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ABSTRACT 

Piloting requires high level of cognitive control, especially in demanding situations. When cognitive functions are 

overloaded, no more sufficient resources are available to manage the situation. As a consequence, it is important to 

have a valid measurement tool of pilots’ online workload. In this research, we used a BIOPAC 16 channel fNIRS to 

monitor prefrontal activity of eleven airline student pilots during two landing scenarios (easy and difficult) in a flight 

simulator. As expected, results from subjective measurements revealed that the perceived cognitive mental effort 

was higher during the difficult landing. The right dorsolateral prefrontal cortex (DLPFC) demonstrated the highest 

concentration changes of oxy-hemoglobin (O2Hb) during both scenarios, with the difficult landing inducing higher 

concentration changes than the easy landing. These results demonstrate the sensitivity of fNIRS to detect mental 

overload in complex and ecological scenarios. The findings of this study may be applied to real-time monitoring of 

the pilot mental workload as well as the evaluation and the certification of new cockpit designs. 
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INTRODUCTION 

Piloting is a complex activity that takes place in a dynamic and rapidly changing environment. In such a context, 

high level cognitive functions are vital abilities for handling the aircraft, interpreting the instrument parameters, 

maintaining up-to-date situation awareness and making relevant decisions. These functions, which are traditionally 

labelled executive functions or cognitive control, are known to involve the prefrontal cortex (Dalley, Cardinal, & 

Robbins, 2004; E. Miller & Wallis, 2009; E. K. Miller & Cohen, 2001), the latter being also involved in decision 

making in uncertain environments, including the navigation task (Yoshida & Ishii, 2006). Despite its impressive 

capabilities, human brain exhibits severe capacity constraints in information processing. The neural basis for such 

limitations has been demonstrated in various neuroimaging studies (Charron & Koechlin, 2010; Dux, Ivanoff, 

Asplund, & Marois, 2006). When cognitive functions are overloaded, which is often the case when the context is 

unfamiliar, uncertain or when time pressure is high, the pilots performance can be lessened (Durantin et al. 2013). 

Worse, they may face cognitive tunneling, defined as the inability of the operator to reallocate his/her attention from 

one task to another (Thomas  & Wickens, 2001). In such a situation, they are more likely to commit an error and to 

miss critical information such as visual or auditory warnings (Dehais et al., 2012; Dehais et al., 2013).  

So, in critical systems where performance decline can result in catastrophic losses, it could be vital to monitor the 

operator’s mental workload. For example, detection of the operator’s cognitive incapacity may be used to trigger 
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alerts or adapt the level of automation in extreme situations. Also, situations of low mental workload may follow 

flight phases of extreme activity, which increases the complexity in the adjustment of the operator’s level of 

vigilance. A promising way to detect mental underload/overload is to monitor the prefrontal lobes online. Functional 

Near Infrared Spectroscopy (fNIRS) is an increasingly popular technique for observing the brain functioning. This 

technology has recently been used in fundamental research (Mihara, Miyai, Hatakenaka, Kubota, & Sakoda, 2008), 

clinical studies (Ehlis, Bähne, Jacob, Herrmann, & Fallgatter, 2008), aging (Kwee & Nakada, 2003) and human 

factors studies (Ayaz et al., 2012 ; Solovey et al., 2011). Contrary to more common neuroimaging techniques such 

as functional magnetic resonance imaging, fNIRS allows in vivo imaging in ecological conditions with natural 

freedom of movement and in complex environments such as high-fidelity simulators. So, this technique should 

allow detecting mental workload changes of human operators placed in realistic and critical situations.  

The objective of the present study was to validate that prefrontal activity measured through fNIRS technology, could 

be sensitive to an increase of mental workload in an ecological flight situation. More precisely, we used fNIRS 

technology to monitor prefrontal activity of eleven airline student pilots during two landing phases in a flight 

simulator: an easy landing, supposed to correspond to a medium workload and a difficult landing, supposed to 

simulate a high workload situation.  

