the computational complexity associated with the estimation
of the interaction parameter of the Markov field in the second approach, we
make use of a well known clustering algorithm (the mean shift) and embed
it in the framework of the JPDE model to automatically infer the number of
parcels by estimating the modes of the underlying multivariate distribution.
All the proposed subject-level approaches are validated using synthetic and
real data. The obtained results are consistent across approaches in terms
of the detection of the elicited activity. Moreover, the second and the third
approaches manage to discriminate the hemodynamic response function pro-
files according to different criteria such as the full width at half maximum
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and the time to peak.
Regarding the group-level fMRI analysis, we propose two new models that are
able to estimate group-level parcellation and hemodynamic response function
profiles. The JPDE model is extended to allow for this group-level estimation
by considering data coming from all the subjects resulting in a multi-subject
joint parcellation detection estimation model. However, in real data exper-
iment, it is noticed that the smoothness of the estimated HRFs is sensitive
to one of the hyperparameters. Hence, we resort to the second model that
performs inter and intra subject analysis providing estimation at both the
single and group-levels. A thorough comparison is conducted between the
two models at the group-level where the results are coherent. At the subject-
level, a comparison is conducted between the proposed inter and intra subject
analysis model and the JPDE one. This comparison indicates that the HRF
estimates using our proposed model are more accurate as they are closer to
the canonical HRF shape in the right motor cortex. Finally, the estimation
of the unknown variables, the parameters and the hyperparameters in all of
the proposed approaches is addressed from a Bayesian point of view using a
variational expectation maximization strategy.
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Résumé

La parcellisation du cerveau en un certain nombre de régions hémodynamiques
homogènes est toujours un défi majeur en analyse des données d’imagerie
par résonance magnétique fonctionnelle (IRMf). Une inférence automatique
pour les parcelles à partir des données d’IRMf a été proposée dans le cadre
du modèle de parcellisation détection estimation conjointe (joint parcella-
tion detection estimation: JPDE). Toutefois, ce modèle requiert toujours des
informations préalables sur le nombre de parcelles ainsi que leurs formes,
généralement renseignées à partir d’une parcellisation initiale, ce qui con-
stitue un défi car cela dépend généralement du sujet. Dans cette thèse, de
nouvelles approches pour la parcellisation hémodynamique du cerveau sont
présentées. Ces approches sont motivées par le fait que la réponse hémody-
namique varie selon les régions du cerveau, les sujets, les différentes sessions
pour chaque sujet ainsi que les groupes de sujets. Les approches proposées
appartiennent à l’une des deux catégories suivantes : les modèles d’analyse
de données d’IRMf au niveau d’un sujet et au niveau d’un groupe de sujets.
Pour l’analyse de données d’IRMf au niveau d’un sujet, trois modèles pour es-
timer automatiquement le nombre optimal de parcelles ainsi que leurs formes
(directement) à partir des données d’IRMF sont proposés. La première ap-
proches est élaborée comme une procédure de sélection de modèle ajoutée à
la structure du modèle JPDE dans lequel l’énergie libre pour les modèles can-
didats est calculée, chacun avec un nombre différent de parcelles, puis celui
qui maximise cette énergie est retenu. Afin de surmonter l’intensité du calcul
associé à cette approche, une seconde méthode est proposée. Elle repose sur
un modèle bayésien non-paramétrique dans lequel une combinaison d’un pro-
cessus de Dirichlet et d’un champ de Markov caché aléatoire est utilisée pour
permettre un nombre illimité de parcelles et enfin en estimer le nombre op-
timal. Finalement, pour éviter la complexité du calcul associé à l’estimation
du paramètre d’interaction du champ de Markov dans la seconde méthode,
un algorithme de clustering est utilisé (le mean shift). Il est intégré dans la
structure du modèle JPDE afin de déduire automatiquement le nombre de
parcelles en estimant les modes de la distribution multivariée sous-jacente.
Les approches proposées au niveau du sujet sont validées à l’aide de données
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synthétiques et réelles. Les résultats d’analyse obtenus sont cohérents en ter-
mes de détection de l’activité évoquée. De plus, les deux derniers approches
parviennent à distinguer les profils de la réponse hémodynamique en fonction
de différents critères tels que la largeur à mi-hauteur et le temps de montée.
En ce qui concerne les analyses au niveau d’un groupe de sujets, deux mod-
èles capables d’estimer la parcellisation ainsi que les profils de réponse hé-
modynamique sont proposés. Le modèle JPDE est modifié pour permettre
l’estimation au niveau du groupe en considérant les données provenant de
tous les sujets ce qui a abouti à un modèle multi-sujet d’estimation-détection
de parcellation conjointe. Cependant, les essais sur des données réelles dé-
montrent que la régularité de la FRH est sensible à l’un des hyperparameters.
Par conséquent, le deuxième modèle qui effectue une analyse inter et intra
sujet et qui fourni une estimation à la fois au niveau du sujet et au niveau du
groupe est privilégié. Une comparaison approfondie entre les deux modèles
est menée au niveau du groupe et les résultats sont cohérents. Au niveau du
sujet, une comparaison est effectuée entre le modèle d’analyse inter et intra
sujet proposé et le modèle JPDE. Cette comparaison démontre que les estima-
tions du FRH utilisant le modèle proposé sont plus précises car plus proches
de la forme canonique de la FRH dans le cortex moteur droit. L’estimation
des variables inconnues et des paramètres dans les approches proposées est
traitée en utilisant une stratégie d’espérance-maximisation variationnelle.
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CHAPTER 1

Introduction
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1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 21
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1.3 Publication . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Motivation

FMRI is a powerful non-invasive technique to study the relationship between
sensory or cognitive tasks and the evoked neural activity by measuring the
blood oxygen level dependent (BOLD) signal. Event-related BOLD fMRI re-
lies on two main tasks: 1) detection of the activated brain areas in response
to a given stimuli, 2) estimation of the dynamics of the brain which is known
as the hemodynamic response function (HRF). These two tasks are depen-
dent and cannot be handled using a two-step procedure. One of the models
that account for this interdependency is the joint parcellation detection es-
timation (JPDE) model. The JPDE model can be used to jointly detect the
activation within the brain for a given stimulus, estimate the HRF profiles
and to determine a parcellation of the brain into hemodynamic territories
or parcels. In order to obtain the brain parcellation, a single HRF shape
can be assumed for a given parcel and all the voxels belonging to this parcel
have their HRF defined as local stochastic perturbations of a common HRF
pattern (HRF profile of the parcel). This HRF variability is motivated by
the fact that the HRF may vary between subjects and even between cortical
regions in a given subject brain. However, this model still requires to pro-
vide a proper initialization for the number of parcels. Relying on the JPDE
model, the aim of this thesis is to propose new approaches and algorithms to
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overcome the challenge of hemodynamic brain parcellation in fMRI analysis
at both subject and group levels. Different procedures and approaches have
been developed within the framework of the Pyhrf software using Python as
the main programming language and C, C++ for extensions. The proposed
approaches and procedures extend the JPDE model to be more flexible and
adaptive. They are mainly based on a variational expectation maximization
(VEM) algorithm allowing estimators of the unknown variables and param-
eters to be constructed.

The main contributions of this work are summarized below

(i) Developing a Bayesian model selection procedure based on the compu-
tation of the free energy to determine the optimum number of parcels
(Albughdadi et al., 2014).

(ii) Developing a non-parametric Bayesian approach to estimate the par-
cellation without any prior initialization yielding the NP-JPDE model
(Albughdadi et al., 2016c).

(iii) Developing a non-parametric diffusion algorithm by injecting the adap-
tive mean shift algorithm within the VEM framework to estimate the
parcellation, yielding the AMS-JPDEmodel (Albughdadi et al., 2016b).

(iv) Developing a multi-subject joint parcellation detection estimation (MS-
JPDE) model to estimate group-level HRF profiles and parcellation for
a group of interest (Albughdadi et al., 2016a).

(v) Developing a hyprid multi-subject (HMS-JPDE) model to allow for
subject-level and group-level estimation of the parcellations and HRF
profiles along with the detection task over individuals.

1.2 Organization of the manuscript

• Chapter 2: Functional magnetic resonance imaging
This chapter provides an introduction to fMRI, its physics, the acquisi-
tion methods, the link between magnetic resonance imaging (MRI) and
fMRI and the preprocessing techniques. It also introduces the conven-
tional fMRI analysis approaches with its limitations and drawbacks.
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• Chapter 3: Joint parcellation detection estimation and model
selection
Brain parcellation into a number of hemodynamically homogeneous
regions (parcels) is a challenging issue in fMRI analysis. Although
the JPDE model performs online parcellation of the region of interest
into parcels, it still requires to fix the number of these parcels manually,
which limit its usefulness. This number is critical and may influence the
performance of the detection and estimation tasks. This motivates the
proposition of an extension of the JPDE framework for model selection.
This chapter proposes a Bayesian model selection procedure based on
free energy calculations for different candidate models characterized by
a different numbers of parcels. The model that maximizes the free
energy is the best fit for the fMRI data.

• Chapter 4: Joint Parcellation Detection Estimation Using a
Non-parametric Bayesian Model
In this chapter, we propose a novel approach for hemodynamic brain
parcellation within the framework of the JPDE model to reduce the
computational intensity of the free energy calculations. The parcella-
tion is formulated as a clustering issue that is solved by embedding into
the JPDE model a Dirichlet process mixture model (DPMM) with a
hidden Markov random field (HMRF). The resulting model automat-
ically estimates the number of parcels directly from the data without
any prior knowledge about the number of parcels. A variational expec-
tation maximization algorithm is used for the inference. The model is
validated on synthetic and real data. A comparison with other models
from the literature demonstrates its superiority and its ability to dis-
criminate HRF profiles depending on many criteria such as the time to
peak (TTP) and the full width at half maximum (FWHM).

• Chapter 5: Adaptive mean shift algorithm for hemodynamic
brain parcellation
In this chapter, we propose a new algorithm for hemodynamic brain
parcellation using the well known adaptive mean shift algorithm to
overcome the computational complexity of estimating the interaction
parameter of the hidden Markov random field in the non-parametric
JPDE model. The adaptive mean shift algorithm is a robust computer
vision approach that has been widely used for clustering and classifica-
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tion. This algorithm estimates the modes of a multivariate distribution
underlying the feature space. In our framework, this algorithm is em-
bedded within the variational expectation maximization algorithm of
the standard JPDE model where it replaces the maximization of the
HRF profiles. This algorithm does not need any initialization and the
only parameter that needs to be adjusted is the number of k-nearest
neighbours. Results on synthetic data confirms the ability of the pro-
posed approach to estimate accurate HRF estimates and numbers of
parcels. It also manages to discriminate between voxels in different
parcels especially at the borders between these parcels. In real data
experiment, the proposed approach manages to recover HRF estimates
close to the canonical shape in the right motor and bilateral occipital
cortices.

• Chapter 6: Multi-subject joint parcellation detection estima-
tion
This chapter introduces a group-level analysis within the framework
of the JPDE algorithm. fMRI experiments are usually conducted over
a population of interest for investigating brain activity across differ-
ent regions, stimuli and objects. A multi-subject analysis proceeds in
two steps: first an intra-subject analysis is performed sequentially on
each individual and then a group-level analysis is conducted to report
significant results at the population level. In this chapter, we propose
a group-level analysis based on the JPDE model. This model allows
the estimation of the group-level HRFs and parcellation along with the
subject-level detection of activation. Real data experiments show that
the HRF estimates could be sensitive to one of the hyperparameters
whicch in turn affect the characteristics of the HRF estimates.

• Chapter 7: Hyprid multi-subject joint parcellation detection
estimation
In this chapter, we propose an inter and intra subject joint parcellation
detection estimation model that allows studying the HRF variability
at both the subject and group level. Moreover, this model overcome
the limitations of the multi-subject model proposed in the previous
chapter. In this model, the detection task is performed individually for
each subject. Detailed comparisons are carried out at the subject and
group levels to investigate the performance of this model with respect
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to the JPDE and the previous multi-subject model.

• Chapter 8: Conclusion and future work
This chapter presents some conclusions related to our work and de-
scribes some prospects that deserve to be investigated in the near fu-
ture.

1.3 Publication
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Conference papers
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CHAPTER 2

Functional Magnetic Resonance
Imaging
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2.1 Introduction

fMRI is an imaging technique that indirectly measures neural activity through
the blood oxygen level-dependent (BOLD) signal (Ogawa et al., 1990a),
which captures the variation in blood oxygenation associated with neural
activity. fMRI provides neuroscientists and researchers with means to study
human brain in vivo in response to a certain task (event-related) or when
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at rest (resting-state). Thanks to fMRI, new insights into how the brain
processes information and its inner workings have been discovered in the last
two decades. Although positron emission tomography (PET) methods are
used for some applications to measure cerebral blood flow (CBF) changes to
map functional activity in the human brain, the majority of human mapping
studies are performed with fMRI.
This chapter briefly describes the basics of functional magnetic resonance
imaging (fMRI). More precisely, Section 2.2 describes the transition from nu-
clear magnetic resonance (NMR) to fMRI. Section 2.3 addresses fMRI physi-
ological basics and the link between stimulus and the fMRI signal. fMRI data
basics including the acquisition physics of MRI and the different artifacts are
highlighted in Section 2.4. The experimental paradigms are described in Sec-
tion 2.5. fMRI data preprocessing and analysis are addressed in Sections 2.6
and 2.7, respectively. Finally, some conclusions are drawn in Section 2.8.

2.2 FMRI origins

The discovery of the effect of the changes in the metabolic state of the brain
on magnetic resonance (MR) signals is one of the important milestones in
MRI studies. These changes provide an intrinsic mechanism of contrast for
brain activation studies. This effect is originated from the fact that the
magnetic state of hemoglobin (HB) depends on its oxygenation. The small
changes in the local MR signal caused by the hemoglobin saturation changes
is called blood oxygenation level-dependent (BOLD) effect. The discovery of
the changes in hemoglobin magnetic state was discovered in 1936 by Pauling
and Coryell (Pauling and Coryell, 1936). These changes are caused by the
variations in the hemoglobin oxygenation. In 1982, Thulbron et al. (Thul-
born et al., 1982) demonstrated that the presence of paramagnetic deoxy-
hemoglobin causes changes in relaxation rate (T2) in blood sampled. How-
ever, the potential of the oxygenation state of hemoglobin in functional neu-
roimaging was discovered in the 1990s (Uludag et al., 2006).
The first realization was a physiologic manipulation in which a gradient-echo
imaging at high magnetic fields (7 and 8.4 T) was used to image the brains of
mice (Ogawa et al., 1990b). It has been shown that when the oxygen in the
inspired air was reduced, the veins became darker in the MR images. More-
over, the signal from the tissue surrounding these veins was reduced due to a
change in the magnetic susceptibility of the blood. The study suggested that
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this phenomenon could be used to monitor regional oxygen use in the brain.
It also assumed that during brain activation, the amount of oxygen would
decrease and the deoxy-hemoglobin concentration would increase. In fact,
this assumption is not correct and the concentration of deoxy-hemoglobin
decreases due to the large cerebral blood flow (CBF) change. Using the nu-
clear magnetic resonance (NMR) effect to measure brain function was the
first inspiration of fMRI. The experiments on well-controlled animals moti-
vated the possibility of applying this method to humans performing tasks
that alter the oxygen utilization in the brain. In (Kwong et al., 1992), im-
ages were acquired for a normal human subject in a visual experiment with
a gradient-echo planner imaging (EPI) sequence and an echo time of 40 ms.
Differences in the measured signal intensity were observed in temporally re-
solved images with and without stimulations. This study suggested that the
increased signal during simulation was associated with the deoxy-hemoglobin
concentration decrement. Many studies were performed confirming the latter
suggestion (Ogawa et al., 1992; Frahm et al., 1992; Turner et al., 1991, 1993).

2.3 FMRI physiological basics

The objective of fMRI studies is to map patterns of neural activity in the
brain to specific tasks. However, the neural activity cannot be measured. The
BOLD signal used for fMRI studies is sensitive to the concentration change of
deoxygenated hemoglobin, which depends on the cerebral blood flow (CBF),
cerebral blood volume (CBV) and cerebral metabolic rate (CMRO2) of oxy-
gen. Fig. 2.1 links the applied stimulus (for a specific task) to the measured
BOLD signal during an event-related fMRI experiment where a flickering
checkerboard experimental condition is used to trigger the visual cortex in
the brain to elicit neural activity. The CBF, CBV and CMRO2 also increase
as a consequence of the evoked neural activity. These changes alter the local
deoxy-hemoglobin, which affects the local MR signal. The interpretation of
fMRI data is done by understanding the link between the neural activity and
the underlying dynamics which is also known as the hemodynamic response
function (HRF). The neural activation is always followed by a hemodynamic
response. Experiments (Grubb et al., 1974; Fox et al., 1986; Hyder et al.,
2002) have roughly proven that the basic pattern for a strong stimulus is that
CBF increases dramatically (40%), CMRO2 increases much less (<20%), and
CBV increases by a modest amount (15%). These physiological changes can
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Figure 2.1: The path of changes linking the stimulus to the measured local BOLD signal
(Uludag et al., 2006).

be summarized by two key features: the oxygen extraction fraction (E) and
the oxygen-glucose index (OGI). It is found that with activation both fea-
tures decrease. This unexpected pattern has been the focus of a number of
recent works.

2.4 FMRI data acquisition

fMRI data consists of 3-D magnetic resonance images (MRIs), each of them
consists of a number of uniformly spaced volume elements (voxels). Each
voxel has its own intensity value that represents the spatial distribution of
the nuclear spin density. This spin density is related to the blood oxygena-
tion and flow in the local area. From a hundred to a thousand 3-D images
of the whole brain are acquired during an fMRI experiment. A standard
fMRI experiment usually consists of multiple subjects with multiple scan-
ning sessions for each subject. Thus, fMRI data analysis is an example of a
big data problem. Moreover, fMRI data show a complicated temporal and
spatial noise structure with relatively weak signal to noise ratio (SNR). For
these reasons, the statistical analysis of the fMRI data is a difficult task.

2.4.1 The MRI scanner

A standard MRI scanner is used to acquire fMRI data as a series of brain
volumes which could serve study the brain dynamics. The main component
of this scanner is a superconducting electromagnet with a strong magnetic
field 1.5 − 7.0 Tesla for human brain research. Another component of the
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scanner is the radio frequency coils. These coils are placed close to the
scanned object and are used to generate and receive energy at the resonance
frequency of the volume being imaged. They are turned on and off during the
data acquisition. We can also mention the gradient coils as one of the main
components. They are electromagnetic coils to create spatial variation in the
strength of the magnetic field in a controlled manner. The importance of the
gradient coils arises from their ability to spatially encode the information in
the signal, which is a key step to form a 2-D image from a 1-D signal.
The same MRI scanner can be used to acquire structural MRI, functional
MRI and to perform diffusion tensor imaging (DTI) of white matter tracts.
This allows us acquiring several types of images during a scanning session
for a specific subject.

2.4.2 MRI physics

The source of the measured MR signal is the net magnetic moment produced
by the protons in hydrogen (1H) atoms as they spin around their axis. Hy-
drogen atoms in the body mainly exist in water and fat. The magnetization
of a single proton cannot be measured using an MRI scanner. Therefore, the
net magnetization (M) of the ensemble of all nuclei within a chosen vol-
ume is measured. The net magnetization can be represented as a vector of
two components; a longitudinal component which is parallel to the magnetic
field and a transverse component which is orthogonal to the field. A spinning
proton generates its own little magnetic field. When an external magnetic
field (B0) is applied, the spinning proton tends to align with its direction.
Fig. 2.2 shows how the spinning protons act with and without the applica-
tion of an external magnetic field. A radio frequency (RF) electromagnetic
field pulse is used to disturb the equilibrium of a nuclei to be able to mea-
sure its net magnetization within a certain volume. The nuclei absorbs the
energy at a specific frequency band and become excited due to the applied
RF. The excitation of the nuclei forces the longitudinal magnetization to
decrease and establishes a new transversal magnetization. The excitations
process is illustrated in Fig. 2.3. When the RF pulse is removed, the nuclei
comes back to equilibrium as it emits the absorbed energy. The process of
emitting the absorbed energy is known as "relaxation". During the relax-
ation, the longitudinal magnetization grows backs (longitudinal relaxation)
to its original size and the transversal magnetization disappears (transversal
relaxation). On one hand, the longitudinal relaxation can be considered as an
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(a) Spinning pro-
tons act like little
magnets

(b) Spinning protons align
with an external field

Figure 2.2: Representation of the status of the spinning protons without and with applied
magnetic filed (Berger, 2002).

Figure 2.3: The excitation of the nuclei magnetization by applying RF. The absorbed
energy by the nuclei flips its alignment away from the direction of the magnetic field
(Sprawls, 2000).



32

exponential recovery in magnetization along the longitudinal direction and
it is described by a time constant T1. On the other hand, the transverse re-
laxation represents the loss of net magnetization in the transverse plane due
to loss of phase coherence. Hence, an exponential decay in magnetization is
caused by the de-phase of nuclei after the turning off RF pulse. This decay
is described by a time constant T2. However, the values of T1 and T2 depend
on the tissue type which allow creating structural MR images to differentiate
between tissue types. T ∗2 , which is similar to T2 but it also depends on local
inhomogeneity in the magnetic field caused by blood flow and oxygenation
changes, provides the basis for fMRI due to its sensitivity to neurovascular
changes associated with a psychological and behavioral function. Fig. 2.4
shows examples of different types of images that can be acquired using an
MRI scanner.

Figure 2.4: Examples of proton density (PDW), T2 (T2W) and T1 (T1W) weighted
images (Witjes et al., 2003).

2.4.3 Image contrast in MRI

Image contrast in MRI is a difference in signal intensity between two adjacent
tissues. Assuming that the initial value of magnetization before excitation
is M0, TR is the time of repetition for nuclei excitation and TE the time of
data collection after excitation (echo time). By alternating TR and TE, it is
possible to control the characteristics of the explored tissue. The measured
signal can be approximated by

M0 (1− exp(−TR/T1)) exp(TE/T2). [2.1]

For further understanding of the effect of these parameters on the acquired
image, some scenarios are provided in what follows. The first scenario is when
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the TR is long and TE is short, the signal will be approximately equal toM0

and the proton density image can be produced. Such an image provides maps
of the hydrogen distribution across the sample. The second scenario is when
TE is short and TR has intermediate length. In this case we will get T1-
weighted images which are used to reveal anatomical structures. The third
scenario is when TR is long and TE has an intermediate length. In this case
T2-weighted image is registered registered which is another type of structural
images. It is worth noticing that T ∗2 -weighted images are generated in a
way similar to T2-weighted images except that the pulse sequence uses the
magnetic gradients in a different way. More details are provided in (Brown
et al., 2014; Huettel et al., 2004).

2.4.4 The BOLD fMRI signal

Several approaches can be used to perform fMRI experiments. One can men-
tion the Arterial Spin Labeling (ASL) which is an imaging technique that
measures tissue perfusion using a freely diffusible intrinsic tracer (Petcharun-
paisan et al., 2010). However, the BOLD contrast is the most common tech-
nique used for performing fMRI experiments (Kwong et al., 1992; Ogawa
et al., 1992). Oxygen and carbon dioxide tension of cortical tissues locally
controls the blood flow in the brain. The increase of an activity in a spe-
cific cortex region after a given task causes an initial drop in oxygenated
hemoglobin (oxyHb) in addition to an increase in the local carbon dioxide and
deoxygenated hemoglobin (deoxyHb). A surplus of oxygenated hemoglobin
is delivered due to an increase in the cerebral blood flow (CBF) after 2-6
seconds lag. This surplus washes away deoxyhemoglobin. Through BOLD
fMRI, we are able to study the hemoynamic response to neural firing. These
hemodynamics can be captured by measuring the changes in the MR signal
and it is referred to as the hemodynamic response function (HRF). An exam-
ple of the HRF shape is shown in Fig. 2.5. Neural activity in the brain leads
to an increase in the metabolic demands which in turn leads to an increase in
the inflow of oxygenated blood to active regions. However, the concentration
of deoxygenated hemoglobin decreases since not all the oxygen supplies are
consumed. This causes an increase in the signal. This positive increment
lasts for 1-2 seconds after the onset of neural activity and peaks 5-8 seconds
after peak neural activity. The BOLD signal decreases below its baseline af-
ter reaching the peak which lasts for approximately 10 seconds (undershoot).
Moreover, it has been proven in some studies (Mechelli et al., 2002; Malonek
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Figure 2.5: The standard canonical HRF shape.

and Grinvald, 1996) that neural activity causes an immediate decrease in
oxygenation levels which causes a decrease in the BOLD signal in the first
half second following activation.

2.4.5 BOLD fMRI limitations

The BOLD fMRI has shown many advantages in studying the brain metabolism,
though it still has some limitations. This part describes these limitations and
some possible solutions to avoid them.

(i) Temporal resolution
Time of repetition (TR) is the main factor that affects the temporal
resolution in fMRI. The used TR usually ranges between 0.5 to 4.0
seconds in fMRI experiments. Oxygenation patterns which take place
5 to 8 seconds after activation are the base of statistical inference for
fMRI data. Hence, it is convenient to select the value of TR to be in
range of 2 seconds. However, the currently used temporal resolutions do
not allow for an efficient modeling of the physiological artifacts in fMRI
due to the violation of the Nyquist theory. One can mention the heart
rate and respiration. These artifacts cause periodic fluctuations in the
BOLD signal. Since the fMRI BOLD signal suffers from a low signal-
to-noise ratio (SNR) and the presence of physiological artifacts, many
recent studies (Larkman et al., 2001; Lindquist et al., 2008a; Moeller
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et al., 2010) have been investigating the possibility of increasing the
temporal resolution of fMRI experiments by making TR on the order
of hundreds of milliseconds which will solve many of these issues. The
medical image reconstruction community has also developed several
techniques for accelerating the acquisition process. We can for instance
mention parallel MRI proposed in (Pruessmann et al., 1999; Sodickson
and Manning, 1997). This parallel imaging technique uses multiple
coils with different spatial sensitivities to simultaneously measure k-
space. This allows increasing the amount of data acquired in a window
time which can be used either to increase the spatial resolution or to
decrease the time to sample an image with a specific spatial resolution.
Compressed sensing MRI is another technique that can be used to
accelerate data acquisition (Lustig et al., 2007).

(ii) Spatial resolution
Although fMRI provides better spatial resolution when compared with
other functional imaging techniques such as PET, MEG and EEG, it is
still difficult to study certain small-scale features due to the its spatial
limitations. These limitations include signal strength and the point-
spread function (PSF) of BOLD imaging. The PSF decreases as the
magnetic field strength increases and it also interacts with the head
movement and physiological artifacts. In addition, the spatial smooth-
ing applied to fMRI data before analysis leads to a decrease in the data
resolution. Moreover, the registration applied to individuals involved
in a group-level study is another type of such limitations since it causes
substantial blurring and noise in the group average.
Spatial limitations can be solved by making improvements in the acqui-
sition methods by using pMRI and CS MRI techniques (Pruessmann
et al., 1999; Sodickson and Manning, 1997) or preprocessing meth-
ods. As regards the preprocessing methods, the use of enhanced spa-
tial inter-subject normalization (Tahmasebi et al., 2009) and improved
smoothing techniques can reduce the blurring in the fMRI data.

(iii) Acquisition artifacts
Many acquisition artifacts can corrupt the fMRI data such as brain
movement and head movement. Moreover, fMRI data contain tran-
sient spike artifacts and slow drift components. The latter compo-
nents can be caused by the magnetic gradient instability, movement
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and physiologically induced inhomogeneities in the magnetic field and
RF interference. The combination of these artifacts can disturb the
underlying assumption for statistical analysis conducted on the data,
such as the normality assumption. Examples of some artifacts in fMRI
data are shown in Fig. 2.6.

Figure 2.6: Common artifacts example in fMRI data. A): k-space artifact. B) Ghosting
in a phantom. C) Susceptibility artifact. D) Normalization artifact (Lindquist and Wager,
2014).

2.5 fMRI paradigms

Three main types of stimulus design are used for fMRI experiments. These
types are the blocked, the event-related and the mixed designs. The chosen
design type depends on the performed study (Amaro and Barker, 2006). For
example, the blocked paradigm can be used at the exploratory stages of a
study. Event-elated paradigm is adequate for studies that require sophisti-
cated experiments since it is flexible and allows the stimuli from different
experimental conditions to be presented randomly. The mixed design is used
to investigate sustained processes and brain responses. The different types
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are graphically illustrated in Fig. 2.7. Further details about each type are
provided in what follows.

Figure 2.7: A graphical illustration of the different types of fMRI paradigms (Petersen
and Dubis, 2012).

(i) Blocked paradigms
This type of stimulus design is used to localize functional brain areas
and to study the processes of the brain state. It is presented as epochs,
i.e., on-off periods. The "on" state refers to stimuli presentation period
while the "off" state refers to a rest-state or baseline period. Blocked
designs are robust methods to identify the activated voxels during an
experiment.

(ii) Event-related paradigms
They are used to study the activity in the brain in response to mental
tasks (Kao et al., 2009). The occurrences of stimuli are arbitrary in
contrast with the blocked paradigms. Using this type of designs allows
obtaining temporal information about the underlying neural activity.

(iii) Mixed designs
This type of designs is used to study the interaction between processes
that work at different time scales (Otten et al., 2002). It is a hyprid
design between the blocked and event-related paradigms. It allows to
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identify brain regions which exhibit item-related or task-related infor-
mation processing (Donaldson, 2004).

2.6 FMRI data preprocessing

In this section, we will summarize the preprocessing techniques that the fMRI
data undergo a priori to statistical analysis. These techniques aims at elim-
inating the effects of the physiological and acquisition artifacts on the data
in order to validate the prior assumptions of the models used for analysis.
To be more specific, one reason to apply these techniques is to achieve a
standardization in the locations of brain regions across individuals for group-
level analysis. For a specific voxel, it is assumed that each data point in
its time series only consists of a signal coming from that particular voxel.
However, this assumption is invalid in case of subject’s movements between
scans. Moreover, the individuals’ brain are supposed to be registered to hold
true the assumption that each voxel is located at the same anatomical region
for all subjects.
The preprocessing can be divided into different steps; starting from the slice
time correction, realignment, structural and functional images co-registration,
brain normalization to a group template and ending with smoothing. These
steps are briefly described in what follows.

(i) Slice time correction
In spite of the fact that during the acquisition process different slices
from the same volume are acquired sequentially in time, in the data
analysis all the voxels in a 3-D image are assumed to be acquired si-
multaneously. For this reason, the signal intensity has to be estimated
in all voxels at a common standardized time point in the acquisition
period. The latter can be done by interpolating the signal intensity at
the chosen time point for a specific voxel in previous and subsequent
acquisitions (Calhoun et al., 2000). However, this can add interpola-
tion errors to data. To avoid these errors, slice time correction can be
replaced by two approaches. The first approach is to use more flexi-
ble hemodynamic models to account for variations in acquisition time
across the brain (Lund et al., 2006). The second one relies on us-
ing a rapid acquisition sequence to acquire multiple slices at the same
time(Lindquist and Wager, 2014).
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(ii) Realignment
Motion during the acquisition in fMRI experiment can be a main error
source in the fMRI data. It causes contamination of signals from dif-
ferent voxels in the intensity of a specific voxel. Thus, realignment for
each individual image is critical in order to compensate for the subject
movement. The realignment is done with a reference image that can
be the first image or the mean one (Andersson et al., 2001). A rigid
body transformation is then applied to the rest of the images in the
time series. The parameters of the best match between the target im-
age and the reference one are estimated using an iterative algorithm.
Once the match is found, the data is interpolated into the new space.
The matching process is done by minimizing the sum of the squared
differences between the two images.

(iii) Co-registration
It is well known that fMRI data provides little anatomical details due
to its low spatial resolution. For this reason, the analysis results of
functional data are mapped to high resolution MR images for visual-
ization which is known as co-registration. The co-registration can be
done in two ways, either by using an affine or a rigid body transforma-
tion. The transformation parameters are estimated by maximizing the
mutual information of the two images (Lindquist and Wager, 2014).
The co-registration step is also important for the normalization step.

