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1 Introdution

This paper deals with the numerial simulation of aousti wave propagation

in axisymmetri waveguides with varying ross-setion using a Webster-Lokshin

model. Splitting the pipe into piees on whih the model oe�ients are nearly

onstant, analytial solutions are derived in the Laplae domain, enabling for the

realization of the propagation by onatenating sattering matries of transfer

funtions (� 2). These funtions involve standard di�erential and delay opera-

tors, as well as pseudo-di�erential operators of di�usive type, indued by both

the visothermal losses and the urvature. These operators are expliitly deom-

posed thanks to an asymptoti expansion, and the di�usive ones may be de�ned

and lassi�ed (� 3). Various equivalent di�usive realizations may be proposed,

that are deeply linked to hoies of uts in the omplex analysis of the transfer

funtions. Then, �nite order approximations are given for their simulation (� 4).

2 Deriving the model

2.1 Aousti model

A mono-dimensional model of the propagation of the aousti pressure p in

axisymmetri waveguides inluding visothermal losses on the wall has been

derived in [1, hap 1℄, assuming the quasi-spheriity of isobars near the wall.

De�ning in the Laplae domain

b

 (z; s) = R(z) bp(z; s) where s is the Laplae

variable, z is the urvilinear ordinate measuring the ar length of the wall, and

R(z) is the radius of the guide, the Webster-Lokshin model may be written:

�

2

z

b

 

z

(s)�

�

�

s



�

2

+ 2 "(z)

�

s



�

3

2

+ � (z)

�

b

 

z

(s) = 0: (1)

 is the sound speed, � (z) =R
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quanti�es the e�et of the visothermal losses. Note that ontant urvatures
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orrespond to ylinders or ones (�=0), exponential or atenoidal shapes (�>0),

and sinusoidal shapes (�<0), for the urvilinear ordinate z. For short piees of

guide on whih � and " may be approximated by their onstant mean value,

Eq. (1) has the analyti solution
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a square root of
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2.2 Sattering matrix

The waves bp

�

(z; s) = (bp(z; s) � �  �

z

bp)=2 de�ned in [2℄ are loally outwardly

(bp

+

) and inwardly (bp

�

) direted. For a C

1

-regular pro�le R(z), their onnetion

at z

�

is simply given by bp

�

n

(z

�

; s) = bp

�

n+1

(z

�

; s) where n and n+1 index two

onatenated piees of guide. For this last reason, we are interested in the time-

domain simulation of the sattering matrix de�ned for
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z

= R(z) bp(z; s).

For onveniene, we onsider the adimensional problem ( = j� j = 1, and

z 2 [0; 1℄, � / ", and � (s) is a square root of s

2

+ 2�s
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+ sign(� )). This yields
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where the transmission T and the re�exion R

z

at the input (z=0) or the output

(z=1) are rationnal funtions with respet to s, � (s), and e

��� (s)

. In � 3, we

investigate e

��� (s)

for the ase � � 0 whih extends the standard delay operator

e

�� s

for ideal pipes (� = � = 0) [1, hap. 3℄.

3 Using di�usive representations

The impulse response of a pseudo-di�erential operator of di�usive type an be de-

omposed on a ontinuous family of purely damped exponentials with weight �.

A di�usive realization helps transforming a non-loal in time pseudo-di�erential

equation into a �rst-order di�erential equation on a Hilbert state-spae, whih

allows for stability analysis; this approah reveals useful for both theoretial and

numerial treatment of pseudo-di�erential equations. We refer to [7, � 5.℄ for

the treatment of ompletely monotone kernels, [6℄ for di�usive representations

of pseudo-di�erential operators, and [5℄ for links between frational di�erential

operators and di�usive representations.

For the simulation of e

��� (s)

, we proeed as explained in � 3.4 : it is a

generalization of di�usive representations of the �rst and seond kind, as realled

in � 3.2 and � 3.3; it is based on an asymptoti expansion presented in � 3.1.

3.1 Deomposition of the transfer funtion

The asymptoti expansion of � (s) for jsj ! +1 reads � (s) = s + �

p

s�

�

2

2

+

o(1). Thus, e

�� � (s)

may be deomposed into several transfer funtions, namely:

e

�� � (s)

= e

�� s

e

�� �

p

s

H(s) ; where e

�� s

is a pure delay, e

�� �

p

s

is di�usive of

the �rst kind (see � 3.2), and e

�� (� (s)�s��

p

s+�

2

=2)

is di�usive in a generalized

sense (see � 3.4). The last two operators are investigated below.



Di�usive Representations for Webster-Lokshin Simulation 3

3.2 Di�usive representation of the �rst kind

The transfer funtion H

1

(s) = e

�

p

s

, understood with a ut on R

�

, is known to

be di�usive of the �rst kind, with an extension de�ned in [6, � 5.2℄, with density

�

1

(�) =

sin(

p

�)

� �

for � > 0. It ful�lls the well-posedness ondition

R

+1

0

j�

1

(�)j

1+�

d� <

1. Thus, H

1

(s) = s

R

+1

0

�

1

(�)

s+�

d� gives rise to a natural realization of the trans-

fer, as a superposition of basi �rst-order di�erential systems.