MATERIAL AND METHODS 

Participants 

Eleven airline pilot students (élèves pilotes de ligne, EPL) from the Ecole Nationale de l’Aviation Civile (ENAC) 

(mean age: 20.6, SD = 1.1, all male) completed the two flight scenarios. After providing informed consent, they 

were all briefed on the simulator and the experiment task. 

 

fNIRS equipment 

During the entire duration of each flight scenario, hemodynamics of the prefrontal cortex was recorded with the 

functional Near Infrared Spectrometer fNIR100 (Biopac) equipped with 16 optodes (Figure 1). Each optode 

recorded the hemodynamics at a frequency of 2 Hz with a 2.5 cm source-detector separation.  

 

 

Figure 1. fNIR100 headband and associated optodes numbering 

 

Flight scenarios 

Before the experiment, to familiarize them with the flight simulator (Figure 2), each participant underwent a training 

session consisting of two landings on the same landing field: one with external visibility and no crosswind, another 

with external visibility and a moderate crosswind. During the experiment itself, participants performed two landing 

scenarios of different cognitive demands (easy and difficult). The order in which the landing scenarios were 

performed was counterbalanced across participants. All landings occurred on a simulation of the 14R runway at 

Blagnac airport (Toulouse, France). The initial conditions were defined as follows: 2500 feet altitude, heading 142 

degrees, 130 knots, starting 6 miles from the airfield threshold. In both scenarios, the instrument landing system 

(ILS) was available to help perform the approach. In the easy landing scenario, the external visibility was perfect 

and there was no crosswind whereas in the difficult landing scenario, there was no external visibility (dense cloud 

layer) above 100 feet above the ground and there was a strong crosswind. The difficult landing condition was 

intended to load more heavily on the executive functions than the easy one. 
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Immediately after the end of each flight scenario, participants completed a subjective mental workload evaluation on 

a 1-7 scale. This simplified procedure has shown to be significantly correlated with the NASA Task Load Index 

(TLX) questionnaire (Causse, Faaland, & Dehais, 2012). The total experiment duration was approximately one hour. 

 

 

Figure 2. Left: outside view of the ISAE flight simulator; Right: inside view of the flight simulator with a participant equipped 

with the fNIRS. 

 

Data Analysis 

A one-way repeated measures ANOVA was used to compare the mental workload perceived by the participants 

during the two scenarios. Regarding the fNIRS, for each participant, the variations in light absorption at two 

different peak wavelengths (730 nm and 850 nm) were used to calculate changes of O2Hb and HbR (both in 

µmol/L) using the modified Beer–Lambert Law (MBLL). Concentration measurements were band-pass filtered 

(pass band: 0.012Hz to 0.33Hz) with a finite impulse response, linear phase filter with order of 20 to further remove 

any slowly drifting signal components and other noise with other frequencies than the target signal (Roche-Labarbe 

et al., 2008). Saturated channels (if any) were excluded. In this paper, we focused our analysis on O2Hb changes, 

HbR concentrations were not examined. O2Hb concentration changes from a ten-second rest period baseline 

(performed before each flight scenario) were averaged over the whole time course of each flight. Average O2Hb 

change for each scenario was used as the dependent measure and submitted to a two-way repeated measures 

ANOVA (2 flight scenarios * 16 optodes).  

 

RESULTS 

Self-reported ratings of workload 

Subjective mental workload was significantly higher in the difficult landing than in the easy landing (F(1, 10) = 

43.62, p < .001, η²p = .81), indicating that the scenario difficulty manipulation was successful, see Figure 3. 

Coherently, in the difficult scenario, the flight performance (glide slope deviation) was degraded in comparison to 

the easy landing (F(1, 10) = 4.30, p = .017, η²p = .45), see Figure 4. 
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Figure 3. Boxplots of the subjective cognitive mental workload during the two different flight scenarios. The difficult landing 

successfully elicited a higher cognitive mental workload than the easy landing.  
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Figure 4. Boxplots of the glide slope deviation during the two different flight scenarios. In the difficult scenario, the flight 

performance was degraded in comparison to the easy landing.  

