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1 Introduction

This paper deals with the numerical simulation of acoustic wave propagation
in axisymmetric waveguides with varying cross-section using a Webster-Lokshin
model. Splitting the pipe into pieces on which the model coefficients are nearly
constant, analytical solutions are derived in the Laplace domain, enabling for the
realization of the propagation by concatenating scattering matrices of transfer
functions (§ 2). These functions involve standard differential and delay opera-
tors, as well as pseudo-differential operators of diffusive type, induced by both
the viscothermal losses and the curvature. These operators are explicitly decom-
posed thanks to an asymptotic expansion, and the diffusive ones may be defined
and classified (§ 3). Various equivalent diffusive realizations may be proposed,
that are deeply linked to choices of cuts in the complex analysis of the transfer
functions. Then, finite order approximations are given for their simulation (§ 4).

2 Deriving the model

2.1 Acoustic model

A mono-dimensional model of the propagation of the acoustic pressure p in
axisymmetric waveguides including viscothermal losses on the wall has been
derived in [1, chap 1], assuming the quasi-sphericity of isobars near the wall.
Defining in the Laplace domain 12(2,5) = R(z)p(z,s) where s is the Laplace
variable, z is the curvilinear ordinate measuring the arc length of the wall, and
R(%) is the radius of the guide, the Webster-Lokshin model may be written:

25 5)? 5) ! J(s) =
020 (s) — {(C) +2¢(2) (2) +T(z)] -(s) = 0. (1)
¢ is the sound speed, 1'(z) = R"(z)/R(z) the curvature, and £(z) = A 7”;(2)(2)2
quantifies the effect of the viscothermal losses. Note that contant curvatures
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correspond to cylinders or cones (I'=0), exponential or catenoidal shapes (I'>0),
and sinusoidal shapes (1'<0), for the curvilinear ordinate z. For short pieces of
guide on which 7" and € may be approximated by their constant mean value,
Eq. (1) has the analytic solution ¢, (s) = A(s)e* I+ B(s)e~*1®) where I'(s) is

a square root of (%) yoe ®) T

2.2 Scattering matrix

The waves p(z,s) = (p(z,s) F pcd.p)/2 defined in [2] are locally outwardly
(p*) and inwardly (p~) directed. For a C!-regular profile R(z), their connection
at z* is simply given by pf(z*,s) = i)\rfﬂ(z*,s) where n and n+1 index two
concatenated pieces of guide. For this last reason, we are interested in the time-
domain simulation of the scattering matrix defined for »* = R(z) p(2, 5).

For convenience, we consider the adimensional problem (¢ = |7 = 1, and

z €[0,1], B x g, and I'(s) is a square root of s? + 2855 + sign(7")). This yields
@(s)] - lT(s) m(s)] O
vg ()] [Ro(s) T(s) | [r(s)

where the transmission 7" and the reflexion R, at the input (2=0) or the output
(z=1) are rationnal functions with respect to s, I'(s), and e 7/'(*). In § 3, we
investigate e=77'(®) for the case T > 0 which extends the standard delay operator
e 7° for ideal pipes (T =€ =0) [1, chap. 3].

. 2)

3 Using diffusive representations

The impulse response of a pseudo-differential operator of diffusive type can be de-
composed on a continuous family of purely damped exponentials with weight p.
A diffusive realization helps transforming a non-local in time pseudo-differential
equation into a first-order differential equation on a Hilbert state-space, which
allows for stability analysis; this approach reveals useful for both theoretical and
numerical treatment of pseudo-differential equations. We refer to [7, § 5.] for
the treatment of completely monotone kernels, [6] for diffusive representations
of pseudo-differential operators, and [5] for links between fractional differential
operators and diffusive representations.

For the simulation of e 71'(¥), we proceed as explained in § 3.4 : it is a
generalization of diffusive representations of the first and second kind, as recalled
in § 3.2 and § 3.3; it is based on an asymptotic expansion presented in § 3.1.

3.1 Decomposition of the transfer function

The asymptotic expansion of I'(s) for |s| — +oo reads I'(s) = s + 3+/s — 62—2 +
o(1). Thus, e~"7'®) may be decomposed into several transfer functions, namely:
e Tl) = e 75 e THV5 3(s) , where e~ * is a pure delay, e~ 78 V* is diffusive of
the first kind (see § 3.2), and e~ (I'(8)=s=Bv5+5%/2) ig diffusive in a generalized
sense (see § 3.4). The last two operators are investigated below.
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3.2 Diffusive representation of the first kind

The transfer function H, (s) = e~V?, understood with a cut on R~ is known to
be diffusive of the first kind, with an extension defined in [6, § 5.2], with density

pa (&) = % for £ > 0. It fulfills the well-posedness condition f0+°° % ¢ <

00. Thus, Hi(s) = s 0+°° “;T(? d¢ gives rise to a natural realization of the trans-
fer, as a superposition of basic first-order differential systems.

