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Modeling the Electrostatics of Hollow Shell Suspensions: Ion
Distribution, Pair Interactions, and Many-Body Effects

Yannick Hallez* and Martine Meireles

Laboratoire de Geńie Chimique, Universite ́ de Toulouse, CNRS, INPT, UPS, Toulouse 31000, France

ABSTRACT: Electrostatic interactions play a key role in hollow
shell suspensions as they determine their structure, stability,
thermodynamics, and rheology and also the loading capacity of
small charged species for nanoreservoir applications. In this work,
fast, reliable modeling strategies aimed at predicting the electrostatics
of hollow shells for one, two, and many colloids are proposed and
validated. The electrostatic potential inside and outside a hollow
shell with a finite thickness and a specific permittivity is determined
analytically in the Debye−Hückel (DH) limit. An expression for the
interaction potential between two such hollow shells is then derived
and validated numerically. It follows a classical Yukawa form with an
effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of
the Ornstein−Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison
to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson−Boltzmann and
Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute
regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant
many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged
hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the
cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and
concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and
surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

1. INTRODUCTION

Colloidal hollow shells encapsulating smaller active or useful
species are ubiquitous in the natural world. Some examples are
cells, lipoproteins containing lipids, or viral capsids containing
DNA. Thanks to the rapid advance of synthesis and assembly
methods, it is now possible to create artificial hollow shells in a
well-controlled manner.1,2 Several applications relying on these
systems are expected to lead to strong societal or economic
benefits in the domains of medicine, biotechnology, cosmetics,
coating, sensing, microreaction, catalysis, crystallization,
acoustics, electronics, optoelectronics, etc.1−3 Hollow shells
are used for the encapsulation, vectorization, and/or controlled
release of various substances in many of these domains, but
they can also be considered for their own particular properties,
for example for their low density or for their tunable plasmon
resonance.4

In this work, we consider porous, charged hollow shells
because they can be used to encapsulate small charged species,
they are naturally stabilized by their surface charges, and their
structure in a suspension can be controlled through their
mutual interactions, opening the way to many applications
beyond encapsulation. Both the amount of matter trapped in
capsules and the structure of the suspension can be tuned, for
example by varying the surface charge density of the colloids,
which can itself be controlled with the pH of the suspension.
This type of hollow shell also provides some selectivity to the

transfer of small species: capsules will retain almost only
oppositely charged species and reject others (provided the
suspension is not near close packing5). Examples of such
porous, charged hollow shells are silica microcapsules,6,7

metallodielectric shells,4 colloidosomes,8 and, to some extent,
polyelectrolyte multilayer microcapsules,3 bilayer vesicles
containing ion channels, or viral capsids.9 The small charged
species able to migrate through these shells will be called ions
in this article for simplicity, although ions are not the only type
of charged species one would want to encapsulate.
Electrostatic interactions (EI) are central to this work at two

fundamental levels which drive the microscopic and macro-
scopic behavior of the system. At the microscopic scale,
electrostatic interactions between small ions and shells
determine the amount of ions that can be “trapped” near the
surface of the shell, and in particular inside this shell. The
nanoreservoir aspect of a shell suspension is therefore
intrinsically linked to ion−shell electrostatic interactions. On
the other hand, the structure, stability, and the macroscopic
behavior of the suspension, which is determined by its
constitutive relations (equation of state, rheology), are strongly
determined by shell−shell electrostatic interactions. These
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aspects are fundamental for predicting both equilibrium and
nonequilibrium properties of shell suspensions. In equilibrium,
controlling the structure can lead to interesting applications like
photonic crystals.4 Out of equilibrium, shell−shell interactions
influence the flow of suspensions in small capillaries or veins, or
the transformation of suspensions during processes such as
drying, filtration, or coating. These interactions are also
essential for a determination of the nature and properties of
composite materials fabricated by directed or self-assembly of
hollow colloids such as viruses, with applications in domains
such as electronics, sensing and biomedical engineering.10−12

The aim of this article is to provide useful guidelines for
efficient, precise modeling of hollow shell suspensions. This
modeling will enable the loading capacity of shells and their
collective behavior to be predicted as a function of physical
control parameters such as their charge, thickness, dielectric
permittivity, or volume fraction, with a view to being able to
design hollow shells with optimized properties for specific
applications. Some of these applications require the assembly of
colloidal crystals (e.g., to enhance tunable plasmon resonance4)
or close packing to be achieved (e.g., to form self-healing
coatings), which is a particular source of motivation to study
the modeling of electrostatically concentrated suspensions, i.e.
suspensions with interaction ranges comparable to, or larger
than, the mean intercolloid distance. This is a domain
unfavorable to the use of standard DLVO theories, which are
built for dilute suspensions since they rely on isolated pair
potentials, ignoring many-body effects.
In a mean-field picture, ion−shell and shell−shell inter-

actions are both strongly determined by the electrostatic
potential distribution in the N-body suspension. It is possible to
compute the details of this field numerically, at great expense,
for a few hundreds or a few thousands of colloids (computing
all ion−shell and shell−shell interactions is also possible at the
primitive model level, with the same numerical cost). However,
designing and optimizing new colloidal systems based on their
modeling requires the computation of the properties of many
different suspensions with varying geometrical or physicochem-
ical parameters, such as the size, charge and dielectric constant
of the particles, or the salt content or volume fraction of the
suspension. Due to the large number of degrees of freedom to
be explored, using detailed simulations is not realistic. For this
reason, colloidal engineering has to rely on approximate but fast
models aimed at predicting the ion distribution, the structure,
and the dynamics of colloidal suspensions. Several well-known
and well tested models have been devised for full colloidal
spheres. We will focus on two of them. The first one is the cell
model13 (CM) in which the N-body suspension is split into N
identical, spherical, electro-neutral Wigner-Seitz cells containing
a single colloid. The N-body 3D problem is reduced to a 1-
body 1D problem, for which the full computation of the
electrostatic potential can be performed at virtually no cost.
The cell model provides two very interesting pieces of
information. First, the ion distribution around one particle is
determined, and second, the osmotic pressure of the
suspension can be estimated when the dispersion is solid-like.
This model does not, however, provide information about the
structure of the suspension. In the second model considered, in
integral equation (IE) theory, the structure of the suspension is
predicted for a given pair potential of interaction. Thermody-
namic quantities like the osmotic pressure can be deduced from
this structure. In concentrated suspensions, the pair potential

must be an effective potential (beyond the classical DLVO
theory) accounting for many-body correlations.
Several authors have already considered the problem of

modeling the electrostatics of hollow shells, sometimes with the
approaches mentioned above. The picture of a single shell in an
infinite medium has been applied, for example, to determine
the influence of electrostatics on the size and properties of viral
capsids made by the assembly of charged protein subunits.14,15

The cell model is also a single colloid model, but it accounts for
the finite volume fraction of colloids in the suspension. This
was important for example to study the ion distribution inside
and outside a hollow shell5,16,17 or the formation of surfactant
bilayer vesicles.18,19 At the two colloid level, the pair interaction
potential between two infinitely thin shells with an arbitrary
surface charge distribution has been derived analytically in the
Debye−Hückel limit,20 and the mean force between two hollow
shells with a finite thickness and the same permittivity as the
electrolyte as been computed in the no-salt limit with Monte
Carlo simulations.12 To the best of our knowledge, the pair
interactions exerted between hollow shells with a finite
thickness and a dielectric constant different from that of the
electrolyte have never been computed, although, unlike in the
full sphere case, these parameters influence ion-colloid and
colloid−colloid interactions at first order. Neither are we aware
of simulations including more than two hollow shells, either in
a primitive model or in a mean-field context. In this article, we
therefore extend previous works by considering porous and
charged hollow shells with a finite thickness and with a
dielectric permittivity different from that of the electrolyte.
In the first section, analytical results are derived in the

Debye−Hückel limit concerning the electrostatic field
generated by a single hollow shell in a Wigner-Seitz cell and
concerning the pair interaction between two hollow shells in an
otherwise infinite and empty medium. These results are
validated numerically. In the second part, we evaluate
suspension modeling strategies relying on these pair
interactions (based on the Ornstein−Zernike equation here)
and on the cell model to compute equations of state by
comparison with data generated by more refined simulations.
These simulations combine a classical Brownian dynamics
algorithm with the resolution of the nonlinear Poisson−
Boltzmann and Laplace equations in an N-body system at each
time step. Image effects due to dielectric discontinuities and
many-body effects are thus fully included. In this second
section, we will focus on two aspects in particular: the onset of
many-body effects in concentrated suspensions, and the
proposition of a charge renormalization method to compute
the thermodynamics of highly charged hollow shell suspensions
based on effective pair interactions. In the last part of this
article, the modeling of the distribution of ions inside and
outside hollow shells is discussed, and general conclusions are
drawn concerning the use of such colloids as nanocontainers.

