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1 Introdu
tion

This paper deals with the numeri
al simulation of a
ousti
 wave propagation

in axisymmetri
 waveguides with varying 
ross-se
tion using a Webster-Lokshin

model. Splitting the pipe into pie
es on whi
h the model 
oe�
ients are nearly


onstant, analyti
al solutions are derived in the Lapla
e domain, enabling for the

realization of the propagation by 
on
atenating s
attering matri
es of transfer

fun
tions (� 2). These fun
tions involve standard di�erential and delay opera-

tors, as well as pseudo-di�erential operators of di�usive type, indu
ed by both

the vis
othermal losses and the 
urvature. These operators are expli
itly de
om-

posed thanks to an asymptoti
 expansion, and the di�usive ones may be de�ned

and 
lassi�ed (� 3). Various equivalent di�usive realizations may be proposed,

that are deeply linked to 
hoi
es of 
uts in the 
omplex analysis of the transfer

fun
tions. Then, �nite order approximations are given for their simulation (� 4).

2 Deriving the model

2.1 A
ousti
 model

A mono-dimensional model of the propagation of the a
ousti
 pressure p in

axisymmetri
 waveguides in
luding vis
othermal losses on the wall has been

derived in [1, 
hap 1℄, assuming the quasi-spheri
ity of isobars near the wall.

De�ning in the Lapla
e domain

b

 (z; s) = R(z) bp(z; s) where s is the Lapla
e

variable, z is the 
urvilinear ordinate measuring the ar
 length of the wall, and

R(z) is the radius of the guide, the Webster-Lokshin model may be written:
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 is the sound speed, � (z) =R

00

(z)=R(z) the 
urvature, and "(z) = �

p
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R(z)

quanti�es the e�e
t of the vis
othermal losses. Note that 
ontant 
urvatures

?

on sabbati
al leave from ENST, TSI dept. & CNRS, URA 820. 46, rue Barrault

F-75634 Paris Cedex 13, FRANCE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78385782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Th. Hélie & D. Matignon


orrespond to 
ylinders or 
ones (�=0), exponential or 
atenoidal shapes (�>0),

and sinusoidal shapes (�<0), for the 
urvilinear ordinate z. For short pie
es of

guide on whi
h � and " may be approximated by their 
onstant mean value,

Eq. (1) has the analyti
 solution

b

 

z

(s) = A(s)e
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where � (s) is

a square root of
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2.2 S
attering matrix

The waves bp

�

(z; s) = (bp(z; s) � � 
 �

z

bp)=2 de�ned in [2℄ are lo
ally outwardly

(bp

+

) and inwardly (bp

�

) dire
ted. For a C

1

-regular pro�le R(z), their 
onne
tion

at z

�

is simply given by bp

�

n

(z

�

; s) = bp

�

n+1

(z

�

; s) where n and n+1 index two


on
atenated pie
es of guide. For this last reason, we are interested in the time-

domain simulation of the s
attering matrix de�ned for

b

 

�

z

= R(z) bp(z; s).

For 
onvenien
e, we 
onsider the adimensional problem (
 = j� j = 1, and

z 2 [0; 1℄, � / ", and � (s) is a square root of s

2

+ 2�s

3

2

+ sign(� )). This yields
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where the transmission T and the re�exion R

z

at the input (z=0) or the output

(z=1) are rationnal fun
tions with respe
t to s, � (s), and e

��� (s)

. In � 3, we

investigate e

��� (s)

for the 
ase � � 0 whi
h extends the standard delay operator

e

�� s

for ideal pipes (� = � = 0) [1, 
hap. 3℄.

3 Using di�usive representations

The impulse response of a pseudo-di�erential operator of di�usive type 
an be de-


omposed on a 
ontinuous family of purely damped exponentials with weight �.

