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Abstract

Fractional differential systems are infinite-dimensional systems which are difficult to study and simulate: they can be

represented with poles and cuts. This representation applies to a wider class of irrational transfer functions, and is most

useful for signal processing purposes, such as frequency-domain and time-domain simulations: the approximations in low

dimension which give the most striking numerical results are obtained through an optimization procedure, the parameters

of which are meaningful from a signal point of view. Ten such systems of increasing complexity are thoroughly

investigated.

Keywords: Infinite-dimensional systems; Irrational transfer functions; Time-domain simulation; Fractional differential systems; Diffusive

representations
1. Introduction

There are many linear systems with irrational
transfer functions, especially transfer functions of
mathematical physics which involve fractional

powers of the Laplace variable s. A wide class of
such special functions can be found in e.g. the
monograph by Duffy [1], some of which apply to
infinite-dimensional representations [2]. A more
specialized literature concentrates on fractional
differential systems. We refer to recent works by
ing author.
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Carpinteri and Mainardi [3] and by Oustaloup [4]
for physical models, and to the monograph by
Miller and Ross [5] for the mathematical theory.
Matignon and Montseny [6] provide examples that
illustrate an interplay between signal processing,
control theory and applications of such systems and
their generalization.

Techniques for representing these systems in
closed form, or in a manner more suitable for
computation, not only in the frequency but also the
time domain, need further study. The aim of this
paper is to develop useful simulations from a point
of view that lies half way between signal processing
and control theory: briefly, complicated case
studies will be introduced, analysed and simulated
thoroughly.
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2. Examples of systems involving fractional

derivatives

We select a family of 10 linear systems, which
involve either fractional derivatives in the time
domain, or fractional powers of the Laplace
variable s in their transfer function. Most of these
cases stem from a physical example, which can be
very simple or quite involved, but this is not the
point in the present paper: here, we are more
interested in presenting a hierarchy of fractional

systems.
2.1. An introductory example

The following transfer function is irrational, but
can be simply represented by a series of first-order
systems:

H1ðsÞ ¼
tanhð

ffiffi
s
p
Þffiffi

s
p ¼

X
n2N

2

sþ ðnþ 1=2Þ2p2
. (1)

Such a transfer function appears in a boundary
controlled and observed diffusion process in a
bounded domain, see e.g. [2, Example 4.3.11]. Other
examples of the same kind, which involve hyper-
bolic trigonometric functions and

ffiffi
s
p

, for which a
series expression is available, can be found in [1].
2.2. Fractional integrals and derivatives

The classical integral or derivative operators of
fractional order also have irrational transfer func-
tions, which cannot be represented by a series of
first-order systems, but can be exactly represented
by a continuous superposition of first-order systems
(sometimes called diffusive representation) with
some weight m, which can be computed analytically:

H2ðsÞ ¼
1

sb
; 0oReðbÞo1, (2)

H3ðsÞ ¼ sa; 0oReðaÞo1. (3)

In the sequel, the output of system H3ðsÞ ¼

sð1=s1�aÞ will be considered as the (integer) time-
derivative of the output of system H2 with para-
meter b ¼ 1� a; this simple remark will apply both
for equivalent representations and simulation pur-
poses. A technical well-posedness condition on this
weight m will distinguish between the two cases H2

and H3. This condition of theoretical nature will
also have numerical implications.
2.3. Fractional differential systems

A more complex combination of fractional
derivatives gives rise to the so-called fractional
differential systems, the transfer function of which
reads either

H4ðsÞ ¼ RðsaÞ ¼
QðsaÞ

PðsaÞ

¼

Pl¼q
l¼0 bls

laPk¼p
k¼0 akska

; 0oReðaÞo1, ð4Þ

or

H5ðsÞ ¼

Pl¼q
l¼0 bls

blPk¼p
k¼0 aksak

0oReðblÞoReðblþ1Þ;

0oReðakÞoReðakþ1Þ:

����� ð5Þ

The first case H4 is known as fractional differential
systems of commensurate order a, which allows the
use of some algebraic tools for equivalent represen-
tation, stability analysis and also simulation pur-
poses.