(iv) Normalization
Individual brains have differences in their shapes and features. How-
ever, non-pathological brains share specific regularities from an anatom-
ical point of view. The normalization step aims at registering each sub-
ject’s brain anatomy with a standardized atlas space (MNI or Talairach
and Tournoux (Dervin, 1990)). Two types of normalization exist in the
literature (Woods et al., 1998). The first one is the linear normaliza-
tion which consists of simple registration of the gross shape of the brain.
The second one is the non-linear normalization which consists of warp-
ing brain images to match the local features. The importance of the
normalization arises in the group-level studies due to the inter-subject
registration which is the largest source of error. The normalization of
each brain involved in the study has to be assessed in order to eliminate
this error in the statistical analysis.
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(v) Smoothing
A spatial smoothing kernel is usually applied to the functional data
tofilter the image intensities in space and reduce the acquisition noise
effect. By doing so, the intra-subject differences are eliminated which in
turn improves the inter-subject registration. Applying this kernel also
involves convolution with a Gaussian kernel. The later is a 3-D normal
probability density function (pdf) and it is described by the full width
at half maximum of the kernel (FWHM). The FWHM should be 3 times
the voxels size (around 9 mm) in order to meet the assumption of the
Gaussian Random Field theory (Brett et al., 2004) which states that
the variations across space are continuous and normally distributed.

2.7 FMRI data analysis

After increasing the quality of the fMRI data in the preprocessing stages,
a statistical analysis is carried out. Task-related fMRI data analysis gener-
ally focuses on three main issues: i) detecting the activated brain areas in
response to a given stimulus, ii) estimating the underlying dynamics associ-
ated with such an activation through the estimation of the HRF and the iii)
parcellating of the brain into functionally homogeneous regions (parcels).

(i) Detection
So far, many approaches have been proposed to characterize the link
between the presented stimuli and the induced BOLD signal through
the brain. As a start, one can mention the approach proposed in (Kim
et al., 2006) which relies on a non-parametric Bayesian approach where
a mixture of experts model combined with a Dirichlet process prior is
used to extract and characterize spatial clusters of activation patterns
from fMRI data. The most usually used approach is based on a general
linear model (GLM) where the link between the stimulus onset and
the BOLD effect is modelled through a convolution between the HRF
and a binary stimulus sequence. The GLM has been primarily used
for detecting task-related brain activity in a massive univariate man-
ner (Friston et al., 1995), considering a constant and fixed canonical
HRF shape (Boynton et al., 1996). In the GLM framework, the time
course associated with each voxel is modeled as a weighted sum of one
or more known predictor variables plus an error term. These predictor
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variables could be the onset and offset of an experimental condition
(which involves performing a sensory or cognitive task). The contri-
bution of each predictor to the variability in the observed voxel’s time
series is estimated in the statistical analysis for the data. The simplest
version assumes that both the stimulus function and HRF are known
where the stimulus is equivalent to the experimental paradigm and the
HRF is modeled using a canonical shape (using a gamma function or
the difference between two gamma functions (Lindquist et al., 2008b)).
Denoting the observed BOLD response at a specific voxel as y, the
GLM framework considers the following observation model

y = Xβ + ε [2.2]

where y is sampled at n time points. The design matrix is denoted as
X and has the size of n× p. This matrix gathers the known predictor
variables of y such thatX = {xi,j, i = 1, . . . , n} with xi = {x1, . . . , xp}
(see Fig. 2.8). The variable β is a column vector of size p and it contains
the unknown values of the predictor function. Finally ε is a column
vector of size n and containing all the error values. Fig. 2.9 depicts the
GLM framework for a single voxel with time series y.

Figure 2.8: A convolution is carried out between a stimuls function with two experimen-
tal conidtions and a canonical HRF to obrain two sets of predicted BOLD response. The
obtained responses are placed in a design matrix X (Lindquist et al., 2008b).

This model has to be fitted independently for the time course of each
voxel. Thus, the spatial covariance between neighbouring voxels is ig-
nored at this stage. The massive univariate approach is motivated
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Figure 2.9: Depiction of the GLM for a signle voxel with time series y.

by the combination of the presence of more voxels than the observa-
tion and the aim of developing topographically specific claims about
BOLD activity. However, more studies have investigated multivariate
approaches to represent information from specific brain areas (Bow-
man, 2007; Bowman et al., 2007; Kriegeskorte et al., 2006, 2008). Sev-
eral approaches have been proposed to estimate the values of β such
as the ordinary least squares (OLS), the smoothing and sandwich ap-
proaches and the generalized least squares (GLS) (more details about
these approaches are provided in (Waldorp, 2009)). The estimated
values identify the contribution of the predictor in the variance ob-
served in the voxel’s time course. Using the OLS approach, the param-
eters can be estimated by minimizing the sum of the squared residuals∑n

i=1

(
yi − xiβ̂

)2

yielding the following

β̂ =
(
XtX

)−1
Xty [2.3]

and
var

(
β̂
)

= σ2
(
XtX

)−1
. [2.4]

The OLS corresponds to the best linear unbiased estimator as stated
in the Gauss-Markov theorem. However, the following assumptions
regarding the properties of the error term have to be met:
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• The errors are independently and identically distributed.

• The independence between the regressors in X and the error.

• No regressor is a linear transformation of one ore more regressors.

The noise variance can be estimated using

σ̂2 =
(y −Xβ̂)t(y −Xβ̂)

n
. [2.5]

Once the model parameters are estimated, different statistical tests are
carried out to define the significance of these estimates. The two widely
used tests in the classical approaches are the Student’s test (T-test) and
Fisher test (F-test). These tests are briefly described below.
T-test
This test is carried out to check whether a univariate linear combination
of the estimated β is significantly different from a value d. This check
can be accomplished using the null and alternative hypotheses which
can be summarized as

H0 : ctβ = d

H1 : ctβ > d

or
ctβ < d, [2.6]

where ct = {cj, j = 1 : p} is a vector containing the coefficients of the
linear combination and cj ∈ {−1, 0, 1}. The T-test can be used for
many cases. For example, if one wants to test whether the condition m
causes a significant activity at a specific voxel. In this case, cj = 1 for
j = m and 0 otherwise and ctβ = βm. Another example where a T-test
is used is to check whether the condition a causes a more significant
activity than the condition b. We set ca = 1,cb = −1 and cj = 0 for
j 6= a, b. In this case, ctβ = βa − βb.
It is important to know the distribution of β in order to define the
distribution of the used test. Knowing that y ∼ N (Xβ, σ2In) and
β̂ = (XtX)

−1
Xty, i.e., β̂ ∼ N (β, σ2 (XtX)

−1
). Thus ctβ̂ can be

expressed as
ctβ̂ ∼ N (ctβ, σ2ct

(
XtX

)−1
c). [2.7]
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As a result, we can use the following statistical test that follows a
Student distribution with n− p degrees of freedom

T =
ctβ̂ − ctβ

(σ̂2ct (XtX)−1 c)−1/2
. [2.8]

Under the null hypothesis in [2.6], the previous equation can be written
as

T =
ctβ̂ − d

(σ̂2ct (XtX)−1 c)−1/2
. [2.9]

After completing the statistical test, the significance of each voxel is
determined using a threshold value uα associated with an error risk α
that controls the rate of false positive

α = pH0(T > uα). [2.10]

The null hypothesis is then rejected if T > uα. More details can be
found in (Poline and Kherif, 2007).
F-test
This F-test allows checking multiple combinations. In this case ct has
the size of r×p where r is the number of the tested linear combinations.
For example, if there are p experimental conditions in the paradigm and
we want to test if at least one of them causes a significant activity at a
specific voxel. In this case, one can use the F-test with cj,j′ is the entry
of matrix ct and cj,j′ = δ(m −m′) where δ is the dirac function that
gives zero everywhere except if j = j′. This test can be used to compare
reduced models (with a specific type of the experimental conditions)
to the full models (considering all the experimental conditions) to see
which fits the data better. In this case, the statistical test is defined by

F =
(Sred − Sf )/(Rred−Rf )

Sf/(n−Rf )
[2.11]

where Sred and Sf are the sums of the quadratic errors of the reduced
and full model, respectively. Rred (resp. Rf ) is the rank of the reduced
model (resp. full model) design matrix. The interested reader can refer
to (Poline and Kherif, 2007) for further details.

(ii) Estimation
Although the classical GLM is widely used for the statistical analysis
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of fMRI data, the assumption that the HRF is fixed limits its useful-
ness. A single HRF shape is not physiologically appropriate and many
studies have reported the variability of the HRF in different levels. In
(Miezin et al., 2000; Ciuciu et al., 2003), it has been proven that the
HRF varies between regions and sessions within subject. Moreover, it
has been shown in (Handwerker et al., 2004; Aguirre et al., 1998) that
HRF also varies across subjects. The HRF also varies between groups
(infants, patients, etc.) (D’Esposito et al., 1998, 2003). The GLM
has been progressively extended to account for the HRF variability us-
ing more regressors and hence more flexible design matrices (Glover,
1999; Friston et al., 2000; Henson et al., 2001; Lindquist et al., 2009).
Nonetheless, due to the increase of regressors the main difficulty that
comes up in this context is the decrease of statistical sensitivity in
the subsequent tests, making the detection task less reliable. Besides,
other approaches that rely on physiologically-informed non-linear mod-
els (e.g., the Balloon model) have been pushed forward for recovering
hemodynamics but most often they are deployed in brain regions where
evoked activity has already been detected (Buxton and Frank, 1997;
Friston et al., 2000; Riera et al., 2004; Deneux and Faugeras, 2006).
Their computational cost is actually prohibitive for whole brain analy-
sis and some identifiability issues (different pairs of state variables and
parameters give the same goodness-of-fit) arise because of the presence
of noise.

(iii) Joint detection estimation
The above mentioned approaches mainly address detection of evoked
activity and HRF recovery as a two-step procedure whereas both tasks
are strongly linked. A precise localization of activations depends on a
reliable HRF estimate, while a robust HRF shape is only achievable in
brain regions eliciting task-related activity (Kershaw et al., 1999; Ciu-
ciu et al., 2003). Moreover, most of linear and non-linear models are
designed for univariate inference whereas it is known that the BOLD
signal is spatially smooth and thus the HRF shapes remain similar
over a certain spatial distance (Handwerker et al., 2004; Ciuciu et al.,
2004; Handwerker et al., 2012; Badillo et al., 2013b). One of the ap-
proaches that accounts for this interdependence is the joint detection-
estimation (JDE) framework, where both tasks are performed jointly
(Makni et al., 2008; Vincent et al., 2010; Chaari et al., 2013). To im-
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prove the estimation robustness and account for spatial correlation of
the BOLD signal, a single HRF shape model was assumed for a specific
group of voxels, also referred to as a parcel. Within this JDE formal-
ism, two approaches for posterior inference have been developed, the
first one relies on computationally intensive stochastic sampling (Makni
et al., 2008; Vincent et al., 2010) and the second one is based on the
variational expectation maximization (VEM) algorithm (Chaari et al.,
2013) to achieve numerical convergence at lower cost.
The JDE model is a parcel-based model which was firstly proposed
in (Makni et al., 2008; Vincent et al., 2010). This model assumes
that the brain is divided a priori into P = (P)α=1:A parcels and each
of them consists of Jα voxels. All voxels share similar homogeneous
properties. The fMRI time series is denoted as yj and it is mea-
sured at each voxel j ∈ Pα at times (tn)n=1,...,N , where tn = nTR,
TR is the time of repetition and N is the number of scans. M dif-
ferent experimental conditions are considered. A unique BOLD signal
model is used for a group of connected voxels (a parcel) in order to
link the observed data Y = {yj ∈ RN , j ∈ Pα} with the unknown
HRF hα ∈ RD of parcel Pα and to the unknown response amplitudes
A = {am,m = 1 . . . ,M} (where am = {amj , j ∈ Pα} and amj is the mag-
nitude for voxel j at condition m). The following observation model is
considered

∀j ∈ Pα yj =
M∑
m=1

amj Xmhα + P`j + bj [2.12]

where Xm = {xn−d∆t
m , n = 1, . . . , N, d = 0, . . . , D − 1} is a N × D bi-

nary matrix which provides information on the stimulus occurrences,
∆t < TR is the sampling period of the unknown HRF hα = {hd∆t, d =
0, . . . , D− 1}. The weights amj ’s are scalars associated with the magni-
tude of the response and they are referred to as Neural Response Lev-
els (NRL). The NRL amj ’s follow spatial Gaussian mixtures defined by a
set of parameters θa and governed by binary Markov fields. To be more
specific, each NRL is assigned to one of the activation classes encoded
by the variables Q = {qm,m = 1, . . . ,M} where qm = qmj , j ∈ Pα.
Akin to (Vincent et al., 2010), two activation classes are considered (ac-
tivated and non-activated voxels). The matrix P corresponds to the
physiological artifacts. These artifacts are accounted for by consider-
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ing a low frequency orthonormal function basis of size N × O. Each
voxel j is associated with a vector of low frequency drifts `j ∈ RO.
The observation noise coefficients bj’s are assumed to be independent
with bj ∼ N (0,Γ−1

j ) where Γj is the precision matrix and the set of all
unknown precision matrices is denoted as Γ = {Γj, j ∈ Pα}. The obser-
vation model in [2.12] is a general form of the GLM framework. It relies
on the classical assumption of a linear and time invariant system of the
GLM. In the JDE model, the response magnitudes amj ’s correspond to
the effects associated with stimulus-induced while the drift coefficients
`j’s correspond to the low frequency basis regressors. However, the JDE
model generalizes the GLM one since it considers the hemdodynamic
response as an unknown variable. The graphical model in Fig. 2.10
illustrates the dependencies between the latent and observed variables
in the JDE model. Two inference strategies were adopted to compute

Figure 2.10: Graphical model describing dependencies between latent and observed
variables involved in the JDE generative model for a given parcel P with J voxels.

the posterior distribution associated with the NRL, activation classes
and HRF estimate. The first strategy consists of sampling the posterior
distribution using the intensive Markov Chain Monte Carlo (MCMC)
and building estimators using the generated samples (Vincent et al.,
2010). The other one which is less computationally intensive relies on
the variational expectation maximization (VEM) algorithm to approx-
imate the posterior as a product of the pdf of the unknown variables
(Chaari et al., 2013). This algorithm alternates maximization of the
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following free energy with respect to q and Θ

F(q,Θ) = Eq

[
log p(Y ,A,hγ,Q |Θ)

]
+ G(q), [2.13]

where q ∈ D, D ois the set of all probability distributions on the prob-
ability spaces associated with the unknown variables A,hγ and Q.

(iv) Parcellation
Whatever the numerical algorithm deployed, the JDE formalism re-
quires a prior parcellation of the brain into functionally homogeneous
regions. These parcels should achieve a fair compromise between ho-
mogeneity and reliability (Thirion et al., 2014). Homogeneity means
that the parcels should be small enough to meet the assumption of
HRF shape invariance within each parcel, whereas reliability should
guarantee that parcels are large enough to ensure reliable HRF estima-
tion and detection performance. This issue has motivated a number
of recent developments that try to cope with the identification of rel-
evant parcellation of the brain (Flandin et al., 2002; Thirion et al.,
2006; Golland et al., 2007; Lashkari et al., 2010, 2012; Eickhoff et al.,
2011). One of the popular methods that are used for this purpose is
the K-means algorithm. It is a widely used clustering technique for
vector data (Thirion et al., 2014). The feature data used for brain par-
cellation using this algorithm is of dimension S × F (no. of subjects
× no. of contrasts). Principle Component Analysis (PCA) is then
used to reduce the feature data to 100 components prior to clustering.
However, the spatial structure is not explicitly considered when parcel-
lating the brain using the K-means and spatial smoothing has to be
applied prior to clustering for spatial regularization. One can also men-
tion Ward’s algorithm (Ward and Joe, 1963). This algorithm uses the
variance minimizing approach such that two clusters are merged if the
resulting cluster minimizes the sum squared differences of fMRI signal
within all clusters. The spectral clustering proposed in (Shi and Malik,
2000; Ng et al., 2002) is also used for brain parcellation and it consists
of applying the K-means algorithm on a representation of the data.
This representation preservers the spatial structure and represents the
functional features’ similarity. Fig. 2.11 shows an axial slice of the par-
cellation obtained using the three mentioned parcellation techniques
with 500 parcels (Thirion et al., 2014).
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Figure 2.11: Example of the parcellation obtained using theK-means, ward and spectral
clustering techniques with 500 parcels (Thirion et al., 2014).

(v) Joint parcellation detection estimation
Among the above mentioned fMRI analysis techniques, none allows to
uncover functional regions that appear homogeneous with respect to
their hemodynamic profile. This issue has been specifically addressed
in (Badillo et al., 2013a) using random parcellation and consensus clus-
tering. Another approach relying on a multivariate Gaussian proba-
bilistic modelling has been proposed in (Fouque et al., 2009). One can
also mention the joint parcellation within the JDE framework (Chaari
et al., 2012, 2015; Frau-Pascual et al., 2014), giving rise to the joint
parcellation detection estimation (JPDE) approach (which will be il-
lustrated in chapter 3). This strategy performs parcellation during the
detection estimation steps through the selection of hemodynamic ter-
ritories, i.e., sets of voxels that share the same HRF pattern.
Although an automated inference of parcellation is performed in the
JPDE methodology, the algorithm still requires the manual setting of
the number of parcels. This thesis mainly investigates the automatic
hemodynamic parcellation of the brain and the estimation of the as-
sociated HRF profiles of the parcels in both the subject and group
levels.

2.8 Conclusion

This chapter presented a brief illustration of fMRI basics and principles, and
how fMRI was motivated by NMR. It also addressed the acquisition of fMRI
using an MRI scanner. The constructed fMRI data has to be preprocessed
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in order to eliminate physiological and acquisition artifacts. Different ap-
proaches can be used to analyze the preprocessed data in order to detect the
activity and estimate the dynamics in the brain. The simplest approach is
the GLM which was shortly described. This model aims at localizing the
brain activity by assuming a fixed HRF shape. Many extensions have been
proposed to the GLM in order to allow the estimation of the HRF where an
activation has already been detected. However, the detection and estimation
are linked and have to be dealt with simultaneously. The JDE model comes
to solve the latter issue but it still requires a prior parcellation of the brain.
A parcellation step has been added in the JPDE model to divide the brain
into hemodynamic territories according to the voxel-dependent HRFs. How-
ever, the JPDE still requires the number of parcels to be fixed which can
be complicated when no prior information exists about the optimal number
of parcels which motivates the proposed methods at the subject-level in this
thesis. The objective is to provide techniques that allow the automatic par-
cellation of the brain at the subject-level. To the best of our knowledge,
non of the approaches in the literature deals with the heomdynamic parcel-
lation of the brain at the group-level. Thus, we propose two approaches for
a group-level fMRI data analysis that estimate the group-level parcellation
and dynamics.
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CHAPTER 3

Joint Parcellation Detection
Estimation and Model Selection
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3.1 Introduction

In subject-level fMRI data analysis, two tasks are usually performed sepa-
rately; detection of brain activity in response to a given stimulus and estima-
tion of the hemodynamic response. However, these tasks are strongly linked
and should be considered simultaneously as discussed in the first chapter.
Moreover, the estimation of the brain dynamics relies on the hemodynamic
parcellation, which is a problematic issue especially if no previous knowl-
edge about the number of these parcels and their shapes is available. In this
chapter, we propose a model selection procedure based on the free energy
calculation of the joint parcellation detection estimation (JPDE) model. As
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a first step, we recall the JPDE model in Section 3.2. This model extends
the region-based JDE model to a whole brain area. It jointly detects the
activity evoked by a stimulus, estimates the underlying dynamics for a given
brain area and performs online parcellation along with the detection and es-
timation tasks. However, this model still needs the number of parcels to be
fixed a priori. Hence, we introduce a variational model selection procedure
based on the free energy calculation in Section 3.3 which allows this number
of parcels to be estimated.

3.2 The joint parcellation detection estimation
model

This section is devoted to the presentation of the JPDE model proposed in
(Chaari et al., 2012, 2015). This model is the extension of the parcel-based
JDE model developed in (Makni et al., 2008; Vincent et al., 2010; Chaari
et al., 2013) to a whole-brain or a wide brain area.

3.2.1 Observed and missing variables

Let P be the set of voxels of interest belonging to the whole brain or wide
brain area. At voxel j, the fMRI time series yj is measured at times {tn, n =
1, ..., N}, where tn = nTR, N being the number of scans and TR the time of
repetition. The number of different stimulus types or experimental conditions
isM . At each voxel j, a voxel dependent HRF hj ∈ RD is assumed whereD is
the voxel-dependent HRF size andH = {hj, j ∈ P} is the set of all possible
HRF shapes. Each hj is associated with an HRF group among K possible
groups. These groups or HRF classes are specified by a set of hidden labels
z = {zj, j ∈ P} where zj ∈ {1, ..., K} and zj = k means that the voxel j
belongs to the k-th group. An estimation of z corresponds to a partition
of the domain into K hemodynamic territories whose connected components
define a parcellation of the whole brain or of the considered region of interest
(ROI). The link to the observed BOLD data is specified via the following
forward model

yj =
M∑
m=1

amj Xmhj + P`j + bj [3.1]



53

where Xm = {xn−d∆t
m , n = 1, . . . , N, d = 0, . . . , D − 1} is a known binary

matrix which provides information on the stimulus occurrences for the m-
th experimental condition, N × D is the dimension of this matrix, and
∆t ≤ TR is the sampling period of the unknown HRFs. The scalar weights
amj ’s are the unknown response amplitudes. They are generally referred
to as neural response levels (NRL). Denote as A = {am,m = 1, . . . ,M}
with am =

{
amj , j ∈ P

}
, amj being the amplitude at voxel j for the m-

th experimental condition. Similarly to the HRF, each NRL is assumed
to be in one of I groups specified by activation class assignment variables
Q = {qm,m = 1, . . . ,M} where qm =

{
qmj , j ∈ P

}
and qmj ∈ {1, ..., I} rep-

resents the activation class at voxel j for the m-th experimental condition.
Two classes are considered here (I = 2) where i = 0 and i = 1 refer to non-
activated and activated voxels, respectively. Finally, the rest of the signal is
made of the vector P`j, which corresponds to low frequency drifts where P is
an N ×O matrix, `j ∈ RO is a vector to be estimated and L = {`j, j ∈ P}.
Regarding the observation noise, the bj’s are assumed to be independent,
zero-mean Gaussian vectors with covariance matrix Γ−1

j , i.e, bj ∼ N (0,Γ−1
j ).

The set of all unknown precision matrices is denoted by Γ = {Γj, j ∈ P}.
All the notations for variables and parameters used in the JPDE model are
summarized in Tab. 3.1.

3.2.2 Hierarchical model

Adopting a Bayesian formulation for the JPDE model, the joint distribution
of Y ,A,H ,Q, z is defined as follows

p(Y ,A,H ,Q, z;Θ) = p(Y |A,H ;Θ) p(A |Q;Θ) p(Q;Θ)
× p(H | z;Θ) p(z;Θ)

[3.2]

where Θ is the set of all parameters which will be defined later. More details
about the right-hand side term of [3.2] are provided below.

(i) Likelihood
To account for serial correlation in fMRI time series, an autoregressive
(AR) noise model has been adopted (Makni et al., 2008; Woolrich et al.,
2001; Chaari et al., 2011, 2012). It follows that the noise covariance
matrix for voxel #j can be defined as Γj = σ−2

j Λj where Λj is a
tridiagonal symmetric matrix whose components depend on the AR(1)
parameter ρj (Makni et al., 2008): (Λj)1,1 = (Λj)N,N = 1, (Λj)n,n =
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Table 3.1: Notations for variables and parameters used in the JPDE model.

Notation Definition Dimension

V
ar
ia
b
le
s

yj ∈ RN Observed BOLD signal at voxel j N

bj ∈ RN Acquisition noise vector at voxel j N

hj = {hd∆t, d = 0, . . . , D − 1} ∈ RD HRF sampled at ∆t D

amj ∈ R NRL at voxel j for condition m 1

am = {amj , j ∈ P} ∈ RJ NRLs for condition m J

qmj ∈ {0, 1} Activation class for voxel j and condition m 1

qm = {qmj , j ∈ P} ∈ {0, 1}J Activation classes for condition m J

zj ∈ {0, . . . ,K} HRF group for voxel j 1

U
n
kn

ow
n
P
ar
am

et
er
s `j ∈ RO Low frequency drifts for voxel j O

Γj ∈ RN×N Noise precision matrix for voxel j N ×N

µm = {µm0, µm1} ∈ R2 Mixture model means for NRLs in condition m 2

vm = {vm0, vm1} ∈ R2
+ Mixture model variances for NRLs in condition m 2

βm ∈ R+ Potts regularization parameter for condition m 1

θm = {µm,vm,βm} Parameters of the condition m 1

βz ∈ R+ Potts regularization parameter for HRF groups 1

h̄ = {h̄k, k = 0, . . . ,K} ∈ RD×K HRF patterns D ×K

Σ̄ = {Σ̄k, k = 0, . . . ,K} HRF covariance matrices D

F
ix
ed Xm ∈ {0, 1}N×D Binary stimulus occurrence matrix for condition m N ×D

P ∈ RN×O Low frequency orthonormal function basis N ×O
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1 + ρ2
j for n = 2, . . . , N − 1 and (Λj)n+1,n = (Λj)n,n+1 = −ρj for

n = 1, . . . , N − 1. Using the notation θ0 = (σ2
j , ρj)1≤j≤J and yj =

yj−P`j−Sjhj with Sj =
M∑
m=1

amj Xm, the likelihood can be factorized

over voxels as follows

p(Y |A,H ;θ0) ∝
J∏
j=1

[√
detΛj

σNj

]
exp

(
−
yt
jΛjyj
2σ2

j

)
. [3.3]

(ii) Neuronal response levels
The NRLs are assumed to be statistically independent across condi-
tions, i.e,

p(A;θa) =
M∏
m=1

p(am;θm) [3.4]

where θa = {θm,m = 1, . . . ,M} and θm gathers the parameters for
the m-th condition. A mixture model is then adopted by using the
allocation variables qmj to segregate non-activated voxels (qmj = 0) from
activated ones (qmj = 1). For the m-th condition, and conditionally
to the assignment variables qm, the NRLs are assumed to be indepen-
dent, i.e,

p(am | qm;θm) =
∏
j∈P

p(amj | qmj ;µm,vm) [3.5]

with p(amj | qmj = i;θm) ∼ N (µmi, vmi). All the means and variances of
the response amplitudes are gathered in the two unknown vectors µ=
{µmi,m = 1, . . . ,M, i = 0, 1} and v = {vmi,m = 1, . . . ,M, i = 0, 1},
respectively. Note that for non-activated voxels (i = 0), µm1 =0 for all
m = 1, . . . ,M .

(iii) Activation classes
As in (Vincent et al., 2010), the M experimental conditions are as-
sumed to be independent a priori regarding the activation class assign-

ments, i.e, p(Q)=
M∏
m=1

p(qm; βm) where p(qm; βm) is a Markov random

field prior, namely a Potts model with interaction parameter βm defined
as

p(qm; βm) = W (βm)−1 exp
(
βmU(qm)

)
[3.6]
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with U(qm) =
∑

j∼l I(qmj = qml ), W (βm) is a normalizing constant and
I is an indicator function such that I(a = b) = 1 if a = b and 0
otherwise. The notation j ∼ l means that the summation covers
all neighbouring voxels. The neighbouring system is covering a 3D
scheme through the brain volume. In what follows, we will consider a
6-connexity 3D neighboring system as shown in Fig. 3.1.

Figure 3.1: 6-connexity 3D neighbouring system used in the Markov random field prior
for activation classes in the JPDE model.

(iv) HRF patterns
A unique HRF shape was considered for the whole parcel in (Makni
et al., 2008; Vincent et al., 2010; Chaari et al., 2011). The JPDE model
considered in this thesis assumes that the HRF is voxel-dependent and
that the distribution of hj is expressed, for each voxel j, conditionally
to the HRF group variable zj

p(H|z) =
∏
j∈P

p(hj | zj) [3.7]

with
p(hj | zj = k) ∼ N (h̄k, Σ̄k) [3.8]

where h̄k denotes the mean HRF pattern of group #k, while Σ̄k =
νkID+1 adjusts the stochastic perturbations around h̄k via the value
of the hyperparameter νk. The smoothness of the HRF pattern is
ensured by assigning the prior distribution h̄k ∼ N (0, σ2

hR), with R =
(∆t)4 (Dt

2D2)−1 , whereD2 is the second-order finite difference matrix
and σ2

h is a parameter to be estimated or fixed. Moreover, h̄k0 =
h̄kD∆t = 0 as in (Makni et al., 2008; Vincent et al., 2010; Chaari et al.,
2011). Hence, h̄k ∈ RD−1.
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(v) HRF groups
A spatial K-class Potts model with interaction parameter βz is used to
promote parcellation connexity

p(z; βz) = W (βz)
−1 exp

(
βzU(z)

)
with U(z) =

∑
j∼l

I(zj = zl) [3.9]

where W (βz) is a normalizing constant. Using this kind of prior forces
the neighbouring voxels to belong to the same HRF group and thus to
share the same HRF pattern.

The set of all parameters will be denoted byΘ =
{
Γ,L,θa, βz, σ

2
h, (h̄k, νk)1≤k≤K

}
.

The graphical model in Fig. 3.2 illustrates the dependencies between the la-
tent and observed variables in the JPDE model.

Figure 3.2: Graphical model describing dependencies between latent and observed
variables involved in the JPDE generative model for a given parcel P with J voxels.