2. DEBYE−HÜCKEL THEORY FOR ONE AND TWO
SHELLS

We consider the coarse-grained version of hollow shells
depicted in Figure 1 and already used by several authors.5,14,21

The outer and inner surfaces of these shells are spheres of radii
a and a′ and surface charge densities σ and σ′, respectively. The
details of the structure of the shell wall are smoothed out,
leading to a uniform material with effective dielectric
permittivity ϵs usually lower than that of water. This model is
probably not well suited to objects with thick, highly porous



walls like microgels since ions and charges may then be
dispersed into the “solid” phase. A treatment of this problem
can be found in refs 22 and 23, for instance. The present
coarse-graining strategy is more suited to particles with
impermeable walls punctured by a few passageways authorizing
ion exchange, like colloidosomes,8 silica microcapsules,7,24 viral
capsids,9 bilayer vesicles containing nonselective ion channels,
or incomplete metallodielectric shells.4 The electrolyte is
assumed to have a uniform dielectric constant ϵ. The hollow
shell suspension is taken to be in Donnan equilibrium with a
salt reservoir with ion density n0. Since the hollow shells are
porous to microions, the electrolyte inside them is also in
Donnan equilibrium with the salt reservoir.
Motivated by the large spatial and temporal scale separation

between the microions and the colloids, we treat the hollow
spheres explicitly and the microions at the mean-field level.
Their influence on electrostatics is accounted for only through
their local density, assumed to be given by the Boltzmann
approximation

= ψ± ∓ ±

n n e z
0 (1)

where z± is the valency of microions, ψ = Ψ e/kT is the reduced
electrostatic potential, Ψ is the electrostatic potential, e is the
elementary charge and kT ≡ 1/β is the thermal energy. With
this approach, we discard both the finite size of the ions and the
correlations between them. This picture leads to an accurate
description of the original system under the condition of low
electrostatic coupling Ξ = 2πσz3lB

2/e ≲ 1, where σ is the surface
charge density, and lB = e2/4πϵkT is the Bjerrum length. This
condition is generally not respected when multivalent counter-
ions are involved, but it is met in aqueous 1:1 electrolytes even
for highly charged colloids.25 In this context, the Poisson
equation for the electrostatic potential inside the fluid phase,
both inside and outside the capsule, becomes the Poisson−
Boltzmann (PB) equation

ψ ψ∇ = sinh2
(2)

where ∇ is the gradient operator scaled by the inverse Debye
length κ = (2n0e

2/ϵkT)1/2. This equation being nonlinear, its
resolution is impossible analytically and is extremely CPU-
expensive numerically for a system including several colloids.
Useful analytical results can however be obtained in the low
electrostatic potential regime. In this case, the PB equation
becomes the Debye−Hückel (DH) equation

ψ ψ∇ =2
(3)

Ions are taken to be mostly excluded from the shell wall, so the
electrostatic potential there is the solution of the Laplace
equation

ψ∇ = 02
(4)

Equations 2 and 4 are coupled on the inner and outer surfaces
of the colloids by boundary conditions (BC). In this work, we
consider the constant charge density BC

μ ψ ψ σ∇ | − ∇ | · = ̅n[ ]s e (5)

where μ = ϵs/ϵ is the shell-to-electrolyte permittivity ratio, n is
the unit vector normal to the colloid surface and pointing
toward the electrolyte, and σ̅ is the surface charge density scaled

by ϵn kT2 0 . Other boundary conditions might be used.

Metallic surfaces are more amenable to modeling by a constant
potential condition, and a number of materials actually exhibit
charge regulation.26 In the latter case, the surface charge density
depends on the pH of the suspension and one the salt
concentration near the surface. Different charge regulation
mechanisms exist, depending on the material of the colloids, on
the solvent, and on the type of ions considered. Therefore, in
order to keep the discussion as generic as possible, we chose to
use a constant charge BC in this work.
The electrostatics problem (2)−(4)−(5) is driven by six

dimensionless parameters in the PB theory. They are the
volume fraction ϕ, the reduced radius κa, σ̅, μ = ϵs/ϵ, the core-
to-shell radius ratio α = a′/a, and the inner-to-outer surface
charge density ratio σ′/σ. The influence of these parameters
will be explored around a reference set of parameters provided
in Table 1. If the value of a parameter is not explicitly specified
in this article, the value indicated in Table 1 has been used.

In section 2.1, we solve the system (3)−(4)−(5) analytically
in a Wigner-Seitz cell. The benefit of this is two-fold, as we
obtain both an expression for the osmotic pressure valid in
electrostatically concentrated suspensions27 and the general
spherically symmetric solution for the electrostatic potential
and ion distribution inside and outside one shell. In section 2.2,
we use the infinite dilution limit of this solution to derive an
analytical expression for the interaction potential between two
shells.

2.1. Solution in the Spherical Wigner-Seitz Cell Model.

One hollow sphere is placed at the center of a spherical
Wigner-Seitz cell of radius R = aϕ−1/3, where ϕ = 4πa3/3V is
the volume fraction and V is the total volume of the suspension.
Note that ϕ is an apparent volume fraction, not the solid
volume fraction ϕs = 4π(a3 − a′3)/3V. In the DH theory, the
electrostatic potential ψ(κr) is the solution of the Laplace (4)
and DH (3) equations with the additional boundary conditions

Figure 1. Coarse-grained versions of a hollow shell (left) and sphere
(right) considered in this work.

Table 1. Default Parameters Used in This Worka

symbol quantity value

a external radius 14 nm

a′ internal radius 11.2 nm

ϵ solvent permittivity 78ϵ0
ϵs solid permittivity 2ϵ0
α inner-to-outer radius ratio 0.8

σ̅ external surface charge density 0.25

σ̅′ internal surface charge density 0.25

ZlB/a external surface charge 0.5
a
ϵ0 = 8.854 × 10−12 Fm−1 is the vacuum permittivity.
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where g = κa′ coth(κa′) − 1 and h = κa j−(κa) − j+(κa). This
solution is a generalization to finite volume fractions of the
solution found by Šiber and Podgornik for an isolated
capsule.14

Compared to the solution for a simple sphere, the
particularity of this solution is its dependence on the solid-to-
fluid permittivity ratio μ and on the core-to-shell radii ratio α.
The essential features of the electrostatic potential generated by
hollow spheres are a high potential value in the core, and an
enhanced field outside the particle (see Figure 2). These
qualitative characteristics do not depend on the coarse-graining
approximations, and have been observed repeatedly with
different approaches.5,16 The high potential value inside the
capsule is essentially due to the mutual interaction of the
charges carried by the inner surface of the shell.
The effect of the permittivity ratio on the electrostatic

potential is illustrated in Figure 2a for α = 0.8. For vanishingly
small values of the permittivity of the wall, the potential field
outside the particles reduces to the one generated by a full
sphere with the same outer surface charge density. In this case,
the solid phase completely screens the inner field from the
outer field, and vice versa. If the wall permittivity is increased,

the inner potential decreases due to a reduced interaction
between the inner charges. It nevertheless remains higher than
the outer potential and contributes to its enhancement
compared to the full sphere solution. Note that the outer
solution presented in Figure 2a for a low shell permittivity ϵs =
2ϵ0 typical of many dielectrics immersed in water (green curve
in Figure 2a) is very similar to the full sphere one. This is due
to the moderate Debye length. For κa = 0.5, the external
solution for the same shell permittivity is already close to the
one obtained for a fully permeable wall (not shown).
The effect of the core-to-shell radii ratio α is exemplified in

Figure 2b for ϵs/ϵ = 2/78. For large values of α (large core
radius, main plot in Figure 2b), the potential increases as α
decreases. The mechanism is similar to the one involved in the
increase of the potential between two charged plates during
their approach. However, for small core radii, the potential
inside the core decreases whereas it would diverge between
plates (see insert in Figure 2b). This is due to the reduction of
the total charge carried by the inner surface with a′. However,
this particular behavior is of limited interest since the core
radius is so small that the particles can hardly be considered as
shells. As mentioned above, the high inner potential is