On the contrary, the more general case H5 is
known as fractional differential systems of uncom-
mensurate orders: for these systems, no algebraic
tools can be applied, and both their analysis and
simulation are quite involved.

Many results are known for these systems, as will
be recalled later in Section 3.2.3.
2.4. Diffusive systems

Let us now consider examples which are neither a
series of first-order systems, nor fractional differ-
ential systems, such as

H6ðsÞ ¼
e�

ffiffi
s
pffiffi
s
p , (6)

H7ðsÞ ¼ e�
ffiffi
s
p

. (7)

Both can be decomposed on a continuous family of
first-order systems with negative real poles �x, with
a specific weight mðxÞ playing exactly the same role
as residues at the poles s ¼ �x. The technical well-
posedness condition on the weight m will distinguish
between the two cases H6 and H7; exactly for the
same reason, a distinction was made between H2

and H3 earlier in Section 2.2.



2.5. More complex systems

Let us now consider some strange systems, the
transfer function of which have poles of finite order
and branching points with cuts to be chosen
between them:

H8ðsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 1
p (8)

is the transfer function of the causal Bessel function
of order zero J0ðtÞ, and it has been studied first in [7,
Section 3.3], then in [8], and finally in [9, Example
3.1] with a new integral representation, which shows
much freedom in the choice of the cuts between the
two fixed branching points, namely s ¼ �i.

Now, some more intricate transfer functions can
easily be met on more complex examples,

H9ðsÞ ¼ es�GðsÞ with

GðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ es

3
2 þ 1

q
and e40, ð9Þ

H10ðsÞ ¼
2GðsÞ

sþ GðsÞ
es�GðsÞ. (10)

They are involved in the description of a 1-D wave
equation in a flared duct of finite length, with
viscothermal losses at the boundary: see e.g. [10] for
a theoretical study of this model, [11,12] for
simulation of these transfer functions, and [13,
Chapter 9] for a study of the modal decomposition
related to this model.

3. Integral representations with poles and cuts

We now investigate the general integral represen-
tations in the complex plane with poles and cuts: we
present the general framework, and then apply it to
the 10 examples presented in Section 2.

3.1. General framework

Many transfer functions can be decomposed as
follows, in some right-half complex plane ReðsÞ4a,

HðsÞ ¼
XK

k¼1

XLk

l¼1

rk;l

ðs� skÞ
l
þ

Z
C

MðdgÞ
s� g

, (11)

which translates in the time domain into the
following decomposition of the impulse response:

hðtÞ ¼
XK

k¼1

XLk

l¼1

rk;l
1

l!
tl�1 eskt

þ

Z
C

egtMðdgÞ for t40. ð12Þ
The time-domain simulation of the finite-dimen-

sional part of size
PK

k¼1Lk is really standard and will
not be detailed in the sequel. The time-domain
simulation of the infinite-dimensional part of these
systems can quite easily be done through the
following continuous family of first-order differen-

tial systems, parametrized by g 2 C:

qtfðg; tÞ ¼ gfðg; tÞ þ uðtÞ; fðg; 0Þ ¼ 0; 8g 2 C,

(13)

yðtÞ ¼

Z
C

fðg; tÞMðdgÞ, (14)

which is nothing but an input u-state f-output y

representation of our system.
In all the integral equations above, C is a contour

in some left-half complex plane, and M is a measure

on this contour. Once a parametrization has been
chosen for the contour, the measure can be
decomposed into different parts, such as a purely
discrete part (Dirac measures at some points in
some left-half complex plane) and an absolutely
continuous part mðgÞ with respect to the Lebesgue
measure dg. A straightforward interpretation can
therefore be proposed: mðgÞ plays the role of the
residue at the pole s ¼ g.