58

3.2.3 Variational expectation maximization estimation

Computing closed form expressions of the Bayesian estimators associated
with the posterior distribution p( A,H ,Q, z | Y ;Θ) is difficult and in-
tractable for the JPDE model. In this case, different approaches can be
investigated for estimating the unknown parameters A,H ,Q, z and the vec-
tor Θ from its posterior distribution. The first approach consists of sampling
the posterior distribution using Markov Chain Monte Carlo (MCMC) meth-
ods and building estimators using the generated samples. Another approach
is based on the variational expectation maximization (VEM) principle that
is less computationally intensive. A VEM algorithm was studied in (Chaari
et al., 2012, 2015) to estimate the missing variables A,Q,H , and z. Approx-
imate posterior distributions were computed for these missing variables by
using an iterative algorithm which alternates maximization of the following
free energy with respect to q and Θ

F(q,Θ) = Eq

[
log p(Y ,A,H ,Q, z |Θ)

]
+ G(q) [3.10]

where q ∈ D , D is the set of all probability distributions on A ×H ×Q ×
Z where A,H,Q,Z are the probability spaces associated with A,H ,Q, z
respectively and G(q) = −Eq

[
log q(A,H ,Q, z)

]
is the entropy of q. At the

r-th iteration, the current value of the unknown parameters is denoted by
Θ(r−1). The alternating procedure proceeds as follows

E-step: p(r)
A,H,Q,z = arg max

p∈D
F(p,Θ(r−1)) [3.11]

M-step: Θ(r) = arg max
Θ∈Θ

F(p
(r)
A,H,Q,z,Θ). [3.12]

As previously mentioned in (Chaari et al., 2013), this optimization procedure
leads to an intractable posterior which is p(r)

A,H,Q,z = p(A,H ,Q, z |Y ;Θ(r−1)).
A variational approximation is therefore used in order to alternatively op-
timize the free energy with respect to pH , pA, pQ and pz while fixing the
other distributions. The posterior distribution p(r)

A,H,Q,z is then approximated
by the product of the distributions p̃(r)

A (A), p̃
(r)
H (H), p̃

(r)
Q (Q) and p̃(r)

z (z). The
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resulting four E-steps can be written as follows

VE-H: p̃
(r)
H (H) ∝ exp

(
E
p̃

(r−1)
A p̃

(r−1)
z

[
log p(H |Y ,A, z;Θ(r−1)

])
[3.13]

VE-A: p̃
(r)
A (A) ∝ exp

(
E
p̃

(r)
H p̃

(r−1)
Q

[
log p(A |Y ,H ,Q;Θ(r−1))

])
[3.14]

VE-Q: p̃
(r)
Q (Q) ∝ exp

(
E
p̃

(r)
A

[
log p(Q |Y ,A;Θ(r−1))

])
[3.15]

VE-Z: p̃(r)
z (z) ∝ exp

(
E
p̃

(r)
H

[
log p(z |Y ,H ;Θ(r−1))

])
. [3.16]

On the other hand, the M-step of the algorithm can be written as follows

M: Θ(r) = arg max
Θ

E
p̃

(r)
A p̃

(r)
H p̃

(r)
Q p̃

(r)
z

[
log p(Y ,A,H ,Q, z;Θ)

]
. [3.17]

Straightforward computations of [3.13]-[3.16] lead to the following results

(i) VE-H step:

This step is different from the one in the JDE model since it considers
the voxel-dependent HRFs. Using [3.13] and standard algebra, p̃(r)

Hj
is

shown to be a Gaussian distribution, i.e, p̃(r)
Hj
∼ N (m

(r)
Hj
,Σ

(r)
Hj

), where
Σ

(r)
Hj

= (V1j +V2j)
−1 andm(r)

Hj
= Σ

(r)
Hj

(m1j +m2j) are defined for voxel
j = {1, . . . , J} with

V1j =
∑
m,m′

υ
(r−1)

Amj A
m′
j

Xt
mΓ

(r−1)
j Xm′ + S̃

t
jΓ

(r−1)
j S̃j,

V2j =
K∑
k=1

p̃zj(k)(r−1)Σ̄
(r−1)−1
k ,

m1j = S̃t
jΓ

(r−1)
j (yj − P`(r−1)

j ),

m2j =
K∑
k=1

Σ̄
(r−1)−1
k p̃zj(k)(r−1)h̄

(r−1)
k [3.18]

where S̃j =
∑M

m=1m
(r−1)
Amj

Xm. Note that m(r−1)
Amj

, υ(r−1)

Amj A
m′
j

denote the m

and (m,m′) entries of m(r−1)
Aj

and Σ
(r−1)
Aj

, respectively.
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(ii) VE-A step : This step is similar to the VE-A step of (Chaari et al.,
2013), except that it accounts for the fact that the HRF is voxel-
dependent. Standard algebra is used to identify a Gaussian distribution
in [3.14], (i.e, p̃(r)

Aj
∼ N (m

(r)
Aj
,Σ

(r)
Aj

), where

Σ
(r)
Aj

=

( I∑
i=1

∆ij + H̃j

)−1

,

m
(r)
Aj

= Σ
(r)
Aj

( I∑
i=1

∆ijµ
(r−1)
i + G̃tΓ

(r−1)
j

(
yj − P`(r−1)

j

))
. [3.19]

The computation of Σ(r)
Aj

andm(r)
Aj

in [3.19] requires to define a number

of intermediate quantities. Denote as, µ(r−1)
i =

[
µ

(r−1)
i1 , . . . , µ

(r−1)
iM

]t

and

G̃ = E
p̃

(r)
H

[
G
]
where G is the matrix G = [g1 | . . . | gM ] whose columns

are gm = Xmhj. The m-th column of G̃ is denoted as g̃m = Xmm
(r)
Hj
∈

RN . Then, ∆ij = diagM

[
p̃

(r−1)
Qmj

(i)/v
(r−1)
im

]
and H̃j = E

p̃
(r)
Hj

[
GtΓ

(r−1)
j G

]
is an M ×M matrix whose (m,m′) element is

E
p̃

(r)
Hj

[
gt
mΓ

(r−1)
j gm′

]
= E

p̃
(r)
Hj

[
gm
]t
Γ

(r−1)
j E

p̃
(r)
Hj

[
gm′
]

+ trace
(
Γ

(r−1)
j cov

p̃
(r)
Hj

(gm, gm′)
)

= g̃t
mΓ

(r−1)
j g̃m′ + trace

(
Γ

(r−1)
j XmΣ

(r)
Hj
Xt

m′

)
. [3.20]

(iii) VE-Q step: A product approximation is assumed such that p̃Q(Q) =∏J
j=1 p̃Qj(qj) with p̃Qj(qj) =

M∏
m=1

p̃Qmj (qmj ). This step includes M ×

J sub-steps. Using [3.15], for m = 1, . . . ,M and j = 1, . . . , J , the
following result is obtained

p̃
(r)
qmj

(qmj ) ∝ exp

(
E
p̃

(r)
A p̃

(r)

q\m
p̃

(r)

qm\j

[
log p

(
qmj | Y ,A, qm\j, q\m;Θ(r−1)

)])
[3.21]
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where qm\j = {qmj′ , j′ 6= j} and q\m = {qm′ ,m′ 6= m}. If we remove the
terms which do not depend on qmj , [3.21] can be rewritten as

p̃qmj
(
qmj
)
∝

exp

(
E
p̃

(r)

am
j

[
log p(amj | qmj ;µ(r−1)

m , v(r−1)
m )

]
+ E

p̃
(r−1)

qm\j

[
log p(qmj | qm\j; β(r−1)

m )
])

[3.22]

With straightforward calculations, [3.22] can be rewritten as follows

p̃qmj
(
qmj
)
∝

exp

−1

2
log v

(r−1)
mqmj

− 1

2

(
m

(r)
amj
− µ(r−1)

mqmj

)2

+ Σ
(r)

a
(m,m)
j

v
(r−1)
mqmj


× exp

(
β(r−1)
m

∑
j′∈P,j′∼j

p̃
(r−1)
qm
j′

(qmj )

)
. [3.23]

Knowing that qmj = i, [3.23] reads

p̃qmj (i) ∝ N (m
(r)
amj

;µ
(r−1)
mi , v

(r−1)
mi )×

exp

−1

2

Σ
(r−1)

a
(m,m)
j

v
(r−1)
mi

+ β(r−1)
m

∑
j′∈P,j′∼j

p̃
(r−1)
qm
j′

(i)

 . [3.24]

(iv) VE-Z step: As in the VE-Q step, we also assume a product approx-
imation p̃z(z) =

∏J
j=1 p̃zj(zj). This step includes J sub steps. Using

[7.13], and for j = 1, . . . , J the following result is obtained

p̃zj(zj) ∝ exp

(
E
p̃

(r)
H p̃

(r−1)
z\j

[
log p

(
zj | Y ,A, z\j,H ; Θ(r−1)

)])
. [3.25]

After simplifying the right side of [3.25], we obtain

p̃zj(zj) ∝ exp

Ep̃Hj

[
log p(hj | zj)

]︸ ︷︷ ︸
A

+ Ep̃z\j

[
log p(z | βz)

]︸ ︷︷ ︸
B

 [3.26]
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with

Ep̃Hj

[
log p(hj | zj)

]
= −D+1

2
log 2π − D+1

2
log Σ̄k

− 1
2Σ̄k

[
(mHj − h̄k)T (mHj − h̄k) + trace(ΣHj)

] [3.27]

and

Ep̃z\j

[
log p(z | βz)

]
= βz

∑
l∼j

K∑
k=1

I(zj = k)p̃zl(k) + C ′3 [3.28]

where C ′3 = Ep̃z\j

[
C3

]
and C3 = logZ(βz)

−1 + log p(z\j | βz). For
k = 1 : K, [3.25] can be written as

p̃(r)
zj

(zj) ∝ N (mHj ; h̄
(r−1)
k , Σ̄

(r−1)
k )× [3.29]

exp

(
−1

2
trace(Σ

(r)
Hj
Σ̄

(r−1)−1
k ) + β(r−1)

z

∑
j′∼j

p̃(r−1)
zj′

(k)

)
.

(v) VM step: The M-steps involved in this VM step are associated with
(µ,v), β, βz,

(
h̄, ν

)
, σ2

h and (L,Γ) as detailed below

(a) M-(µ,v): Maximizing [3.17] w.r.t (µ,v) yields(
µ(r),v(r)

)
= arg max

(µ,v)

E
p̃

(r)
A p̃

(r)
Q

[
log p(A | Q;µ,v)

]
[3.30]

For i ∈ {0, 1} and m ∈ {1, . . . ,M} the following result is obtained

µmi =
∑
j∈Pγ

p̃
(r)
qmj

(i)mamj
/p̃

(r)
mi,

v
(r)
mi =

∑
j∈Pγ

p̃
(r)
qmj

(i)

((
m

(r)
amj
− µ(r)

mi

)2

+ vamj amj

)
/p̃

(r)
mi [3.31]

where p̃(r)
mi =

∑
j∈Pγ p̃

(r)
qmj

(i).

(b) M-β: Maximizing with respect to β, [3.17] reads

β(r) = arg max
β

E
p̃

(r)
Q

[
log p(Q;β)

]
. [3.32]
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Using the mean-field approximation (Celeux et al., 2003) leads to
a function that can be optimized using a gradient algorithm. To
avoid overestimation of β, an exponential prior with mean λβm
can be used to penalize each βm. The expression used to optimize
for the m-th component of β denoted as βm is

β(r)
m = arg max

βm

E
p̃

(r)
Q

[
log p(qm; βm)p(βm;λβm)

]
,

= arg max
βm

(
− logZ(βm)+

βm

(∑
j∼k

Ep̃
Qm(r)

[
I
(
qmj = qmk

)]
− λβm

))
. [3.33]

(c) M-(L,Γ): Maximizing with respect to (L,Γ) and factorizing over
voxels j ∈ P , the following expression needs to be computed(

`
(r)
j ,Γ

(r)
j

)
= arg max

(`j ,Γj)

Ep̃Hγ p̃Aj

[
log p(yj | aj,hγ; `j,Γj)

]
, [3.34]

where aj = {amj ,m = 1, . . . ,M}. Maximizing w.r.t `j leads to the
following result

`
(r)
j = arg max

`j

(
2
(
G̃m

(r)
Aj
− yj

)t

Γ
(r)
j P`j + `t

jP
tΓ

(r)
j P`j

)
[3.35]

where the term G̃ has been defined in the VE-A step. Computing
the derivative w.r.t `j yields the following expression
`j =

(
P tΛ

(r)
j P

)
P tΓ

(r)
j

(
yj − G̃m(r)

Aj

)
, with Γj = σ−2

j Λj. In the
case of an AR(1) noise

`
(r)
j =

(
P tΛ

(r)
j P

)−1

P tΛ
(r)
j

(
yj − S̃jm(r)

Hγ

)
= F1(ρ

(r)
j ). [3.36]

In the above expression, F1 is a function linking the estimates `(r)
j

and ρ
(r)
j . Denoting y(r)

j = yj − P`(r)
j and considering the maxi-

mization w.r.t σ2
j , we obtain
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σ2
j

(r)
=

1

N

(
E
p̃

(r)
Aj

[
at
jΛ̃

(r)

j aj
]
− 2m

(r)
Aj

t
G̃Λ

(r)
j y

(r)
j + y

(r)
j

t
Λ

(r)
j y

(r)
j

)
,

= F2

(
ρ

(r)
j , `

(r)
j

)
[3.37]

where F2 is a function linking the estimates σ2
j

(r) with `(r)
j and ρ(r)

j .
The Matrix Λ̃j = Ep̃Hγ

[
GtΛ

(r)
j G

]
is an M ×M matrix similar to

the matrix H̃j in the VE-A step. The (m,m′) entry of this matrix
is given by g̃t

mλ
(r)
j g̃m′ + trace(Λ

(r)
j XmΣ

(r)
Hγ
X ′m

t).
The maximization w.r.t ρj yields

ρ
(r)
j = arg max

ρj

{
(

trace
(
U1Λ̃j

)
+ trace (U2Λj)

)
/σ2

j
(r)

+ log |Λj|}

[3.38]
with |Λj| = 1 − ρ2

j and Λ̃j has the same expression as for Λ̃
(r)

j .

The matrix U1 = Σ
(r)
Aj

+m
(r)
Aj
m

(r)
Aj

t
is of size M ×M while U2 =

y
(r)
j

(
y

(r)
j + 2G̃m

(r)
Aj

)t

is of size N ×N . The derivative of the ma-
trix Λj can be written as Λ′j = 2ρjB + C, where all entries of
B and C are zeros except (B)n,n = 1 for n = 2, . . . , N − 1 and
(C)n,n+1 = (C)n+1,n = −1 for n = 1, . . . , N − 1. The matrix Λ̃′j
can be written as Λ̃′j = 2ρjB̃ + C̃ where B̃ and C̃ are M ×M
matrices whose entries (m,m′) are respectively
(B̃)m,m′ = trace

((
XmΣ

(r)
Hγ
Xm

t + g̃m′ g̃
t
m

)
B
)
and

(C̃)m,m′ = trace
((
XmΣ

(r)
Hγ
Xm

t + g̃m′ g̃
t
m

)
C
)
. The derivative

w.r.t ρj leads to

ρ
(r)
j =

1−ρ(r)
j

σ2
j

(r)

(
2ρ

(r)
j

(
trace

(
U1B̃

)
+ trace (U2B)

)
+ trace

(
U1C̃

)
+ trace (U2C)) = F3

(
ρ

(r)
j , σ2

j
(r)
)
, which is the following fixed-

point equation ρ(r)
j = F3

(
ρ

(r)
j , F2

(
ρ

(r)
j , F1(ρ

(r)
j )
))

.

(d) M-βz: Maximizing [3.17] with respect to βz yields

β(r)
z = arg max

βz

E
p̃

(r)
z

[
log p (z; βz)

]
. [3.39]
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In order to avoid high values of βz that can lead to over-spatial reg-
ularization, βz is assigned a priori to an exponential distribution,
yielding

β(r)
z = arg max

βz

E
p̃

(r)
z

[
log p (z; βz)

]
+ log p (βz;λz) [3.40]

where λβz is the parameter of the exponential prior. An itera-
tive procedure can be used to reach the optimal value of βz by
approximating the gradient as

∇βz ≈
∑

(j,j′)∈V2,j j′

∑
k=1:K

(
p̃(r)
zj

(k)p̃(r)
zj′

(k)− pMF
zj

(k; βz)p
MF
zj′

(k; βz)
)
−λβz ,

[3.41]

pMF
zj

(zj = k; βz) =

exp

(
βz

∑
j′∈V,j′ j

p̃
(r)
zj′ (k)

)
∑
l=1:K

exp

(
βz

∑
j′∈V,j′ j

p̃
(r)
zj′ (k)

) . [3.42]

(e) M-
(
σ2
h, h̄,ν

)
:(

σ2
h

(r)
, h̄(r),ν(r)

)
= arg max

σ2
h,h̄,ν

E
p̃

(r)
H p̃

(r)
z

[
log p

(
H | z; h̄,ν

)]
+log p

(
h̄;σ2

h

)
.

[3.43]
Maximizing w.r.t νk for a given k yields

νk =

∑
j∈V

p̃
(r)
zj (k)

(
trace

(
Σ

(r)
Hj

)
+
(
m

(r)
Hj
− h̄k

)t (
m

(r)
Hj
− h̄k

))
(D + 1)

∑
j∈V

p̃
(r)
zj (k)

.

[3.44]
Maximizing w.r.t h̄k for a given k yields

h̄k =

ID+1 +
νkR

−1/σ2
h∑

j∈V
p̃

(r)
zj (k)


−1

∑
j∈V

p̃
(r)
zj (k)m

(r)
Hj∑

j∈V
p̃

(r)
zj (k)

 . [3.45]
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The updated values of ν(r)
k and h̄(r)

k can be finally used to update
the value of σ2

h

σ2
h

(r)
=

K∑
k=1

h̄
(r)t

k R−1h̄
(r)
k

K
. [3.46]

3.3 Variational model selection procedure for
the JPDE model

3.3.1 JPDE model selection

As stated in Section 3.1, selecting the number of parcels (K) is a challeng-
ing issue when analyzing fMRI data using the JPDE model. We propose
here an automatic model selection procedure that allows the estimation of
the number of useful parcels based on the calculated free energy (F). It
has been clearly stated in (Attias, 2000) that, when data is large enough, the
free energy corresponds precisely to the Bayesian information criterion (BIC)
and the minimum description length criterion (MDL) (Chickering and Heck-
erman, 1997). Calculating the free energy allows therefore model selection
according to these popular criteria. This section details this technique pro-
posed in (Albughdadi et al., 2014), which is the first contribution of this PhD
thesis. If we consider Ω different candidate models, the number of parcels
associated with these models will be denoted by Kω where ω ∈ {1, ...,Ω}. In
this section, we use different notations for the parameters Ψ and the hyper-
parameters Φ where Ψ = {h̄, βz,β} and Φ = {L,Γ,µ,υ,ν,γ, γz, σ2

h}. After
running the adopted VEM algorithm, for each model order we obtain esti-
mated posteriors denoted as p̃(∞)

A , p̃
(∞)
H , p̃

(∞)
Q , p̃

(∞)
z and point estimates Ψ(∞),

Φ(∞).
Following (Albughdadi et al., 2014), we refer to the model ω by writing pωx
instead of p̃(∞)

x for x ∈ {A,H ,Q, z}. The free energy in [3.10] can then be
defined as

F(pω,Ψω,Φω) = Epω
[
log p(Y ,A,Q,H , z,Ψω;Φω)

]
+ G(pω) [3.47]

where pω is the factorized posterior approximation

pω(A,Q,H , z) = pωA(A)pωQ(Q) pωH(H) pωz (z). [3.48]



67

The free energy in [3.47] can therefore be rewritten as

F(pω,Ψω,Φω) = EpωAp
ω
H

[
log p(Y |A,H ;Φω)

]
+ EpωAp

ω
Q

[
log p(A |Q;Φω)

]
+ EpωQ

[
log p(Q|βω)

]
+ EpωHp

ω
z

[
log p(H | z, h̄ω;Φω)

]
+ Epωz

[
log p(z|βωz )

]
+ log p(h̄ω;Φω) + log p(βω;Φω)

+ log p(βωz ;Φω) + G(pωA) + G(pωQ) + G(pωH) + G(pωz ). [3.49]

Each of the above terms can be calculated from the outputs of the VEM al-
gorithm based on the estimated posteriors and hyperparameters. 1 In what
follows, detailed computations of the free energy terms in [3.49] are provided.
These terms are computed after convergence of the JPDE VEM model.

(i) EpωAp
ω
H

[
log p(Y |A,H ;Φω)

]
This term corresponds to EpωApωH [log p(Y |A,H ;Lω,Γω)] and can be
computed as follows

EpωApωH [log p(Y |A,H ;Lω,Γω)] = −NJ
2

log 2π +
J

2
log |Λj| −N

J∑
j=1

log σj

+
J∑
j

mt
Hj

(
M∑
m=1

mAmj
XmtΓωj (yj − P`j))−

1

2

J∑
j=1

(yj − P`j)tΓωj (yj − P`j)

− 1

2

J∑
j=1

∑
m,m′

{(
mAmj

mAm
′

j
+ υAmj Am

′
j

)
×
[
mt

Hj
XmtΓωjX

m′mHj + trace
(
ΣHjX

mtΓωjX
m′
)]}

[3.50]

(ii) EpωAp
ω
Q

[
log p(A |Q;Φω)

]
This term is equivalent to EpωApωQ [log p(A |Q,µω,vω)]. Straightforward
calculations lead to the following equation

1This free energy has to be calculated once the convergence of the VEM algorithm has
been reached for each model. The best model is therefore the one associated with the
highest free energy value.
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EpωApωQ [log p(A |Q,µ,v)]

=
M∑
m=1

J∑
j=1

{[
1− pωqmj (1)

] [
log

1√
2πvωm0

−
(mAmj

− µωm0)2 + vAmj Am
′

j

2vωm0

]

+ pωqmj (1)

[
log

1√
2πvωm1

−
(mAmj

− µωm1)2 + vAmj Am
′

j

2vωm1

]}
[3.51]

(iii) EpωQ

[
log p(Q|βω)

]
Using straightforward calculations we obtain

EpωQ [log p(Q |βω)] =
M∑
m=1

{
− logW (βωm) + βωmEpqm [U(qm)]

}
[3.52]

with

EpQm [U(qm)] =
1

2

J∑
j=1

∑
l∼j

EpQm
j
pQm

l

[
I(qmj = qml )

]
,

=
1

2

∑
j

∑
l∼j

1∑
i=0

pωQmj (i)pωQml (i). [3.53]

• Computing W (βωm): Using a mean field approximation, we obtain

W (βωm) ' Wmf (β
ω
m) exp

(
βωmEpmf [U(qm)− Umf (qm)]

)
, [3.54]

where Umf (q
m),Wmf (β

ω
m) and pmf have been derived in (Bakhous,

2013)

W (βωm) '
J∏
j=1

1∑
i=0

exp

(
βωm
∑
l∼j

pωQml (i)

)

× exp

(
βωm
∑
j

∑
l∼j

1∑
i=0

[
pmfj(i)

(
pmfl(i)

2
− pωQml (i)

)])
[3.55]

with Pmfj(i) =
exp

(
βωm

∑
l∼j

pω
Qm
l

(i)

)
∑

i∈{0,1}
exp

(
βωm

∑
l∼j

pω
Qm
l

(i)

) .
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(iv) EpωHp
ω
z

[
log p(H | z, h̄ω;Φω)

]
This term is equivalent to EpωHp

ω
z

[
log p(H | z, h̄ω;νω)

]
and can be com-

puted as follows

EpωHp
ω
z

[
log p(H | z, h̄ω;νω)

]
=

J∑
j=1

K∑
k=1

pωzj(k)

(
−D + 1

2
log 2π − D + 1

2
log νωk

)

−
J∑
j=1

K∑
k=1

pωzj(k)

(
1

2νωk
EpHj [(Hj − h̄ωk )T (Hj − h̄ωk )]

)
,

=
J∑
j=1

K∑
k=1

pωzj(k)

(
−D + 1

2
log 2π − D + 1

2
log νωk

)

−
J∑
j=1

K∑
k=1

pωzj(k)

(
1

2νωk
[(mHj − h̄ωk )T (mHj − h̄ωk ) + trace(ΣHj)

)
.

[3.56]

(v) Epωz

[
log p(z|βωz )

]
Epωz [log p(z | βωz )] = − logW z(βωz ) + βωz Epz [U(z)] [3.57]

with

Epωz [U(z)] =
1

2

J∑
j=1

∑
l∼j

Epzj pzl [I(zj = zl)] =
1

2

J∑
j=1

∑
l∼j

K∑
i=1

pωzj(i)p
ω
zl

(i).

• Computing W z(βωz ): Using a mean field approximation yields

W z(βωz ) ' W z
mf (β

ω
z ) exp

(
βωz Epmf [U(z)− Umf (z)]

)
[3.58]

where Umf (z),W z
mf (β

ω
z ) and pmf have been derived in (Bakhous, 2013)
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W z(βωz ) '
J∏
j=1

K∑
i=1

exp

(
βωz
∑
l∼j

pωzl(i)

)

× exp

(
βωz

J∑
j=1

∑
l∼j

K∑
i=1

[
pmfj(i)

(
pmfl(i)

2
− pωzl(i)

)])
[3.59]

with Pmfj(i) =
exp

(
βωz

∑
l∼j

pωzl
(i)

)
∑

i∈{1,...,K}
exp

(
βωz
∑
l∼j

qzl (i)

) .

(vi) log p(h̄ω;Φω)

This term corresponds to log p(h̄ω;σ
2(ω)
h ) whose computation is sum-

marized below

log p(h̄ω;σ
2(ω)
h ) =

K∑
k=1

log p(h̄ωk ;σ
2(ω)
h ) [3.60]

where p(h̄ωk ;σ
2(ω)
h ) is a zero mean Gaussian distribution with covariance

matrix σ2(ω)
h R and

log p(h̄ω;σ2
h) =

K∑
k=1

logN (h̄ωk ; 0, σ2
hR). [3.61]

(vii) log p(βω;Φω)
This term is equivalent to log p(βω;λω), which is an exponential distri-
bution with parameter λω

log p(βω;λω) = λω exp(−λωβω), [3.62]

where βω > 0.

(viii) log p(βωz ;Φω)
Following the same steps as above, this term is equivalent to log p(βωz ;λω),
which is also an exponential distribution with parameter λωz

log p(β̂z;λ
ω
z ) = λωz exp(−λωz βωz ), [3.63]
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where βωz > 0.

(ix) G(pωA) =
∑J

j=1

∑M
m=1 G(pωAmj )

To calculate this term, we use the expression of the Gaussian entropy
yielding

G(pωA) =
J∑
j=1

M∑
m=1

G(pωamj ) =
1

2

J∑
j=1

M∑
m=1

log
(∣∣∣Σamj

∣∣∣ (2πe)D) . [3.64]

(x) G(pωH) =
∑J

j=1 G(pωHj)
The Gaussian entropy is used as well to calculate this term leading to

G(pωH) =
J∑
j=1

G(pωHj) =
1

2

J∑
j=1

log
(∣∣ΣHj

∣∣ (2πe)D) . [3.65]

(xi) G(pωQ) =
∑J

j=1

∑M
m=1 G(pωQmj )

Using the definition of the entropy for a discrete random variable, the
following results is obtained

G(pωQ) = −
J∑
j=1

M∑
m=1

pωQmj log2

(
pωQmj

)
. [3.66]

(xii) G(pωz ) =
∑J

j=1 G(pωzj)
As for G(pωQ), we obtain

G(pωz ) = −
∑
j

pωzj log2

(
pωzj

)
. [3.67]

The resulting model selection procedure with the JPDE model is summarized
in Algorithm 3.1.

3.3.2 Experimental validation

To validate the free energy model selection procedure, we performed numer-
ical experiments for both synthetic and real data.
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Algorithm 3.1 The model selection procedure for the JPDE model. The
subscript (r) refers to the current iteration.

for the candidate model ω in Ω do
Initialization:

p̃
(0)
z (z) from the initial parcellation.
p̃

(0)
Q (Q) such that p̃(0)

Qj
(qmj ) ∈ {0, 1}.

for all j do
- m(0)

Hj
is initialized from the canonical HRF.

- m(0)
Aj

is initialized with zeros.
end for
Initialize with some Θ(0).

r = 1
repeat

Expectation step:
Compute p̃(r)

H (H) according to [3.18].
Compute p̃(r)

A (A) according to [3.19].
Compute p̃(r)

Q (Q) according to [3.24]
Compute p̃(r)

z (z) according to [3.26]-[3.28].
Maximization step:

Compute Θ(r) according to [3.30]-[3.46].
set r ← r + 1

until convergence
Compute the free energy value using [3.49].

end for
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(i) Synthetic fMRI time series:
Three experiments were conducted to validate the proposed model se-
lection procedure. These experiments were denoted as Exp. 1, Exp. 2
and Exp. 3. For each experiment a different parcellation mask is con-
sidered with two, three and four parcels as shown in Fig. 3.3[top row].
Different HRF groups were considered each with kω = ω+ 1 where ω ∈

Exp. 1 Exp. 2 Exp. 3
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Figure 3.3: Ground truth parcellations used for the 3 experiments and corresponding
initialization masks (grid size = 20× 20).

{1, . . . , 3} and ω ∈ Ω . The HRFs associated with these groups were
selected from the ground truth HRFs

(
h̄k
)

1≤k≤K as shown in Fig. 3.4.
Based on these reference parcellation, a BOLD signal was generated ac-
cording to the observation model in [3.1] for each experiment (using the
pyhrf software). Two experimental conditions (M = 2) were considered
with 30 trials for each condition. The reference binary activation maps
are of size 20 × 20 and are shown in Fig. 3.5. Given these labels, the
NRLs were simulated from their prior conditionally to the activation
labels Q as shown in Fig. 3.6. For m = 0, 1 : amj | qmj = 0 ∼ N (0, 0.5)
and amj | qmj = 1 ∼ N (3.2, 0.5). The inter stimuli interval and variance
used to generate the onsets of the trials were 3 s and 5 s, respectively.
The other parameters were TR = 1 s and ∆t = 0.5 s. Data resulting
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Figure 3.4: Ground truth HRF shapes (h̄k, k = 1, . . . ,Kω with ω = {1, . . . , 3}) used for
generating synthetic fMRI time series.

q1 q2

Figure 3.5: Reference activation labels for the two experimental conditions (grid size =
20× 20).

a1 a2

Figure 3.6: Reference NRLs for the two experimental conditions (grid size = 20× 20).
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for the three experiments were processed by the JPDE algorithm while
performing model selection based on the proposed free energy. For each
experiment, a set of Ω = 1, . . . , 3 models was investigated. The initial
parcellation masks are shown in Fig. 3.3[bottom row]. After evaluating
the free energies for all models, it turns out that the retained mod-
els were ω = 1, ω = 2 and ω = 3 for Exp. 1, 2 and 3, respectively.
The corresponding values of the free energy are provided in Tab. 3.2,
where the highest value for each experiment appears in bold font. The
parcellation estimates for the three experiments are shown in Fig. 3.7.
This figure shows accurate parcellation estimates from a visual point
of view. The estimated parcellation error probability for the selected
model in each experiment is shown in Tab. 3.3.

Table 3.2: Evaluated free energy values for the three experiments and the three compet-
ing models. Bold values indicate the highest free energy.

Competing model Exp.1 Exp.2 Exp.3
ω = 1 (2 parcels) 78614.04 59459.32 6185.50
ω = 2 (3 parcels) 77126.72 86584.94 83424.95
ω = 3 (4 parcels) 78365.17 86492.43 89146.02

Exp. 1 Exp. 2 Exp. 3

Figure 3.7: Parcellation estimates for the three experiments using the standard JPDE
model with the variational model selection procedure (grid size = 20× 20).

Quantitatively speaking, mean square error (MSE) values for NRL and
activation labels estimates are reported in Tab. 3.4. The reported re-
sults shows a robust detection accuracy.
Fig. 3.8 shows the curve of the calculated free energy at each iteration
for the three experiments. We can notice that the free energy is strictly
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Table 3.3: The estimated error probabilities for the parcellation estimates using the
standard JPDE model.

Exp. 1 Exp. 2 Exp. 3
Error probability 1.5% 2.75% 3.25%

Table 3.4: Mean square error of NRLs and activation maps. The reported values corre-
spond to the retained model in the three experiments.

Exp.1 Exp.2 Exp.3

NRLs m = 1 0.016 0.017 0.017
m = 2 0.012 0.012 0.012

Labels m = 1 0.0034 0.011 0.011
m = 2 0.0026 0.0026 0.0027

monotonic and that it can be used as a stopping criteria for the VEM
algorithm when the difference between the free energy values in the
current and previous iterations is less than a predefined threshold.

Figure 3.8: The curve of the normalized free energy calculated through the VEM itera-
tions in the three synthetic experiments.
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(ii) Real data:
A gradient-echo EPI (echo planar imaging) sequence
(Echo Time=30ms / Repetition Time=2.4s / slice thickness = 3mm
/ Field Of View=192mm2) was used to acquire the real fMRI data at
3T during a localizer experiment (Pinel et al., 2007). This paradigm
involved sixty auditory, visual and motor stimuli, defined in ten exper-
imental conditions (M = 10). During the used paradigm, 128 scans
were acquired at a 2 × 2 × 3mm3 3D spatial resolution. Akin to the
experiment conducted in (Chaari et al., 2012), we focus on the auditory
condition that generates activations in the temporal lobe. Specifically,
we focus on two bilateral temporal regions of interest (ROI) presented
in Fig. 3.9 denoted as ROI 1 (left ROI) and ROI 2 (right ROI). Ω = 5
different models were tested with K1 = 1, K2 = 2, K3 = 3, K4 = 5 and
K5 = 8. For each model, the initial parcellation was obtained by merg-
ing neighboring parcels obtained by applying the method of (Thirion
et al., 2006). After running all the models separately and calculating
the final free energies (see Tab. 3.5), it turns out that ω = 2 (2 parcels)
is the best model that fits the fMRI data. The initialization and es-
timated masks with the selected model are illustrated in Fig. 3.10[left
column] and 3.10[right column], respectively. This figure shows the
two estimated parcels. Fig. 3.11 also shows the estimated NRLs with
the same model. These results are consistent with those obtained in
(Chaari et al., 2012) where three parcels have been identified, two of
them being very similar. In our results, these two parcels have been
successfully merged in a two-parcel model.

Figure 3.9: Anatomical localization of the bilateral temporal regions of interest.
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Initialization Parcellation estimates

(a) Slice. 1 (b) Slice. 1

(c) Slice. 2 (d) Slice. 2

(e) Slice. 3 (f) Slice. 3

(g) Slice. 4 (h) Slice. 4

Figure 3.10: Consecutive slices of the initial parcellation (left column) and estimated
parcellation (right column) for the two-parcels model selected by the variational model
selection procedure.
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Table 3.5: Evaluated free energy values for the 5 models tested on real data using the
variational model selection procedure .