Figure 2. Electrostatic potential inside and outside a shell as a function
of the solid relative permittivity ϵs/ϵ0 and of the core-to-shell radii ratio
α. Lines: analytical solution (7)−(8); Crosses: numerical solution of
(4)−(3)−(6). Black dots: full sphere solution, with the same outer
surface properties. On both figures, κa = 2, ϵ = 78ϵ0, σ̅ = 0.1, σ̅′ = 0.2.



responsible for the enhanced outer potential. The results
presented in Figure 2b show that this increase is more
significant if the shell wall is thin, as expected.
To summarize, the inner potential field is increased if the

shell permittivity is diminished or if the shell thickness is
increased, which might prove useful for storing a maximum
amount of counterions inside a capsule. Of course, the increase
of the shell thickness would have to be performed for a
constant inner radius in order to keep the volume available for
ions constant. On the other hand, the external potential is
enhanced for high shell permittivities and low shell thicknesses,
which can be used to advantage if the aim is to build particles
with very strong repulsions. Very thin shells with a surface
charge density imposed by the physicochemical conditions in
the electrolyte can experience a doubling of their effective
charge compared to full spheres, and so a quadrupling of their
interaction potential as will be shown later. This may be
interesting for the design of strongly stabilized suspensions or
colloidal glasses or crystals.
2.2. Pair Interactions. The external field around an isolated

capsule can be obtained either from the ϕ→ 0 limit of (7)-(8),
or by following a procedure similar to the one employed in
section 2.1, with the second boundary condition in (6) being
replaced by the constraint of keeping the solution finite at all r.
The solution is

ψ κ σ κ
κ κ

= ̅* +

κ κ−

r a
a r

( ) ( )
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ea r
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Interestingly, the potential around an isolated shell takes the
form of the potential around a full sphere (9) with the same
outer radius a, the same screening length κ−1, and an ef fective
surface charge density σ¯* given by relation (10). The ratio in
relation (10) is a measure of the departure from the classical
full sphere solution. Note that if the inner radius of the shell a′
tends to zero, this ratio decreases smoothly and vanishes.
Hence, the full sphere solution is obtained as the limit of the
shell solution for a vanishingly small core radius. This property
is not completely intuitive and is not verified in the Wigner-
Seitz cell for instance. If the shell wall becomes impermeable to
the electric field, this ratio also vanishes, leading once again to
the classical full sphere solution as expected.
Pair interactions between colloidal particles in an infinite and

empty medium can be estimated from the electrostatic
potential (9) by invoking the linear superposition approx-
imation (LSA).28,29 This procedure leads to the well-known
screened-Coulombic potential of interaction

βω
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= *
+

κ κ−⎡

⎣⎢
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Z l

a r

e

1

ea r
2
B

2

(11)

where Z* = σ*4πa2/e and σ* is given by relation (10). It is
important to note that the permittivity jump μ and the shell
finite thickness accounted for by α ≠ 1 in (10) have an effect at
this zeroth order for hollow shells, whereas μ appears only in
image corrections for full spheres. Obtaining such a pair
potential for hollow shells is of great practical interest since it
permits the use of analytical and numerical methods routinely

employed for suspensions of spheres at the minimal expense of
replacing the sphere’s surface charge by the effective charge Z*.
In order to validate the pair potential (10)−(11), we

performed full 3D numerical computations of the electrostatic
potential generated by a pair of particles in the DH framework
(3)−(4)−(5). Pictures of the electrostatic potential field are
provided in Figure 3. The interaction potential was measured as

the free energy variation observed when colloids were brought
from infinity to a separation distance r

∫ ∫∑βω
σ
ψ

σ
ψ= −

=
e

S
e

S
1

2
d 2

1

2
d

i
S S

1,2
0

i 1 (12)

where the indexes 1,2 identify the two colloids and the surfaces
Si of each colloid include both the inner and outer surfaces for
shells. Note that the interaction potential obtained in these
simulations includes all image effects naturally, while the LSA
solution (11) does not.
In Figure 4, the comparison between the analytical relation

(11) (dashed lines) and the numerical data obtained from (12)
(symbols) is presented for κa = 0.5 and 2, μ = 2/78 and 1, and
for σ̅ = σ̅′ = 1 (we will assume σ̅ = σ̅′ in the rest of this article
for simplicity). The small discrepancy observed between these
results in Figure 4b is due to image effects, and adding the first
term of the correction for image interactions βω1 to (11)
following Ohshima’s work30 reconciles the theoretical pair
potentials with the numerical results for spheres almost
perfectly (dark blue continuous lines in Figure 4). Note that
even if a shell is virtually identical to a sphere with charge Z*
within the LSA, this is not true for image interactions since the
latter depend on the boundary conditions on the inner and
outer shell surfaces. The first image interaction between shells
is thus by no means strictly given by the correction βω1 for
spheres. However, the sum βω + βω1 computed with Z* is
represented anyway as continuous light red lines in Figure 4 as
a qualitative, ad-hoc, estimate of the corrected potential. This
estimate actually seems rather accurate considering the
excellent agreement between βω + βω1 and the numerical
data for shells in Figure 4.
The inserts in Figure 4a,b show the pair potential scaled by

Z2, where Z is either the charge of a sphere or Z* for a shell.
Without image effects, all curves collapse on the same master
curve (dashed line). Any divergence from this master curve is

Figure 3. Electrostatic potential map in a system of two spheres (top)
or two shells (bottom). The colormap is linear with minimum value in
blue and maximum value in red. ϵs/ϵ = 2/78, σ̅ = σ̅′ = 1.



only due to image effects and is a function of the permittivity
ratio μ. The inserts in Figure 4 show that image interactions are
negligible for long-range interactions (κa = 0.5, Figure 4a) and
slightly visible only at low solid permittivity for short-range
interactions and short separation distances (κa = 2, Figure 4b).
Therefore, we can conclude that image effects are not more
important for shells than for full spheres, and that they can be
ignored in practice.
Interesting qualitative features of the pair potential between

shells can be pointed out from the data represented in Figure 4.
First, the interaction potential between shells is always higher
than that between spheres with the same outer surface charge
density. This is to be expected since the inner charges of shells
also contribute to the outer electrostatic potential and to the
interaction potential. This effect is enhanced if the shell wall
permittivity is increased. It is important to note that ignoring
the inner charges would be reasonable only if the two
conditions of short-range interactions and low wall permittivity
were met simultaneously (see Figure 4b). Similarly, assuming a
shell to be equivalent to a sphere with total charge ZT = 4πa2σ/
e + 4πa′2σ′/e is, in general, false. It would lead to reasonable
agreement only in the long-range/high wall permittivity case
displayed in Figure 4a. Relation (10), providing the correct
expression of the effective charge as a function of α and the

permittivity jump μ, is therefore of prime importance for
modeling general suspensions of capsules.
To conclude this part, we have shown that, within the linear

superposition approximation, the pair interaction potential
between shells follows a classical Yukawa form (11) with an
ef fective charge Z* = 4πa2σ*/e, where the dimensionless surface
charge density σ¯* is given by (10). Full 3D Laplace/Linearized
Poisson-Boltzamnn simulations confirm this form, and show
additionally that image charge effects are not more important
than for full spheres, and thus quite negligible in practice. The
pair potential (11) can therefore be used in classical liquid
theories and in standard simulation software (MD, MC, BD) to
compute the structure of a suspension, its stability, rheology,
and equation of state within the one component model. The
robustness of this approach for computing equations of state is
investigated in the next section, with emphasis on many-body
effects in concentrated hollow shell suspensions.