But of course, these representations make sense
only if a so-called well-posedness condition is
fulfilled, namelyZ
C

MðdgÞ
aþ 1� g

���� ����o1. (15)

We refer to [14, Sections 5 and 6] for the general
theory and [15] for the implications of the well-
posedness condition.

When M has a density, an analytical computation
of m can be performed from H across the cut, taking
non-tangential limits; when C ¼ R�, we find with
e.g. [7]:

mðxÞ ¼ lim
e!0þ

1

2ip
fHð�x� ieÞ �Hð�xþ ieÞg, (16)

a formula which will be most useful in the sequel,
namely in Section 3.2. This formula is obtained by
inverting the Laplace transform of HðsÞ on the
Bromwich path defined in Fig. 1: the contribution of
the part encircling R� leads to the gap measurement
(16), whereas that of the circle pieces goes to zero as
the radius R tends to infinity, thanks to Jordan’s
lemma.

As already mentioned in Section 2, in some cases,
since the well-posedness condition (15) is not met,



Fig. 1. Bromwich path for HðsÞ with a cut on C ¼ R�.
an extension can be proposed, which is still mean-
ingful in some larger mathematical framework,
namely

HðsÞ ¼ s

Z
C

�MðdgÞ
s� g

þHð0Þ, (17)

where �M is the measure associated to �HðsÞ ¼
ðHðsÞ �Hð0ÞÞ=s, and which gives rise to the follow-
ing input u-state f-output z representation in the
time domain:

qtfðg; tÞ ¼ gfðg; tÞ þ uðtÞ; fðg; 0Þ ¼ 0; 8g 2 C,

(18)

zðtÞ ¼

Z
C

qtfðg; tÞ �MðdgÞ þHð0Þ uðtÞ. (19)

Let us now go back to our examples and see how
they fit in the general framework.

3.2. Choice of the cuts and computation of the

weights for the examples

3.2.1. An introductory example

Choosing C ¼ R� leads to M1 ¼
P

n2N 2dðx�
ðnþ 1

2
Þ
2p2Þ with g ¼ �x, and (15) is fulfilled.

3.2.2. Fractional integrals and derivatives

Choosing C ¼ R� and g ¼ �x leads to
m2ðxÞ ¼ ðsinðbpÞ=pÞ ð1=x

b
Þ, which fulfills (15).

But H3 must be realized with an extension:
H3ð0Þ ¼ 0 and �m3 ¼ m2 with the particular choice
b ¼ 1� a; thus, �m3 now fulfills (15).
3.2.3. Fractional differential systems

3.2.3.1. Commensurate orders. Following e.g. [16,
Section 2.2], one can decompose the impulse
response of system H4 into a finite sum of special
functions, namely Mittag– Leffler functions (defined
by Eaðl; tÞ ¼ ta�1þ

P1
k¼0 ððltaþÞ

k=Gððk þ 1ÞaÞÞ when
the roots of P in (4) are simple, see [17]).
Hence, the transfer function reads H4ðsÞ ¼Pp

n¼1 rnðs
a � lnÞ

�1, and the impulse response reads

h4ðtÞ ¼
Xp

n¼1

rnEaðln; tÞ. (20)

This decomposition looks finite dimensional, but
the following remarks apply:
�
 from a numerical point of view, these special
functions are difficult to compute in the whole

complex plane (since ln 2 C); even in the case
a ¼ 1

2
, where the function is easily related to

the classical error function, the argument is
not limited to R, and this makes the problem
difficult;

�
 this decomposition allows an algebraic knowledge
of the poles and residues (namely sn ¼ ðlnÞ

1=a and
rn ¼ ð1=aÞl

ð1=aÞ�1
n , but only for those ln satisfying

j argðlnÞjoap);

�
 any such Mittag–Leffler function has a represen-
tation with a pole and a cut on C ¼ R�, with a
weight which can be computed exactly when
sn 2 CnR�:

ma;ln
ðxÞ ¼

sinðapÞ
p

xa

x2a � 2ln cosðapÞx
a
þ l2n

. (21)

This is the reason why, at least for simulation
purposes, the distinction between commensurate
and uncommensurate orders proves a bit artificial.