Competing model ROI. 1 ROI. 2
ω = 1 (1 par.) -307292 -226216
ω = 2 (2 par.) -306941 -224608
ω = 3 (3 par.) -309810 -226127
ω = 4 (5 par.) -309580 -227406
ω = 5 (8 par.) -310089 -226571

(a) Auditory experimental condition

(b) Visual experimental condition

Figure 3.11: NRL estimates for the auditory and visual experimental conditions for the
two-parcels model selected by the variational model selection procedure.
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3.4 Conclusion

In this chapter, we introduced the JPDE model which is an extension of the
parcel-based JDE model. This model assumes that a single unknown HRF
shape is driving hemodynamic responses in a given parcel. Activated voxels
within the parcel are then localized by inferring a spatially regularized bi-
linear model. One major limitation of the JDE model that it requires the
parcellation to be fixed a priori by, e.g., using clustering algorithms. The
JPDE model solves this problem by avoiding the pre-defined parcellation.
This model allows the grouping of the regions that share a similar HRF pat-
tern and relaxing the hard constraint of a single HRF profile over a given
parcel to cope with possible parcellation errors. These concerns were ad-
dressed by introducing HRF patterns represented by Gaussian distributions
and assigned to representative voxels using latent variables. These latent
variables are governed by a hidden Markov random field, namely a Potts
model that enforces spatial correlation between neighbouring voxels. How-
ever, the number of the hemodynamic territories (parcels) has to be specified
a priori for the JPDE model. This number has a huge influence of the detec-
tion and estimation tasks and its adjustment is generally a non-trivial task.
In this context, we proposed a variational model selection procedure based
on the free energy calculation. This procedure was added as an extension to
the JPDE model where the free energy was calculated for different candidate
models after convergence. Each of these models is characterized by a given
number of parcels and the model maximizing the free energy is the best fit
for the fMRI data. In other words, if we have Ω different models then we
have to run the JPDE model with the model selection procedure Ω times
and compute the value of the free energy each time. The proposed extension
was validated using synthetic and real data experiments. For synthetic data,
the proposed procedure managed to estimate the correct number of parcels
(when compared to the ground truth) for all the experiments. As regards
real data, the region of interest was the temporal lobes and the model with
two parcels was selected as the best data fit. These results are coherent with
those obtained by the JPDE model in (Chaari et al., 2012) where two similar
HRF profiles were estimated in the left component and one HRF profile was
estimated in the right component.
The main limitation of model selection based on the free energy calculations
is that it requires to run the algorithm for each candidate model, which can
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be time consuming especially if no approximate idea about the number of
parcels is available. To avoid such a limitation, in chapter 4 we propose a
non-parametric Bayesian model to estimate the number of parcels directly
from the data in addition to the parcels themselves.
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CHAPTER 4

Joint Parcellation Detection
Estimation Using a

Non-parametric Bayesian Model

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Non-parametric Bayesian model selection for hemo-
dynamic brain parcellation . . . . . . . . . . . . . . 84

4.2.1 Dirichlet processes . . . . . . . . . . . . . . . . . . 84

4.2.2 Non-parametric Bayesian JPDE model . . . . . . . 86

4.2.3 Variational expectation maximization estimation . 89

4.3 Experimental validation . . . . . . . . . . . . . . . . 96

4.3.1 Synthetic fMRI time series . . . . . . . . . . . . . . 96

4.3.2 Real data . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1 Introduction

One of the most challenging issues in task-related fMRI data analysis con-
sists of obtaining a meaningful functional brain parcellation. The joint par-
cellation detection estimation (JPDE) model addresses this issue through an
automatic inference of the parcels directly from fMRI data. However, for
doing so, the number of parcels needs to be fixed a priori and an appropriate
initialization for the parcellation mask must be provided too. Hence, this
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difficult task generally depends on the subject. In this chapter, an auto-
matic model selection approach is proposed to overcome this limitation at
the subject-level. This approach relies on a non-parametric Bayesian ap-
proach that estimates the number of parcels online using a Dirichlet process
mixture model combined with a hidden Markov random field. The inference
of the different model parameters is carried out using a variational expec-
tation maximization strategy. As compared to a variational model selection
procedure in the standard JPDE framework, this non-parametric extension
appears more efficient in terms of computational time and does not require a
precise initialization. This method is the second contribution of this thesis. It
is first validated on synthetic data to demonstrate its robustness in selecting
the right model order and providing accurate estimates for the parcellation,
the hemodynamic response function (HRF) shapes and the activation maps.
As regards the computational cost of the non-parametric Bayesian algorithm,
it is reduced when compared to the free energy calculations of many candi-
date models. The method is then validated on real fMRI data in two regions
of interest (ROIs): the right motor ROI and the bilateral occipital ROI. The
results illustrated in this chapter show the ability of the proposed method to
aggregate parcels with similar behaviour from a hemodynamic point of view,
while discriminating them from other parcels having different hemodynamic
properties. The HRF estimates of the different hemodynamic territories ob-
tained with our approach are close to the canonical HRF shape in both the
right motor and the bilateral occipital cortices. The discrimination power of
the proposed approach is increased compared to its ancestors (Chaari et al.,
2013, 2015) where the results on real data show its ability to discriminate
HRF profiles with different Full Width at Half Maximum (FWHM). The ro-
bust detection of the elicited task-related activity is confirmed by comparing
the neural response level estimates obtained using our approach with those
obtained using the joint detection estimation (JDE) model.
This chapter is organized as follows; Section 4.2 introduces the Dirichlet
processes that will be embedded in the JPDE model, the resulting non-
parametric Bayesian model and its variational inference. The proposed NP-
JPDE model is validated on synthetic and real data experiments in Sec-
tion 4.3. Some conclusions and discussions are finally drawn in Section 4.4.



84

4.2 Non-parametric Bayesian model selection
for hemodynamic brain parcellation

One important issue for fitting the JPDE model to fMRI data is to determine
the number of parcels within the brain or the region of interest. Even though
the algorithm presented in (Chaari et al., 2012, 2015) automatically estimates
the parcels from the data in parallel to the joint detection-estimation task, it
still requires to manually set the number of parcels which limits its usefulness.
Determining the optimal number of parcels K, which yields the best fit to
the data is a model selection problem. In this case, the likelihood cannot
be used directly as a model score since it does not account for the model
complexity. Some alternatives investigated in the literature are based on a
penalized likelihood such as the Bayesian information criterion (BIC) and the
minimum description length (MDL) criterion (Chickering and Heckerman,
1997). Although the model selection procedure proposed in (Albughdadi
et al., 2014) and introduced in Chapter 3 automatically estimates the number
of parcels, it can be time consuming since it requires to be run for each
candidate model.

We present here a novel approach to perform model selection (Albughdadi
et al., 2016c). This approach relies on a non-parametric model to estimate
the number of parcels from the data. In this approach, the above mentioned
JPDE model is reformulated to incorporate a non-parametric model selection
using Dirichlet processes combined with a hidden Markov random field prior.
This section first recalls the basic principles of Dirichlet processes. In a
second step, we show how Dirichlet processes can be included in the JPDE
framework. The resulting VEM inference scheme is finally presented in detail.

4.2.1 Dirichlet processes

Dirichlet processes were first proposed in (Ferguson, 1973) as distributions
placed over distributions. A Dirichlet process (DP), denoted by DP (G0, α),
is characterized by a base distribution G0 and a positive scaling parameter α.
More precisely, a random distribution G is distributed according to a Dirich-
let Process (Ferguson, 1973) with scaling parameter α and base distribution
G0, if for all natural numbers k and for all k-partitions {B1, ..., Bk}

(G(B1), G (B2) , ..., G (Bk)) ∼ Dir (αG0 (B1) , αG0 (B2) , ..., αG0 (Bk)) [4.1]
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where Dir (αG0 (B1) , αG0 (B2) , ..., αG0 (Bk)) is the Dirichlet distribution
with parameter (αG0 (B1) , . . . , αG0 (Bk)).
A Dirichlet process mixture model (DPMM) uses the DP as a non-parametric
prior in a hierarchical Bayesian model. Let us consider a mixture model where
ηn is the parameter associated with the n-th data point xn, ηn is not observed
and the DP is used to induce a prior on the ηn’s. If G is a measure generated
according to a DP, G is discrete with probability one. As a consequence,
the following hierarchical representation can be seen as a countably infinite
mixture model

xn | ηn ∼ p(xn | ηn)

ηn | G ∼ G

G | {α,G0} ∼ DP (α,G0) [4.2]

where n = 1, . . . , N . Among the values of the parameter ηn generated ac-
cording to G, a number of them are equal. These unique values can be used
to partition the samples x1, . . . , xN into clusters. Thus, the DP mixture is a
flexible mixture model with a random number of clusters which grows with
new observed data. An explicit DP characterization, which will be useful
hereafter, is provided in terms of a stick-breaking construction (Blei et al.,
2006). Consider two infinite collections of independent random variables
τ i ∼ Be(1, α) ,where Be(1, α) is a beta distribution with parameters 1 and
α, and η∗i ∼ G0, for i = 1, 2, . . .. With τ = τ1, τ2, . . . , the stick-breaking
representation of G is

πi(τ ) =τi

i−1∏
j=1

(1− τj)

G =
∞∑
i=1

πi(τ )δη∗i . [4.3]

It is clear that G is a discrete distribution whose mixing proportions πi(τ ) are
given by successively breaking a unit length stick into an infinite number of
pieces. The size of each successive piece is proportional to the rest of the stick
and is given by an independent draw from a beta distribution Be(1, α). Let
zn be the cluster assignment variable for the n-th data point. The hierarchical
model of a Dirichlet process mixture model can be represented as follows

(i) τi | α ∼ Be(1, α), i = 1, 2, ...



86

(ii) η∗i | G0 ∼ G0, i = 1, 2, ...

(iii) for the n-th data point

(a) zn | τ is distributed according to a multinomial distribution, i.e,
zn | τ ∼Mult(π(τ )) with τ = τ1, τ2, . . .

(b) xn | zn ∼ p(xn | η∗zn)

4.2.2 Non-parametric Bayesian JPDE model

Following the line of DPMM, we address the issue of automatically selecting
the number of parcels by considering a countable infinite number of parcels.
This requires the extension of the standard finite state space Potts model to
a countable infinite number of states in which we use a DPM prior on the z
variable in the JPDE formulation. Our proposal differs from that in (Chatzis
and Tsechpenakis, 2010) in that it is not a mean field approximation using
a set of independent variables but a direct generalization of the Potts model
that uses a stick breaking representation. The stick breaking representation is
used here to consider an infinite number of states. For such a generalization,
we can consider the Potts model with an external field defined over z =
{z1, . . . , zJ} as

p(z; βz,α) ∝ exp

(
J∑
j=1

αzj + βz
∑
i∼j

I(zi = zj)

)
, [4.4]

for all j = 1, . . . , J , zj ∈ {1, . . . , K}, where βz is an interaction parameter
and α is a parameter vector such that α = {α1, . . . , αK} is an additional
external field where each αk is scalar. Such a Potts model is defined up to a
multiplicative constant depending on α, meaning that the distribution (4.4)
can be also obtained when adding the same constant value to all the αk’s.
To avoid such an identifiability issue, it is common to consider additional
constraints on the αk’s. One way to make the parameter vector α unique
is to asssume αk = log πk with

∑K
k=1 πk = 1. The Potts model in (4.4) can
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then be defined by the following joint probability

p(z; βz,π) ∝ exp

(
J∑
j=1

log πzj + βz
∑
i∼j

I(zi = zj)

)

∝

(
J∏
j=1

πzj

)
exp

(
βz
∑
i∼j

I(zi = zj)

)
. [4.5]

Define V (z;π, βz) =
∑J

j=1 log πzj +βz
∑

i∼j I(zi = zj), which is called the
energy function, where the first and the second sum respectively represents
the first and the second order potentials. In the finite state space case, such
a representation is equivalent, via the Hammersley-Clifford theorem (Besag,
1974), to assume that the distribution in (4.4) is a Markov random field.

Using the stick breaking construction, we can then consider a countable
infinite number of probabilities πk that sum to 1, i.e,

∑∞
k=1 πk = 1. From

this, we can define the same energy function V as before but consider it over
an infinite countable set (homogeneous to the set of positive integers),

V (z;π, βz) =
J∑
j=1

log πzj + βz
∑
i∼j

I(zi = zj)

for zj ∈ {1, 2, . . .}. Next, using the Gibbs representation p(z) ∝ exp(V (z;π, βz)),
the Hammersley-Clifford theorem still holds if

∑
z exp(V (z;π, βz)) < ∞.

Our choice of π ensures this property. Indeed,

∑
z

exp(V (z;π, βz)) =
∑
z

(
J∏
j=1

πzj

)
exp

(
βz
∑
i∼j

I(zi = zj)

)

< exp (βzJ(J − 1))
∑
z

J∏
j=1

πzj

< exp (βzJ(J − 1)) <∞

where J(J − 1) is the maximum number of neighbors among J sites. We
also used that for all j = 1, . . . , J ,

∑
zj
πzj =

∑∞
k=1 πk = 1. It follows that

p(z;π, βz), in the infinite state space case, is still a valid probability distri-
bution and is a Markov field by the Hammersley-Clifford theorem. Note that
such a generalization of the Potts model is possible because of the presence
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of the external field parameters πk that satisfy
∑∞

k=1 πk = 1. A Potts model
with equal external field parameters cannot be as simply extended to an in-
finite countable state space. For a Potts model with no external field, such
an extension is not possible because in the K-state case this Potts model is
equivalent to πk = 1/K for all k where their sum does not tend to 1 when K
tends to infinity.

In the stick breaking setting, we then consider πk(τ ) = τk
∏k−1

l=1 (1 − τl)
and

p(z; βz, τ ) ∝

(
J∏
j=1

πzj(τ )

)
exp

(
βz
∑
i∼j

I(zi = zj)

)
. [4.6]

Such a construction is valid for any set of parameters τ = {τk}∞k=1 with each
τk ∈ [0, 1]. However we would be left with an infinite number of parameters
τk to estimate. The Bayesian point of view solves this problem by assuming
that all τk’s are i.i.d. variables having the same Be(1, α) distribution so that
the number of parameters to estimate reduces to a single parameter α.
To reformulate the JPDE model in a non-parametric Bayesian framework
coupled with HMRF, the original model of (Chaari et al., 2012, 2015) is kept
except for the HRF groups z. The extension of JPDE to an infinite number
of parcels therefore consists of augmenting the original JPDE formulation
with additional variables {τk}∞k=1 and of considering the following hierarchical
construction which we call the NP-JPDE model

(i) τk | α ∼ Be(1, α), k = 1, 2, ...

(ii) (Θ∗k = (h̄k, Σ̄k) | G0) ∼ G0, k = 1, 2, ... where G0 = N (0, σ2
hR)⊗ δνI

(iii) p(z|τ ; βz) ∝ (
∏J

j=1 πzj(τ )) exp(βz
∑

i∼j I(zi = zj))

(iv) hj | zj ∼ p(hj|Θ∗zj), where p(hj|Θ
∗
k) = N (hj; h̄k, Σ̄k) is a Gaussian

distribution whose parameters h̄k, Σ̄k are associated with the k-th par-
cel1.

The directed acyclic graph in Fig. 4.1 illustrates the new hierarchical
model, which differs from the model of (Chaari et al., 2012, 2015) by the green

1The other distributions defining the model remain the same as in the standard JPDE
model. Note that in the extended version above we assume νk = ν for all k to define G0.



89

Figure 4.1: Graphical model describing dependencies between observed and missing
variables involved in the non-parametric JPDE generative model for a given parcel P
with J voxels.

circled variables required for model selection. The resulting joint distribution
of Y ,A,H ,Q, z and the additional variable τ reads

p(Y ,A,H ,Q, z, τ ;Θ) =p(Y |A,H ;Θ) p(A |Q;Θ) p(Q;Θ)

× p(H | z;Θ) p(z|τ ;Θ) p(τ ;Θ) [4.7]

where Θ =
{
Γ,L,θa, βz, σ

2
h, (h̄k)1≤k≤K , ν, α

}
and p(τ ) =

∏∞
k=1 p(τk), p(z|τ )

are defined in steps (i) and (iii), respectively.

4.2.3 Variational expectation maximization estimation

Different inference strategies can be used to estimate the missing variables
A,H ,Q, z, τ and the parameters Θ from the posterior distribution
p(A,H ,Q, z, τ | Y ;Θ) associated with [4.7]. Due to the computational
complexity of MCMC methods, we propose to use a VEM algorithm to derive
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an approximation of the true posterior distribution p(A,H ,Q, z, τ | Y ;Θ)
of the form

p̃(A,H ,Q, z, τ ;Θ) = p̃A(A) p̃H(H)
J∏
j=1

p̃Qj(Qj)
J∏
j=1

p̃zj(zj) p̃τ (τ ). [4.8]

In the variational distribution above, the approximations
∏J

j=1 p̃Qj(Qj)

and
∏J

j=1 p̃zj(zj) are sought in a form that factorizes over voxels (mean field)
to handle intractability due to the spatial neighborhood. The infinite state
space for z is dealt with by considering a truncation to a number K which
consists of assuming that the variational distribution satisfies p̃zj(k) = 0 for
k > K and p̃τ (τ ) =

∏K−1
k=1 p̃τk(τk). This amounts to setting τk = 1 for k ≥ K

or p̃τk(τk) = δ1(τk).
The VEM approach requires five steps associated with five expectations

referred to as: VE-A, VE-H, VE-Q, VE-Z and VE-τ . Compared to the
standard JPDE, the new steps are the VE-Z and VE-τ steps which are
detailed below. (See (Chaari et al., 2012, 2015) for more details about the
other expectation steps.) In what follows, we recall all the expectation steps

VE-H: p̃
(r)
H (H) ∝ exp

(
E
p̃

(r−1)
A p̃

(r−1)
z

[
log p(H |Y ,A, z;Θ(r−1)

])
[4.9]

VE-A: p̃
(r)
A (A) ∝ exp

(
E
p̃

(r)
H p̃

(r−1)
Q

[
log p(A |Y ,H ,Q;Θ(r−1))

])
[4.10]

VE-Q: p̃
(r)
Q (Q) ∝ exp

(
E
p̃

(r)
A

[
log p(Q |Y ,A;Θ(r−1))

])
[4.11]

VE-τ : p̃(r)
z (τ ) ∝ exp

(
E
p̃

(r)
z

[
log p(τ |Y , z;Θ(r−1))

])
[4.12]

VE-Z: p̃(r)
z (z) ∝ exp

(
E
p̃

(r)
H p̃

(r)
τ

[
log p(z |Y ,H , τ ;Θ(r−1))

])
. [4.13]

In the following part, further details are provided for the two new steps,
namely the VE-τ and VE-Z steps. The interested reader can refer to Sub-
section 3.2.3 for more details on the other steps.

(i) VE-τ step: The VE-τ step results straightforwardly from results on
variational approximation in the exponential family. Given [4.3] and
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for k = 1, . . . , K − 1,

p̃τk(τk) ∝ p(τk) exp

(
J∑
j=1

Ep̃zj p̃τ\{k}

[
log πzj(τ )

])
[4.14]

∝ p(τk) exp

(
J∑
j=1

K∑
l=k+1

p̃zj(l) log(1− τk) +
J∑
j=1

p̃zj(k) log(τk)

)
[4.15]

∝ Be(γk,1, γk,2) [4.16]

with

γk,1 = 1 +
J∑
j=1

p̃zj(k) [4.17]

γk,2 = α +
J∑
j=1

K∑
l=k+1

p̃zj(l). [4.18]

A gamma prior is placed over the scaling parameter α following (Esco-
bar and West, 1995) with parameters (ŝ1, ŝ2). The gamma distribution
is conjugate to the stick lengths and the parameters ŝ1 and ŝ2 are given
by

ŝ1 = s1 +K − 1 [4.19]

ŝ2 = s2 −
K−1∑
k=1

Ep̃τk

[
log(1− τk)

]
. [4.20]

After computing these parameters, we replace α in [4.18] with its ex-
pectation Eq

[
α
]

= ŝ1
ŝ2
.

(ii) VE-Z step: The VE-Z step is divided into J VE-Zj steps. Since
we assume p̃zj(zj) = 0 for zj > K, we only need to compute the
distributions for zj ≤ K,

p̃zj(zj) ∝ exp

(
Ep̃Hj

[
log p(hj|zj)

]
+ Ep̃τ

[
log πzj(τ )

]
+ βz

∑
i∼j

p̃zi(zj)

)
[4.21]

where

Ep̃τ

[
log πk(τ )

]
= Ep̃τk

[
log τk

]
+

k−1∑
l=1

Ep̃τl

[
log(1− τl)

]
. [4.22]
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The previous expectations can be computed using the fact that p̃τk is
a beta distribution, i.e., Be(γk,1, γk,2) defined by (4.17) and (4.18)

Ep̃τk

[
log(τk)

]
= Ψ(γk,1)−Ψ(γk,1 + γk,2) [4.23]

Ep̃τk

[
log(1− τk)

]
= Ψ(γk,2)−Ψ(γk,1 + γk,2) [4.24]

where Ψ(.) is the digamma function defined by

Ψ(z) = d
dz

log Γ(z) = Γ′(z)
Γ(z)

.

The term Ep̃Hj

[
log p(Hj|zj)

]
is computed as in the JPDE model as

shown in the VE-H step of (Chaari et al., 2015).

(iii) VM step: The maximization step in this extended JPDE is the same
as in (Chaari et al., 2015). As a consequence, it can be rewritten as

Θ(r) = arg max
Θ
{ E

p̃
(r)
A p̃

(r)
H

[
log p(Y |A,h;L,Γ)

]
+ E

p̃
(r)
A p̃

(r)
Q

[
log p(A |Q;µ,v)

]
+ E

p̃
(r)
H p̃

(r)
z

[
log p(h|z; {h̄k, Σ̄k}k=1:K

]
+ E

p̃
(r)
Q

[
log p(Q;β)

]
+ E

p̃
(r)
z p̃

(r)
τ

[
log p(z | τ ; βz)

]
}. [4.25]

The only step that differs from the original JPDE model is the maxi-
mization of [4.25] with respect to βz which leads to

β(r)
z = arg max

βz

E
p̃

(r)
z p̃

(r)
τ

[
log p(z|τ ; βz)

]
. [4.26]

This step does not admit an explicit closed-form expression but can be
solved numerically using gradient ascent schemes. It is straightforward
to show that the maximization of (4.26) with respect to βz admits a
unique solution. Indeed, it is equivalent to solve

β(r)
z = arg max

βz
E
p̃

(r)
z p̃

(r)
τ

[
V (z; τ , βz)

]
− E

p̃
(r)
τ

[
logK(βz, τ )

]
[4.27]

where K denotes the normalizing constant that depends on τ and βz.
Denoting the gradient vector and Hessian matrix respectively by ∇βz

and ∇2
βz
, it comes

∇βzEp̃
(r)
z p̃

(r)
τ

[
log p(z|τ ; βz)

]
= E

p̃
(r)
z p̃

(r)
τ

[
∇βzV (z; τ , βz)

]
− E

p(z;τ ,βz)p̃
(r)
τ

[
∇βzV (z; τ , βz)

]
[4.28]
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∇2
βzEp̃

(r)
z p̃

(r)
τ

[
log p(z|τ ; βz)

]
= E

p̃
(r)
z p̃

(r)
τ

[
∇2
βzV (z; τ , βz)

]
− E

p(z;τ ,βz)p̃
(r)
τ

[
∇2
βzV (z; τ , βz)

]
− E

p̃
(r)
τ

[
varp(z;τ ,βz)[∇βzV (z; τ , βz)]

]
. [4.29]

The last expectations in (4.28) and (4.29) are taken over the Potts prior
(4.6). It follows that whenever V (z; τ , βz) is linear in βz,∇2

βz
V (z; τ , βz)

is zero, the Hessian matrix is a semi-definite negative matrix and the
function to optimize is concave. Unfortunately, due to the intractable
normalizing constant K, expressions (4.28) and (4.29) are not directly
available. It is necessary to approximate the terms involving the true
MRF prior p(z; τ , βz) using an approximation. A natural approach is
to use

p̃priorz (z; τ , βz) =
J∏
j=1

p̃priorzj
(zj; τ , βz) [4.30]

with p̃priorzj
(zj; τ , βz) defined by

p̃priorzj
(zj = k; τ , βz) =

exp(log πk + βz
∑
i∼j
p̃

(r−1)
zi (k))

K∑
l=1

exp(log πl + βz
∑
i∼j
p̃

(r−1)
zi (l))

. [4.31]

This MRF prior approximation induced by the posterior variational
approximation has been proposed in (Celeux et al., 2003) and also
exploited in (Chaari et al., 2013). Similarly, we obtain

E
p̃

(r)
z p̃

(r)
τ

[
∇βzV (z; τ , βz)

]
'
∑K

k=1

∑
i∼j p̃zj(k)p̃zi(k) [4.32]

E
p(z;τ ,βz)p̃

(r)
τ

[
∇βzV (z; τ , βz)

]
'

K∑
k=1

∑
i∼j

E
p̃

(r)
τ

[
p̃priorzj

(k; τ , βz)p̃
prior
zi

(k; τ , βz)
]
.

[4.33]
The additional difficulty is that we have to compute an additional ex-
pectation with regards to p̃(r)

τ . The last expectation with respect to p̃(r)
τ

can be approximated using Monte Carlo sums. Since p̃(r)
τ is the product

of K − 1 independent beta distributions defined in [4.17] and [4.18], it
is straightforward to draw T realizations of (τ1, . . . , τK−1). Denoting
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these realizations as τ (t) for t = 1, . . . , T , the following approximation
is obtained

E
p̃

(r)
τ

[
K∑
k=1

∑
i∼j

p̃priorzj
(k; τ , βz)p̃

prior
zi

(k; τ , βz)

]

' 1

T

T∑
t=1

[
K∑
k=1

∑
i∼j

p̃priorzj
(k; τ (t), βz)p̃

prior
zi

(k; τ (t), βz)

]
.

An approximation of the gradient in [4.28] can then be computed. Set-
ting this approximate gradient to zero leads to an equation that can be
solved to provide βz. This solution is computationally expensive. For
this reason, the experiments considered hereafter have been conducted
with a fixed value of βz.

The proposed NP-JPDE model is summarized in Algorithm 4.1.
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Algorithm 4.1 The NP-JPDE model algorithm. The subscript (r) refers to
the current iteration.

Initialization:
set the truncation level for the number of parcels T .
p̃

(0)
z (z) initialized randomly for a uniform distribution.
p̃

(0)
Q (Q) such that p̃(0)

Qj
(qmj ) ∈ {0, 1}.

for all j do
- m(0)

Hj
is initialized from the canonical HRF.

- m(0)
Aj

is initialized with zeros.
end for
Initialize with some Θ(0).

r = 1
repeat

Expectation step:
Compute p̃(r)

H (H) according to [3.18].
Compute p̃(r)

A (A) according to [3.19].
Compute p̃(r)

Q (Q) according to [3.24].
Compute γ(r)

1 and γ(r)
2 according to [4.17] and [4.18], respectively.

Compute p̃(r)
z (z) according to [4.21]-[4.24].

Maximization step:
Compute Θ(r) according to [4.25].

set r ← r + 1
until convergence
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4.3 Experimental validation

To validate the NP-JPDE model, we performed numerical experiments on
both synthetic and real data2. In the synthetic data experiments, the pro-
posed non-parametric Bayesian algorithm is compared with the strategy
adopted in (Albughdadi et al., 2014) and studied in Section 3.3 which con-
sists of selecting the model that provides the highest free energy. Note that
the free energy calculations have to be done for all the candidate models
which can be time consuming specially when no prior information is avail-
able about the optimum number of parcels. In a second step, we perform
numerical experiments on real data using the NP-JPDE model and compare
the results to those obtained with the JDE model.

4.3.1 Synthetic fMRI time series

To validate the NP-JPDE model, three different synthetic experiments re-
ferred to as Exps. 1-3 have been conducted. Different parcellation masks
have been used in each experiment to generate BOLD signal according to
[3.1]. Two experimental conditions (M = 2) have been considered with 30
trials for each of them. The reference activation labels are shown in Fig. 4.2.

q1 q2

Figure 4.2: Reference activation labels for the two experimental conditions (grid size =
20× 20).

Using Pyhrf, the NRLs were drawn according to their prior distribution con-
ditionally to the activation labels Q of Fig. 4.2. Given these 20× 20 binary
labels, the NRLs were simulated as follows, for m = 0, 1: amj | qmj = 0 ∼

2These experiments were implemented in Python within the framework offered by the
Pyhrf software (Vincent et al., 2014), see also http://pyhrf.org.
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N (0, 0.5) and amj | qmj = 1 ∼ N (3.2, 0.5). The representative NRLs are dis-
played in Fig. 4.3. The onsets of these trials were randomly generated with a
mean inter stimuli interval of 3 s and a variance of 5 s. The fMRI time series
yj were then generated according to [3.1] using ∆t = 0.5 and TR = 1 s.

a1 a2

Figure 4.3: Reference NRLs for the two experimental conditions (grid size = 20× 20).

Figure 4.4: Ground truth HRF shapes (h̄k, k = 1, . . . ,Kω with ω = {1, . . . , 3}) used for
generating synthetic fMRI time series.

As a ground truth for the parcellation, different HRFs groups were considered,
each with Kω = ω + 1 parcels where ω ∈ {1, . . . , 3}. The HRFs associated
with these groups were selected from the ground truth HRFs (h̄k)

Kω

k=1 shown
in Fig. 4.4. Reference parcellations for the three experiments are displayed
in Fig. 4.5[top row]. These reference parcellations were chosen with different
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cardinalities and such that they overlap with activation areas. This strat-
egy was considered in order to investigate the robustness of the NP-JPDE
model to the total amount of evoked activity in each parcel. Indeed, from a
statistical point of view, the estimation of parcels involving a large amount
of activated voxels should be more accurate than the estimation of parcels
overlapping only a few activated voxels. Importantly, to mimic a real sce-
nario in all experiments, we set the percentage of the activated voxels to be
approximately 53% of the total number of voxels (this percentage was cal-
culated by performing a bitwise OR between the reference activation binary
labels of the two experimental conditions Fig. 4.2). Tab. 4.1 reports for each
experiment the percentage of activated voxels in each parcel of the ground
truth.

Exp. 1 Exp. 2 Exp. 3
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Figure 4.5: Ground truth parcellations used for the 3 experiments and corresponding
initialization masks (only used for the original version of the JPDE approach) (grid size =
20× 20).

These synthetic fMRI time series were then processed by the JPDE and
NP-JPDE models. Results obtained with the two models were compared
especially in terms of model selection. When using the original JPDE, three
competing models Kω = ω + 1 where ω ∈ {1, . . . , 3} were run and their
corresponding free energy was computed according to [3.47]. As regards the
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Table 4.1: Percentage of activated voxels in each parcel of the ground truth parcellations
for the three experiments. The parcels indexes are shown in Fig. 4.5

Experiment # Parcel % of activated voxels

Exp. 1 1 66.7%
2 33.3%

Exp. 2
1 22.2%
2 44.5%
3 33.3%

Exp. 3

1 19.5%
2 44.5%
3 33.3%
4 2.7%

NP-JPDE, it is worth noting that we do not need to specify any specific
initialization. Hence, the latter was done randomly in contrast to the shown
initializations for the original JPDE reported in Fig. 4.5[bottom]. The NP-
JPDE model only requires to set the maximum number of parcels K (trunca-
tion level) for the variational approximation. This number was set to K = 20
for the three experiments, while the Potts parameter βz was fixed to 1.2 for
the spatial regularity of the parcellation3. The parameter βm for activation
classes which corresponds to the m-th experimental condition was estimated
in the maximization step as in (Chaari et al., 2013, 2015). The prior values
over the scaling parameter α of the DPMM were set to ŝ1 = 20, ŝ2 = 5.
The estimated parcellations obtained by the two JPDE versions are shown
in Fig. 4.6. This figure shows accurate parcellation estimates from a visual
point of view. A comparison with the ground truth allows one to conclude
that the proposed NP-JPDE algorithm estimates the different parcels more
accurately than the JPDE algorithm especially for activated parcels. A quan-
titative evaluation of the parcellation estimates is provided in Tab. 4.2 where
the error rate with respect to the ground truth is given. First, one can notice
the small error probabilities for both models in all experiments. Furthermore,
the NP-JPDE outperforms the standard JPDE as seen in the errors reported
for Exps. 2-3. This remark corroborates the better visual performance of the

3This value of βz was adjusted by cross validation.
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Figure 4.6: Parcellation estimates for the three experiments using the original JPDE
and NP-JPDE (grid size = 20× 20).

proposed NP-JPDE model.