3. SUSPENSION THERMODYNAMICS

The macroscopic properties of a suspension are largely
influenced by colloid−colloid interactions. In the previous
section, we derived pair interactions for hollow shells in the DH
limit. The aim of the present section is partly to evaluate the
use and performances of these DLVO-like potentials when
plugged into the integral equation (IE) theory to predict the
equation of state (EOS) of weakly charged hollow shell
suspensions, and partly to perform the same evaluation for
effective pair potentials derived with a renormalization
procedure in the high charge regime. The quality of the
predictions of the cell model will also be discussed. The
osmotic pressures obtained with these models are compared
with more accurate, but computationally demanding, results
obtained with a homemade Brownian dynamics code coupled
to the resolution of the many-body Laplace/PB eqs (2)−(4)−
(5) or Laplace/DH eqs (3)−(4)−(5) throughout a triperiodic
computation box at each time step (PB-BD approach).27 In
brief, the advantages of this method are that many-body image
interactions and all periodic images of the simulation domain
are naturally and exactly included due to the periodicity of the
computed electrostatic potential field (in particular, no cutoff
distance and no Ewald summation techniques are involved),
the ion thermodynamics correspond directly to the grand-
canonical ensemble due to the writing of the PB equation, and
the simulation cost is not too dependent on the number of ions
in the system since they are represented at a mean-field level, so
colloidal dispersions with a significant amount of salt can be
simulated.
The EOS is chosen to evaluate the different modeling

strategies rather than other quantities, like a diffusion
coefficient or rheological properties, because it is an equilibrium
property and since there are well established methods for
computing it for full spheres. The radial distribution function is
often chosen as a reference result to compare models, but we
do not make this choice here. The reason is two-fold: first, the
cell model, useful and precise in solid-like suspensions, does not
predict a structure and, second, gathering statistics on the
structure that are clean enough to permit a discriminating
comparison with integral equation theory is difficult with the
limited number of hollow shells that can be included in PB-BD
simulations.
Computing the osmotic pressure in the cell model is

straightforward, as it is given as an explicit function of the
electrostatic potential at the cell boundary ψR. In the PB theory

Figure 4. Pair potential for spheres (dark blue) and shells (light red)
for κa = 0.5 and κa = 2. Dashed lines: Yukawa potential (11); Solid
lines: Yukawa potential (11) corrected with the first term in the
infinite series expansion for the image effects for spheres;30 Symbols:
3D PB simulations with μ = 2/78 (circles) and μ = 1 (squares). The
surface charge density for spheres is the same as the outer surface
charge density of shells.



it reads Π = 2n0kT(coshψR − 1), and in the DH theory it
becomes Π = 2n0kTψR

2/2 when the PB equation is linearized
around ψ = 0.31 We also consider pressure predictions obtained
by solving the Ornstein−Zernike (OZ) equation with a
Rogers−Young (RY) closure known to produce accurate
results for hard-sphere-Yukawa potentials. With this method,
either the “simple” pair potential (10)−(11) or a corrected pair
potential, which will be described later, is used. Finally, the
osmotic pressure in PB-BD simulations can be obtained thanks
to an expression derived from the virial equation and containing
surface and volume integrals of functions of the electrostatic
potential field (see Appendix A for more details). A last remark
is in order before presenting the results: for numerical reasons
associated with the PB-BD algorithm, the radius used for hard
core interactions is an effective radius a + 0.5δ, which is at most
1.15a in this work, while the radius for electrostatics is indeed a.
The same shifted hard-core radius was used in the OZ-RY
approach for consistency.
3.1. Equation of State in the Low Charge Regime.

Equations of state (EOS) were computed in the DH framework
with the three aforementioned methods for full spheres and
hollow shells, with the parameters provided in Table 1. Two
reservoir salt concentrations were investigated, corresponding
to a low-salt regime with κa = 0.5 and to a high-salt regime with
κa = 2. Two values of the solid phase permittivity were
considered, a small one typical of many materials constituting

colloidal particles, ϵs = 2, and a large one equal to the dielectric
constant of water ϵs = 78.
The EOS of suspensions with short-range interactions are

depicted in Figure 5a,b. Unsurprisingly, the cell model (dotted
lines) significantly under-predicts the pressure. In fact, by
construction, it attempts to predict the electrostatic contribu-
tion to the pressure only, without accounting for the collisional
one. The electrostatic contribution is bound to be a minor one
for the present weak, short-range electrostatic interactions, as
confirmed by its measurement in the DH-BD simulations
reported in Figure 5a,b (squares). The pressure values
predicted by the cell model are indeed of the same order of
magnitude as their equivalent from DH-BD simulations,
although not perfectly equal, as shown in previous
works.27,32−34 On the other hand, the integral equation theory
based on the classical Yukawa potential (11) (dashed lines)
perform very well for both spheres and hollow shells, provided
the effective surface charge density (10) is used for the latter.
This was expected in this electrostatically dilute, low-charge
regime perfectly suitable for DH-like approaches.
The case of suspensions exhibiting long-range interactions is

more thrilling. The EOS of suspensions of spheres and shells
with κa = 0.5 are reported in Figure 5c,d. The cell model is able
to capture the electrostatic contribution to the pressure quite
satisfactorily, as expected in this electrostatically concentrated
regime27,32−34 (compare the dotted lines and squares in Figure

Figure 5. Nonideal part of the osmotic pressure computed from DH-BD simulations (circles), OZ-RY theory with standard Yukawa potential (11)
(dashed lines), OZ-RY theory with corrected Yukawa potential (13) (solid lines), and the cell model (dotted lines) for full spheres and hollow shells.
Squares: same as the circles but with the electrostatic contribution only (the contribution from hard core contacts is not included). Stars at ϕ = 0.16
in panel c: molecular dynamics simulations (LAMMPS) based on the standard Yukawa potential (11). Data related to full spheres appear in dark
blue, and data related to hollow shells appear in light red.



5c,d). It still lacks, however, the small contribution of collisional
interactions necessary to obtain the full osmotic pressure.
Better predictions can be obtained with the integral equation
theory provided the correct pair potential is used. For
suspensions of spheres (dark blue data), the IE theory with
the standard Yukawa potential (dashed lines) is unable to
predict correct values of the osmotic pressure in concentrated
suspensions, here for ϕ > 0.10 (dark blue circles). This
discrepancy is due to a many-body effect. It is related to the
perturbation of the EDL of a given couple of spheres by other
neighboring particles, in particular by the exclusion of ions from
the solid volume of the latter. This effect is most present for
long-ranged interactions and concentrated suspensions, when
at least one additional colloid is “embedded” in the double
layers of the pair of colloids. In this case, the effective pair
potential for spheres depends on their local concentration (see
ref 35 and 36 and references therein). It still follows the
screened Coulombic form
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depending on the colloidal density ρc and the colloidal radial
distribution function g(r). This effective pair potential reduces
to the standard electrostatic contribution of the DLVO
potential when ρc → 0. The prediction of the OZ-RY theory
based on the corrected, effective, pair potential (13)
(continuous lines in Figure 5) is in excellent agreement with
DH-BD simulation data for spheres. This confirms that we
actually observe the effect of many-body colloid−colloid
correlations. Figures 5c and 5d show this effect to be important
for ϕ > 0.10, which corresponds to a scaled surface-to-surface
distance κd = 2κa(ϕ−1/3 − 1) ≈ 1, in line with the idea that
many-body effects appear when EDL and colloid cores compete
for the same volume.
DH-BD simulations were also conducted for a fixed volume

fraction ϕ = 0.18 and various interaction ranges κa between
0.25 and 2. First, the results reported in Figure 6 confirm that

very nice agreement can be obtained between the OZ-RY
theory with the corrected potential (13) and the fully resolved
DH-BD simulations. They also show the onset of many-body
effects for interactions having a long range compared to the
interparticle distance, here κa < 0.8, corresponding, once again,
to κd ≈ 1.
This short account of possible ways to compute the EOS of

concentrated suspensions of full spheres and the associated
shortcomings summarizes ideas that can be found in the
literature. It is, however, a useful reference for the following
discussion about the modeling of concentrated hollow shell
suspensions.
The EOS for suspensions of hollow shells with long-range

interactions κa = 0.5 is displayed in Figure 5c,d in light red for
α = 0.8. The cell model performs better here than for full
spheres mainly because the repulsions are stronger for hollow
shells, as shown in Figure 4. The collisions are thus less
frequent for shells than for spheres and the electrostatic
contribution captured by the cell model becomes the only
relevant one.
For this system, unlike for full spheres, the agreement

between DH-BD simulations, the IE theory with the standard
potential (11) and the cell model is very good! Quite strikingly,
the many-body correction to the pair potential seems
unnecessary for the present system of hollow spheres. As the
walls of the shells are porous to microions, and, to some extent,
to the electric field, ions can move inside other shells even in
concentrated regimes. As a result, the EDL of a given pair of
colloids is not as perturbed by the presence of a third particle as
in the case of full spheres. This picture suggests that the
performance of the OZ-RY theory with standard Yukawa
potential (11) should improve when the thickness of shell walls
is decreased (α → 1) and when the permittivity of shells ϵs is
increased.
This is confirmed in Figure 7, which shows the relative error

|ΠDH−BD − ΠOZ−RY|/(ΠDH−BD − ρkT) as a function of α for ϕ =

18%, κa = 0.5, and ϵs = 2ϵ0. This error is between 0 and 15%
while the numerical error of the DH-PB method is of the order
of 5% of the pressure value, making it delicate to draw very
quantitative conclusions. We can see qualitatively however that
the error decreases as the shell becomes thinner as anticipated.