3.2.3.2. Uncommensurate orders. Now, following
[7, Section 2.3, 18], for both cases, the following
decomposition can be written down for system H5:

h5ðtÞ ¼
XK

k¼1

XLk

l¼1

rk;l
1

l!
tl�1 eskt

þ

Z 1
0

m5ðxÞ e
�xt for t40. ð22Þ

The following remarks apply to the previous
decomposition:
�
 there is only a finite number of poles, as proved in
[19,20];



�
 we have an analytical knowledge of m5, namely
(see [7,16]):

m5ðxÞ ¼
1

p

Pp
k¼0

Pq
l¼0akbl sinððak � blÞpÞx

akþblPp
k¼0 a2

kx
2ak þ

P
0pkolpp 2akal cosððak � alÞpÞx

akþal
;

(23)
�
 still, the case of poles on the cut R� is difficult,
but it can be put in a somewhat larger framework,
involving measures or distributions: in this case,
the integral term in (22) is to be understood in a
generalized sense (see e.g. [13, pp 71–73]). Yet,
there is another strategy of representation, which
consists in moving the cut between the same
branching points (s ¼ 0 and s ¼ �1), so as to
avoid the singularities, see e.g. [8].

3.2.4. Diffusive systems

Choosing C ¼ R� and g ¼ �x leads to m6ðxÞ ¼
cosð

ffiffiffi
x
p
Þ=p

ffiffiffi
x
p

, which fulfills (15).
But H7 must be realized with an extension:

H7ð0Þ ¼ 1 and �m7 ¼ sinð
ffiffiffi
x
p
Þ=px; thus, �m7 now

fulfills (15).

3.2.5. More complex systems

For H8, we now have two finite branching points,
thus many cuts can be proposed, we will only
consider the two lines parallel to R� stemming from
�i: g�ðxÞ ¼ �i� x. Following [7, Section 3.3], we
get

m�8 ðxÞ ¼
1

p
ffiffiffi
x
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i� x
p , (24)

with
ffiffi
s
p

uniquely defined for s 2 CnR� as the
analytic continuation of

ffiffiffi
x
p

for x 2 Rþ. Once
again, (15) is fulfilled.

For H9 and H10, also with three finite branching
points (0, s1 and s1 with Reðs1Þo0), two different
cuts will be investigated: either three horizontal cuts
parallel to R� namely C ¼ R� [ ðs1 þ R�Þ [ ðs1 þ

R�Þ as displayed in Fig. 2 ①a and ①b, or a cross-cut
made of the segment between the two branching
points and the cut on R�, namely C ¼ R� [ ½s1; s1�
as displayed in Fig. 2 ①c and ①d. More details can
be found in [12].

4. Finite-dimensional approximation and simulation

of poles and cut-representation models

In this section, we propose to approximate stable
realizations of fractional systems and irrational
transfer functions (1–10) with finite order differen-
tial systems, by picking up a finite subset of points
which belong to the cut C and the set of poles P of
the original system. Here, two methods are inves-
tigated to get such finite-order approximations: the
first one relies on a convergent interpolation of the
state f; the second one is based on an optimization
procedure of a specially designed criterion. Corre-
sponding numerical results are compared in both
the frequency and the time domains.

Note that these finite-order approximations can
also be described as pole-zero filters (see [4]), for
which only pole placement is chosen. In our case,
the location of the zeros is a consequence of either
the interpolation or the optimization procedures.
This holds true also for the discrete-time versions
presented in Section 4.5.