Table 4.2: Error probabilities on the parcellation estimates using the original JPDE and
the NP-JPDE algorithms.

Model Exp. 1 Exp. 2 Exp. 3
NP-JPDE 1.5% 0.25% 1.5%
JPDE 1.5% 2.75% 3.25%

To investigate more deeply the robustness of the parcellation estimation using
the NP-JPDE model, the confusion matrix for each of the three experiments
was computed and shown in Tables. 4.3-4.5. We observed that the proposed
NP-JPDE is highly accurate regarding the parcellation estimation step as
the overlap between the reference and estimate for each parcel is larger than
95% in all experiments.
In order to further investigate the robustness of the proposed model, Tab. 4.6
provides the mean square errors (MSEs) for the NRLs and activation labels
associated with the JPDE and NP-JPDE models. These results corroborate
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the fact that the NP-JPDE model ensures precise estimation of the NRLs for
both experimental conditions and outperforms the classical JPDE version.
The construction of the parcellation for the NP-JPDE model has therefore
very little impact on the NRL estimates and the detection task. Next, we
investigated the accuracy of the estimation task by looking at the HRF es-
timates using the NP-JPDE model as reported in Fig. 4.7. A comparison
between the reference and estimated HRF shapes shows that the NP-JPDE
model is able to recover precise hemodynamics profiles and they are close to
the HRF estimates of the original JPDE version (shown in the same figure).

Table 4.3: Confusion matrix for Exp. 1. (NP-JPDE model). RP and EP refer to the
reference and the estimated parcellations, respectively.

HHHH
HHEP
RP Parcel. 1 Parcel. 2

Parcel. 1 1.0 0.046
Parcel. 2 0.0 0.954

Table 4.4: Confusion matrix for Exp. 2. (NP-JPDE model). RP and EP refer to the
reference and the estimated parcellations, respectively.

H
HHH

HHEP
RP Parcel. 1 Parcel. 2 Parcel. 3

Parcel. 1 1.0 0.0 0.008
Parcel. 2 0.0 1.0 0.0
Parcel. 3 0.0 0.0 0.992

Table 4.5: Confusion matrix for Exp. 3. (NP-JPDE model). RP and EP refer to the
reference and the estimated parcellations, respectively.

HH
HHHHEP

RP Parcel. 1 Parcel. 2 Parcel. 3 Parcel. 4

Parcel. 1 1.0 0.013 0.0 0.0
Parcel. 2 0.00 0.961 0.0 0.0
Parcel. 3 0.0 0.0 1.0 0.023
Parcel. 4 0.0 0.026 0.0 0.977
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Exp. 1

Exp. 2

Exp. 3

Figure 4.7: HRF estimates for the three experiments using JPDE and NP-JPDE models.
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Table 4.6: MSEs of NRL estimates and activation labels for the JPDE and NP-JPDE
models.

Exp. 1 Exp. 2 Exp. 3
JPDE NP-JPDE JPDE NP-JPDE JPDE NP-JPDE

NRLs m = 1 0.016 0.007 0.017 0.008 0.017 0.008
m = 2 0.012 0.006 0.012 0.006 0.012 0.006

Labels m = 1 0.003 0.004 0.011 0.003 0.011 0.003
m = 2 0.003 0.003 0.003 0.002 0.003 0.003

Last, we studied the convergence of the estimated number of parcels over iter-
ations within the NP-JPDE. To this end, we present in Fig. 4.8 the parcella-
tion estimate for Exp. 2 along different iterations until convergence. Starting
with a random initialization, this figure shows that after about 7 iterations
all the main parcels are well established. Furthermore, for the same experi-
ment, fifty runs of the VEM algorithm using different random initializations
were performed and the subsequent box plot graph was drawn to investi-
gate the sensitivity of the NP-JPDE model to this setting. Fig. 4.9 shows
the evolution of the estimated number of parcels over iterations for the fifty
runs. It appears first that all the parcels were present after the first few it-
erations. Second, this number decreased through the iterations. Finally, we
investigated the computational load. For doing so, we computed the running
time for the standard JPDE framework by accumlating all elapsed times re-
quired for assessing the free energy associated with each candidate model,
as done in (Albughdadi et al., 2014). Using a machine with 8 cores, each
corresponding to an Intel® Xeon(R) CPU E3-1240 v3 chipset clocking at
3.40GHz processor and 16 GB of RAM, the four investigated models in the
classical JPDE framework run in about 35 mins whereas for the NP-JPDE
model it takes less than 9 mins. Thus, the computational cost of the NP-
JPDE model is reduced when compared to free energy calculations of many
candidate models.

4.3.2 Real data

Two experiments were conducted on real fMRI data to validate the pro-
posed NP-JPDE model. The two experiments differ by the regions of inter-
est (ROI) under consideration. Exp. 1 and Exp. 2 focused on the right
motor and bilateral occipital ROIs, respectively. These ROIs are shown
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Initial Iter. 2 Iter. 4

Iter. 7 Iter. 11 Iter. 37

Figure 4.8: Parcellation estimates for Exp. 2 using the NP-JPDE model along successive
iterations (grid size = 20× 20).

in Fig. 4.10 and have been defined from the statistical results of a stan-
dard subject-level GLM analysis of fMRI data. More precisely, Student−t
maps associated with the two contrasts of interest, namely (Left Click
- Right Click) and (Visual stimuli - Auditory stimuli), have been
thresholded at p = 0.05, corrected for multiple comparisons according to the
FWER criterion, see (Badillo et al., 2013b; Chaari et al., 2014) for details.
The fMRI data were collected using a gradient-echo EPI sequence (TE =
30 ms/TR = 2.4s/thickness = 3 mm/FOV = 192×192 mm2, matrix size:
96×96) at a 3 Tesla during a localizer experiment (Pinel et al., 2007). Sixty
auditory, visual and motor stimuli were involved in the paradigm and de-
fined in ten experimental conditions (M = 10) (see (Badillo et al., 2013b;
Chaari et al., 2014) for details). During this paradigm, N = 128 scans were
acquired. For both experiments, we considered the truncation level K = 20,
the parameter of the HMRF βz was empirically set to 1.8 and the parameters
of the gamma prior for the scaling parameter α were set to ŝ1 = 20, ŝ2 = 5.4
In Exp. 1, two parcels were estimated in the right motor cortex. Different

4These parameters were determined empirically by cross validation.
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Figure 4.9: Boxplot for fifty different runs of Exp. 2 using the NP-JPDE model showing
the convergence of the parcellation up to 30 iterations. The convergence is achieved from
iteration 16.
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(a) Right motor ROI

(b) Bilateral occipital ROI

Figure 4.10: Anatomical localization of brain regions. On top, the ROI is located in the
right motor cortex and consists of a single connected component. At the bottom, the ROI
is located in the primary visual cortex and made up of two connected components, one in
each hemisphere.

slices of the estimated parcellation are shown in Fig. 4.11. The HRF shape
estimates are shown in Fig. 4.12 along with the canonical HRF and the HRF
estimated with the JDE model. These HRF estimates have the same value
of the time to peak (TTP) and the full width at half maximum (FWHM):
TTP = 4.8 s and FWHM = 4.2 s. As regards the HRF obtained with JDE,
the TTP and FWHM values are 4.8 s and 3.6 s, respectively. We notice
that both models recover the same TTP whereas the JDE yields a slightly
narrower HRF (lower FWHM). The Euclidean distances were calculated be-
tween the HRF estimates and the canonical HRF. These values are reported
in Tab. 4.7 in addition to the distance between the individual NP-JPDE HRF
estimates. The reported distances indicate that the NP-JPDE model pro-
vides closer HRF estimates to the canonical one (average Euclidean distance
of 0.4) compared to the JDE model (average Euclidean distance of 0.43). In
this sense, the NP-JPDE model provides more coherent results than the JDE
one in terms of closeness of the HRF estimates to the canonical shape in the
motor cortex as it has already been shown in the literature (Badillo et al.,
2013b).
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(a) Slice. 1

(b) Slice. 2

Figure 4.11: Consecutive slices of the estimated parcellation located in the right motor
cortex.

As regards the NRL estimates, we focused on the left and right click visual
and auditory experimental conditions which are expected to elicit evoked ac-
tivity in the right motor cortex. Figs. 4.13 and 4.14 show the NRL estimates
using the NP-JPDE and JDE models (with respect to the left and right
auditory experimental conditions) and the computed contrast (auditory left
click-auditory right click). Figs. 4.15 and 4.16 show the NRL estimates for
both models with respect to the left and right click visual experimental con-
ditions and the computed contrast (visual left click-visual right click). These
results confirm the coherence between the NRL estimates obtained with the
JDE and NP-JPDE models, especially in terms of maximum activation lo-
cation and amplitude values.
The NP-JPDE was also run for Exp. 2 on the bilateral occipital cortex. Four
parcels were detected as shown in Fig. 4.17. The corresponding HRF shape
estimates for these parcels are shown in Fig. 4.18. These HRF estimates are
displayed along with the canonical HRF and the one estimated using the
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Figure 4.12: HRF shape estimates using the NP-JPDE and JDE models in the right
motor cortex and the canonical HRF.

Table 4.7: Euclidean distance between the HRF estimates in the right motor cortex and
the canonical HRF. Distance between the individual NP-JPDE HRF estimates are also
provided.

HRF. 1 HRF. 2 JDE
Canonical HRF 0.37 0.43 0.43

HRF. 2 0.30 − −
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(a) Auditory left click (NP-JPDE)

(b) Auditory right click (NP-JPDE)

(c) Left click-Right click contrast (NP-JPDE)

Figure 4.13: NRL estimates for the auditory left and right click experimental conditions
and their computed contrast (left click-right click) using the NP-JPDE model.
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(a) Auditory left click (JDE)

(b) Auditory right click (JDE)

(c) Left click-Right click contrast (JDE)

Figure 4.14: NRL estimates for the auditory left and right click experimental conditions
and their computed contrast (left click-right click) using the JDE model.
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(a) Visual left click (NP-JPDE)

(b) Visual right click (NP-JPDE)

(c) Left click-Right click contrast (NP-JPDE)

Figure 4.15: NRL estimates for the visual left and right click experimental conditions
and their computed contrast (left click-right click) using the NP-JPDE model.
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(a) Visual left click (JDE)

(b) Visual right click (JDE)

(c) Left click-Right click contrast (JDE)

Figure 4.16: NRL estimates for the visual left and right click experimental conditions
and their computed contrast (left click-right click) using the JDE model.
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JDE model. The computed TTP for the HRF profiles of parcels 1, 2 and
4 is TTP = 5.4 s, while for parcel 3 we have TTP = 6.0 s. The FWHM
was also computed and is equal to 4.2 s for parcels 1 and 4, and to 4.8 s
for parcels 2 and 3. As regards the HRF estimated using the JDE model,
we have TTP = 5.4 s and FWHM = 4.2 s. Moreover, Tab. 4.8 reports the
computed Euclidean distances between the different HRF estimates and the
canonical HRF. It also reports the same distance between the individual NP-
JPDE HRF estimates. The reported distances indicate that the NP-JPDE
model provides closer HRF estimates to the canonical shape with average
Euclidean distance of 0.42. More interestingly, it is clear that the NP-JPDE
model is able to discriminate between parcels that have very close HRFs
in terms of Euclidean distance, namely those of parcels 1 and 2. Indeed,
these two parcels have similar TTPs, but different FWHM values. They are
therefore detected as different parcels by the NP-JPDE model. Figs. 4.19
and 4.20 show the NRL estimates for some of the experimental conditions
which are supposed to induce evoked activity in the bilateral occipital cortex
(namely, video calculations, video sentences, horizontal checkerboard and
vertical checkerboard). The obtained NRL estimates with the NP-JPDE
and the JDE are similar in terms of amplitude values and the location of the
highest activation.

Table 4.8: Euclidean distance between the HRF estimates in the bilateral occipital cortex
and the canonical HRF. Dinstance between the individual NP-JPDE HRF estimates are
also provided.

HRF. 1 HRF. 2 HRF. 3 HRF. 4 JDE
Canonical HRF 0.42 0.41 0.43 0.41 0.47

HRF. 2 0.06 − 0.22 0.20 −
HRF. 3 0.17 − − 0.35 −
HRF. 4 0.23 − − − −
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(a) Slice.1

(b) Slice.2

Figure 4.17: Consecutive slices of the estimated parcellation located in the occipital
cortex.

Figure 4.18: HRF shape estimates using the NP-JPDE and JDE models in the bilateral
occipital cortex and the canonical HRF shape.
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(a) Video calculations (NP-JPDE)

(b) Video sentences (NP-JPDE)

(c) Horizontal checkerboard (NP-JPDE)

(d) Vertical checkerboard (NP-JPDE)

Figure 4.19: NRL estimates for the video calculations, video sentences horizontal and
vertical checkerboard experimental conditions using NP-JPDE model.
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(a) Video calculations (JDE)

(b) Video sentences (JDE)

(c) Horizontal checkerboard (JDE)

(d) Vertical checkerboard (JDE)

Figure 4.20: NRL estimates for the video calculations, video sentences horizontal and
vertical checkerboard experimental conditions using JDE model.
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4.4 Conclusion

This chapter proposed a new approach to estimate the number of hemo-
dynamic parcels in fMRI data where model selection was formulated as a
clustering issue. This approach was based on a Dirichlet process mixture
model combined with a hidden Markov random field. A direct generalization
of the Potts model that uses a stick breaking representation allowed an infi-
nite number of states to be considered. The advantage of the non-parametric
framework was to allow an automatic estimation of the number of parcels
from the fMRI data. The use of a hidden Markov random field accounted
for the spatial constraints on the connexity of the estimated parcels. The
JPDE model proposed in (Chaari et al., 2012, 2015) was extended using this
non-parametric Bayesian formulation yielding the so called NP-JPDE model.
Following its ancestor (the JPDE), the NP-JPDE relied on the VEM as an
inference strategy. However, the new layers in the hierarchy of the NP-JPDE
model resulted in two new expectations steps (namely, VE−Z and VE−τ
steps) while the others remained the same as in the classical JPDE model.
The maximization of the interaction parameter of the Potts model (βz) over
the parcellation labels was not straightforward and was changed to account
for the dependency of the parcellation label variable z on the stick breaking
length τ of the DPMM. The proposed model was also extended by injecting
a new prior on the concentration parameter α of the DPMM which allowed
for its automatic estimation through the VEM iterations.

Synthetic and real data experiments were used to validate the proposed
approach. Using synthetic data experiments, we studied the performance
of our approach in estimating an accurate parcellation and HRFs and de-
tecting the task-related activity. Experiments with different scenarios were
conducted using synthetic data generated for a different number of parcels.
Our results were consistent with the classical JPDE model that relies on the
model selection procedure in (Albughdadi et al., 2014) in terms of HRF
recovery and evoked activation detection. However, the proposed NP-JPDE
extension outperformed the original JPDE formulation in terms of parcel-
lation inference. We also investigated the performance of the NP-JPDE in
terms of convergence speed and computational time, and we showed again
its superiority over its ancestor. As regards the NRL estimates, the NP-
JPDE managed to preserve the robust performance of the classical JPDE in
detecting the task-related activity. On real fMRI data, we used two ROIs
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to validate the proposed approach, the right motor cortex and the bilateral
occipital area embodying the primary visual cortices. In the right motor
cortex, two different parcels were estimated with HRF estimates close to the
canonical HRF. These results came consistent with the HRF estimate of the
JDE model and with the conclusion in (Badillo et al., 2013b). In the bilateral
occipital cortex, the left and the right parcels showed similar hemodynamic
territories. The HRF estimates with the NP-JPDE were close to the canon-
ical HRF especially in terms of time to peak and they were better recovered
than using the JDE model. For both experiments, the NRL estimates using
the NP-JPDE model were coherent with those obtained by analysing the
same fMRI data using the JDE model. Due to the deep hierarchy of the
NP-JPDE model, the output results could be sensitive to the value of the
interaction parameter of the Potts model. To eliminate the effect of this
parameter on the estimation task and reduce the computational cost result-
ing from the BNP, an adaptive mean shift-based approach for hemodynamic
brain parcellation will be introduced in Chapter 5 to alleviate this sensitivity
problem.
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Adaptive Mean Shift Algorithm
for Hemodynamic Brain

Parcellation
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5.1 Introduction

This chapter is devoted to the application of the mean shift algorithm for
fMRI data analysis where we use the mean shift algorithm to solve the
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problem of the hemodynamic brain parcellation. Although an automatic
parcellation approach was introduced in the previous chapter in a Bayesian
non-parametric framework, the deep hierarchy of the NP-JPDE model could
make the output results sensitive to some parameters such as the interaction
parameter βz of the Potts model. The mean shift is a very powerful algo-
rithm that is widely used in machine learning for image segmentation. In
this chapter, we first introduce a specific type of the mean shift algorithm
which is known as the adaptive mean shift (AMS) in Section 5.2. In a second
step, we illustrate the embedding of the AMS algorithm within the VEM
framework of the standard JPDE algorithm yielding the AMS-JPDE model
(Section 5.3). The experimental validation of the AMS-JPDE model is con-
ducted in Section 5.4. Finally, some conclusions and discussions are drawn
in Section 5.5.

5.2 Adaptive Mean Shift algorithm

In computer vision, low level tasks are a challenging difficulty. The depen-
dency on a correct guessing of tuning parameters leads easily to incorrect
results. To improve the performance of low level tasks in computer vision,
their execution has to be task driven. To achieve the later, a reliable repre-
sentation of the data at the low stage can be investigated. Another strategy
is to limit the number of tuning parameters that control the feature extrac-
tion process. These techniques can be applied by relying on feature space-
based analysis to map the input obtained through the processing of the data
in small subsets at a time. After the entire input is processed, significant
features correspond to the denser regions in the feature space. However, ex-
tracting features from the data has advantages and disadvantages. On one
hand, excellent tolerance to a noise level is provided due to the pooling of a
significant feature. On the other hand, features that have smaller support in
the feature space may not be detected in spite of being salient for the task
to be executed. The latter disadvantage can be solved by applying robust
post-processing of the input domain guided by the feature space analysis or
by imposing spatial parameters on the input domain.

Mean shift is a feature space analysis algorithm which is widely used for
computer vision tasks. Feature space analysis is used to reduce the data to
a few significant features which is also known as clustering or classification.
This algorithm is a robust clustering technique which does not require set-
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ting the number of clusters. It is an iterative algorithm that estimates the
modes of a multivariate distribution underlying the feature space and the
number of clusters is obtained automatically by estimating centers of these
clusters (Comaniciu and Meer, 2002). Dense regions presented in the fea-
ture space correspond to a mode (local maxima) of the probability density
function (see Fig. 5.1). Each data point is associated with the nearby peak
of the probability density function. The mean shift defines a window (ker-
nel) around each data point and then computes its mean. The center of the
window is shifted to the mean in an iterative procedure until convergence.
The mean shift algorithm relies on kernel density estimation which is a non-
parametric approach to estimate the density function of a random variable.

Figure 5.1: Modes correspond to dense regions in the mean shift algorithm (Yaron and
Bernard, 2004).

5.2.1 The adaptive mean shift procedure

One of the most popular density estimation methods is the kernel density
estimation which is also known as the Parzen window technique (Duda
et al., 1973) in pattern recognition literature. Assuming n data points
xi, i = 1, . . . , n in the d-dimensional space Rd, the multivariate kernel
density estimator with kernel K(x) and a symmetric positive definite d × d
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bandwidth matrix H is defined by

f̂(x) =
1

n

n∑
i=1

KH(x− xi) [5.1]

where KH(x) = |H|−1/2K(H−1/2x) is the d-variate kernel, i.e., a bounded
function with compact support satisfying∫

Rd
K(x)dx = 1, lim

‖x‖→∞
‖x‖dK(x) = 0∫

Rd
xK(x)dx = 0,

∫
Rd

xxtK(x)dx = cKI.

[5.2]

In [5.2], cK is a constant. A symmetric univariate kernelK1(x), where x ∈ Rd,
can be used to generate a multivariate kernel in two different ways:

KP (x) =
d∏
i=1

K1(xi) KS(x) = ak,dK1(‖x‖) [5.3]

where the product of the univariate kernels yields KP (x) and KS(x) is ra-
dially symmetric and obtained by rotating K1(x) in Rd. Note that ak,d is a
constant which ensures that KS(x) integrates to one, i.e.,

a−1
k,d =

∫
Rd
K1‖x‖dx. [5.4]

In the context of hemodynamic brain parcellation using the adaptive mean
shift algorithm, we are only interested in the radially symmetric kernels sat-
isfying

K(x) = ck,dk(‖x‖2) > 0 ‖x‖ ≤ 1 [5.5]

where k(x) ( 0 ≤ x ≤ 1) is called the profile of the kernel. Assuming that
each data point is associated with a bandwidth value hi > 0 that defines the
radius of the kernel, the sample point estimator can be defined as

f̂K(x) =
1

n

n∑
i=1

1

hdi
k

(∥∥∥∥x− xi
hi

∥∥∥∥2
)
. [5.6]

To proceed in the feature space analysis, we need first to find the modes of
the underlying density f(x). These modes are located among the zeros of
the gradient of f(x), i.e., ∇f(x) = 0. The adaptive mean shift allows these
zeros to be located without estimating the underlying density.
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5.2.2 Density gradient estimation

The gradient density estimator can be obtained using [5.6]:

∇̂fK(x) ≡ ∇f̂K(x) =
2ck,d
n

n∑
i=1

1

hdi
(x− xi)k′

(∥∥∥∥x− xi
hi

∥∥∥∥2
)
. [5.7]

Defining a function g(x) = −k′(x) that exists when the derivative of the
kernel profile k(x) exists and using it as a profile, the kernel G(x) is defined
as G(x) = cg,dg(‖x‖2) where cg,d is the normalization constant. Using g(x)
as a substitute for k′(x) in [5.7], we get

∇̂fK(x) =
2ck,d
n

n∑
i=1

1

hdi
(x− xi)g

(∥∥∥∥x− xi
hi

∥∥∥∥2
)

=
2ck,d
n

n∑
i=1

[
g

(∥∥∥∥x− xi
hi

∥∥∥∥2
)]

∑n
i=1

1
hdi

xig
(∥∥∥x−xi

hi

∥∥∥2
)

∑n
i=1

1
hdi
g

(∥∥∥x−xi
hi

∥∥∥2
) − x

 .
[5.8]

In [5.8], the first term of the product is proportional to the density estimate
at point x with kernel G

f̂G(x) =
1

n

n∑
i=1

1

hdi
g

(∥∥∥∥x− xi
hi

∥∥∥∥2
)

[5.9]

while the second term is the mean shift

mG(x) =

∑n
i=1

1

hd+2
i

xig
(∥∥∥x−xi

hi

∥∥∥2
)

∑n
i=1

1

hd+2
i

g

(∥∥∥x−xi
hi

∥∥∥2
) − x. [5.10]
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5.2.3 Convergence condition

The sequence of successive locations of the kernel G is denoted as {yj}j=1,2,....
The following iterative procedure

yj+1 =

∑n
i=1

xi
hd+2
i

g

(∥∥∥yj−xi
hi

∥∥∥2
)

∑n
i=1

1

hd+2
i

g

(∥∥∥yj−xi
hi

∥∥∥2
) j = 1, 2, . . . [5.11]

is a hill climbing technique to the nearest stationary point of the density until
the density gradient vanishes. The points of convergence of this iterative
procedure are the local maxima (modes) of the density (Georgescu et al.,
2003).

5.2.4 Adaptive mean shift mode detection and band-
width estimation

Let yc and f̂K = f̂K(yc) be the convergence points of {yj}j=1,2,... and {f̂K(yj)}
j=1,2,..., respectively. The j-th mean shift vector can be written as

mG(yj) = yj+1 − yj, [5.12]

and the gradient at yc is zero, i.e,

∇f̂K(yc) = 0. [5.13]

The bandwidth values associated with the data points can be estimated using
different methods in the literature. Most of these methods use a pilot density
estimate and the simplest one uses nearest neighbours (Georgescu et al.,
2003). More precisely, defining xi,k as the k-nearest neighbour of xi, the
bandwidth hi associated with xi can be computed using the `1 norm as
follows

hi = ‖xi − xi,k‖1. [5.14]

The number of nearest neighbours should be large enough to ensure that
there is an increase in density within the support of most kernels having the
bandwidth hi.
A practical algorithm for mode detection can be summarized as in (Comani-
ciu and Meer, 2002):
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• Run the adaptive mean shift to find the stationary points of f̂K ;

• Prune these points by keeping only the local maxima.

An intuitive description of the mean shift algorithm is described in Fig. 5.2.
This figure shows the movement of the center of mass yj to the mode in an
iterative procedure until convergence.
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(a) 1 (b) 2

(c) 3 (d) 4

(e) 5

Figure 5.2: Intuitive description of the mean shift algorithm (Yaron and Bernard, 2004).
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5.3 AMS within the VEM framework of the
JPDE model

The AMS-JPDE model relies on the VEM algorithm for inference as in the
standard JPDE model. However, modifications were carried out to embed
the AMS algorithm within the VEM framework. We updated the hierarchy
of the JPDE model in a way such that no spatial prior is imposed over the
HRF groups assignment variable z. The hierarchy of the AMS-JPDE model
is shown in Fig. 5.3 where the dependencies between observed and latent
variables are illustrated. The difference between Fig. 5.3 and Fig. 3.2 is
that in the first one there is no prior over the variable of the parcellation
labels z. The posterior distribution of the AMS-JPDE is the same as in the
standard model, i.e., p(r)(A,H ,Q, z;Y ,Θ) is approximated as a product
of the distributions p̃(r)

A (A), p̃(r)
H (H), p̃(r)

Q (Q) and p̃
(r)
z (z). Using the VEM

algorithm for inference, we have four different expectation steps (VE-A,
VE-H, VE-Z and VE-Q), one for each of the missing variables. However, in
the AMS-JPDE the expectation over z is different compared to the standard
JPDE model while the other expectation steps (VE-A, VE-Q and VE-H) are
the same (see (Chaari et al., 2012, 2015) and Subsection 3.2.3).

• VE-A step: This step is exactly the same as in the standard JPDE
model( (Chaari et al., 2012, 2015)). It reads as follows

p̃
(r)
A (A) ∝ exp

(
E
p̃

(r)
H p̃

(r−1)
Q

[
log p(A |Y ,H ,Q;Θ(r−1))

])
. [5.15]

• VE-Q step: It corresponds to the VE-Q step of the standard JPDE
model( (Chaari et al., 2012, 2015))

p̃
(r)
Q (Q) ∝ exp

(
E
p̃

(r)
A

[
log p(Q |Y ,A;Θ(r−1))

])
. [5.16]

• VE-H step: As in the standard JPDE model, the VE-H step is

p̃
(r)
H (H) ∝ exp

(
E
p̃

(r−1)
A p̃

(r−1)
z

[
log p(H |Y ,A, z;Θ(r−1)

])
. [5.17]

• VE-Z step: This step is similar to the VE-Z step in the standard
JPDE model (Chaari et al., 2012, 2015). Neglecting the term that
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Figure 5.3: Graphical model describing the hierarchy of the AMS-JPDE model.
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comes from the spatial prior over the labels z, p̃zj can be rewritten as
follows

p̃(r)
zj

(k) ∝ N
(
m

(r)
Hj

; h̄
(r−1)
k , Σ̄

(r−1)
k

)
,

∝ exp

(
−
(
m

(r)
Hj
− h̄(r−1)

k

)T
Σ̄
−1
k

(
m

(r)
Hj
− h̄(r−1)

k

))
[5.18]

where h̄ =
(
h̄k
)

1≤k≤K are the modes of the parcels (HRF patterns)
obtained by the AMS algorithm in the maximization step at iteration
(r − 1).

• M-Step: In the maximization step, the HRF profiles h̄ =
(
h̄k
)

1≤k≤K
corresponding to the estimated parcels are obtained using the AMS
algorithm while the maximization of the rest of the parameters remains
the same as in the standard JPDE model. The corresponding M-step
for the AMS-JPDE model reads

Θ(r) = arg max
Θ

[
E
p̃

(r)
A p̃

(r)
H p̃

(r)
Q p̃

(r)
z

[
log p (Y ,A,H ,Q, z;Θ)

]]
. [5.19]

Eq. [5.19] can be rewritten as

Θ(r) = arg maxΘ

[
E
p̃

(r)
A p̃

(r)
H

[
log p(Y | A,H ;L,Γ)

]
+E

p̃
(r)
A p̃

(r)
Q

[
log p(A | Q;µ,v)

]
+ E

p̃
(r)
Q

[
log p(Q;β)

]
+E

p̃
(r)
H p̃

(r)
z

[
log p(H | z; h̄,ν)

]]
.

[5.20]

The term E
p̃

(r)
H p̃

(r)
z

[
log p(H | z; h̄,ν)

]
is associated with the maximiza-

tion of h̄ and is replaced by the modes obtained using the AMS algo-
rithm (see Section 5.2 for more details).

5.3.1 HRF profile smoothing

One of the remaining issues in this model is to control the smoothness of the
HRF profiles. In the standard JPDE model, the smoothness of

(
h̄k
)

1≤k≤K is
favoured by controlling their second order derivatives with the following prior:
h̄k ∼ N (0, σ2

hR). In the AMS-JPDE model, we rely on a weighted least
squares regularization technique for smoothness. The idea of this technique
is to obtain a smooth signal from the noisy one. The energy of the second
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order derivative of a signal can be used as a measure of its smoothness, i.e,
the smoother the signal, the smaller the energy of its derivative. Let x be
the smooth signal that we are looking for and defined as

x1

x2
...
xN


,

and y = x + n is the corresponding noisy signal. Let D2 be a matrix
defined as 

1 −2 1 . . . . . .
. . . 1 −2 1 . . .

. . . . . .
. . . . . . . . .

. . . . . . 1 −2 1


Then we can define Dx2 as a second order difference of the signal x. It
follows that if x is smooth then ‖Dx‖2

2 has a small value. If y = x + n is a
noisy signal, the signal x can be recovered by solving the following problem

min
x
‖y− x‖2

2 + λh‖Dx2‖2
2. [5.21]

On one hand minimizing minx ‖y−x‖2
2 forces the smooth signal x to be close

to the noisy one y. On the other hand, minimizing the term ‖Dx‖2
2 favours

the smoothness of x. The parameter λh balances the solution between the
first (data fidelity) and the second (penalization) terms and is fixed by the
user. Straightforward computations lead to the following x that minimizes
the expression in [5.21]

x̂ =
(
ID + λhD

t
2D2

)−1 y. [5.22]

Assuming that the output of the AMS algorithm is the noisy signal y denoted
as h̄0

k and the signal we are seeking x is the smooth HRF profile denoted as
h̄k, [5.22] leads to

h̄k =
(
ID + λhD

t
2D2

)−1
h̄0
k. [5.23]

Note that such a regularization is equivalent to fixing a Gaussian prior on
h̄k in the hierarchical Bayesian model of the standard JPDE model.
The different steps in the AMS-JPDE are summarized in Algorithm 5.1
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Algorithm 5.1 The AMS-JPDE model algorithm. The subscript (r) refers
to the current iteration.

Initialization:
set the truncation level for the number of parcels T .
p̃

(0)
z (z) initialized randomly for a uniform distribution.
p̃

(0)
Q (Q) such that p̃(0)

Qj
(qmj ) ∈ {0, 1}.

for all j
- m(0)

Hj
is initialized from the canonical HRF.