 

fNIRS measurements 

The two-way repeated measures ANOVA showed a significant main effect of the scenario, the difficult landing 

provoked a higher O2Hb concentration change (F(1, 10) = 10.17, p = .009, η²p = .50), see Figure 5. There was also a 

main effect of the optode location (F(15, 150) = 2.42, p = .003, η²p = .20). In particular, optode #16 (see Figure 6), 

in the area of the right dorsolateral prefrontal cortex (DLPFC), demonstrated a higher concentration change of O2Hb 

than several other optodes (i.e. optodes #1, #3, #4, #5, #9, #11, #13; Tukey’s honestly significant difference, p < .05) 

during both scenarios, see Figure 5. A scenarios * optodes interaction was also found (F(15, 150) = 1.99, p = .019, 

η²p = .17), highlighting a greater increase in concentration change of O2Hb during the difficult landing for optode 
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#16 than for the other optodes (see Figure 5 also). Taken together, these two last results (main effect of optode 

location and scenarios * optodes interaction) revealed that the landing situation involves primarily the right DLPFC 

and even more when landing is difficult. 

 

Figure 5. Mean HB02 concentration change from a ten-second rest period baseline, during the two different flight scenarios as a 

function of the 16 fNIRS voxels. Bars represent the standard error of the mean. 

 

 

 

Figure 6. Illustration of the global effect of the difficult landing scenario (i.e., mean activation for the task vs. the baseline) for 

one participant. A large right dorsolateral prefrontal cortex activation was found. 
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CONCLUSION 

Neuroergonomics attempts to provide sensitive and reliable assessment of human mental workload in complex work 

environments (eg. Causse et al., 2013; Dehais, Causse, & Pastor, 2008; Gagnon et al., 2012; Giraudet, St-Louis, & 

Causse, 2012; Parasuraman, 2011) through the use of operationally-relevant tasks (Parasuraman, 2003). Our study 

was clearly grounded in this approach and aimed to examine brain mechanisms underlying flight performance 

through brain hemodynamics of future professional pilots. As expected, results from subjective measurements 

revealed that the perceived cognitive mental effort was higher during the difficult landing. The DLPFC was the 

region that demonstrated the highest concentrations of O2Hb during both scenarios. In addition, fNIRS 

measurements showed significantly higher right DLPFC concentrations of O2Hb for the difficult landing than for 

the easy scenario. Coherently, in the difficult scenario, the flight performance (glide slope deviation) was degraded 

in comparison to the easy scenario. With this work, we have demonstrated that the measurements obtained with 

fNIRS agree with self-reported measurements of workload.  

On the whole, these findings demonstrated the sensitivity of fNIRS to detect mental load variations in a complex and 

ecological set up. A continuous real-time monitoring of pilot mental workload would be of great interest to provide 

feedback information to the operator himself or to the automated system he is interacting with. The introduction of 

intelligent adaptive systems that can adjust the mental workload by taking charge of a wide variety of tasks (Kaber 

& Endsley, 2004 ; Scerbo, 2007) while letting the operator focus on high level tasks is a relevant application of real-

time monitoring of the mental workload through psychophysiological measurement (Byrne & Parasuraman, 1996). 

Indeed, in some hazardous situations where the operator is vulnerable, it would be useful for the system to detect the 

mental overload in order to invoke, for example, more automated tasks. In contrast to subjective measurements, 

continuous questioning of the operator’s subjective mental workload would be counterproductive, as it would likely 

and unnecessarily increase the cognitive load.  

The present study has highlighted the potential use of the fNIRS technology to provide continuous, non-interfering 

data sampling to assess mental workload. This study could also have implications for the evaluation and certification 

of new cockpit designs. Introduction of new cockpit designs may have unexpected consequences, such as an 

increase of the pilot’s mental workload when placed in a particular context. For instance, fNIRS technology would 

permit an objective assessment and comparison of the mental workload induced by two different designs. 

Subsequently, this use of fNIRS could be one step of the certification process. Globally, if future cockpit designs are 

better adapted to the human brain, it will have a positive impact on aviation safety. 
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