4.1. Approximation by interpolation of the state f

A first method consists in approximating fðg; tÞ;
g 2 C by

efðg; tÞ ¼XM
m¼1

fðg; tÞLmðgÞ, (25)

where fLmg1pmpM defines continuous piecewise

linear interpolating functions which are non-zero
on the piece �gm�1; gmþ1½C of the cut C and such that
LmðgmÞ ¼ 1; ðgmÞ0pmpMC

are sorted with respect to
the oriented cut C. Convergence results can be
proven, e.g. see [13] for the purely diffusive case
g ¼ �x 2 R�.

Realization (13)–(14) yields the first-order linear
system of dimension M

qt
efmðtÞ ¼ gm

efmðtÞ þ uðtÞ; 1pmpM,

yðtÞ ¼
XM
m¼1

emm
efmðtÞ (26)

with

emm ¼

Z
½gm�1;gmþ1�C

mðgÞLmðgÞdg; 1pmpM. (27)

Contribution of poles g2P can be performed in the
same way with standard finite-order systems which
are not detailed here.

4.2. Remark on approximations preserving the

hermitian symmetry property

For systems which map real inputs to real
outputs, transfer functions satisfy the hermitian



Fig. 2. Magnitude and phase of H10; s 2 C�0 are represented in ① for horizontal cuts (a,b) and cross-cut (c,d). The corresponding (real-

valued) m10 computed on R� are in ②a, c. The corresponding (complex-valued) are computed on s1 þ R� (③a: modulus, ③b: phase) and on

½s1; s1� (③c: magnitude, ③d: phase), respectively. The X -axis of ①, ② and ③a, b correspond to �x ¼ ReðsÞo0 on a log-scale, and the Y -axis

of ①, ③c, d to o ¼ ImðsÞ on a linear scale. Circles ðoÞ represent branching points and crosses ð�Þ the pole placement for further

approximations. The weights m in ②c and ③a do not decrease when �x!�1, so that the well-posedness condition (15) is not satisfied.

This problem disappears in ④, ⑤ for the extension by derivation �m10, computed from �H10ðsÞ. After Hélie and Matignon [12].



symmetry HðsÞ ¼ HðsÞ; s 2 Cþa . In this case, the
same symmetry for the set of poles and the set C
can be chosen for any analytic continuation
of ðHðsÞ þHðsÞÞ=2. As a consequence, the set
ðgmÞ1pmpM can be described by � x ¼ ð�xjÞ1pjpJ ,
xj40 for poles g lying on R� and by the complex
conjugate pair g ¼ ðgkÞ1pkpK and ðgÞ with
gk ¼ �x

0
k þ io0k, x

0
k40, and o0k40 otherwise. The

approximation of (11) of dimension M ¼ J þ 2K

yields

fHmðsÞ ¼
XJ

j¼0

mj

sþ xj

þ
XK

k¼0

mR
k

1

s� gk

þ
1

s� gk

� ��
þmI

k

i

s� gk

þ
�i

s� gk

� ��
, ð28Þ

where m denotes the real vector ðm1; . . . ;mJ ;
mR
1 ; . . . ;m

R
K ;m

I
1; . . . ;m

I
K Þ

t
2 RJþ2K , mj and m0k ¼ mR

k þ

imI
k are the associated weights. The realness of m

ensures hermitian symmetry.

4.3. Approximation by optimization of a criterion

The second method consists in a least-squares
regularized optimization of the weights m, by
minimizing an appropriate distance between an
exact transfer function HðioÞ and its approximationfHmðioÞ in the frequency domain, see e.g. [21,8].

CðmÞ ¼
Z
Rþ
jfHmðioÞ �HðioÞj2wðoÞdo, (29)

where the weight wðoÞ can be uniform on the whole
frequency range (wðoÞ ¼ 1) for a classical L2-norm,
or frequency-dependent such as wsðoÞ ¼ ð1þ o2Þ

s

for a Sobolev Hs-norm. In this latter case, the real
parameter s can be seen as a tuning parameter of the
low and high frequency balance. But weights w can
also be viewed as the result of scalings: for instance,
considering a logarithmic scale for frequencies,
such as in Bode diagrams, results in choosing the
measure d ln o ¼ do=o, which amounts to use
wðoÞ ¼ 1=o.