Figure 6. Nonideal part of the osmotic pressure computed from DH-
BD simulations (circles), OZ-RY theory with standard Yukawa
potential (11) (dashed lines), OZ-RY theory with corrected Yukawa
potential (13) (solid lines). Parameters a, ϵ, ϵs, and ZlB/a are those
given in Table 1, and ϕ = 0.18.

Figure 7. Relative error |ΠDH−BD − ΠOZ−RY|/(ΠDH−BD − ρkT) on the
osmotic pressure of a suspension of hollow spheres (light red symbols)
and full spheres (dark blue symbols) at volume fraction ϕ = 0.18 and
for κa = 0.5 and ϵs = 2ϵ0. The standard Yukawa potential (11) with the
effective shell charge (10) is used. No many-body corrections are
applied.



Note that the error saturates for small values of α instead of
reaching that of a full sphere, indicating that the full sphere
does not correspond to the asymptotic limit α → 0, at least in
the DH-BD theory.
Three values of the shell dielectric constant were considered

for ϕ = 0.18, α = 0.8, and κa = 0.5. Results for ϵs = 2ϵ0 and 78ϵ0
are reported in Figure 5c,d. They show many-body corrections
to the pressure of the order of 5.9% for ϵs = 2ϵ0 (see Figure 7)
and 4.6% for ϵs = 78ϵ0. Another simulation was performed for
the same system, but with an (unrealistic) vanishingly small
dielectric constant ϵs = 10−6ϵ0. The pressure obtained is in very
good agreement with a full sphere model including the many-
body core exclusion correction (of the order of 20%). This
might seem surprising at first since the core of these shells is
indeed accessible to small ions, and even contains a lot of
counterions. The reason is that, for ϵs = 0, the constant charge
boundary conditions (5) no longer couple the internal and
external fields, and the electrostatic potential outside shells is
thus exactly the one that would be observed for full spheres
with the same external surface charge (see Figure 2a).
Moreover, the vanishing permittivity of shells prevents the
field generated by a pair of particles 1 and 2 from penetrating
into the core of a third particle, so their EDL are indeed
excluded from the hollow core of this third particle. This is why
the volume exclusion model designed for full spheres (13)
works so well for hollow shells with vanishingly small
permittivity. There are thus two effects contributing to many-
body effects in hollow shell suspensions: the exclusion of ions
from the particles is due partly to solid exclusion by the shell
wall which depends on the inner-to-outer radii ratio α, and
partly to the screening of the external electric field by the shell
material, which is determined by the dielectric constant of the
shell ϵs.
To conclude, we have shown that the equations of state of

moderately charged suspensions of hollow shells can be
modeled in manners quite similar to what is usually done for
full spheres, with the need to avoid mostly the same
shortcomings. In brief, the cell model should only be used
with high surface charges and intercolloid distances shorter
than the Debye length so that the structure of the suspension is
solid-like, while the integral equation theory based on simple
DH-like - or DLVO - potentials should be used in exactly the
opposite conditions. There are, however, a few distinctions
between hollow shells and spheres, which we summarize here:
(i) the cell model must obviously be adapted to the shell
boundary conditions, (ii) the integral equation theory can be
employed with a screened Coulombic potential provided the
total charge is replaced by the effective charge given by relation
(10), and (iii) many-body effects at high volume fraction are
weaker for hollow shells than for full spheres, decrease when
the shell thickness is decreased, and decrease when the shell
permittivity is increased. Since these effects represent
modifications of the osmotic pressure by only a few percent
or a few tens percent for spheres, they might be simply and
safely ignored for most hollow (thin-walled) shell systems of
applicative interest.
3.2. Equation of State in the High-Charge Regime.

The surface charge density considered in the previous section
was intentionally taken to be low in order to ensure a
straightforward comparison between the integral equation
theory and the many-body simulations. In this case, the LSA
employed to derive the pair potential (10)−(11) and the pair
additivity hypothesis are justified, although image effects should

be taken into account for a perfect comparison with a many-
body DH-BD simulation.
However, the surface charge density of colloids with an

applicative interest may be quite large, and linearizing the PB
equation may not be justified in these systems. Electrostatic
forces exerted on colloids are then nonadditive in general (see
e.g. ref 37 for a measurement of three-body effects between
spheres). If the suspension is not too electrostatically
concentrated (i.e., the typical intercolloid distance is larger
than the Debye length), it is still possible to use Debye−
Hückel-like theories like the one developed above, but with an
effective or renormalized surface charge and an effective Debye
length. The idea is that the long-distance tail of the potential
field generated by one colloid has decreased enough for the
potential to be lower than 1, so this tail can be modeled with
rescaled DH equation and boundary conditions. The effective
interactions deriving from this DH-like picture are then
assumed to remain pairwise additive. Experimentally, the
effective charge and Debye length are generally obtained by
fitting structure factors computed from models, such as the
integral equation theory, onto structure factors obtained by
light or neutron scattering. It is also possible to compute
effective parameters theoretically but there are many different
approaches leading to different values.38 Although these
renormalization procedures still do not give effective charges
in perfect agreement with experimentally determined ones, they
generally produce quite reasonable results. In this section, we
show how it is possible to map the interactions between highly
charged hollow shells onto a system of full spheres with
effective parameters. We then validate this procedure against
the results of many-body nonlinear PB Brownian dynamics
simulations.
We follow the spirit of the method based on the cell model

proposed by Alexander and co-workers39 and revisited by
Trizac et al.40 In this approach, the effective parameters are
chosen so that the potential on the outer cell boundary
obtained analytically with the DH theory is matched to the
potential computed numerically with the nonlinear PB theory.
The only difference between the original cell model
renormalization and the one used here is that the nonlinear
simulation has to be conducted for a shell while the DH
solution used is that of a sphere, as illustrated in Figure 8a. It
would be possible to perform the same procedure with the DH
solution for a shell (7) but the calculation of the effective
charge would be more complicated and bring no additional
insight, since the aim of such a procedure is to provide an
effective pair potential to compute the structure and
thermodynamics of a suspension, so that the details of the
fields inside shells can be forgotten.
In order to validate this approach, the osmotic pressure was

computed from a nonlinear PB-BD simulation for the
parameters indicated in the legend of Figure 8. This is the
reference pressure which should be obtained by renormalized
DH-like theories. The predictions of nonlinear PB-BD
simulations, OZ-HNC theory with and without renormaliza-
tion, and the PB and DH cell model are reported in Figure 8b.
Here we used the HNC closure instead of the RY one because
our implementation of the latter tended to be unstable. HNC is
still expected to be quite precise for this strongly charge-
stabilized system. As expected, the use of DH-like theories
without renormalization yields strongly overestimated osmotic
pressures. The nonlinear cell model performs quite well for the
present set of parameters. This was expected since the effective



volume fraction and the surface charge are quite high. The OZ-
HNC theory based on a Yukawa pair potential with parameters
obtained from the renormalization procedure presented above
is, however, even more precise. The small difference with
respect to the PB-BD simulation is within the ∼5% uncertainty
due to numerical convergence.
To conclude, we have shown that the pair potential (10)−

(11) based on the DH theory should not be used for highly
charged hollow shells, just as the Yukawa potential with a bare
charge should not be used for full spheres. Nevertheless, it is
still possible to use DH-like theories based on a Yukawa
potential with an effective charge and Debye length to model
the structure and thermodynamics of suspensions of highly
charged hollow shells. These effective parameters can be
obtained in a simple manner with the cell model renormaliza-
tion procedure presented above. As for full sphere systems, this

approach is valid if the typical interparticle distance is larger
than the Debye length.