- m(0)
Aj

is initialized with zeros.
end for
Initialize with some Θ(0).

r = 1
repeat

Expectation step:
Compute p̃(r)

H (H) according to [3.18].
Compute p̃(r)

A (A) according to [3.19].
Compute p̃(r)

Q (Q) according to [3.24].
Compute p̃(r)

z (z) according to [5.18]
Maximization step:

Compute Θ(r) according to [5.20].
Compute h̄ using the AMS algorithm

Input: The mean of the voxel-dependent HRFs mH .
Output: The HRF profiles h̄.
for all j do

- Compute the gradient for mHj using [5.8] and [5.14] to est-
imate the bandwidth associated with the neighbours of mHj .
- Compute the mean shift victor using [5.10].
- Compute the convergence condition using [5.11].

end for
for all k do

Obtain the smooth HRF using [5.23].
end for

set r ← r + 1
until convergence
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5.4 Experimental validation

To validate the AMS based parcellation with the JPDE model, we performed
numerical experiments on both synthetic and real data1.

5.4.1 Synthetic fMRI time series

The proposed model was validated using four different experiments. Different
parcellation masks (see Fig. 5.4) were used to generate the BOLD signal
according to [3.1]. We considered two experimental conditions, i.e., M = 2
with 30 trials for each. The reference binary labels used for these experiments
are shown in Fig. 5.5.

Exp. 1 Exp. 2

Exp. 3 Exp. 4

Figure 5.4: Reference parcellations (RP) used for the 4 experiments (grid size = 20×20).

The NRLs were simulated from their prior conditionally to the activation
labels Q (shown in Fig. 5.5). More precisely, given the 20× 20 binary labels
of Fig. 5.5, the NRLs were simulated as follows: for m = 0, 1, amj | qmj =

1These experiments were implemented in Python within the framework offered by the
Pyhrf software (Vincent et al., 2014), see also http://pyhrf.org.
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q1 q2

Figure 5.5: Reference activation labels for the two experimental conditions (grid size =
20× 20).

0 ∼ N (0, 0.5) and amj | qmj = 1 ∼ N (3.2, 0.5).The inter-stimuli interval and
variance used to generate the onsets of the trials were 3 s and 5 s, respec-
tively. Finally, the fMRI time series yj were generated according to [3.1]
with ∆t = 0.5 and TR = 1 s. As a ground truth for the parcellation, dif-
ferent HRF groups were considered. We analysed the generated fMRI time
series for the four experiments using the AMS-JPDE model. The parcella-
tion estimate for each experiment is shown in Fig. 5.7. It is worth noticing
that for the AMS-JPDE, no prior initialization for the parcellation or trun-
cation level for the maximum number of parcels is needed. The number of
K-nearest neighbours (KNN) is the only parameter that needs to be manu-
ally set. For the synthetic data experiments, we empirically set KNN = 502.
The computed parcellation errors between the reference and the estimated

a1 a2

Figure 5.6: Reference NRLs for the two experimental conditions (grid size = 20× 20).

parcellation were 2.25%, 3.25%, 4.5% and 4.75% for Exp. 1 to 4, respectively.
2The parameter KNN is adjusted using cross validation.
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These results show a good ability of the AMS-JPDE to recover the hemody-
namic territories with low error probability. Moreover, for each experiment,
we computed the confusion matrix between the reference and the estimated
parcellation. The results displayed in Tables. 5.1 and 5.2 show a major in-
tersection between them. Although some voxels were misclassified (since no
spatial constraints are imposed over the parcellation step), the AMS-JPDE
model managed to establish a good parcellation especially for those vox-
els located on the borders between parcels. The results of the AMS-JPDE
model were coherent with the results of the model selection procedure in (Al-
bughdadi et al., 2014) that calculates the free energy of different competing
models each with kω parcels and Kω = ω + 1, ω ∈ {1, . . . , 3}. The mod-
els maximizing the free energy are the best fit for the data. These optimal

Exp. 1 Exp. 2

Exp. 3 Exp. 4

Figure 5.7: Estimated parcellations (EP) used for the 4 experiments (grid size = 20×20).

models lead to two parcels for Exp. 1 and 2 and three parcels for Exp. 3
and 4. Fig. 5.8 shows a 3-D representation of the parcellation result for each
experiment where each point corresponds to a projection of a given vector on
the three main principal components computed using a principal component
analysis (PCA). For each experiment in Fig. 5.8, each color represents one of
the estimated parcels such that all the voxels that have similar HRF charac-
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teristics have the same color. Regarding the running time of the algorithm
and considering Exp. 4 as an example, using the model selection procedure
in (Albughdadi et al., 2014) the accumulated time required to run the 3
competing models is around 35 mins. On the other hand, the AMS-JPDE
model takes around 11 mins while it takes around 9 mins to run the same
experiment using the NP-JPDE model. Thus, the computational time of the
AMS-JPDE is reduced compared to free energy calculations of the competing
models and is still reasonable when compared to the computational time of
the NP-JPDE model. We also explored the ability of the AMS-JPDE model
to estimate the HRF profiles for the estimated parcels, as shown in Fig. 5.9.
The modes of the parcels are the outputs of the mean shift algorithm which
represent the HRF estimate for each parcel. Note that the estimates are
close to the corresponding ground truths. The AMS-JPDE also managed to
obtain a good performance in detecting the activation as in the JPDE and
NP-JPDE models. The mean square error (MSE) was computed for each
experimental condition in the four experiments. These results are reported
in Tab. 5.3

Table 5.1: Confusion matrices for Exp. 1 and 2. RP and EP refer to the reference and
the estimated parcellations, respectively.

HHH
HHHRP
EP Parcel. 1 Parcel. 2

Exp. 1 Exp. 2 Exp. 1 Exp. 2
Parcel. 1 0.98 0.98 0.03 0.05
Parcel. 2 0.02 0.02 0.97 0.95

Table 5.2: Confusion matrices for Exp. 3 and 4. RP and EP refer to the reference and
the estimated parcellations, respectively.

H
HHHHHRP

EP Parcel. 1 Parcel. 2 Parcel. 3
Exp. 3 Exp. 4 Exp. 3 Exp. 4 Exp. 3 Exp. 4

Parcel. 1 0.93 0.94 0.02 0.01 0.01 0.02
Parcel. 2 0.05 0.01 0.96 0.96 0.02 0.02
Parcel. 3 0.02 0.05 0.02 0.03 0.97 0.96

We were able to prove numerically the convergence of the AMS-JPDE
algorithm by calculating the free energy for 100 iterations, which is supposed
to be strictly monotonic. The calculated free energy at each iteration is



136

(a) Exp. 1

(b) Exp. 2

(c) Exp. 3

(d) Exp. 4

Figure 5.8: Transformed voxel-dependent HRFs in 3-D representation using PCA with
HRF groups labels.
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(a) Exp. 1

(b) Exp. 2

(c) Exp. 3

(d) Exp. 4

Figure 5.9: HRF estimates for the synthetic data experiments.
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Table 5.3: MSEs of NRLs and activation labels estimates using the AMS-JPDE model.

Exp. 1 Exp. 2 Exp. 3 Exp. 4

NRLs m = 1 0.008 0.008 0.009 0.007
m = 2 0.005 0.006 0.004 0.005

Labels m = 1 0.003 0.003 0.002 0.003
m = 2 0.001 0.008 0.006 0.006

shown in Fig. 5.10. Thus, using an approximate E-Z step does not have a
noticeable effect on the convergence of the algorithm. However, this issue
needs to be proven numerically by deriving a lower bound of the posterior
distribution over z, which will be one of the perspectives of a future work.

Figure 5.10: The calculated free energy of the AMS-JPDE algorithm at 100
iterations.

5.4.2 Real data

Two experiments were conducted on real fMRI data to validate the AMS-
JPDE model. The considered regions of interest (ROI) were the right motor
cortex and the bilateral occipital cortex (see Subsection. 4.3.2 for more infor-
mation about the ROIs). The fMRI data were collected using a gradient-echo
EPI sequence (TE = 30 ms/TR = 2.4 s /thickness = 3 mm/ FOV = 192×192
mm2, matrix size: 96 × 96) with a 3 Tesla magnetic field during a localizer
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experiment. Sixty auditory, visual and motor stimuli were involved in the
paradigm and defined in ten experimental conditions (M = 10). During the
experiment, N = 128 scans were acquired and ∆t = 0.6 s. The number of
K-nearest neighbours was set to KNN = 503. Analyzing the fMRI data of
the two experiments using the AMS-JPDE model, one parcel was estimated
in the right motor cortex as shown in Fig. 5.11. The corresponding HRF

Figure 5.11: The estimated parcellation in the right motor cortex.

estimate of the detected parcel is shown in Fig. 5.12 along with the canonical
HRF shape. The computed time to peak for the estimated HRF is TTP =
4.8 s and the full width at half maximum is FWHM = 4.8 s too. We can
notice that the HRF estimate is close to the canonical HRF as demonstrated
in (Badillo et al., 2013b; Albughdadi et al., 2016c). To further investigate
the closeness of the HRF estimate to the canonical HRF, we computed the
Euclidean distance between both of them and it was 0.45. This result is sim-
ilar to the computed Euclidean distance between the HRF profile estimated
by the NP-JPDE JDE models and the canonical HRF. As regards the NRL
estimates, Fig. 5.13 and 5.14 show these estimates with respect to specific
experimental conditions, as we expected activation in the right motor cortex
in response to motor tasks (left and right video click- left and right audio
click). These results are similar to those obtained by the NP-JPDE and JDE
models (see Figs. 4.13,4.14,4.15 and 4.16).

Running the second experiment using the AMS-JPDE model, 3 parcels
were estimated as shown in Fig. 5.15. The corresponding HRF shape es-
timates are shown in Fig. 5.16. The computed time to peak (TTP) for
the HRF estimates was 5.4 s for all of them while the full width at half
maximum (FWHM) was 4.2 s for parcels 1 and 3 and 4.8 s for parcel 2.

3The parameter KNN was adjusted using cross validation.
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Figure 5.12: HRF shape estimates using the AMS-JPDE model in the bilateral occipital
cortex and the canonical HRF.

The obtained results are coherent with the conclusion that the HRF esti-
mates in the bilateral occipital cortex should be consistent with the canonical
shape (Badillo et al., 2013b; Albughdadi et al., 2016c). We also computed
the Euclidean distance between the HRF Estimate and the canonical HRF.
The results are reported in Tab. 5.4. The NRLs estimated with the AMS-
JPDE model are shown in Fig. 5.17. These results are also coherent with the
outputs of the JDE and the NP-JPDE models (see Figs. 4.19 and 4.20).

Table 5.4: The Euclidean distance between the HRF estimates in the bilateral occip-
ital cortex and the canonical HRF. Distance between the individual AMS-JPDE HRF
estimates are also provided.

HRF. 1 HRF. 2 HRF. 3
Canonical HRF 0.31 0.40 0.41

HRF. 2 0.28 − 0.06
HRF. 3 0.30 − −
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(a) Auditory left click

(b) Auditory right click

(c) Left click-Right click auditory contrast

Figure 5.13: NRL estimates for the visual left and right click experimental conditions
and their computed contrast (left click-right click) using the AMS-JPDE model.
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(a) Visual left click

(b) Visual right click

(c) Left click-Right click visual contrast

Figure 5.14: NRL estimates for the auditory left and right click experimental conditions
and their computed contrast (left click-right click) using the AMS-JPDE model.



143

Figure 5.15: The estimated parcellation in the bilateral occipital cortex.

Figure 5.16: HRF shape estimates using the AMS-JPDE model in the bilateral occipital
cortex and the canonical HRF.
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(a) Vertical checkerboard

(b) Video sentences

(c) Horizontal checkerboard

(d) Video calculations

Figure 5.17: NRL estimates for the visual sentences and calculations, horizontal and
vertical checkerboards experimental conditions using the AMS-JPDE model.
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5.5 Conclusion

In this chapter, we proposed a new non-parametric approach to automati-
cally estimate the hemodynamic parcellation in fMRI analysis. This auto-
matic parcellation was performed along with the detection and estimation
task by making use of the well known adaptive mean shift algorithm. This
algorithm was embedded within the VEM framework of the standard JPDE
model yielding the AMS-JPDE model. More precisely, it was used in the
maximization step to estimate the HRF profiles. Moreover, the expectation
over the HRF group labels z was replaced by an approximation step which
is the same as in the JPDE model but with omitting the term that comes
from the Potts model. The standard JPDE model hierarchy was modified by
removing the Potts model prior over the parcellation labels z. The combina-
tion of the adaptive mean shift and the JPDE model was motivated by the
fact that the deep hierarchy of the NP-JPDE model could make the analysis
results sensitive to some parameters that are manually adjusted such as the
interaction parameter βz of the Potts model. This model was validated us-
ing synthetic and real data. In synthetic data experiments, the AMS-JPDE
managed to estimate the correct number of parcels and accurate parcellation
estimates with low error probabilities. The corresponding HRF profiles were
close to the reference ones. In the real data experiments, the two ROIs that
had been used to validate the NP-JPDE were analyzed with the AMS-JPDE
model. The results obtained with the AMS-JPDE are similar to those ob-
tained by the NP-JPDE and JDE models in the right motor and bilateral
occipital cortices. The AMS-JPDE model also managed to preserve a good
performance in the detection of the activation as in its ancestors. The main
advantage of the AMS-JPDE model is that it does not require many param-
eters to be tuned. Indeed, the only parameter that needs to be tuned is the
number of k-nearest neighbours required in the mean shift algorithm. This
model would require further investigation regarding the presence of outliers
in the parcellation. This can be solved by a robust post-processing or by
imposing spatial priors over the data.
The proposed methods presented in the previous chapters tackled the parcel-
lation challenge at the subject-level. However, few approaches have been pro-
posed to tackle the parcellation and estimation tasks at the group-level, which
will be investigated thoroughly in the two last chapters of this manuscript.
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CHAPTER 6

Multi-Subject Joint Parcellation
Detection Estimation
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6.1 Introduction

Recent fMRI studies focus on the multi-subject designs to study a specific
population or disease (Badillo et al., 2014, 2013b; Degras and Lindquist,
2014; Zhang et al., 2013). The variability of the hemodynamics in group-level
fMRI studies is usually assessed by estimating subject-level HRF profiles and
then averaging them over the subjects to derive a group-level HRF (Badillo
et al., 2014). However, averaging the HRF profiles over subjects can be
sensitive to the presence of outliers. Other sophisticated approaches have
been proposed to estimate the group-level HRF profiles from the fMRI data
of different subjects. One can mention the approach proposed in (Degras
and Lindquist, 2014) in which a linear combination of B-spline functions is
used to model the HRFs. This approach is based on the assumption that the
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subject-level HRFs are random draws from a population-level distribution
and that the population average response for a given voxel varies only in
scale across stimuli. In (Badillo et al., 2014), the joint detection estimation
(JDE) model is used in a multi-subject analysis where the parcellation is
fixed a priori. In this model, an additional layer of hierarchy is added to the
hierarchical Bayesian model of JDE to describe the link between the single
subject and the group-level HRFs. However, this model does not consider the
multi-subject parcellation and it relies on a prior functional parcellation of
fMRI data. This parcellation is generated according to the Ward’s clustering
algorithm by pulling all individual normalized fMRI datasets (Thirion et al.,
2006). Another approach was proposed in (Zhang et al., 2013) based on
a semi-parametric framework with the general linear model. This approach
assumes that for a fixed voxel and a given stimulus, the HRFs share the same
unknown functional form across subjects but with different characteristics
such as the time to peak, height and width. This common functional form is
then estimated using a non-parametric spline-smoothing method. However,
none of the approaches proposed in literature allows parcellating the brain
into regions that show homogeneity in their hemodynamic profiles at the
group-level.

In this chapter, a model for multi-subject analysis is proposed, namely the
multi-subject joint parcellation detection estimation (MS-JPDE) model (Al-
bughdadi et al., 2016a). The motivation for this model is to obtain estimates
of group-level hemodynamic territories in order to address the variability
of the hemodynamic response function at the group-level in different brain
regions. The MS-JPDE accomplishes the latter objective by allowing the
estimation of the group-level parcellation and HRF profiles along with the
activation detection for each individual. In the MS-JPDE model, the anal-
ysis is done for all the parcels contained in a region of interest contrary to
the model proposed in (Badillo et al., 2014) where the analysis is done for a
specific parcel.
The rest of the chapter is organized as follows. Section 6.2 introduces the
observation model used in the proposed model. Section 6.3 illustrates the
Bayesian hierarchy of the MS-JPDE model. The variational inference strat-
egy used to approximate the posterior as the product of simple distributions
is studied in Section 6.4. An experimental validation is carried out in Sec-
tion 6.5 on synthetic and real data. Finally, some conclusions are drawn in
Section 6.6.
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6.2 Multi-subject observation model

The proposed model is based on the standard JPDE model studied in (Chaari
et al., 2012, 2015) (refer to Chapter 3, Section 3.2 for further details). The
MS-JPDE model studied in this chapter handles fMRI data related to S
subjects involved in a group study where the set of voxels is the same for all
the subjects. This is ensured by performing prior registration of the fMRI
data in a unique space associated with these subjects. The set of voxels of
interest belonging to the whole brain or wide brain area is denoted as P . The
fMRI time series at voxel j for subject s is denoted as ysj . This time series
is measured at time instants {tn, n = 1, ..., N} where tn = nTR, N being
the number of scans and TR the time of repetition. The number of different
stimulus types or experimental conditions is denoted as M . All individuals
are involved in the same fMRI experiment (using the same experimental
paradigm). At each voxel j of subject s, a voxel dependent HRF hsj ∈ RD is
considered leading to Hs =

{
hsj , j ∈ P

}
the set of all possible HRF shapes

for subject s. Each HRF hsj is associated with a group-level HRF class among
KG possible groups. These groups or HRF classes are specified by a set of
hidden labels zG =

{
zGj , j ∈ P

}
where zGj ∈

{
1, ..., KG

}
and the group-level

HRF class labels zG is a priori assigned a Markov random field, namely a
Potts model. The resulting observation model is defined as follows

∀s,∀j ysj =
M∑
m=1

am,sj Xmh
s
j + P`sj + bsj , [6.1]

where the matrix Xm is the same for all the subjects, am,sj is amplitude
of the neural response level (NRL) for subject s, voxel j and the m-th ex-
perimental condition . Denote as As = {am,s,m = 1, . . . ,M} with am,s ={
am,sj , j ∈ P

}
. The NRLs are assumed to belong to one of the I groups.

These groups are specified by activation class assignment variable Qs =
{qm,s,m = 1, . . . ,M} where qm,s =

{
qm,sj , j ∈ P

}
and qm,sj ∈ {0, ..., I − 1}

represents the activation class at voxel j for them-th experimental condition.
In this model, two classes are considered (I = 2) such that i = 0 refers to
non-activated voxels and i = 1 the activated ones. The rest of the signal con-
sists of low frequency drifts which are denoted as P`sj where P is an N ×O
matrix, `sj ∈ RO is a vector to be estimated and Ls = {`sj , j ∈ P}. The
observation noise is denoted as bsj and is assumed to be a zero-mean Gaus-
sian vector with covariance matrix Γsj

−1, i.e., bsj ∼ N (0,Γsj
−1). The set of
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all unknown precision matrices is denoted by Γs =
{
Γsj , j ∈ P

}
. The noises

associated with different subjects and different voxels of the same subject are
assumed to be independent.

6.3 Hierarchical Bayesian model

This section introduces the Bayesian hierarchy associated with the MS-JPDE
model. More precisely, we proposed to extend the model presented in Sec-
tion 3.2 to the multi-subject case according to the description of the previous
section.

(i) Likelihood
Following (Makni et al., 2008; Woolrich et al., 2001; Chaari et al., 2011,
2012), an AR noise model is adopted to account for serial correlation in
fMRI time series. Following this model, the covariance matrix at voxel
#j is denoted as Γsj = σsj

−2Λs
j where Λs

j is a tridiagonal symmetric
matrix whose components depend on the AR(1) parameter ρsj (Makni
et al., 2008):

(Λs
j)1,1 = (Λs

j)Ns,Ns = 1, (Λs
j)ns,ns = 1 + ρsj

2 for ns = 2, . . . , Ns − 1,

(Λs
j)ns+1,ns = (Λs

j)ns,ns+1 = −ρsj for ns = 1, . . . , Ns − 1. [6.2]

Using the notation θs0 = (σsj
2, ρsj)1≤j≤J and ysj = ysj − P`sj − Ssjhsj

with Ssj =
M∑
m=1

am,sj Xm, the likelihood can be factorized over voxels as

follows

p(Y s |As,Hs;θs0) ∝
J∏
j=1

[√
detΛs

j

σsjNs

]
exp

(
−
ysj

tΛs
jy

s
j

2σsj
2

)
. [6.3]

The joint likelihood over the S subject can then be defined as

S∏
s=1

p(Y s |As,Hs;θs0) ∝
S∏
s=1

J∏
j=1

[√
detΛs

j

σsjNs

]
exp

(
−
ysj

tΛs
jy

s
j

2σsj
2

)
. [6.4]

(ii) Neural response levels
NRLs are assumed to be statistically independent across subjects and
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experimental conditions:

p(A1, . . . ,AS;θ1
{1:M}, . . . ,θ

S
{1:M}) =

S∏
s=1

M∏
m=1

p(am,s;θsm), [6.5]

and all the parameters of the m-th experimental condition are gathered
in θsm. A mixture model is used to discriminate between activated and
non-activated voxels such that qm,sj = 1 if voxel j is activated and
qm,sj = 0 if not for the m-th experimental condition. Based on this
mixture model, we obtain

p(am,s | qm,s;θsm) =
∏
j∈P

p(am,sj | q
m,s
j ;µsm,v

s
m), [6.6]

where the unknown response means and variances are gathered in µsm
and vsm, respectively.

(iii) Activation classes
The activation class assignments are assumed to be independent across
S subjects and theM experimental conditions following (Vincent et al.,
2010), i.e.

S∏
s=1

p(Qs)=
S∏
s=1

M∏
m=1

p(qm,s; βsm). [6.7]

A Potts model p(qm,s; βsm) with interaction parameter βm is used as a
prior leading to

p(qm,s; βsm) = W (βsm)−1 exp
(
βsmU(qm,s)

)
, [6.8]

whereW (βm) is the normalizing constant and U(qm,s) =
∑

j∼l I(qm,sj = qm,sl ).
I is an indicator function as defined in Section 3.2(iii). The prior dis-
tribution of the NRLs across the subjects can then be written as

S∏
s=1

M∏
m=1

p(qm,s; βsm) =
S∏
s=1

M∏
m=1

W (βsm)−1 exp
(
βsmU(qm,s)

)
. [6.9]

Remark. The previous terms associated with the hierarchy of the MS-
JPDE model (the likelihood, NRLs and activation classes in [6.4], [6.5]
and [6.9], respectively) are identical to those in the JPDE model in [3.3],
[3.4] and [3.6] if they factorize over the subjects S. In what follows,
the new hierarchical terms associated with the group-level parcellation
and HRF estimates are further discussed.



151

(iv) Group-level HRF patterns
The voxel-wise HRFs of the individual subjects are expressed condi-
tionally to their group-level HRF group kG, where kG = 1, . . . , KG:

S∏
s=1

p(Hs | zG) =
S∏
s=1

J∏
j=1

p(hsj | zGj ) [6.10]

and
p(hsj | zGj = kG) ∼ N (h̄Gk , ν

G
k ID) [6.11]

where zGj ∈ {1, . . . , KG} is the group parcellation label, h̄Gk and νGk ID
are the HRF pattern and covariance matrix for class kG, respectively.
Note that all the voxels of different subjects of group kG are stochastic
perturbations of the same HRF pattern h̄Gk . The parameter h̄Gk ∈ RD−1

is assigned a Gaussian distribution such that h̄Gk ∼ N (0, (σGh )2R) where
(σGh )2 is a parameter to be fixed or estimated, R = (∆t)4(Dt

2D2)−1 and
D2 is the second order finite difference matrix controlling the smooth-
ness of the HRF patterns. Finally, h̄Gk0 = 0.

Remark. The voxel-wise HRFs in the MS-JPDE model are expressed
conditionally to the group-level HRF classes [6.11] contrary to the
JPDE model where they are expressed conditionally to the subject-
level HRF classes(see [3.8]).

(v) Group-level HRF classes
The group-level parcellation connexity is promoted by using aKG-class
Potts model with spatial interaction parameter βGz

p(zG; βGz ) = W (βGz )−1 exp(βGz U(zG)), [6.12]

where W (βGz ) is a normalization constant and U(zG) =
∑

j∼l I(zGj =

zGl ). As for the standard JPDE and NP-JPDE models, the parameter
βGz ensures a level of spatial regularity of the parcellation variable zG .

Remark. The spatial Potts model prior used in [6.12] is inspired from
the Potts model used as a prior over the subject-level parcellation label
variable z in the JPDE model in [3.9].

In the MS-JPDE model, we distinguish the parameters of the individual
subject Θs = {Γs,Ls,µs,vs,βs} from the parameters of the group-level
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Figure 6.1: Graphical model describing the hierarchy of the MS-JPDE model.

HRF classes (that are denoted as ω = {βGz , (σGh )2, (h̄Gk , ν
G
k )kG=1,...,KG}) and

Φ gathers all the parameters of the model such that Φ = {{Θs}1:S,ω}. The
graphical model depicted in Fig. 6.1 illustrates the dependencies between the
observed and unknown variables in the MS-JPDE model. Comparing this
graphical model to the one in Fig. 3.2 of JPDE, it is clear that for voxel
#j the variable zGj and the parameters νGk and h̄Gk are at the group-level,
which is denoted as block G in the figure, and they are shared by all the
subjects. All the other variables are at the subject-level and gathered in a
block denoted as S.
The next section handles the inference scheme that we have adopted for the
MS-JPDE model.
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6.4 Variational expectation maximization

We denote the BOLD time series and the unknown variables (H ,A and Q)
for all the individuals involved in the fMRI experiment as Y = {Y s}s=1:S,
H = {Hs}s=1:S , A = {As}s=1:S and Q = {Qs}s=1:S, respectively. The
resulting joint distribution of the MS-JPDE model can be written as

p(Y,A,H,Q, zG) ∝
S∏
s=1

p(Y s | As,Hs)p(As | Qs)p(Qs)p(Hs | zG)p(zG).

[6.13]
To compute the posterior distribution of the MS-JPDE model, we also rely
on the VEM strategy. The target posterior distribution can then be approx-
imated as

p̃(A,H,Q, zG | Y) = p̃A(A)p̃H(H)p̃Q(Q)p̃zG(zG). [6.14]

These variables are computed by alternating maximization of the following
free energy with respect to p̃ and Φ

F(p̃,Φ) = Ep̃

[
log p(Y,A,H,Q, zG |Φ)

]
+ G(p̃) [6.15]

where p̃ ∈ D and D is the set of all probability distributions of the probability
spaces A × H × Q × zG associated with A,H,Q and zG respectively. The
entropy of p̃ is denoted as G(p̃) = −Ep̃

[
log p̃(A,H,Q, zG)

]
. At the r-th

iteration, the current value of the unknown parameters is denoted by Φ(r−1).
The alternating procedure proceeds as follows

E-step: p̃(r)

A,H,Q,zG = arg max
p̃∈D

F(p̃,Φ(r−1)) [6.16]

M-step: Φ(r) = arg max
Φ∈Φ

F(p̃
(r)

A,H,Q,zG ,Φ). [6.17]

The posterior distribution p̃(r)

A,H,Q,zG is approximated as a product of the distri-
butions p̃(r)

A (A), p̃
(r)
H (H), p̃

(r)
Q (Q) and p̃(r)

zG
(zG) resulting in four E-steps, namely

E-A, E-H, E-Q and E-zG. The first three steps consist of S sub-steps, one
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for each subject. The resulting four E-steps can be written as follows

VE-H: p̃
(r)
H (H) ∝ exp

(
E
p̃

(r−1)
A p̃

(r−1)

zG

[
log p(H |Y,A, zG;Φ(r−1)

])
, [6.18]

VE-A: p̃
(r)
A (A) ∝ exp

(
E
p̃

(r)
H p̃

(r−1)
Q

[
log p(A |Y,H,Q;Φ(r−1))

])
, [6.19]

VE-Q: p̃
(r)
Q (Q) ∝ exp

(
E
p̃

(r)
A

[
log p(Q |Y,A;Φ(r−1))

])
, [6.20]

VE-zG: p̃(r)

zG
(zG) ∝ exp

(
E
p̃

(r)

zG

[
log p(zG |Y,H;Φ(r−1))

])
. [6.21]

The VE-A and VE-Q steps remain the same as in the standard JPDE model
(Chaari et al., 2012, 2015) (see Subsection 3.2.3 [3.18]-[3.25] for more details)
and they proceed by iterating over individuals. The VE-H and VE-ZG steps
are detailed below. Note that these new steps take into account the group-
level parcellation.

(i) VE-H step
This step consists of S steps, one for each subject. The corresponding
E-Hs sub-step for subject s consists of estimating

p̃
(r)
Hs(Hs) ∝

exp

(
E
p̃

(r−1)
As p̃

(r−1)

zG

[
log p(Hs | Y s,As, zG;Θs(r−1),ω(r−1))

])
.

[6.22]
This step is different from the one in the standard JPDE model (Sub-
section 3.2.3(i)) since it considers the group-level parcellation through
the variable zG. Using [6.22] and standard algebra rules, p̃(r)

Hs is shown
to be a Gaussian distribution, .i.e, p̃(r)

Hs ∼ N (m
(r)
Hs ,Σ

(r)
Hs), where Σ(r)

Hs
j

=

(V s
1j + V s

2j)
−1 and m

(r)
Hs
j

= Σ
(r)
Hs
j
(ms

1j + ms
2j) are defined for voxel
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j = {1, . . . , J} in subject s with

V s
1j =

∑
m,m′

υs
Amj A

m′
j

(r−1)Xt
mΓ

s
j
(r−1)Xm′ + S̃

st

j Γ
s
j
(r−1)S̃sj ,

V s
2j =

K∑
k=1

p̃zGj (k)(r−1)Σ̄
G(r−1)−1

k ,

ms
1j = S̃sj

tΓsj
(r−1)(ysj − P s`s

(r−1)

j ),

ms
2j =

K∑
k=1

Σ̄
G(r−1)−1

k p̃zGj (k)(r−1)h̄G
(r−1)

k , [6.23]

and where S̃sj =
∑M

m=1m
(r−1)
Amj

Xm. Note that ms(r−1)

Amj
, υs(r−1)

Amj A
m′
j

denote

the m and (m,m′) entries ofms(r−1)

Aj
and Σs(r−1)

Aj
, respectively. By com-

paring the terms in the previous equation with the terms in [3.18], we
can conclude that V s

1j and ms
1j are identical to those in [3.18]. On the

other hand, the terms V s
2j and ms

2j are different since they consider
Σ̄
G
k and h̄Gk , respectively which are the parameters of the group-level

parcel #kG.

(ii) VE-zG step:
The E-zG step consists of estimating

p̃
(r)

zG
(zG) ∝ exp

(
E
p̃

(r)
H

[
log p(zG | Y,H;Φ(r−1))

])
. [6.24]

This step can be split into J sub-steps by assuming a product approx-
imation over the voxels such that p̃zG(zG) =

∏J
j=1 p̃zGj (zGj ). Each E-zGj

step therefore consists of estimating

p̃
(r)

zGj
(zGj ) ∝ exp

(
S∑
s=1

Ep̃hs
j

[
log p(hsj | zGj )

]
+ Ep̃

zG\j

[
p(zG | βGz )

])
[6.25]

where zG\j = {zGj′ , j′ 6= j}. The previous equation is similar to [3.26] ex-
cept that its first term sums over all the subjects involved in the analysis
and hsj is expressed conditionally to the group-level parcellation label
zGj contrary to the JPDE model where it is expressed conditionally to
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the subject-level parcellation label zsj . Straightforward computations
of [6.25] lead to

p̃
(r)

zGj
(zGj ) ∝

S∏
s=1

N (ms
Hj

; h̄
G(r−1)
k , Σ̄

G(r−1)
k )× [6.26]

exp

(
−1

2

S∑
s=1

trace(Σ
s(r)
Hj

(Σ̄
G(r−1)
k )−1) + βG(r−1)

z

∑
j′∼j

p̃(r−1)
zj′

(k)

)
,

for k = 1, . . . , K. The computation of p̃(r)

zGj
in the previous equation is

similar to the computation of p̃(r)

zGj
in [3.29] except that it considers the

voxel-dependent HRFs coming from all the subjects, i.e., the factoriza-
tion over the subjects for the Gaussian distribution and the summation
for the trace function.