In practice, such considerations can be used to
build weights based on each application. For
instance, wðoÞ can be adapted and modified
according to the following requirements:
�
 a bounded frequency range o 2 ½o�;oþ�:
wðoÞ1½o�;oþ�ðoÞ;

�
 a frequency log-scale: wðoÞ=o;

�
 a relative error measurement: wðoÞ=jHðioÞj2
�
 a relative error on a bounded dynamics:
wðoÞ=ðSatH;YðoÞÞ

2 where the saturation function
SatH;Y with threshold Y is defined by

SatH;YðoÞ ¼
jHðioÞj if jHðioÞjXYH ;

YH otherwise;

(
(30)

with YH ¼ Y supfojwðoÞa0gjHðioÞj. Note that a
80 dB-dynamics corresponds to Y ¼ 10�4;

�
 a conversion for the extension as defined in (17):
the distance between H and eH for wðoÞ is the

same as the distance between �H and e�H for the
adapted weight o2 wðoÞ.

All these requirements can be cumulated in the
appropriate order.

Nevertheless, criterion (29) can lead to ill-condi-
tioned problems. We use standard regularization
techniques to cope with this [22], introducing the
regularized criterion C

R
ðmÞ:

C
R
ðmÞ ¼ CðmÞ þ

XJ

j¼1

�jðmjÞ
2
þ
XK

k¼1

�0kððm
R
k Þ

2
þ ðmI

kÞ
2
Þ.

(31)

Numerically, criterion (29) is computed for angular
frequencies increasing from o1 ¼ o� to oNþ1 ¼ oþ,
using the approximation

CðmÞ �
XN

n¼1

wnjfHmðsnÞ �HðsnÞj
2, (32)

with wn ¼
Ronþ1
on

wðoÞdo and sn ¼ ion for 1pnpN.
Thus, with matrix notations, the criterion rewrites

C
R;L
ðmÞ ¼ ðM m� h Þ�W ðM m� hÞ þ mt E m , (33)

where M� ¼M
t
denotes the transpose conjugate,

and
�
 M is an N � ðJ þ 2KÞ matrix, defined by
Mn;m ¼ ½ion þ xm�

�1 for 1pmpJ, by
Mn;m ¼ ½ion � gm�J �

�1 þ ½ion � gm�J �
�1 for

J þ 1pmpJ þ K , and by
Mn;m ¼ i½ion � gm�ðJþKÞ�

�1 þ i½ion � gm�ðJþKÞ�
�1

for J þ K þ 1pmpJ þ 2K .

�
 E is a ðJ þ 2KÞ � ðJ þ 2KÞ real non-negative
diagonal matrix, defined by Em;m ¼ �m for
1pmpJ and by Em;m ¼ EKþm;Kþm ¼ �0m for
J þ 1pmpJ þ K .

�
 W is the N �N diagonal matrix diagðwnÞ.

�
 h is the N � 1 vector hn ¼ HðsnÞ.
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Fig. 3. Bode diagrams for transfer function H1: ① exact (-),

truncated series with the first N poles, N ¼ 10 ð�Þ, N ¼ 20 ð	Þ

and N ¼ 40 ð4Þ; ② exact (-) and optimized (- -) with N ¼ 10 and

W ¼Wunif ; ③ exact (-) and optimized (- -) with N ¼ 10 and

W ¼W log;rel.
Solving this least-squares problem with the con-
straint that m is real valued yields

m ¼M�1H, (34)

where

M ¼ ReðM�W M þEÞ and H ¼ ReðM�W hÞ.

This result is obtained by decomposing the complex
values as xþ iy, solving the problem and recompos-
ing the result into the closed form (34).