4. CAPSULE LOADING WITH IONIC SPECIES

The aim of the previous section was to provide ways to
efficiently model colloid−colloid interactions and their effect on
macroscopic quantities such as an equation of state. These
interactions can be tuned by acting on the shell thickness or
permittivity to build materials with the desired properties.
Hollow shells can also be used as nanoreservoirs or nanovectors
containing small charged species. In this section, we focus on
the loading and unloading of small charged species in porous,
charged, hollow shells.
This transfer can be achieved following two routes. The

(electro)chemical potential of ions is kT ln(n±) ± eΨ in the PB
theory for 1:1 electrolytes, and equal to kT ln n0 at equilibrium.
Modifying the ion density inside the capsules, nin

±, is therefore
possible either by changing the imposed chemical potential, kT
ln n0, or by altering the electrostatic potential field, Ψin, inside
the capsule. If the system is in contact with an ion reservoir, the
first solution consists in changing the salt concentration of the
latter. In the other case, it consists in modifying the bulk ion
concentration for example by adding salt or solvent to a closed
system. Loading or unloading charged species by acting on the
field Ψin can be achieved either by changing the surface charge
of the hollow shells (with a pH change for example) or by
modifying their volume fraction, if we rule out modifications of
their thickness or permittivity, which may prove difficult and/or
irreversible.
Counterion density distributions were computed for spheres

and for hollow shells with α = 0.8 both with the cell model and
with PB-BD simulations for ϕ = 0.02 and 0.2, κa = 0.5 and 2,
and ϵs = 2 and 78. In the PB-BD simulations, the distributions
were obtained by averaging the local ion density profiles
computed around each of the N colloids in the simulation box.
One example of ion distribution is reported in Figure 9. The
difference in ion density predicted by the cell model and the
PB-BD simulations did not exceed 5% for the wide range of
parameters investigated. This is a very interesting result since it
proves the good quality of the predictions of the counterion
density inside capsules by the cell model despite its erroneous
evaluation of the osmotic pressure in liquid-like suspensionsFigure 8. Illustration of the renormalization procedure (top) and

results (bottom) for a = 14 nm, α = 0.8, ϕ = 0.16, ϵs = 2, κa = 2, σ̅ = 5,
leading to κeff = 2.204 a and Zeff = 152.16 (σ̅eff = 3.61).

Figure 9. Average counterion concentration ⟨n−⟩ as a function of the
distance from the center of the colloids. Light red: shells; dark blue:
spheres; symbols: PB-BD simulations; lines: cell model. The dotted
lines materialize the positions of the inner and outer surfaces of the
shells. a = 14 nm, ϕ = 0.02, κa = 2, α = 0.8, ϵs = 2ϵ0, and σ̅ = σ̅′ = 0.25.



discussed previously. The cell model will therefore be used to
discuss the electrostatic loading and unloading of hollow shells
in what follows.
In the three following sections, the focus will be on the

dependence of average co- and counterion concentrations
inside and outside capsules on the reservoir ion concentration,
the volume fraction, and the surface charge density. In the cell
model, these quantities are defined by
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4.1. Influence of the Reservoir Salt Concentration. The
typical evolution of ⟨I±⟩ as a function of the salt reservoir
concentration, I0, is represented in Figure 10a.
In the high-salt regime, electrostatics are strongly screened

and the ion densities both inside and outside capsules tend
toward the ion reservoir density, ⟨I±⟩ = I0.
For slightly lower salt concentrations, electrostatics influence

ionic density profiles but the PB equation can be linearized. In
this case, the potential follows relation (7) and the integrals in
(15)-(16) can be computed numerically. The result is
represented with thin lines in Figure 10a. As expected, the
agreement with the nonlinear PB solution is good only in the
quite strongly screened regime.
In the low-salt regime, the electrostatic potential field and the

counterion density asymptote to the solution of the nonlinear
PB equation for the no-salt regime ψns and the counterion
density nns. Since the counterion density tends to a value
independent of n0, and since relation n+n− = n0

2 is always valid,
n+ scales as n0

2 as verified in Figure 10a. We must emphasize
the necessity of using the nonlinear PB equation to explore the
low-salt regime. Since the interior of a capsule is a cavity with
charges facing each-other, and since the EDL thickness tends to
infinity as n0 → 0, the linear PB equation predicts an
electrostatic potential and a counterion concentration diverging
to infinity in the low-salt regime, which is clearly unphysical
(see thin lines in Figure 10a). Note that it is necessary to
consider the full nonlinear PB equation even if the
dimensionless charge ZlB/a is as low as 0.5 here. It is
sometimes mentioned in the literature that, as a rule of thumb,
the PB equation can be linearized for ZlB/a ≲ 10. This is
obviously not the case here. The reason is that, in the low salt
regime, the EDL are much larger than colloids (κa≪ 1), so the
pertinent length scale to nondimensionalize the PB equation is
the Debye length and not the colloid size. In this case, the
boundary condition on the surface of colloids relates the
normal component of the electric field to σ̅ and not to ZlB/a,
with σ̅ scaling as n0

−1/2, and thus diverging in the low-salt
regime however low the real surface charge is.
From a practical point of view, the results displayed in Figure

10a emphasize two points: (i) The use of the DH equation
leads to the unphysical conclusion that a very large amount of
counterions could be stored in charged capsules thanks to
electrostatic effects if the electrolyte is partially deionized. In
contrast, the nonlinear PB theory predicts a constant asymptote
for the counterion concentration, so the capsules cannot be
significantly loaded at low salt concentrations, and can never be
fully emptied either. The minimum amount of counterions
trapped inside the hollow shells is given by the no-salt solution
of the nonlinear PB equation, which is not analytical. (ii) The

average salt concentration that can actually be loaded into a
capsule with electrostatic effects is a monotonic increasing
function of the salt reservoir concentration, with a slope varying
between zero close to the no-salt regime and one in the high-
salt limit.

4.2. Influence of the Volume Fraction. The effect of the
volume fraction on the average ion concentrations inside and
outside a capsule can be observed in Figure 10b. The co- and

Figure 10. Average counterion (rep. co-ion) concentration ⟨I−⟩
(respectively ⟨I+ ⟩) inside and outside capsules (subscripts in and out
respectively) as a function of the salt reservoir concentration I0,
volume fraction ϕ, and dimensionless charge density σ̅. Thick lines: PB
cell model. Thin lines: DH cell model (7). Dotted line: uncharged
limiting case ⟨I+⟩ = ⟨I−⟩ = I0. Parameters common to every figure: a =
14 nm, α = 0.8, and ϵs = 2ϵ0.



counterion average concentrations inside capsules hardly
depend on the volume fraction. The striking effect of the
volume fraction is on the counterion concentration outside
capsules, which increases by 2 orders of magnitude between ϕ
= 0.01 and 0.9 and becomes greater than that inside capsules
for ϕ ≃0.55 here. The co-ion concentration outside capsules
also decreases faster than that inside capsules, so, at high
volume fraction, the co-ions are more concentrated inside
capsules. Hence, charged hollow shells can be counterion
reservoirs at low volume fractions or co-ion reservoirs near
close packing. This effect was discovered as early as 1977 by
Mille and Vanderkooi,5 but it is mentioned here for
completeness. The reason for this reversal is the increase of
the electrostatic potential outside the capsules when the
dispersion is progressively concentrated, this increase being
linked to the diminishing average distance between the outer
surfaces of the capsules. The reversal of the reservoir behavior is
thus expected at volume fractions such that the inter particle
distance is of the order of the inner shell radius. However, there
is no point in trying to determine a more quantitative picture
with the cell model. At such high volume fractions, the
correlations of positions between shells become important
since they determine the exact geometry of the charged surfaces
acting as boundary conditions for the electrostatic potential
field. It would be necessary to compute average ion
concentrations for various structures, such as BCC, FCC, etc.
This is a vast task that we leave for future studies. In what
follows, the volume fraction is low enough for the capsules to
remain counterion reservoirs.
4.3. Influence of Capsule Surface Charge. We now turn

to the dependence of ion loading on the surface charge, as
represented in Figure 10c.
At vanishingly small surface charge, the ion concentration is

uniform and equal to I0 as expected. For small but nonzero
surface charges, the counterion and co-ion average concen-
trations inside capsules are very well represented by a numerical
evaluation of (15)−(16) with the analytical solution of the DH
eq 7, here valid for σ̅ < σ̅t ≃ 1 (thin lines).
Interestingly, the inner and outer counterion concentrations

exhibit a linear dependence on the colloidal charge in the high
charge regime (σ̅ > σ̅t). This is a signature of the onset of ionic
condensation on the surface of the capsules. When the surface
charge becomes very large, the electrostatic potential field tends
to the field ψsat in a region Ω far away from the surface, ψsat

being independent of the surface charge. The number of ions
inside this region is then Nsat