On the other hand, the M-step of the algorithm can be written as follows

VM: Φ(r) = arg max
Φ∈Φ

E
p̃

(r)
A p̃

(r)
H p̃

(r)
Q p̃

(r)

zG

[
log p(Y,A,H,Q, zG;Φ)

]
, [6.27]

or equivalently

Φ(r) = arg max
Φ∈Φ

[
Ep̃Ap̃H

[
log p(Y | A,H;Φ)

]
+ Ep̃Ap̃Q

[
log p(A | Q;Φ)

]
+ Ep̃Hp̃zG

[
log p(H | zG;Φ)

]
+ Ep̃

zG

[
log p(zG;Φ)

]
+ log p(h̄G;Φ)

]
.

[6.28]
The group-level parcellation results in a new maximization step for h̄G tak-
ing into account the data coming from all the individuals.

(i) VM-h̄G step
The maximization of h̄Gk can be obtained by solving

h̄G
(r)

k = arg max
h̄Gk

[
S∑
s=1

E
p̃

(r)
Hs p̃

(r)

zG
log p(Hs | zG; h̄Gk ,ν

G
k )

]
[6.29]

+ log p(h̄Gk ; (σGh )2).

When the previous equation is compared to [3.43], it is clear that in
[6.29], HRFs coming from all the subjects are considered, i.e., the sum-
mation over the subjects in the first term. Differentiating [6.29] with
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respect to h̄Gk leads to the following result

h̄G
(r)

k =

S × ID+1 +
νGk R

−1/(σGh )2

S
∑
j∈P

p̃
(r)
zj (k)


−1

S∑
s=1

∑
j∈P

p̃
(r)
zj (k)

(
ms

Hj

)(r)

S
∑
j∈P

p̃
(r)
zj (k)

.

[6.30]

The reader can refer to Subsection 3.2.3 (v)(a),(v)(b) and (v)(c) for further
details on the maximization with respect to the other parameters in the MS-
JPDE model. The iterative procedure of the MS-JPDE model is illustrated
in Algorithm 6.1.
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Algorithm 6.1 The MS-JPDE algorithm. The subscript (r) refers to the
current iteration.

Initialization:
p̃

(0)

zG
(zG) is initialized from the initial parcellation.

for all s do
p̃

(0)
Qs(Q

s) such that p̃(0)
Qsj

(qm,sj ) ∈ {0, 1}.
for all j do

- m(0)
Hs
j
is initialized as the canonical HRF.

- m(0)
Asj

is initialized with zeros.
end for

end for
Initialize with some Φ(0).

r = 1
repeat

Expectation step:
for all s do

- Compute p̃(r)
Hs(Hs) according to [6.23].

- Compute p̃(r)
As(A

s) according to [3.19].
- Compute p̃(r)

Qs(Q
s) according to [3.24].

end for
- Compute p̃(r)

zG
(zG) according to [6.26].

Maximization step:
Compute Φ(r) according to [6.28].

set r ← r + 1
until convergence
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6.5 Experimental validation

Numerical experiments on both synthetic and real data were carried out to
validate the proposed model. These experiments are presented in this section.

6.5.1 Synthetic fMRI time series

FMRI synthetic data were generated for four subjects according to the gen-
erative model [6.1]. A group parcellation mask was first considered as a mean
parcellation mask over the four subjects. This group-level mask, as well as
its individual instances are depicted in Fig. 6.2(a-e). All masks involve four
different parcels.

(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Group mask (f) Initial mask

Figure 6.2: Individual and group-level reference parcellations and the used initial mask
in the synthetic data experiment.

The ground truth HRF patterns used for these four parcels are shown in
Fig. 6.3 (continuous lines). Two experimental conditions (M = 2) were
used for all the subjects with 30 trials each. The reference activation labels
are illustrated in Fig. 6.4. The corresponding NRLs (Fig. 6.5) were drawn
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Figure 6.3: Ground truth group-level HRF profiles of the synthetic data experiment.

according to their prior distribution so that am,sj | qm,sj = 0 ∼ N (0, 0.5) and
am,sj | qm,sj = 1 ∼ N (3.2, 0.5). The time of repetition used in this experiment
was TR = 1 second. The initial parcellation used in this experiment is shown
in Fig. 6.2(f).

q1 q2

Figure 6.4: Reference activation labels for the two experimental conditions (grid size =
20× 20).

a1 a2

Figure 6.5: Reference NRLs for the two experimental conditions (grid size = 20× 20).
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These generated BOLD time series signals were analyzed using the MS-
JPDE model. Fig. 6.6 shows the estimated group-level parcellation using the
MS-JPDE model. The computed parcellation error between this mask and
its ground truth shown in Fig. 6.6 is 4.25%. This result shows the ability of
the MS-JPDE model to obtain an accurate estimate of the group-level par-
cellation. Moreover, the confusion matrix between the group-level reference
and estimated parcellation was computed and reported in Tab. 6.1. These
results demonstrate the accuracy of the MS-JPDE model in estimating the
different parcels where we can notice large intersections between the esti-
mated parcels and their counterparts in the reference parcellation Fig. 6.2(e)

Figure 6.6: Group-level parcellation estimate using the MS-JPDE model.

Table 6.1: Confusion matrix between reference (RP) and estimated (EP) group-level
parcellation obtained using the MS-JPDE model.

H
HHH

HHEP
RP Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.92 0.0 0.02 0.0
Parcel 2 0.06 0.99 0.0 0.0
Parcel 3 0.0 0.0 0.92 0.0
Parcel 4 0.02 0.01 0.06 1.0

The HRF profiles that correspond to the four estimated parcels are shown in
Fig. 6.7. The MSE values between the ground truth HRF and the group-level
HRF estimates are provided in Tab. 6.2. These results are relatively small,
which demonstrate the robustness in the estimation task. Tab. 6.3 reports
the computed MSEs for the estimated activation labels and NRLs using the
MS-JPDE model. Although the MSEs of the NRL estimates were slightly
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Figure 6.7: Ground truth (contnious lines) and estimated (dotted lines) group-level HRF
profiles using the MS-JPDE model).

affected when compared to those of the JPDE model in Tab. 6.4, they are still
relatively small which demonstrate the capability of the MS-JPDE model in
detecting the activity.

Table 6.2: MSEs between reference and estimated HRF profiles using the MS-JPDE
model.

HRF MS-JPDE
HRF. 1 8.90× 10−5

HRF. 2 1.52× 10−4

HRF. 3 1.06× 10−4

HRF. 4 1.40× 10−4

Table 6.3: MSEs between reference and estimated NRLs and activation labels of the
four subjects using the MS-JPDE model.

Subject 1 Subject 2 Subject 3 Subject 4

NRLs m = 1 0.062 0.063 0.065 0.062
m = 2 0.047 0.047 0.046 0.046

Labels m = 1 0.0018 0.0016 0.0019 0.0021
m = 2 0.0024 0.0023 0.0017 0.0015
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Table 6.4: MSEs between reference and estimated NRLs and activation labels of the
four subjects using the JPDE model.

Subject 1 Subject 2 Subject 3 Subject 4

NRLs m = 1 0.014 0.016 0.016 0.017
m = 2 0.012 0.012 0.012 0.014

Labels m = 1 0.003 0.011 0.002 0.003
m = 2 0.004 0.004 0.003 0.003

6.5.2 Real data

The proposed model was also validated using real fMRI data. The ROI under
consideration is the right motor cortex as shown in Fig. 6.8. The statistical
results of a standard subject-level GLM analysis were used to define this ROI.
More precisely, Student−t maps associated with the two contrasts of interest,
namely (Left Click - Right Click) and (Visual stimuli - Auditory
stimuli), were thresholded at p = 0.05, corrected for multiple compar-
isons according to the FWER criterion, see (Badillo et al., 2013b; Chaari
et al., 2014) for details. The fMRI data were collected using a gradient-echo
EPI sequence (TE = 30 ms/TR = 2.4s/thickness = 3 mm/FOV = 192×192
mm2, matrix size: 96×96) with a 3 Tesla imaging system during a localizer
experiment (Pinel et al., 2007). Sixty auditory, visual and motor stimuli
were involved in the paradigm and defined in ten experimental conditions
(M = 10) (see (Badillo et al., 2013b; Chaari et al., 2014) for details). During
this paradigm, N = 128 scans were acquired. Ten subjects were involved
in the experiment and their fMRI were registered a priori. The same initial
parcellation was applied to all subjects with 4 parcels as shown in Fig. 6.9.
This number was chosen by calculating the free energy for different candi-
date models (Albughdadi et al., 2014). We empirically set βz = 0.9 and
(σGh )2 = 0.1 after a cross validation procedure. Starting with the estimated
group-level parcellation, Fig. 6.10 shows different slices of the parcellation
estimates obtained using the MS-JPDE model. The corresponding group-
level HRF estimates are shown in Fig. 6.11 along with the canonical HRF.
These estimates should be close in shape to the canonical HRF (Badillo et al.,
2013b) which is clear from a visual point of view. The Euclidean distances
in Tab. 6.5 between the HRF estimates and the canonical HRF confirm the
previous observation. We further investigated the HRF estimates by com-
puting their TTP and FWHM in Tab. 6.6. These results indicate that the
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Figure 6.8: Anatomical localization of the right motor cortex that consists of a single
connected component.

Figure 6.9: Initial parcellation consisting of 4 parcels applied to all the individuals
involved in the validation of the MS-JPDE model.
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(a) Slice 1

(b) Slice 2

Figure 6.10: Two different slices of the estimated parcellation using MS-JPDE model in
the right motor cortex.
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Figure 6.11: HRF shape estimates using the MS-JPDE model in the right motor cortex
and the canonical HRF.

HRF profiles of parcels 1 and 2 (respectively 3 and 4) have the same TTP
value, therefore they have similar HRF characteristics and could be merged
into a single parcel.

Table 6.5: Euclidean distances between the estimated HRFs using the MS-JPDE model
and the canonical HRF.

Euclidean distance
HRF 1 0.31
HRF 2 0.33
HRF 3 0.29
HRF 4 0.30

Table 6.6: The estimated TTP and FWHM for the HRF estimates obtained using the
MS-JPDE model.

TTP FWHM
HRF 1 5.4 4.8
HRF 2 5.4 4.2
HRF 3 6.0 6.0
HRF 4 6.0 5.4

It is worth noticing that the setting of the hyperparameter (σGh )2 was not
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arbitrary since it has a significant effect on the smoothness of the group-
level HRF profiles which in turn can affect the characteristics of these pro-
files. When the same experiment was repeated using (σGh )2 ∈ {0.2, 0.5}, the
smoothness of the HRFs was drastically affected as shown in Fig. 6.12. It is
worth noticing that the TTP of the HRF profile is mainly affected by the
HRF smoothness. The reported TTP values in Tab. 6.7 for (σGh )2 ∈ {0.2, 0.5}
confirm our observation where the TTP of most of the HRF profiles changes
with different values of (σGh )2.

(a) (σG
h )2 = 0.2

(b) (σG
h )2 = 0.5

Figure 6.12: The estimated HRF shapes for different values of (σG
h )2.
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Table 6.7: The estimated TTP for running the same group experiment using the MS-
JPDE model with different values of (σG

h )2.

(σGh )2 = 0.2 (σGh )2 = 0.5
HRF. 1 5.4 4.8
HRF. 2 4.8 4.8
HRF. 3 6.0 5.4
HRF. 4 6.0 5.4

6.6 Conclusion

In this chapter, we proposed a new model for a multi-subject analysis of
fMRI data (MS-JPDE). This model allowed the estimation of the group-
level parcellation and HRF profiles for the involved individuals as well as a
detection task indicating wether the voxels were activated or not in response
to stimuli. The MS-JPDE model was firstly validated using synthetic data
experiments. The results showed the ability of the proposed model to obtain
group-level estimates with high accuracy. However, the NRL estimates of
the individuals were slightly affected when compared to the JPDE model. In
a second step, we validated the proposed model via a real data experiment.
The considered ROI was the right motor cortex and ten individuals were
involved in the same experimental paradigm. The data collected from all
the individuals were processed simultaneously using the MS-JPDE model.
The parcellation and HRF estimates obtained with this model allowed us to
interpret the analysis results at the group-level. The obtained HRF estimates
obtained with the MS-JPDE were similar to the canonical HRF shape which
was coherent with previous studies on this region of the brain (these studies
indicated that HRFs in the motor cortex are very similar in shape to the
canonical one). However, we noticed that the hyperparameter (σGh )2 had a
significant effect on the smoothness of the HRF profiles. Repeating the same
experiment but using different values for this hyperparameter, we showed the
changes in the smoothness and the resulting changes in the estimated TTP
of the HRFs of the estimated parcels. To overcome the drawbacks revealed
in the MS-JPDE model, we propose in the next chapter a new model for
multi-subject analysis. This model performs a joint inter and intra subject
analysis which is a very interesting approach that allowing parcellation and
HRF estimates at the subject and group levels.
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Hybrid Multi-Subject Joint
Parcellation Detection Estimation
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7.1 Introduction

In this chapter, we propose a new model for group-level analysis to overcome
the limitations of the MS-JPDE model which was introduced in Chapter 6.
This model allows the HRF variability across brain regions at the subject
and group levels to be studied. This objective is accomplished by performing
an inter and intra subject analysis to achieve parcellation and HRF estima-
tion at the group and subject levels. In what follows, this model is referred
to as the HMS-JPDE model. The observation equation for the HMS-JPDE
is the same as in Section 6.2[6.1]. However, the two models differ in the
way the voxel-dependent HRFs are expressed. Indeed, the MS-JPDE model
assumes that the HRF at voxel j for subject s is expressed conditionally
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to a group-level HRF class that it belongs to. The HMS-JPDE model as-
sumes that the HRF at voxel j for subject s is expressed conditionally to
a subject-level HRF class which in turn is expressed to a group-level HRF
class. Assuming that there are K HRF groups, in the HMS-JPDE each of
the analyzed subjects has K HRF profiles that represent the parcels for this
specific subject. Moreover, K group-level HRF profiles are estimated that
represent the group-level parcels of all the subjects. The MS-JPDE does not
allow this variability at the subject-level. Considering K HRF groups for
the MS-JPDE, all the subjects have the same parcellation, thus sharing the
same HRF profiles.
The rest of this chapter is organized as follows. The hierarchy of the HMS-
JPDE model is introduced in Section 7.2. Then, the inference strategy
adopted for the HMS-JPDE model is described in Section 7.3. An exper-
imental validation is conducted in Section 7.4. Finally, some conclusions are
drawn in Section 7.5.

7.2 Hierarchical Bayesian model

The HMS-JPDE model shares some of its hierarchy terms with the MS-JPDE
model (namely, Likelihood, neural response levels and activation classes).
The reader can refer to Section 6.3(i)-(iii) for more details on these mutual
hierarchical terms. However, one of the main differences between the two
models is that the HMS-JPDE model considers both the subject and group
level parcellations and HRFs contrary to the MS-JPDE model where the
group-level parcellation and HRFs are only considered. This difference is
described below.

(i) Subject-level HRF patterns
The HMS-JPDE model assumes that the voxel-dependent HRF hsj
is expressed conditionally to a subject-level HRF class label zsj (see
Subsection 3.2.2 (i)) contrary to the MS-JPDE model which assumes
hsj is expressed conditionally to the group-level HRF class label zGj .
Following this assumption Hs can be expressed as

p(Hs|zs) =
∏
j∈P

p(hsj | zsj ). [7.1]

As a consequence hsj is a stochastic perturbation of a subject-level HRF
pattern h̄sk of HRF group #ks, i.e., hsj is assigned a Gaussian prior
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distribution p(hsj | zsj = k) ∼ N (h̄sk, Σ̄
s
k) where Σ̄

s
k = νskID adjusts the

stochastic perturbations around h̄sk via the value of the hyperparameter
νsk.

Remark. Each subject s has its own set of HRF profiles h̄s =
(
h̄sk
)

1≤k≤K .
These subject-level HRF profiles are characterized by Gaussian distri-
butions such that h̄sk ∼ N (h̄Gk , (σ

s
h)

2R) where h̄sk is related to the
group-level HRF profile h̄Gk . The group-level HRF profile h̄Gk is a priori
assigned a zero mean Gaussian distribution, i.e., h̄Gk ∼ N (0, (σGh )2R)
and R = (∆t)4 (Dt

2D2)−1. The second-order finite difference matrix
is denoted as D2. Note that the hyperparameters (σsh)

2 and (σGh )2 are
fixed and that h̄sk in the JPDE model is assigned a zero mean Gaus-
sian distribution. Moreover, h̄sk0 = h̄skD∆t = 0 and h̄Gk0 = h̄GkD∆t = 0 as
in (Makni et al., 2008; Vincent et al., 2010; Chaari et al., 2011). Hence,
h̄sk, h̄

G
k ∈ RD−1.

(ii) Subject-level HRF groups
For s = 1, . . . , S, the prior p

(
zs | zG

)
is an MRF whose parameters

depends on zG where zG = {zGj , j = 1, . . . , N} is a label vector asso-
ciated with a common group-level parcellation. The label distribution
p(zs | zG) can be written as

p
(
zs | zG

)
∝ exp

(
N∑
j=1

αj,zsj
(
zG
)

+ βsz
∑
i∼j

I
(
zsi = zsj

))
, [7.2]

where βsz is the interaction parameter and αj,k
(
zG
)
is the external field

parameter of the MRF. For j = 1, . . . , N and for k = 1, . . . , K, this
parameter can be defined as

αj,k
(
zG
)

= η
∑
i∈R(j)

I
(
zGi = k

)
, [7.3]

where η is a positive scalar parameter adjusting the strength of the
external field and R (j) is a region of voxels around j including the
voxel j. Moreover, R (j) could also be larger or smaller , i.e., R (j) =
{j}. Note that in this case, the αj,k

(
zG
)
acts as an external field

that depends on voxel j and on the global parcellation at this voxel
and around it. This model has the particularity to mix inside the
same MRF model informations coming from the subject and group
level parcellations.
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Remark. R (j) = {j} means that we favor all parcellations zs, s ∈
{1 . . . , S} to be equal to zG the global one. In this case, the value of η
should be large enough to give more weight to the information coming
from the group-level parcellation in the external field.

Remark. αj,k
(
zG
)
is a voting rule system, the voxels in R (j) are the

voters for voxel j and η is the voting weight. Instead of a single value of
η, we can have one value for each voxel inR (j), i.e., η = {ηi, i ∈ R (j)}.
Typically, one can put more weight on the group-level parcellation at
voxel j and less on i ∈ R (j)\j to favor the information coming from
the group-level parcellation at voxel j.

Remark. One can notice that this kind of MRF priors that allows
us to account for informations about the parcellation from both the
subject and group level is neither used in the JPDE model nor in the
MS-JPDE model.

(iii) Group-level HRF groups
To guarantee the connexity of the group-level parcellation, a K-class
Potts model is used with interaction parameter βGz such that

p
(
zG
)
∝ exp

(
βG
∑
i∼j

I
(
zGi = zGj

))
. [7.4]

Using this prior forces the neighbouring voxels to belong to the same
HRF group and thus to share the same HRF pattern. The same Potts
model was used for the JPDE and MS-JPDE models (see Subsec-
tion 3.2.2 (iii) and Section 6.3 (v), respectively) to promote spatial
connexity.

In what follows, the set of all parameters for one subject is denoted as
Θs =

{
Γs,Ls,θs{1:M}, β

s
z , (σ

s
h)

2, (h̄sk, ν
s
k)1≤k≤K

}
. The global parcellation pa-

rameters are gathered in the vector ω = {βGz , (σGh )2, (h̄Gk )1≤k≤K} and Φ =
{{Θs}1:S,ω}.
The graphical model shown in Fig. 7.1 illustrates the hierarchy of the HMS-
JPDE model and the dependencies between the observations and unknown
variables. To summarize, the graphical model in Fig. 7.1 preserves the hier-
archical terms of the JPDE model which are illustrated in Fig. 3.2. However,
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extra layers of hierarchy are added in order to consider the group-level par-
cellations and HRFs as in the graphical model of the MS-JPDE in Fig. 6.1.
The variables and parameters associated with these layers are gathered in a
block labelled as G in Fig. 7.1. More precisely, the variable of the subject-
level parcellation label zsj depends on the group-level parcellation label zGj .
Furthermore, the subject-level HRF pattern h̄sk at parcel #k depends on the
hyperparameter h̄Gk , which is the group-level HRF pattern.

Figure 7.1: Graphical model describing the hierarchy of the HMS-JPDE model.

7.3 Variational expectation maximization

We denote the BOLD time series Y and the unknown variables (H ,A,Q,
and z) from all the individuals involved in the fMRI experiment as Y =
{Y s}s=1:S, H = {Hs}s=1:S , A = {As}s=1:S , Q = {Qs}s=1:S and Z =
{zs}s=1:S, respectively. The resulting joint distribution of the model can be
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written as

p(Y,A,H,Q,Z, zG) ∝
S∏
s=1

[p (Y s | As,Hs) p (As | Qs) p (Qs) p (Hs | zs)

×p
(
zs | zG

)]
p
(
zG
)

[7.5]

where the term factorizing over the subjects in the joint distribution is similar
to the one in the standard JPDE model except that a different prior of zs is
used. The probability p(zG) comes from the group-level parcellation.
We rely on a VEM strategy to compute the Bayesian estimates associated
with the intractable posterior of the HMS-JPDE model. As a result, the
target posterior distribution can be approximated as

p̃(A,H,Q,Z, zG | Y) = p̃A(A)p̃H(H)p̃Q(Q)p̃Z(Z)p̃zG(zG). [7.6]

An iterative algorithm is used to compute these variables by alternating
maximization of the following free energy with respect to p̃ and Φ

F(p̃,Φ) = Ep̃

[
log p(Y,A,H,Q,Z, zG |Φ)

]
+ G(p̃) [7.7]

where p̃ ∈ D , D is the set of all probability distributions onA×H×Q×Z×zG
where A,H,Q,Z, zG are the probability spaces associated with A,H,Q,Z
and zG respectively, and G(p̃) = −Ep̃

[
log p̃(A,H,Q,Z, zG)

]
is the entropy

of p̃. At the r-th iteration, the current value of the unknown parameters is
denoted by Φ(r−1). The alternating procedure proceeds as follows

E-step: p̃(r)

A,H,Q,Z,zG = arg max
p̃∈D

F(p̃,Φ(r−1)) [7.8]

M-step: Φ(r) = arg max
Φ∈Φ

F(p̃
(r)

A,H,Q,Z,zG ,Φ). [7.9]
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The resulting five E-steps are the E-A, E-H, E-Q, E-Z and E-zG and they
can be expressed as

VE-H: p̃
(r)
H (H) ∝ exp

(
E
p̃

(r−1)
A p̃

(r−1)
Z

[
log p(H |Y,A,Z;Φ(r−1)

])
, [7.10]

VE-A: p̃
(r)
A (A) ∝ exp

(
E
p̃

(r)
H p̃

(r−1)
Q

[
log p(A |Y,H,Q;Φ(r−1))

])
, [7.11]

VE-Q: p̃
(r)
Q (Q) ∝ exp

(
E
p̃

(r)
A

[
log p(Q |Y,A;Φ(r−1))

])
, [7.12]

VE-Z: p̃
(r)
Z (Z) ∝ exp

(
E
p̃

(r)
H p̃

(r−1)

zG

[
log p(Z |Y,H, zG;Φ(r−1))

])
, [7.13]

VE-zG: p̃(r)

zG
(zG) ∝ exp

(
Ep̃Z(r)

[
log p(zG |Y,Z;Φ(r−1))

])
. [7.14]

It is worth noticing that each of the first four E-steps consists of S sub-steps.
Moreover, the computations of VE-H, VE-A and VE-Q steps are the same as
in the standard JPDE model (Chaari et al., 2012, 2015) (see Subsection 3.2.3
[3.18]-[3.25] for more details) and they proceed by iterating over individuals.
The two new steps are the VE-Zs and VE-ZG steps. Further details regarding
the new steps are provided in what follows.

(i) VE-Z step
This step is divided into S steps one for each subject such that p̃Z(Z) =∏S

s=1 p̃zs(z
s). Each p̃zs(zs) includes J sub-steps resulting from a prod-

uct approximation, i.e., p̃zs (zs) =
∏J

j=1 p̃zsj
(
zsj
)
. The posterior p̃zsj

(
zsj
)

can be approximated as

p̃zsj
(
zsj
)
∝ exp

(
Ep̃hs

j
p̃zs
j
p̃
zG

[
log p

(
hsj | zsj

)
+ log p

(
zs | zG

)])
,

∝ exp

Ep̃hs
j

[
log p

(
hsj | zsj

)]︸ ︷︷ ︸
A

+ Ep̃zs\j
p̃
zG

[
log p

(
zs | zG

)]
︸ ︷︷ ︸

B

 ,

[7.15]

where part A of the equation is the same as in the standard JPDE
model [3.27] and part B is computed as

Ep̃zs
j
p̃
zG

[
log p

(
zs | zG

)]
=Ep̃zs\j

p̃
zG

[ N∑
j=1

αj,zsj
(
zG
)

+ βsz
∑
i∼j

I(zsi = zsj )

− logK
(
zG, βGz

)]
, [7.16]
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where K(zG, βGz ) is the group-level Markov random field in [7.4] which
is independent of zsj . Straightforward computations of [7.16] lead to

Ep̃zs\j
p̃
zG

[
log p

(
zs | zG

)]
= Ep̃

zG

[
αj,zsj

(
zG
)]

+ βsz
∑
i∈N (j)

p̃zsi
(
zsj
)
,

= η
∑
i∈R(j)

p̃zGi

(
zsj
)

+ βsz
∑
i∈N (j)

p̃zsi
(
zsj
)
.

[7.17]

The posterior in [7.15] is then equivalent to

p̃zsj
(
zsj = k

)
∝

exp

Ep̃hs
j

[
logN

(
hsj ; h̄

s
k, Σ̄

s
k

)]
+ η

∑
i∈R(j)

p̃zGi (k) + βsz
∑
i∈N (j)

p̃zsi (k)

 .

[7.18]

From the previous equations, we can notice that for subject s, the
probability that voxel j belongs to parcel k depends on the number
of neighbouring voxels in N (j) in the same subject and neighbouring
voxels in R(j) in the group-level parcellation that also belong to parcel
k.

(ii) VE-ZG step
Assuming a product approximation over voxels, the VE-ZG is split into
J sub-steps, i.e., p̃zG(zG) =

∏J
j=1 p̃zGj (zGj ) where p̃zGj (zGj ) can be written

as
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p̃zGj (zGj ) ∝ exp

(
Ep̃

z{s=1,...,S} p̃zG
j

[ S∑
s=1

log p
(
zs | zG

)
+ log p

(
zGj | zGN(j)

)])
,

∝ exp

(
S∑
s=1

J∑
i=1

Ep̃zs
i
p̃
zG
j
\j

[
αi,zsi

(
zG
)]

+ Ep̃
zG
N(j)

[
βGz

∑
i∈N(j)

I
(
zGi = zGj

)])
,

∝ exp

η
S∑
s=1

J∑
i=1

Ep̃zs
i

[ ∑
l∈R(i)

p̃zGl (zsi )
]

︸ ︷︷ ︸
A

+βGz
∑
i∈N(j)

p̃zGi

(
zGj
)
 .

[7.19]

Part A of [7.19] can be computed as

A = η
S∑
s=1

J∑
i=1

K∑
k=1

p̃zsi (k)

∑
l∈R(i)

p̃zGl (k)

 , [7.20]

=
S∑
s=1

J∑
i=1

Ep̃zs
i
p̃
zG\j

[
η
∑
l∈R(i)

I
(
zGl = zsi

)]
, [7.21]

=
S∑
s=1

J∑
i=1

η
K∑
k=1

p̃zsi (k) Ep̃
zG
j
\j

[ ∑
l∈R(i)

I
(
zGl = k

)]
︸ ︷︷ ︸

W

, [7.22]

whereas part W can be computed according to following condition

W =

{∑
l∈R(i) p̃zGi (k), if j /∈ R(i)∑
l∈R(i)\j p̃zGl (k) + I(zGj = k), if j ∈ R(i).

Straightforward computations lead to

W = η
S∑
s=1

∑
i∈R̄(j)

K∑
k=1

p̃zsi (k)I
(
zGj = k

)
, [7.23]
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where
K∑
k=1

p̃zsi (k)I
(
zGj = k

)
= p̃zsi (z

G
j ). Finally, we end up with the

following expression of p̃zGj (zGj = k)

p̃zGj (zGj = k) ∝ exp

η S∑
s=1

∑
i∈R̄(j)

p̃zsi (k) + βGz
∑
i∈N(j)

p̃zGi (k)

 . [7.24]

On the other hand, the M-step of the algorithm can be written as follows

VM: Φ(r) = arg max
Φ∈Φ

E
p̃

(r)
A p̃

(r)
H p̃

(r)
Q p̃

(r)
Z p̃

(r)

zG

[
log p(Y,A,H,Q,Z, zG;Φ)

]
,

[7.25]

or equivalently

Φ(r) = arg max
Φ∈Φ

[
Ep̃Ap̃H

[
log p(Y | A,H;Φ)

]
+ Ep̃Ap̃Q

[
log p(A | Q;Φ)

]
+Ep̃Zp̃zG

[
log p(Z | zG;Φ)

]
+ Ep̃

zG

[
log p(zG;Φ)

]
+Ep̃Hp̃Z

[
log p(H | Z;Φ)

]
+ log p(h̄;Φ) + log p(h̄G;Φ)

]
.

[7.26]
Comparing [7.26] to the maximization equation [3.17] in the standard JPDE
model, we can notice that the modification in the hierarchy of the HMS-
JPDE model results in two new maximization sub-steps associated with the
parameters h̄ and h̄G.

(i) VM-h̄s step
The maximization of h̄s can be obtained by solving the following prob-
lem

h̄s = arg max
h̄s

[
Ep̃Hs p̃zs

[
log p(Hs | zs; h̄s,ν)

]
+ log p(h̄s; h̄G, (σsh)

2)
]
.

[7.27]
For s = 1, . . . , S, a single HRF pattern h̄sk is estimated for parcel ks.
Differentiating with respect to h̄sk yields

h̄sk =

( ∑J
j=1 p̃zsj (k)Σs

k
−1mHj∑J

j=1 p̃zsj (k)Σs
k
−1 +R−1/(σsh)

2

)
+

(
h̄GkR

−1/(σsh)
2∑J

j=1 p̃zsj (k)Σs
k
−1 +R−1/(σsh)

2

)
.

[7.28]
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(ii) VM-h̄G step
This maximization step can be formulated as follows

h̄G = arg max
h̄G

[
S∑
s=1

p(h̄s; h̄G, (σsh)
2) + log p(h̄G; (σGh )2)

]
. [7.29]

For the group-level HRF profiles, a single HRF pattern is estimated for
each parcel. Differentiating [7.29] with respect to h̄Gk yields

h̄Gk =

∑S
s=1 h̄

s
k((σ

s
h)

2R)
−1

((σGh )2R)
−1

+
∑S

s=1 ((σsh)
2R)−1

. [7.30]

For further details about the rest of the expectation and maximization steps
refer to Subsection 3.2.3 (v)(a),(v)(b) and (v)(c). The steps of the HMS-
JPDE model are described in Algorithm 7.1.
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Algorithm 7.1 The HMS-JPDE algorithm. The subscript (r) refers to the
current iteration.

Initialization:
p̃

(0)

zG
(zG) is initialized from the initial parcellation.

for all s do
p̃

(0)
zs (zs) is initialized from the initial parcellation.
p̃

(0)
Qs(Q

s) such that p̃(0)
Qsj

(qm,sj ) ∈ {0, 1}.
for all j do

- m(0)
Hs
j
is initialized from the canonical HRF.

- m(0)
Asj

is initialized with zeros.
end for

end for
Initialize with some Φ(0).

r = 1
repeat

Expectation step:
for all s do

- Compute p̃(r)
Hs(Hs) according to [3.18].

- Compute p̃(r)
As(A

s) according to [3.19].
- Compute p̃(r)

Qs(Q
s) according to [3.24].