4.4. Results in the frequency domain

Plots of mðgÞ and results for both approximations
(27) and (34) are presented in Figs. 3–7 for H1 to H4,
H6, H8 and in Fig. 2 for H10. Two choices are
illustrated for the optimization procedure: either the
uniform weight, denoted by Wunif , or the weight
resulting from a relative error measurement with a
frequency logarithmic scale, denoted by W log;rel. A
general remark is that the approximation by optimi-
zation does not require the analytic computation of
mðgÞ and, for a given pole placement ðgmÞ1pmpM , it
yields better results than those obtained by interpola-
tion. Nevertheless, the analysis of mðgÞ is required to
check the well-posedness condition (15) and it is useful
to build the relevant pole placements ðgmÞ1pmpM .
This latter point is illustrated for H6 in Fig. 6.

4.5. Time-domain simulations

The finite-dimensional realizations of the ap-
proximated transfer functions are

qtfjðtÞ ¼ �xjfjðtÞ þ uðtÞ; 1pjpJ, (35)

qtf
0
kðtÞ ¼ ð�x

0
k þ io0kÞf

0
kðtÞ þ uðtÞ; 1pkpK ,

(36)

eyðtÞ ¼XJ

j¼1

mjfjðtÞ þ 2Re
XK

k¼1

m0kf
0
kðtÞ, (37)

ezðtÞ ¼ XJ

j¼1

ð�xj �mjÞfjðtÞ

þ 2Re
XK

k¼1

ð�x0k þ io0kÞ �m
0
kfkðtÞ

þ Hð0Þ þ
XJ

j¼1

�mj þ 2Re
XK

k¼1

�m0k

" #
uðtÞ, ð38Þ
where eyðtÞ stands for the output of a standard
representation while ezðtÞ stands for the output of an
extension by derivation (17).

Approximating uðtÞ by its sample and hold version,
that is uðtÞ � uðtnÞ for tnptotnþ1, Eqs. (35)–(38)
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Fig. 4. Weight m2ðxÞ ¼ �m3ðxÞ for b ¼ 1� a ¼ 1
2
(1,a) and two logarithmic pole placements with N ¼ 10 ðoÞ, N ¼ 16 ð�) between xmin ¼

5� 10�4 and xmax ¼ 5� 103. The corresponding Bode diagrams are in column a for H2 and in b for H3. Line ② gives the exact Bode

diagrams (-), and the result of interpolations ðo;�Þ. Line ③ gives the exact Bode diagrams (-), and the result of optimization (- -) for the

case N ¼ 10 with W ¼W log;rel.
become, in the discrete-time domain,

fjðtnÞ ¼ ajfjðtn�1Þ þ
aj � 1

�xj

uðtn�1Þ, (39)

f0kðtnÞ ¼ a0kf
0
kðtn�1Þ þ

a0k � 1

�x0k þ io0k
uðtn�1Þ, (40)

eyðtnÞ ¼
XJ

j¼1

mjfjðtnÞ þ 2Re
XK

k¼1

m0kf
0
kðtnÞ, (41)
ezðtnÞ ¼
XJ
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ð�xj �mjÞfjðtnÞ

þ 2Re
XK

k¼1

ð�x0k þ io0kÞ �m
0
kf
0
kðtnÞ

þ Hð0Þ þ
XJ

j¼1
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" #
uðtnÞ, ð42Þ
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Fig. 5. Weight m4ðxÞ with [13] a ¼ 1
2
, QðsÞ ¼ 1 and PðsÞ ¼ s4 þ 0:1s3 þ sþ 0:1 (1,a) and logarithmic pole placement ð�Þ with N ¼ 18,

between xmin ¼ 1� 10�3 and xmax ¼ 10. Column a corresponds to exact (-) and interpolated (- -) results, and column b to exact (-) and

optimized (- -) results with W ¼W log;rel. Line ② gives Bode diagrams. In line ③, discrete-time simulations are presented for f s ¼ 104=p:
h4ðtÞ are in solid lines (-), the diffusive part in dashed lines (- -) and the second order oscillatory part in dotted lines (:).
where tn ¼ n Ts, Ts is the sampling period, aj ¼ e�xjTs

and a0k ¼ eð�x
0
k
þio0

k
ÞTs .