± = ∫ Ω n0e
∓ψsat dV and is thus also

independent of Z. Close to the interface, the potential
continues to evolve and a new counterion is “condensed” in
this region as soon as a new charge is added to the surface.36

The number of ions in this layer is therefore Ncond
− = γZ in the

high charge regime, where γ is a constant. The number of ions
inside capsules is thus Nsat + γZ in the condensation regime.
For large surface charge values the second term is large
compared to the first one, which explains the observations
made from Figure 10c: ⟨Iin

−⟩ ∝ Z and ⟨Iout
− ⟩ ∝ Z in the high

charge limit. We also observe that higher surface charges are
required for this behavior to set in for the counterion
concentration outside capsules. This is not surprising since
the electrostatic potential field is lower outside capsules than
inside them.
There is, of course, no co-ion condensation. Co-ions are

actually quite strongly expelled from the region in which
counterions are condensed, so the number of co-ions tends to

the constant value Nsat
+ for very high surface charges. This is the

reason for the horizontal asymptotes of ⟨Iin
+ ⟩ and ⟨Iout

+ ⟩ in Figure
10c for σ¯ ≳ 10−100. Note that the fact that the total number
of counterions in the condensed layer scales as Z does not
imply that the counterion density profile inside this layer scales
as Z, so the relation n+n− = n0

2 obeyed locally cannot be used to
infer a relation like Ncond

+ ∝ 1/Z. If it is assumed that the entire
n− profile scales as Z, then the average co-ion concentration
⟨I+⟩ would be Nsat

+ /Vin + δ/(γZ), where δ is a constant
independent of Z. Although there is no rigorous proof for this
functional form, the data represented in Figure 10c supports it
for the range of surface charge in which ⟨I−⟩ is linear.
Estimating the counterion average concentration inside a

capsule in the high surface charge regime is extremely
important since it is the regime to be used to store a maximum
amount of counterions. We could not derive the corresponding
analytical expression because it requires the solution of the
nonlinear PB equation. However, the parameter space (a, ϕ, α,
I0, ϵs) was explored numerically to determine an empirical
correlation for ⟨Iin

−⟩(σ̅) in the high-charge regime. We found
that the slope does not depend on ϕ and ϵs, and scales as I0

−1,
a−2, and α−1. These observations lead to the following
expression for the counterion average concentration inside
highly charged capsules

κ κ
σ

α κ
σ σ σ⟨ ⟩ =

′ ̅
= ̅ ̅ > ̅

−I
c

a a

c

a( )
for tin 2

(17)

where c ≃ 6.1 ± 0.05 is a constant determined numerically and
σ̅t ∼ 1 is the threshold dimensionless charge above which this
regime is observed.
To conclude this part, we have shown that the average

concentration of counterions that can be stored inside the
internal EDL of a capsule increases monotonically with the
surface charge density, as could be expected. Relations have
been provided to compute this quantity both in the low charge
regime, thanks to eqs 7 and 15, and in the high charge regime
corresponding to σ̅ ≳ 1, thanks to eq 17. The later regime is
most interesting to entrap a large quantity of ionic species
inside capsules.

5. CONCLUSION

Suspensions of colloidal, porous, and charged hollow shells are
involved in many biological systems and in several new and
interesting applications such as nanovectorization, sensing, or
photonics. Understanding the characteristics and behavior of
these suspensions is necessary at two levels. At the meso- or
macro-scale, the structure, stability, thermodynamics, and
rheology of suspensions is largely determined by (possibly
many-body) colloid−colloid interactions. At the microscopic
scale, the ion-colloid interactions determine the capacity of
hollow shells to store ions in the shells’ often enhanced electric
double layers. There is therefore a strong need to understand
the electrostatics of charged hollow shell suspensions. In the
present article, we have considered potentially concentrated
suspensions of hollow shells with a uniform surface charge
density but finite and arbitrary thickness and permittivity.
The Debye−Hückel (DH) limit was explored. The analytical

solution in the cell model was derived, showing that very high
electrostatic potentials can be obtained inside hollow colloids
when their permittivity is low and when the inner (core) radius
is decreased. These high potentials are desirable, for example, in
order to trap a significant amount of counterions inside hollow
shells. For an infinite cell radius, the analytical solution already



derived for an isolated shell is recovered.14 We used this
solution with the linear superposition approximation to
propose an analytical model for pair interactions between
hollow shells valid in dilute suspensions of weakly charged
colloids. This model is actually a simple Yukawa potential based
on the usual Debye length but with an effective surface charge
given by relation (10). This is a very useful result since classical
theories and simulations based on pair potentials and devised
for full spheres can be employed straightforwardly for hollow
shells by replacing the surface charge by the effective charge
(10). This pair interaction model has been validated against
numerical simulations of the 3D fully coupled Debye−Hückel−
Laplace electrostatics problem. Image effects were shown to
exist, but to be of the same order as the ones usually neglected
for full spheres.
The next step, beyond the two-body level, is to be able to

predict the macroscopic behavior of a suspension. Equations of
state obtained with the Ornstein−Zernike equation with the
Rogers−Young (RY) closure (OZ-RY) were compared to
reference predictions of Brownian dynamics simulations
coupled to a full resolution of the N-body Debye−Hückel−
Laplace problem at each time step. As expected, the classical
integral equation theory performs very well for dilute
suspensions with the pair potential derived for isolated pairs
of colloids in the first section of this work. In concentrated
suspensions, many-body effects were measured for both spheres
and hollow shells, showing that full spheres require a many-
body correction to the pair potential due to volume exclusion
of the ions from a third particle’s core,35,36 while, interestingly,
this correction is not always necessary for hollow shells. The
correction is required only for hollow shells with a significant
thickness and/or a low shell permittivity. In many applications,
shells are thin enough for many-body effects to be neglected
even in quite concentrated suspensions, and the integral
equation theory based on isolated pair potentials like (10) is
actually even more efficient than for spheres. For significantly
charged colloids, the DH picture fails, so a charge
renormalization method based on the cell model was proposed
and validated against nonlinear Poisson−Boltzmann−Brownian
dynamics simulations.
Finally, we have discussed the problem of predicting the

quantity of ions that can be electrostatically “trapped” into
hollow shells for nanocontainer applications. This topic has
already been considered within the cell model, but without
justification of the validity of this approach. In this work, many-
body simulations first showed that the cell model provides quite
good estimates of the ion concentration profiles inside and
outside hollow shells both in concentrated and dilute regimes
(whereas it is known to predict wrong pressures in dilute
suspensions). The dependence of the average counterion
concentration inside shells ⟨Iin

−⟩ was discussed as a function of
three parameters that can be used to trigger counterion loading
or unloading, namely the salt concentration I0 (where the
potential vanishes), the volume fraction (modified during film
drying, filtration or dialysis for instance), and the surface charge
of the shells (modified with pH changes for instance). ⟨Iin

−⟩ is a
monotonic, increasing function of I0 with a plateau at low salt
concentrations corresponding to the no-salt solution (i.e.,
particles cannot be completely unloaded) and a slope 1 at large
salt concentration indicating a complete screening of electro-
statics and a loading mechanism due to pure diffusion. It has
been shown that ⟨Iin

−⟩ increases with volume fraction, which is
simply a Donnan effect, but that the average counterion

concentration outside shells increases faster due to the very
small intercolloid distances near close packing. This effect,
already mentioned in the literature,5 can be used to store co-
ions inside charged capsules upon concentration of the
suspension for example during the drying of a nanocontainer
based coating. Finally, it has been shown that variations of ⟨Iin

−⟩
with the surface charge density of hollow shells can be
completely predicted with the analytical solution of the cell
model in the DH limit and by relation (17) in the high charge

regime, the transition being at σ ≈ ϵn kT2 0 .