A di�usive realization helps transforming a non-lo
al in time pseudo-di�erential

equation into a �rst-order di�erential equation on a Hilbert state-spa
e, whi
h

allows for stability analysis; this approa
h reveals useful for both theoreti
al and

numeri
al treatment of pseudo-di�erential equations. We refer to [7, � 5.℄ for

the treatment of 
ompletely monotone kernels, [6℄ for di�usive representations

of pseudo-di�erential operators, and [5℄ for links between fra
tional di�erential

operators and di�usive representations.

For the simulation of e

��� (s)

, we pro
eed as explained in � 3.4 : it is a

generalization of di�usive representations of the �rst and se
ond kind, as re
alled

in � 3.2 and � 3.3; it is based on an asymptoti
 expansion presented in � 3.1.

3.1 De
omposition of the transfer fun
tion

The asymptoti
 expansion of � (s) for jsj ! +1 reads � (s) = s + �

p

s�

�

2

2

+

o(1). Thus, e

�� � (s)

may be de
omposed into several transfer fun
tions, namely:

e

�� � (s)

= e

�� s

e

�� �

p

s

H(s) ; where e

�� s

is a pure delay, e

�� �

p

s

is di�usive of

the �rst kind (see � 3.2), and e

�� (� (s)�s��

p

s+�

2

=2)

is di�usive in a generalized

sense (see � 3.4). The last two operators are investigated below.
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3.2 Di�usive representation of the �rst kind

The transfer fun
tion H

1

(s) = e

�

p

s

, understood with a 
ut on R

�

, is known to

be di�usive of the �rst kind, with an extension de�ned in [6, � 5.2℄, with density

�

1

(�) =

sin(

p

�)

� �

for � > 0. It ful�lls the well-posedness 
ondition

R

+1

0

j�

1

(�)j

1+�

d� <

1. Thus, H

1

(s) = s

R

+1

0

�

1

(�)

s+�

d� gives rise to a natural realization of the trans-

fer, as a superposition of basi
 �rst-order di�erential systems.

3.3 Di�usive representation of the se
ond kind

A di�usive representation of the se
ond kind may be dire
tly used in the 
ase � =

0. Then, e

��� (s)

= e

��

p

s

2

+1

, where

p

s

2

+ 1 may be de�ned by

p

s� i

p

s+ i,

p

z being still understood with a 
ut for z 2 R

�

. The two bran
hpoints +i and

�i are thus asso
iated to the 
uts i+R

�

and �i+R

�

, respe
tively. A di�usive

representation of su
h an operator may be derived from 
omplex-valued densities


omputed on these two 
uts, as des
ribed in [5, � 3.3℄ for (s

2

+ 1)

�1=2

.
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Figure1: Phase of H

2

(s) de�ned for the 
ut [s

1

; s

2

℄ [ R

�

, � = 1, and � = 0:3. Bran
h-

points are represented by Æ and the poles of the approximating transfer fun
tion by �.

3.4 Generalized di�usive representation

When � 6= 0, some more 
are must be taken for H

2

(s) = e

��(� (s)�s)

, and the

previous ideas must be adapted.

Analysis. 8� > 0, � (s) has two zeros s

1

and s

2

= s

1

with <e(s

1;2

) < 0 and

=m(s

1

) > 0, thus leading to 4 bran
hpoints for H

2

, namely 0; s

1

; s

2

and a point

at in�nity, su
h as �1. This implies that � (s) may be de�ned for any 
uts made

of R

�

and a 
urve linking s

1

and s

2

.
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Di�usive representation of e

�� (� (s)�s)

. Among the di�erent 
ompatible


uts, we 
an investigate either 3 parallel 
uts (
on
atenation of � 3.2 and � 3.3),

or a 
ross made of R

�

and the verti
al segment joining s

1

and s

2

(see Fig. 1). The


orresponding density � 
an be found analyti
ally by limit formulas on either of

these two 
uts, after some quite tedious 
omputations: in this 
ase, � dire
tly

a

ounts for the dis
ontinuity of H

2

(s) a
ross the 
ut.