3.3 Diffusive representation of the second kind

A diffusive representation of the second kind may be directly used in the case 5 =
0. Then, e~ 77'() = e=7Vs*+1 where v/s2 + 1 may be defined by /s — i /s + i,
/% being still understood with a cut for z € R~. The two branchpoints +i and
—1i are thus associated to the cuts i + R~ and —i + R, respectively. A diffusive
representation of such an operator may be derived from complex-valued densities
computed on these two cuts, as described in [5, § 3.3] for (s> +1)~1/2.
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Figurel: Phase of H2(s) defined for the cut [si,s2] UR™, 7 =1, and 8 = 0.3. Branch-
points are represented by o and the poles of the approximating transfer function by x.

3.4 Generalized diffusive representation

When 3 # 0, some more care must be taken for Hy(s) = e 7('(®)=%) and the
previous ideas must be adapted.

Analysis. V3 > 0, I'(s) has two zeros s; and s; = 57 with Re(s;2) < 0 and
Sm(sy) > 0, thus leading to 4 branchpoints for Hz, namely 0, s1, s2 and a point
at infinity, such as —oo. This implies that I'(s) may be defined for any cuts made
of R™ and a curve linking s; and s».
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Diffusive representation of e~7 (I'(®)=%)  Among the different compatible
cuts, we can investigate either 3 parallel cuts (concatenation of § 3.2 and § 3.3),
or a cross made of R~ and the vertical segment joining s; and s» (see Fig. 1). The
corresponding density p can be found analytically by limit formulas on either of
these two cuts, after some quite tedious computations: in this case, y directly
accounts for the discontinuity of H2(s) across the cut.

An alternative to diffusive representation of the second kind pioneered by [7,
§ 6.] and developped by [3] is the so-called I'-contour. A regular curve I' C C
encircles all the singularities (poles, branchpoints, cuts, ...) of Ha(s); thus, by
the inverse Laplace transform, we get a representation with a complex-valued
density ur, expressed directly and continuously from Ha(s), for s € I'.

Realization with a I'-contour. Although no differences in principle remain
between realizations for I'-contours and for cuts (a cut can even be seen as a
limiting process of I'-contour), this is not the case for realizations approximated
by first-order linear constant-coefficient systems. Moreover, I'-contours yield a
density pr containing all the information carried by the encircled discontinuity,
but under a somewhat averaged form. On the contrary, cuts yield a more focused
information, since the density u exactly measures the discontinuity.

The placement of the poles gives rise to an unlimited choice, and the question
of finding a suitable if not minimal description is an interesting open question, as
already noticed in [7, § 6.]. A trade-off must then be found between averaged in-
formation with a density computed continuously from the transfer function, and
localized and accurate information with a density computed as a discontinuity
of the same transfer function.

4 Numerical simulations with optimization

We now derive approximations of transfer functions by first-order linear constant-
coefficient systems, stemming from the generalized diffusive realizations pre-
sented in § 3.4. The approximated model has the form M. (s).v = ElgkgK ;ﬁ,

where the set of poles v = {7y} C I' is chosen with a hermitian symmetry. The
set I' may represent either a cut or a I'-contour associated with the diffusive
operator under consideration. The problem now consits of estimating v = {vy}.

A first method computes vy, analytically: I" is described in the complex plane

by £ — v(£), and v, = 0+o° w(v(€) A (&) ' (€) A€, where Ay are interpolating

functions (see e.g. [4] and [3]).
The second method, that is being used here for the cross-cut, consists of a
least-square regularized optimization of {v}, minimizing the distance between

Ho(iw) and /T/l\fy (iw) . v for w € [wWmin,Wmax|- We take the following criterion:

Cv) = My v=Hollfo i wmFer D, lte Dl (3)
{k/v€E[s1,52]} {k/m€R~}

where €; and €3 are regularizing parameters for the oscillating and diffusive parts,
respectively. An example of result obtained for this criterion and for the pole
placement represented in Fig. 1 is given in Fig. 2. Note that the optimization
may be adapted for HP-norms, taking the measure (1 + wz)p/zdw .
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Figure2: Bode diagrams of the exact transfer function Hs(iw) and of (.A/./l\'y (iw) . u) for
7=1,8=0.3, ¢ =0, e2 =107, with 4 complex conjugate pairs of poles on [s], s2]
and 16 poles on R™ (ymin = —10%). Poles are spaced with a geometric sequence.

5 Conclusion

Our method sums up as follows. We derive the transfer functions in the Laplace
domain. We perform a complex analysis: asymptotic expansions, poles and branch-
points, choice of cuts in the left-half complex plane. Finally, the parameters of
the approximated model are optimized in a least-square sense on a path in the
Laplace domain, using either the cuts or a I'-contour encircling all the singulari-
ties; the error is evaluated in the frequency domain. The time-domain simulations
can be done straightforwardly.
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