A few modeling choices have been made in this work in
order to keep the results as generic and tractable as possible,
and some refinements are of course still possible. The main
issues for general applications are the use of the Poisson−
Boltzmann theory and of the constant charge boundary
conditions. As mentioned before, the domain of validity of
the PB theory is now well established and apart from a few
exceptions, it corresponds to 1:1 electrolytes. For multivalent
(counter-)ions, this theory may yield neither quantitative nor
qualitative results because of ion−ion correlations. It would
therefore be quite useful to extend the results presented in this
work to multivalent electrolytes, using integral equation and
molecular dynamics or Monte Carlo simulations based on the
primitive model. The effect of the finite size of the ions,
important at high salt concentrations, may be explored with
these methods or more simply with the modified PB equation.
The constant charge boundary condition was used for
simplicity, for comparison of hollow shell suspensions with
sphere suspensions for which many results are available for
constant surface charges, and to keep the presentation quite
generic. Since a number of surfaces actually exhibit charge
regulation, and since it is a mechanism which could prove
useful to trigger the loading or unloading of nanocontainers, it
would indeed be interesting to determine if and how the results
of sections 2 and 4.3 are modified by charge regulation
mechanisms, for example with the recent modeling proposed
by Trefalt and co-workers.26

Despite these limitations, we are convinced the simple and
fast modeling strategies developed and validated in this work
will help to improve the design and optimization of hollow shell
suspensions for many new and exciting applications.

■ PRESSURE COMPUTATION IN SIMULATIONS
RESOLVING THE FULL ELECTROSTATIC
POTENTIAL FIELD

In Poisson−Boltzmann Brownian dynamics simulations,
colloids are represented explicitly, but ions are only present
implicitly. The pressure in the suspension can be obtained from
the virial equation, including colloids and ions, as41

ρ= + + ′P P PkT
c cc (18)

where

ρ′ = + +P P
U

V
kT

3ion ic (19)

ρcV and ρionV are the number of colloids and ions in the total
volume V, Pcc and Pic are the contributions of hard core
collisions between colloids and between ions and colloids,
respectively, and U is the electrostatic energy. There is no ion−
ion collision contribution in the PB theory. The colloid−colloid
collision contribution is calculated in a classical pairwise
manner
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An overbar denotes a dimensionless quantity. The Debye
length is chosen as the length scale, the ion reservoir pressure
2n0kT is chosen as the pressure scale, and 2n0kTκ

−2 is the force
scale. The collision force F̅ij

c is computed with the algorithm
presented by Foss and Brady42 for Brownian hard spheres. The
forms of the other contributions to the pressure in (19) are
given below in the framework of the PB theory for a 1:1
electrolyte. The local ion density in the suspension is n+ + n− =
2n0 cosh ψ and thus the ion density in the global volume V is

∫ρ
ρ

ψ̅ = =
̅

̅
̅n V

V
2

1
cosh d

V
ion

ion

0 e (21)

where V̅e is the volume occupied by the electrolyte. The ion-
colloid collision contribution is given by a relation similar to
(20) but with the ions represented by a continuous field. The
force exerted by ions j on a surface element dS of one colloid c
and due to hard core contacts is the ion pressure multiplied by
dS, i.e., dfcj = −(n+ + n−) kTn dS = −2n0kT cosh ψn dS, where
n is the unit vector normal to the surface and pointing toward
the electrolyte. Therefore, relation 20 applied to ion-colloid
collisions becomes

∫∑ ψ̅ = =
̅ ̅ · ̅

̅
P

P

n kT V
Sx n

2

1

3
cosh dc

c
S

ic
ic

0 c (22)

where xc is the vector from the center of colloid c to the surface
element dS. The electrostatic energy is computed as the
contribution from every charge immersed in the potential field.
The contribution of the fixed surface charges of the colloids is
the integral of σΨ on all colloidal surfaces. The contribution
from the charges of the ions in the small volume dV is (n+ −
n−) eΨ dV = −2n0kTψ sinh ψ dV, so, after integration
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The pressure computed with (18) is not the osmotic
pressure. In particular, it contains the ion reservoir pressure and
the self-energy of the colloids. We therefore define the osmotic
pressure as the excess pressure compared to the reservoir
pressure, minus the self-contributions
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The −2n0kT contribution necessary to switch from the pressure
to the osmotic pressure is obtained with the “−1” term in the
first two integrals independently of the geometry of the
colloids. It can be proven with the divergence theorem. We use
this trick to improve the calculation accuracy as the terms ρ̅ion +
P̅ic computed with (21) and (22) and the term −2n0kT are
often very large and almost cancel each other out, while we are
only interested in the difference. Since the numerical
integration generates errors of the order of 2−5%, the present
method yields a term ρ̅ion + P̅ic − 2n0kT directly, with a 2−5%
error whereas this error could be as large as 100% using (21)
and (22) and removing the reservoir pressure analytically. The
term Pself′ is E/3V, where E is the energy of the system of Nc

colloids at infinite dilution. We evaluate E as Nc3Vϕ→0Pϕ→0′

independently of BD simulations, thanks to a PB computation
with one fixed colloid in a large enough volume Vϕ→0 and with
Pϕ→0′ computed as the sum of the four terms containing
integrals in (24).
It is worth mentioning that the expression (24) is a

completely general result, only restricted to the hypotheses
associated with the PB theory for a 1:1 electrolyte. In particular,
it is valid for any colloid geometry and for heterogeneous
surface charge densities. In the DH theory, the osmotic
pressure is given by (24) with cosh ψ replaced by 1 − ψ2/2 and
sinh ψ replaced by ψ. A similar form was used by Fushiki43 in
the no-salt regime.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: yannick.hallez@univ-tlse3.fr.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was performed using HPC resources from CALMIP
(Project p1114) and GENCI (IDRIS/CINES, Grant
x2016097003).

■ REFERENCES

(1) Caruso, F. Hollow Capsule Processing through Colloidal
Templating and Self- Assembly. Chem. - Eur. J. 2000, 6, 413−419.
(2) Liu, J.; Liu, F.; Gao, K.; Wu, J.; Xue, D. Recent developments in
the chemical synthesis of inorganic porous capsules. J. Mater. Chem.
2009, 19, 6073−6084.
(3) Antipov, A. A.; Sukhorukov, G. B. Polyelectrolyte multilayer
capsules as vehicles with tunable permeability. Adv. Colloid Interface Sci.
2004, 111, 49−61. Plenary and Invited Lectures From the {XVIth}
European Chemistry at Interfaces Conference, Vladimir, Russia, May
2003.
(4) Graf, C.; van Blaaderen, A. Metallodielectric Colloidal Core-Shell
Particles for Photonic Applications. Langmuir 2002, 18, 524−534.
(5) Mille, M.; Vanderkooi, G. Electrochemical properties of spherical
polyelectrolytes: II. Hollow sphere model for membranous vesicles. J.
Colloid Interface Sci. 1977, 61, 455−474.
(6) Zhang, L.; D’Acunzi, M.; Kappl, M.; Auernhammer, G. K.;
Vollmer, D.; van Kats, C. M.; van Blaaderen, A. Hollow Silica Spheres:
Synthesis and Mechanical Properties. Langmuir 2009, 25, 2711−2717.
PMID: 19437752.
(7) Zhang, L.; D’Acunzi, M.; Kappl, M.; Imhof, A.; Blaaderen, A. v.;
Butt, H.-J.; Graf, R.; Vollmer, D. Tuning the mechanical properties of
silica microcapsules. Phys. Chem. Chem. Phys. 2010, 12, 15392−15398.
(8) Dinsmore, A.; Hsu, M. F.; Nikolaides, M.; Marquez, M.; Bausch,
A.; Weitz, D. Colloidosomes: selectively permeable capsules composed
of colloidal particles. Science 2002, 298, 1006−1009.



(9) Cordova, A.; Deserno, M.; Gelbart, W. M.; Ben-Shaul, A.
Osmotic Shock and the Strength of Viral Capsids. Biophys. J. 2003, 85,
70−74.
(10) Lee, S.-Y.; Lim, J.-S.; Harris, M. T. Synthesis and application of
virus-based hybrid nanomaterials. Biotechnol. Bioeng. 2012, 109, 16−
30.
(11) Rong, J.; Niu, Z.; Lee, L. A.; Wang, Q. Self-assembly of viral
particles. Curr. Opin. Colloid Interface Sci. 2011, 16, 441−450.
(12) Angelescu, D. G.; Caragheorgheopol, D. Influence of the shell
thickness and charge distribution on the effective interaction between
two like-charged hollow spheres. J. Chem. Phys. 2015, 143,
14490210.1063/1.4932372
(13) Marcus, R. A. Calculation of Thermodynamic Properties of
Polyelectrolytes. J. Chem. Phys. 1955, 23, 1057−1068.
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