An alternative to di�usive representation of the se
ond kind pioneered by [7,

� 6.℄ and developped by [3℄ is the so-
alled � -
ontour. A regular 
urve � � C

�

en
ir
les all the singularities (poles, bran
hpoints, 
uts, ...) of H

2

(s); thus, by

the inverse Lapla
e transform, we get a representation with a 
omplex-valued

density �

�

, expressed dire
tly and 
ontinuously from H

2

(s), for s 2 � .

Realization with a �-
ontour. Although no di�eren
es in prin
iple remain

between realizations for � -
ontours and for 
uts (a 
ut 
an even be seen as a

limiting pro
ess of � -
ontour), this is not the 
ase for realizations approximated

by �rst-order linear 
onstant-
oe�
ient systems. Moreover, � -
ontours yield a

density �

�


ontaining all the information 
arried by the en
ir
led dis
ontinuity,

but under a somewhat averaged form. On the 
ontrary, 
uts yield a more fo
used

information, sin
e the density � exa
tly measures the dis
ontinuity.

The pla
ement of the poles gives rise to an unlimited 
hoi
e, and the question

of �nding a suitable if not minimal des
ription is an interesting open question, as

already noti
ed in [7, � 6.℄. A trade-o� must then be found between averaged in-

formation with a density 
omputed 
ontinuously from the transfer fun
tion, and

lo
alized and a

urate information with a density 
omputed as a dis
ontinuity

of the same transfer fun
tion.

4 Numeri
al simulations with optimization

We now derive approximations of transfer fun
tions by �rst-order linear 
onstant-


oe�
ient systems, stemming from the generalized di�usive realizations pre-

sented in � 3.4. The approximated model has the form




M




(s) : � =

P

1�k�K

�

k

s�


k

,

where the set of poles 
 = f


k

g � � is 
hosen with a hermitian symmetry. The

set � may represent either a 
ut or a � -
ontour asso
iated with the di�usive

operator under 
onsideration. The problem now 
onsits of estimating � = f�

k

g.

A �rst method 
omputes �

k

analyti
ally: � is des
ribed in the 
omplex plane

by � 7! 
(�), and �

k

=

R

+1

0

�(
(�))�

k

(�) 


0

(�) d�, where �

k

are interpolating

fun
tions (see e.g. [4℄ and [3℄).

The se
ond method, that is being used here for the 
ross-
ut, 
onsists of a

least-square regularized optimization of f�

k

g, minimizing the distan
e between

H

2

(i!) and




M




(i!) : � for ! 2 [!

min

; !

max

℄. We take the following 
riterion:

C

�

(�) = k




M




: ��H

2

k

2

L

2

(!

min

;!

max

)

+�

1

X

fk=


k

2[s

1

;s

2

℄g

j�

k

j

2

+�

2

X

fk=


k

2R

�

g

j�

k

j

2

(3)

where �

1

and �

2

are regularizing parameters for the os
illating and di�usive parts,

respe
tively. An example of result obtained for this 
riterion and for the pole

pla
ement represented in Fig. 1 is given in Fig. 2. Note that the optimization

may be adapted for H

p

-norms, taking the measure (1 + !

2

)

p=2

d! .
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Figure2: Bode diagrams of the exa
t transfer fun
tion H

2

(i!) and of

�




M




(i!) : �

�

for

� = 1, � = 0:3, �

1

= 0, �

2

= 10

�10

, with 4 
omplex 
onjugate pairs of poles on [s

1

; s

2

℄

and 16 poles on R

�

(


min

= �10

3

). Poles are spa
ed with a geometri
 sequen
e.

5 Con
lusion

Our method sums up as follows. We derive the transfer fun
tions in the Lapla
e

domain. We perform a 
omplex analysis: asymptoti
 expansions, poles and bran
h-

points, 
hoi
e of 
uts in the left-half 
omplex plane. Finally, the parameters of

the approximated model are optimized in a least-square sense on a path in the

Lapla
e domain, using either the 
uts or a � -
ontour en
ir
ling all the singulari-

ties; the error is evaluated in the frequen
y domain. The time-domain simulations


an be done straightforwardly.
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