The impulse responses h4ðtnÞ, h6ðtnÞ, h8ðtnÞ and
h10ðtnÞ are simulated thanks to these recursive
equations for both the approximations by inter-
polation and by optimization. The results for
approximations by optimization are still better than
those obtained by interpolation. They are presented
in Figs. 5–7.
5. Perspectives

Some interesting questions remain still open.
First, the choice of the cut between fixed branching
points in the left-half complex plane can be made on
different criteria, but it is not easy to know a priori
which representation fits best. Second, once a cut
has been chosen, what is the optimal pole placement
on it, in order to reduce the infinite-dimensional



−104 −102 −100 −10−2 −10−410−20

10−15

10−10

10−5

100

105
|�6|

Magnitude Phase

� � � �
10-4 10-2 1 102 104 10-4 10-2 1 102 104 10-4 10-2 1 102 104 10-4 10-2 1 102 104

dB ra
d

40

20

0

−20

−40

−60

−80

40

20

0

−20

−40

−60

−80

Magnitude Phase

dB ra
d

0

−�

−2�

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (in s)

h 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h 6

0 10 20 30 40 50 60 70 80 90 100

time (in s)

−�

0

−2�

−�

a

1

2

3

b

Fig. 6. Weight m6ðxÞ and two pole placements with N ¼ 12 between xmin ¼ 5� 10�4 and xmax ¼ 3� 102: one is purely logarithmic (o),

whereas the second ð�Þ is modified to match with some maxima of jm6j. Column a corresponds to exact (-) and interpolated ðo;�Þ results,
and column b to exact (-) and optimized (- -) results with W ¼W log;rel and the pole placement ð�Þ. Line ② gives Bode diagrams. In line ③,

discrete-time simulations are presented for f s ¼ 104=p: the exact impulse response h6ðtÞ is in solid lines (-); the impulse responses computed

for the interpolations ðo;�Þ are very similar, and both represented with the dashed lines in ③a; in ③b, the exact and optimized impulse

responses superimpose.
system to a finite-order approximation (more
suitable for time-domain simulation)? Both these
questions are quite involved from a theoretical point
of view; nevertheless, they must be taken into
consideration, for they can have serious numerical
consequences for the finite-dimensional approxima-
tion of our fractional systems.
Finally, it is of interest to enlarge the class of
irrational transfer functions by allowing for delay

systems to be present: so far, they have not been
taken into account in our framework; even if some
theoretical results are available, this will be a wide
open direction of research concerning representa-
tion and simulation of such systems.
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Fig. 7. Weight m8ðxÞ for a logarithmic pole placement ð�Þ with N ¼ 10 between xmin ¼ 5� 10�4 and xmax ¼ 5� 103. Column a

corresponds to exact (-) and interpolated (- -) results, and column b to exact (-) and optimized (- -) results with W ¼W log;rel. Line ② gives

Bode diagrams. In line ③, discrete-time simulations are presented for f s ¼ 104=p: the exact h8ðtÞ is in solid lines (-), the approximated

impulse responses are in dashed lines (- -).
6. Conclusion

A powerful and flexible method of simulation for
fractional systems has been presented: it uses a
simple optimization procedure with parameters
that are meaningful from a signal processing
point of view, and it enables a low cost simulation,
both in the frequency domain and in the time
domain. From a theoretical point of view, this
method is based on a representation with poles

and cuts, which generalizes the so-called diffusive
representations. A family of 10 such systems, among
which fractional differential systems, is presented
throughout the paper, which clearly illustrates the
generality, the flexibility and the power of this
method.
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