- Compute p̃(r)
zs (zs) according to [7.18].

end for
- Compute p̃(r)

zG
(zG) according to [7.24].

Maximization step:
Compute Φ(r) according to [7.26].

set r ← r + 1
until convergence
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7.4 Experimental validation

The HMS-JPDE was validated using synthetic and real data experiments via
appropriate comparisons to assess its performance. These experiments are
described in this section.

7.4.1 Synthetic fMRI time series

The fMRI time series were generated under the same considerations as in Sub-
section 6.5.1 and the same initial parcellation was used (see Subsection 6.5.1
for more details). The HMS-JPDE was used to analyze these time series in
order to obtain parcellation and HRF estimates for each subject (contrary
to the MS-JPDE in Chapter 6) as well as the corresponding group-level esti-
mates. The subject-level and group-level parcellation estimates obtained by
analyzing the generated fMRI time series of the four subjects are depicted in
Fig. 7.2. From a visual point of view, the results in this figure are close to
the ground truth parcellations in Fig. 6.2(a-e).
More precisely, the parcellation error values between the reference and es-
timated parcellations are reported in Tab. 7.1. These error percentages are
relatively small which confirm that the HMS-JPDE model is able to obtain
accurate parcellation estimates at the subject and the group level. Moreover,
the parcellation error obtained with the HMS-JPDE is identical to the one
obtained using the MS-JPDE in Subsection 6.5.1. This allows us to con-
clude that both models are able to provide similar and accurate group-level
parcellation estimates. To further investigate the performance of the HMS-
JPDE model in the parcellation task, we computed the confusion matrices
between the reference and estimated parcellations in Tabs. 7.2-7.6 which show
major intersections between the estimated parcels and their ground truths.
The lowest and the highest true positive rate were 0.82 and 1.0, respectively
which prove that the HMS-JPDE model is able to establish accurate parcels
when compared to the reference ones. This precision gain is due to consid-
ering both the group and subject level parcellation layers which allows more
variability of the estimated parcellation for the individuals. This variability
at the subject-level parcellation allows more reliable group-level parcellation
estimates.

As regards the HRF estimates, this model provides us with subject and
group level HRF profiles. The estimated HRF profiles for the individuals



182

(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Group-level

Figure 7.2: Subject-level and group-level parcellation estimates using the HMS-JPDE
model.

Table 7.1: Error probabilities between the reference parcellations and their corresponding
parcellation estimates.

Parcellation Error probability
Subject.1 4.5%
Subject.2 1.0%
Subject.3 5.5%
Subject.4 2.0%
Group-level 4.25%
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Table 7.2: Confusion matrix between reference (RP) and estimated (EP) for subject 1
using the HMS-JPDE model.

HHHH
HHEP
RP Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.98 0.0 0.01 0.05
Parcel 2 0.02 1.0 0.0 0.06
Parcel 3 0.0 0.0 0.99 0.04
Parcel 4 0.0 0.0 0.0 0.85

Table 7.3: Confusion matrix between reference (RP) and estimated (EP) for subject 2
using the HMS-JPDE model.

HHH
HHHEP
RP Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.96 0.02 0.01 0.01
Parcel 2 0.04 0.98 0.0 0.01
Parcel 3 0.0 0.0 0.99 0.0
Parcel 4 0.0 0.0 0.0 0.98

Table 7.4: Confusion matrix between reference (RP) and estimated (EP) for subject 3
using the HMS-JPDE model.

HHH
HHHEP
RP Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.97 0.02 0.01 0.0
Parcel 2 0.03 0.98 0.0 0.02
Parcel 3 0.0 0.0 0.82 0.0
Parcel 4 0.0 0.026 0.17 0.98

Table 7.5: Confusion matrix between reference (RP) and estimated (EP) for subject 4
using the HMS-JPDE model.

HHH
HHHEP
RP Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.95 0.01 0.0 0.0
Parcel 2 0.01 0.98 0.0 0.02
Parcel 3 0.01 0.0 0.99 0.0
Parcel 4 0.03 0.01 0.01 0.98
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Table 7.6: Confusion matrix between reference (RP) and estimated (EP) for the group-
level using the HMS-JPDE model.

HHHH
HHEP
RP Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.95 0.0 0.0 0.01
Parcel 2 0.03 0.96 0.0 0.01
Parcel 3 0.0 0.0 0.99 0.03
Parcel 4 0.02 0.04 0.01 0.95

and their group-level HRF profiles are depicted in Fig. 7.3 along with their
reference HRFs. One can visually notice that the estimated HRFs are similar
to their ground truths.

To further investigate the performance of the HMS-JPDE model in es-
timating the subject and group level HRFs, the MSEs between the ground
truth HRFs and the corresponding HRF estimates are reported in Tabs. 7.7.
In general, these values are relatively small and confirm the previous visual
observation. To be more specific, the HMS-JPDE model outperforms the
MS-JPDE in estimating group-level HRFs which can be obvious by compar-
ing the MSEs in the last column of Tab. 7.7 to those in Tab. 6.2 obtained
using the MS-JPDE model.

Table 7.7: MSEs between reference and estimated subject and group level HRF profiles
using HMS-JPDE model.

HRF Subject 1 Subject 2 Subject 3 Subject 4 Group-level
HRF 1 4.9× 10−5 1.0× 10−5 1.9× 10−5 1.4× 10−5 5.63× 10−5

HRF 2 4.0× 10−5 3.5× 10−5 3.9× 10−5 3.8× 10−5 3.71× 10−5

HRF 3 4.0× 10−5 5.9× 10−5 1.38× 10−5 6.0× 10−5 6.92× 10−5

HRF 4 3.0× 10−5 8.8× 10−5 3.1× 10−5 3.7× 10−5 1.0× 10−4

Furthermore, we tested the performance of the HMS-JPDE model in esti-
mating the NRLs and detecting the activation. The computed MSE values
between the reference and the estimated NRLs and activation labels are re-
ported in Tab. 7.8. These values are relatively small when compared to those
of the MS-JPDE model in Tab. 6.3 and they are closer to those of the JPDE
model in Tab. 6.4 which confirm that the HMS-JPDE model outperforms the
MS-JPDE and is able to retain the robust performance of the JPDE model in
the detection task. Moreover, we tested the proposed model for different Sig-
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(a) Subject 1 (b) Subject 2

(c) Subject 3 (d) Subject 4

(e) Group-level

Figure 7.3: Estimated (dotted line) and ground truth (continuous line) group and subject
level HRF profiles using HMS-JPDE model.
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Table 7.8: MSEs between reference and estimated NRLs and activation labels.

Subject 1 Subject 2 Subject 3 Subject 4

NRLs m = 1 0.016 0.017 0.017 0.016
m = 2 0.011 0.010 0.010 0.011

Labels m = 1 0.002 0.002 0.002 0.002
m = 2 0.003 0.003 0.002 0.002

nal to Noise Ratios (SNR). Twenty experiments were run for different noise
variances ranging from 0.01 to 0.2 with 0.01 increment for each experiment.
The mean parcellation error and the standard deviation for the estimated
subject and group level parcellations are shown in Fig. 7.4. The average
parcellation errors over the subjects and for the group-level parcellation in
the twenty experiments were 2.15% and 3.35% respectively. The average
subject-level parcellation error ranges between 1.0% and 2.8%. These results
prove that the HMS-JPDE model is able to obtain accurate estimates of the
group and subject level parcellations for high SNR.

Figure 7.4: The evolution of the mean parcellation error and standard deviation on
the estimated subject-level and group-level parcellations for 20 experiments with different
SNRs.
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7.4.2 Real data

The real data experiment was carried out under the same considerations in
Subsection 6.5.2 with fMRI data from the same individuals and the same
ROI. We fixed βsz = 0.9, (σsh)

2 = 0.5 for s = 1, . . . , S , βG = 0.9 and
((σGh )2 = 0.5)1.
For the ease of exposure, we separate the analysis results of the real data
experiment into two parts. The first part is devoted to the subject-level
analysis and the comparison with the results obtained by analyzing each
individual using the JPDE model. The second one is dedicated to the group-
level analysis and the comparison with the MS-JPDE model.

(i) Subject-level analysis
The subject-level results were obtained after analyzing the fMRI data
coming from all the subjects simultaneously. These results are com-
pared with those obtained by analyzing the individuals using the JPDE
model. The parcellation estimates using both models are depicted
in Figs. 7.5-7.14. The displayed parcellations for the individuals in
Figs. 7.5-7.14 show some similarities between the estimated subject-
level parcellations using the HMS-JPDE and standard JPDE models,
which is confirmed by the confusion matrices between these estimates
in Tabs. 7.9-7.18. To be more specific, the first and the fourth estimated
parcels using the HMS-JPDE are very similar with their counterparts
obtained using the JPDE model for most of the individuals while some
of the voxels in parcels 2 (respectively parcel 3) obtained using the
JPDE model may actually exist in parcel 3 (respectively parcel 2) of
the HMS-JPDE model. These results indicate that the HMS-JPDE and
the standard JPDE models provide coherent parcellation results at the
subject-level. However, the standard JPDE model is not adequate for
obtaining the group-level analysis results, which will be discussed in
the next part.

1These parameters were adjusted using cross validation
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(a) HMS-JPDE

(b) JPDE

Figure 7.5: Slices of the parcellation estimates for subject 1 using the HMS-JPDE and
JPDE models.

Table 7.9: Confusion matrix between the parcellation estimates for subject 1 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.06 0.0 0.1 0.0
Parcel 2 0.62 0.96 0.9 0.46
Parcel 3 0.23 0.04 0.0 0.04
Parcel 4 0.08 0.0 0.0 0.5
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(a) HMS-JPDE

(b) JPDE

Figure 7.6: Slices of the parcellation estimates for subject 2 using the HMS-JPDE and
JPDE models.

Table 7.10: Confusion matrix between the parcellation estimates for subject 2 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.8 0.0 0.12 0.04
Parcel 2 0.0 0.72 0.0 0.0
Parcel 3 0.02 0.0 0.52 0.0
Parcel 4 0.18 0.28 0.36 0.96
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(a) HMS-JPDE

(b) JPDE

Figure 7.7: Slices of the parcellation estimates for subject 3 using the HMS-JPDE and
JPDE models.

Table 7.11: Confusion matrix between the parcellation estimates for subject 3 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.0 0.0 0.0 0.0
Parcel 2 0.92 1.0 0.0 0.26
Parcel 3 0.06 0.0 1.0 0.04
Parcel 4 0.02 0.0 0.0 0.70
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(a) HMS-JPDE

(b) JPDE

Figure 7.8: Slices of the parcellation estimates for subject 4 using the HMS-JPDE and
JPDE models.

Table 7.12: Confusion matrix between the parcellation estimates for subject 4 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.82 0.02 0.20 0.0
Parcel 2 0.0 0.65 0.0 0.04
Parcel 3 0.05 0.0 0.76 0.0
Parcel 4 0.13 0.33 0.04 0.96
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(a) HMS-JPDE

(b) JPDE

Figure 7.9: Slices of the parcellation estimates for subject 5 using the HMS-JPDE and
JPDE models.

Table 7.13: Confusion matrix between the parcellation estimates for subject. 5 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.83 0.04 0.17 0.0
Parcel 2 0.17 0.89 0.83 0.0
Parcel 3 0.05 0.0 0.0 0.0
Parcel 4 0.13 0.07 0.0 1.0
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(a) HMS-JPDE

(b) JPDE

Figure 7.10: Slices of the parcellation estimates for subject 6 using the HMS-JPDE and
JPDE models.

Table 7.14: Confusion matrix between the parcellation estimates for subject. 6 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.98 0.0 0.27 0.0
Parcel 2 0.0 0.03 0.64 0.04
Parcel 3 0.02 0.97 0.06 0.20
Parcel 4 0.0 0.0 0.03 0.76
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(a) HMS-JPDE

(b) JPDE

Figure 7.11: Slices of the parcellation estimates for subject 7 using the HMS-JPDE and
JPDE models.

Table 7.15: Confusion matrix between the parcellation estimates for subject 7 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.88 0.0 0.20 0.04
Parcel 2 0.0 0.0 0.20 0.04
Parcel 3 0.09 1.0 0.60 0.10
Parcel 4 0.03 0.0 0.0 0.82
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(a) HMS-JPDE

(b) JPDE

Figure 7.12: Slices of the parcellation estimates for subject 8 using the HMS-JPDE and
JPDE models.

Table 7.16: Confusion matrix between the parcellation estimates for subject 8 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.78 0.0 0.22 0.32
Parcel 2 0.22 0.07 0.55 0.06
Parcel 3 0.0 0.93 0.23 0.12
Parcel 4 0.0 0.0 0.0 0.50
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(a) HMS-JPDE

(b) JPDE

Figure 7.13: slices of the parcellation estimates for subject 9 using the HMS-JPDE and
JPDE models.

Table 7.17: Confusion matrix between the parcellation estimates for subject 9 using the
HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.67 0.0 0.16 0.0
Parcel 2 0.10 0.0 0.58 0.08
Parcel 3 0.04 1.0 0.22 0.24
Parcel 4 0.19 0.0 0.04 0.68
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(a) HMS-JPDE

(b) JPDE

Figure 7.14: Slices of the parcellation estimates for subject 10 using the HMS-JPDE
and JPDE models.

Table 7.18: Confusion matrix between the parcellation estimates for subject 10 using
the HMS-JPDE and JPDE models.

XXXXXXXXXXXXHMS-JPDE
JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.09 0.0 0.16 0.0
Parcel 2 0.33 0.06 0.57 0.03
Parcel 3 0.0 0.0 0.0 0.0
Parcel 4 0.58 0.94 0.43 0.97



198

The HRF estimates obtained using the HMS-JPDE and JPDE models
as well as the canonical HRFs are depicted in Figs. 7.15-7.19. From
a visual point of view we can notice some similarities in their shapes.
However, some of the HRF profiles estimated using the HMS-JPDE
model are closer in shape to the canonical HRF which is the case of
the HRF in the motor cortex. We further explored these HRF profiles
by calculating their TTP and FWHM. These results are reported in
Tabs. 7.19 and 7.20, respectively. The TTPs for the estimated HRFs
using the HMS-JPDE and JPDE models range between 5.4 to 6.6 s
and 4.8 to 7.8 s, respectively. Regarding the FWHMs, they range be-
tween 3.6 to 6.0 s for the HRF estimated using the HMS-JPDE model
and 4.8 to 9.0 s for those obtained by the JPDE model. Moreover,
we computed the Euclidean distances between the estimated HRFs us-
ing both models and the canonical HRF in Tab. 7.21. The average
Euclidean distance between the estimated HRF using the HMS-JPDE
and the JPDE models and the canonical HRF are 0.46 and 0.47, re-
spectively which indicate that the two models gives coherent results
in estimating these HRF profiles at the subject-level. However, these
Euclidean distances combined with estimated TTPs and FWHMs in
Tabs. 7.19 and 7.20 allow the interpretation that the HRF estimates
using the HMS-JPDE model are closer to the canonical HRF than those
estimated using the JPDE model, which is coherent with the previous
conclusions in Subsections 4.3.2 and 5.4.2 and the study conducted in
(Badillo et al., 2013b) which demonstrated that the HRF in the motor
cortex strongly departs from the canonical shape. Hence, the HMS-
JPDE model outperforms the JPDE model for this specific dataset in
obtaining accurate HRF estimates that are close to the canonical shape.
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(a) Subject 1

(b) Subject 2

Figure 7.15: HRF estimates for subjects 1 and 2 using the HMS-JPDE and JPDE
models in the right motor cortex.
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(a) Subject 3

(b) Subject 4

Figure 7.16: HRF estimates for subjects 3 and 4 using the HMS-JPDE and JPDE
models in the right motor cortex.
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(a) Subject 5

(b) Subject 6

Figure 7.17: HRF estimates for subjects 5 and 6 using the HMS-JPDE and JPDE
models in the right motor cortex.
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(a) Subject 7

(b) Subject 8

Figure 7.18: HRF estimates for subjects 7 and 8 using the HMS-JPDE and JPDE
models in the right motor cortex.
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(a) Subject 9

(b) Subject 10

Figure 7.19: HRF estimates for subjects 9 and 10 using the HMS-JPDE and JPDE
models in the right motor cortex.
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(ii) Group-level analysis
This part compares the group-level estimates obtained using the HMS-
JPDE and the MS-JPDE models. Starting with the group-level par-
cellation, Fig. 7.20 shows different slices of the parcellation estimates
using the HMS-JPDE model. To compare the group-level parcellation
estimates of the HMS-JPDE model with those obtained using the MS-
JPDE model, Tab. 7.22 displays the confusion matrix between these
estimates using the two models. These results show important similar-
ities between the corresponding estimated parcels using the two models.
It is worth recalling that the group-level parcellation estimator obtained
using the HMS-JPDE model is directly derived from the subject-level
parcellations contrary to the MS-JPDE model where the group-level
parcellation is derived from the subject-level voxel-dependent HRFs.
As a result, the HMS-JPDE model allows more flexibility in the par-
cellation at the subject-level since each subject has its own parcellation.
Thus, the group-level parcellation estimates obtained using the HMS-
JPDE model are considered to be more reliable from a theoretical point
of view.

Table 7.22: Confusion matrix for group-level parcellation estimates obtained using the
HMS-JPDE and JPDE models.

``````````````̀HMS-JPDE
MS-JPDE Parcel 1 Parcel 2 Parcel 3 Parcel 4

Parcel 1 0.75 0.0 0.14 0.0
Parcel 2 0.25 1.0 0.30 0.45
Parcel 3 0.0 0.0 0.56 0.04
Parcel 4 0.25 0.0 0.0 0.51

The group-level HRF estimates for both models are shown along with
the canonical HRF shape in Fig. 7.21-7.24. From a visual point of view,
we can notice that the HRF estimates using the two models are simi-
lar and they are close to the canonical HRF shape. More precisely, we
computed the Euclidean distances between the HRF estimates obtained
with the HMS-JPDE and the canonical HRF in Tab. 7.23. Generally
speaking, these results are close to those in Tab. 6.5 for the HRF esti-
mates obtained using the MS-JPDE model and there are no significant
differences between the reported values. Furthermore, the TTP and
FWHM for the obtained HRF estimates are computed in Tab. 7.24.



208

(a) Slice 1

(b) Slice 2

Figure 7.20: Different slices of the estimated parcellation using HMS-JPDE model.
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Comparing these results with the ones in Tab. 6.6, we can notice some
similarities in the computed TTP values for the corresponding HRFs.
As discussed in Subsection 6.5.2, the estimated HRFs using the MS-
JPDE model are affected by the value of the hyperparameter (σGh )2

which can be clear in Fig. 6.12. It is worth noticing that (σGh )2 was ad-
justed to 0.5 in the setting of the real data experiment conducted using
the HMS-JPDE model which does not have any effect on the smooth-
ness of the group-level HRFs when compared to those obtained with
the MS-JPDE model under the same experimental setting. However,
(σGh )2 could be included in the MS-JPDE model and this estimated
with the other model parameters.

Figure 7.21: Group-level HRF estimates of parcel 1 using the HMS-JPDE and MS-JPDE
models in the right motor cortex along with the canonical HRF.

Table 7.23: Euclidean distances between the estimated HRFs obtained using the HMS-
JPDE model and the canonical HRF.

Euclidean distance
HRF. 1 0.32
HRF. 2 0.38
HRF. 3 0.27
HRF. 4 0.29
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Figure 7.22: Group-level HRF estimates of parcel 2 using the HMS-JPDE and MS-JPDE
models in the right motor cortex along with the canonical HRF.

Figure 7.23: Group-level HRF estimates of parcel 3 using the HMS-JPDE and MS-JPDE
models in the right motor cortex along with the canonical HRF.

Table 7.24: The estimated TTP and FWHM for the HRF estimates obtained using the
HMS-JPDE model.

TTP FWHM
HRF. 1 6.0 4.2
HRF. 2 6.0 4.8
HRF. 3 6.0 4.2
HRF. 4 6.0 4.2
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Figure 7.24: Group-level HRF estimates for parcel 4 using the HMS-JPDE and MS-
JPDE models in the right motor cortex along with the canonical HRF.

7.4.3 Discussion

This section described the validation of the HMS-JPDE model via synthetic
and real data experiments. Via synthetic data experiments, the HMS-JPDE
model showed a robust performance in estimating the subject and group
level parcellations with different SNRs. Moreover, the HMS-JPDE model
provided similar results to the JPDE model and outperformed the MS-JPDE
model in providing accurate NRL estimates. Via real data experiment, the
performance of the HMS-JPDEmodel was compared with the JPDEmodel at
the subject-level and the MS-JPDE model at the group level. At the subject-
level, the HMS-JPDE model managed to provide HRF estimates that were
closer to the canonical HRF shape than those provided by the JPDE model
in the right motor cortex as it has been proven that the HRF in the motor
cortex departs from the canonical shape (see (Badillo et al., 2013b)). This
conclusion was based on the computed TTP, FWHM of the HRF estimates
and their Euclidean distances with the canonical HRF. At the group-level,
the parcellation estimates using the HMS-JPDE and MS-JPDE models were
similar which was confirmed by computing the confusion matrix between
them. The HRF estimates using both models were close to the canonical
shape. However, the ones provided by the HMS-JPDE model were smoother
than those obtained using the MS-JPDE model and their smoothness was not
sensitive to the hyperparameter (σGh )2 as in the MS-JPDE model. Note that
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a comparison for the proposed multi-subject models with the multi-subject
model in (Badillo et al., 2014) is essential. However, this comparison is not
included in the framework of this thesis due to the limited time and will be
conducted for further validation of these models. To finish, the properties
of the HMS-JPDE, MS-JPDE and JPDE models are briefly summarized in
Tab. 7.25.
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7.5 Conclusion

A novel approach for group-level fMRI analysis (HMS-JPDE) was proposed
in this chapter. This model performs a joint inter and intra subject par-
cellation and estimation along with the detection task that iterated over
individuals contrary to the MS-JPDE in Chapter 6 which only allows for the
group-level estimates. The hierarchy of the HMS-JPDE model and its vari-
ational inference were described in details and the model was then validated
using synthetic and real data experiments. A thorough comparison for the
HMS-JPDE model with the JPDE and MS-JPDE models showed competi-
tive results for the proposed HMS-JPDE strategy at the subject and group
levels. Moreover, the HMS-JPDE model is one of the first models that study
the variability of the HRFs across different brain regions at the subject and
group levels simultaneously.
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CHAPTER 8

Conclusion and Future Work

fMRI is a powerful non-invasive imaging technique that indirectly measures
neural activity from the BOLD signal which reflects the variations in the
blood oxygenation level induced by oxygen consumption of neural popula-
tion during task performance. Task-related fMRI focuses on the detection
of the evoked activity in brain areas in response to a given stimulus and the
estimation of brain dynamics (HRF) associated with such activation. Clas-
sical fMRI analyses focus on the detection of the activity in the brain and
ignore the variability of the HRF by considering a constant canonical HRF.
However, the HRF has been proven to vary between regions and sessions
within subject, across subjects and groups. Moreover, a robust HRF estima-
tion increases the reliability of the detection task. The JPDE model is one
of the approaches that jointly performs the detection and estimation tasks
along with the hemodynamic parcellation of the brain such that each of the
estimated hemodynamic parcels has its own HRF shape. Although the JPDE
is able to estimate the parcellation of the brain, it still requires a proper ini-
tialization and the number of parcels to be fixed which can be complicated
when no prior information about the optimum number of parcels is available.
The contributions of this PhD can be classified into two main parts; the first
one focuses on the subject-level analysis and the second one is concerned
with the multi-subject analysis. In the subject-level analysis the PhD con-
tributed in developing new techniques and algorithms to estimate the number
of parcels and the parcellation online without previous knowledge about the
parcels and their shape. As a start, we introduced the JPDE model and
its proposed variational model selection procedure in chapter 3 which re-
lied on the free energy calculation. However, this model selection procedure
is computationally intensive since it requires to be run for all the candidate
models. As a result, a new approach for hemodynamic brain parcellation was
proposed in Chapter 4. This approach relies on a Bayesian non-parametric
approach in which a combination of a hidden Markov random field and a
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Dirichlet process mixture model was used in order to automatically estimate
the parcellation. The hidden Markov random field promoted spatial con-
nexity on the neighbouring voxels while the Dirichlet processes allowed an
unbounded number of parcels to be considered. This model was mathemat-
ically proven and the its inference strategy was illustrated in details. Due
to the deep hierarchy and computational complexity of the previous model,
Chapter 5 explored an interesting approach that incorporates the adaptive
mean shift algorithm in the VEM framework of the JPDE model. The adap-
tive mean shift was first introduced. Then, it was applied to the estimation
of the hemodynamic parcellation. More precisely, the adaptive mean shift
algorithm replaced the maximization of the HRF patterns and an approxi-
mation E-z step was used since there was no prior over the variable of the
parcellation labels z.
All of these approaches managed to automatically estimate the number of
parcels in addition to the parcels themselves and their corresponding HRF
profiles. Nonetheless, the experiments conducted during this thesis showed
that the best choice to estimate these parcels is the NP-JPDE model. For in-
stance, when the NP-JPDE model is compared to the JPDE with the model
selection procedure, the NP-JPDE model was less computationally intensive
since it estimates the parcellation using a single run. Moreover, the parcels
estimated using the NP-JPDE model were spatially consistent contrary to
those obtained with the AMS-JPDE model where the parcels could be dis-
connected due to the existence of outlier voxels. Finally, the NP-JPDE model
also managed to discriminate parcels with different HRF characteristics (e.g.,
different FWHMs) in contrast to the AMS-JPDE model which failed to dis-
criminate the different parcels in the right motor cortex.
At the group-level, two models were proposed in this PhD. The first one was
the multi-subject joint parcellation detection estimation (MS-JPDE) pro-
posed in Chapter 6 that can jointly estimates the group-level parcellation
and HRF profiles. However, the experimental validation on synthetic and
real data proved that the NRL estimates obtained using this model were
slightly affected and that the HRF estimates were sensitive to the value of
one of the hyperparameters, which in turn affected the characteristics of the
HRF profiles. As a result, Chapter 7 introduced an hyprid multi-subject
joint parcellation detection estimation (HMS-JPDE) model, which enabled
the estimation of the group and subject level parcellations and HRF profiles.
This model was compared to the standard JPDE model at the subject-level
where it managed to give closer HRF estimates to the canonical shape. At the
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group-level, the HMS-JPDE model was compared to the MS-JPDE model.
This comparison showed that the estimated NRLs obtained with the HMS-
JPDE model at the subject-level were improved when compared to those
obtained with the MS-JPDE model and were closer to the NRL estimates
obtained using the JPDE model. Furthermore, the group-level HRF profiles
estimated by the HMS-JPDE model were smoother than those obtained us-
ing the MS-JPDE model, which proved that the HMS-JPDE model managed
to eliminate the sensitivity of the HRFs arising from the hyperparameters.
Both models allow obtaining the group-level estimates and give coherent re-
sults under specific considerations of some parameters. However, the HMS-
JPDE model has the interesting advantage of capturing the HRF variability
across brain regions at both the subject and group levels, which is not achiev-
able in the MS-JPDE model. This inter and intra subject framework also
increases the computational complexity of the HMS-JPDE model if com-
pared to the MS-JPDE model. One additional advantage of the HMS-JPDE
model is that a user does not have to precisely adjust the hyperparameter
σG

2

h . This is in contrast with the MS-JPDE model, where a user may need
to run the same experiment more than once with different values of σG2

h to
obtain the best results. After all, one can choose any of these two models
depending on whether the interest is to study the HRF variability at both
the subject and group level or only at the group-level.
The main contributions of this thesis can be specified in:

(i) The variational model selection procedure for the JPDE model that
computes the free energy associated with different candidate models
characterized by different numbers of parcels and selects the one max-
imizing the free energy as the best fit for the data.

(ii) The NP-JPDE model which uses the properties of the Dirichlet pro-
cess mixture model and the hidden Markov random field to estimate
the parcellation online from the fMRI data without any previous ini-
tialization for the parcellation. Our experiments showed the ability of
the NP-JPDE model to distinguish HRFs with different FWHM and
TTP. Our proposed algorithm is one of the first approaches that relies
on non-parametric techniques for estimating the hemodynamic parcel-
lations.

(iii) The AMS-JPDE model makes use of the well known adaptive mean
shift algorithm and includes it in the VEM framework to estimate the
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parcellation. The parcellation is formulated as a clustering issue with
this algorithm where one only needs to set the number of k-nearest
neighbours required for the mean-shift algorithm.

(iv) The group-level approaches for fMRI analysis. The first one is the
multi-subject joint parcellation detection estimation model that allows
the estimation of group-level parcellation and HRF profiles. This model
is able to analyze data from multiple subjects and for all parcels in-
volved in a region of interest. Additional hierarchical levels are intro-
duced in the Bayesian framework of the JPDE model to jointly and
non-parametrically asses common global hemodynamic responses for
all estimated parcels in the global parcellation for all individuals. The
second is the inter and intra subject joint parcellation detection esti-
mation model that performs a joint subject and group level analysis.
This model allows estimating group and subject level parcellations and
HRF profiles along with the detection task for each subject separately.
To the best of our knowledge, very few approaches have been proposed
to tackle the parcellation and the HRF estimation at the group-level
making these two models very interesting and innovative for fMRI anal-
ysis.

The accomplished contributions in this PhD are associated with some per-
spectives to be considered in future work:

(i) The estimation of the interaction parameter of the Potts model
in the NP-JPDE
Future work will focus on finding a more efficient approach to estimate
the parameter βz of the Potts model in the NP-JPDE model to avoid
the computational complexity of the theoretical estimation provided in
Chapter 4.

(ii) The extension of the NP-JPDE model to group-level analysis
Following the line of the JPDE model and its extensions to multi-
subject analysis, it would be interesting to extend the NP-JPDE model
for the same purpose. By doing so, we might consider a non-parametric
framework that allows estimating the parcellation of a group of subjects
without any prior knowledge about the optimum number of parcels.
Note that additional layers of hierarchy have to be added to the Bayesian
model of the NP-JPDE in order to account for data coming from mul-
tiple subjects.



219

(iii) Increasing the robustness of the AMS-JPDE model
As noticed in the synthetic data experiments of Chapter 5, the exis-
tence of outlier voxels in the parcellation estimates using the AMS-
JPDE model causes disconnection in the estimated parcels. Two dif-
ferent approaches can be used to eliminate these outliers. The first
approach consists of adding spatial priors to guarantee the connexity
of the neighbouring voxels. Another possible way is to use postprocess-
ing techniques to eliminate the outlier voxels.

(iv) Conducting a study for the hemodynamic variability
As a first step, further validation of the proposed multi-subject models
can be performed by using different ROIs. Moreover, a comparison
with the multi-subject approach in (Badillo et al., 2014) seems essen-
tial. Knowing that the multi-subject model in (Badillo et al., 2014)
assumes a priori fixed parcellation, this allows analyzing the effect of
estimating a group-level parcellation on the group-level HRF estimates.
This comparison was not carried out in the framework of this thesis due
to the limited time. As a second step, it is important to verify the re-
producibility of the parcellation and HRF estimates of Chapters 6 and
7. The latter objective can be accomplished by conducting a study on
another group of subjects with similar characteristics to the one used
in this thesis.

(v) The establishment of a hemodynamic atlas
This can be accomplished by analyzing data from a large cohorts of
subjects using one of the proposed multi-subject models. This hemo-
dynamic atlas can be an alternative to the functional anatomical one.
Brain structure mapping is widely used in neuro-anatomy to identify
common brain structures among individuals. One can mention the
approach investigated in (Perrot et al., 2009) in which the mapping
methods consider the normalization and the identification of the struc-
tures. This type of atlas is widely used in cerebral morphometry. A
Bayesian framework has also been proposed in (Perrot et al., 2011) to
automatically identify 60 sulcal labels per hemisphere based on a prob-
abilistic atlas. This is similar to the combination between anatomical
parcellation and the functional information to refine this parcellation
(Mazziotta et al., 1995; Thompson and Toga, 1997; Shattuck et al.,
2008). Analyzing data belong to a specific group of interest with one of
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our proposed approaches for group-level analysis will allow the use of
the voxel-dependent HRF estimates to identify common brain regions
with similar hemodynamic properties.
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