3.3 Di�usive representation of the seond kind

A di�usive representation of the seond kind may be diretly used in the ase � =

0. Then, e

��� (s)

= e

��

p

s

2

+1

, where

p

s

2

+ 1 may be de�ned by

p

s� i

p

s+ i,

p

z being still understood with a ut for z 2 R

�

. The two branhpoints +i and

�i are thus assoiated to the uts i+R

�

and �i+R

�

, respetively. A di�usive

representation of suh an operator may be derived from omplex-valued densities

omputed on these two uts, as desribed in [5, � 3.3℄ for (s

2

+ 1)

�1=2

.
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Figure1: Phase of H

2

(s) de�ned for the ut [s

1

; s

2

℄ [ R

�

, � = 1, and � = 0:3. Branh-

points are represented by Æ and the poles of the approximating transfer funtion by �.

3.4 Generalized di�usive representation

When � 6= 0, some more are must be taken for H

2

(s) = e

��(� (s)�s)

, and the

previous ideas must be adapted.

Analysis. 8� > 0, � (s) has two zeros s

1

and s

2

= s

1

with <e(s

1;2

) < 0 and

=m(s

1

) > 0, thus leading to 4 branhpoints for H

2

, namely 0; s

1

; s

2

and a point

at in�nity, suh as �1. This implies that � (s) may be de�ned for any uts made

of R

�

and a urve linking s

1

and s

2

.
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Di�usive representation of e

�� (� (s)�s)

. Among the di�erent ompatible

uts, we an investigate either 3 parallel uts (onatenation of � 3.2 and � 3.3),

or a ross made of R

�

and the vertial segment joining s

1

and s

2

(see Fig. 1). The

orresponding density � an be found analytially by limit formulas on either of

these two uts, after some quite tedious omputations: in this ase, � diretly

aounts for the disontinuity of H

2

(s) aross the ut.

An alternative to di�usive representation of the seond kind pioneered by [7,

� 6.℄ and developped by [3℄ is the so-alled � -ontour. A regular urve � � C

�

enirles all the singularities (poles, branhpoints, uts, ...) of H

2

(s); thus, by

the inverse Laplae transform, we get a representation with a omplex-valued

density �

�

, expressed diretly and ontinuously from H

2

(s), for s 2 � .

Realization with a �-ontour. Although no di�erenes in priniple remain

between realizations for � -ontours and for uts (a ut an even be seen as a

limiting proess of � -ontour), this is not the ase for realizations approximated

by �rst-order linear onstant-oe�ient systems. Moreover, � -ontours yield a

density �

�

ontaining all the information arried by the enirled disontinuity,

but under a somewhat averaged form. On the ontrary, uts yield a more foused

information, sine the density � exatly measures the disontinuity.

The plaement of the poles gives rise to an unlimited hoie, and the question

of �nding a suitable if not minimal desription is an interesting open question, as

already notied in [7, � 6.℄. A trade-o� must then be found between averaged in-

formation with a density omputed ontinuously from the transfer funtion, and

loalized and aurate information with a density omputed as a disontinuity

of the same transfer funtion.

4 Numerial simulations with optimization

We now derive approximations of transfer funtions by �rst-order linear onstant-

oe�ient systems, stemming from the generalized di�usive realizations pre-

sented in � 3.4. The approximated model has the form



M



(s) : � =

P

1�k�K

�

k

s�

k

,

where the set of poles  = f

k

g � � is hosen with a hermitian symmetry. The

set � may represent either a ut or a � -ontour assoiated with the di�usive

operator under onsideration. The problem now onsits of estimating � = f�

k

g.

A �rst method omputes �

k

analytially: � is desribed in the omplex plane

by � 7! (�), and �

k

=

R

+1

0

�((�))�

k

(�) 

0

(�) d�, where �

k

are interpolating

funtions (see e.g. [4℄ and [3℄).

The seond method, that is being used here for the ross-ut, onsists of a

least-square regularized optimization of f�

k

g, minimizing the distane between

H

2

(i!) and



M



(i!) : � for ! 2 [!

min

; !

max

℄. We take the following riterion:

C

�

(�) = k



M



: ��H

2

k

2

L

2

(!

min

;!

max

)

+�

1

X

fk=

k

2[s

1

;s

2

℄g

j�

k

j

2

+�

2

X

fk=

k

2R

�

g

j�

k

j

2

(3)

where �

1

and �

2

are regularizing parameters for the osillating and di�usive parts,

respetively. An example of result obtained for this riterion and for the pole

plaement represented in Fig. 1 is given in Fig. 2. Note that the optimization

may be adapted for H

p

-norms, taking the measure (1 + !

2

)

p=2

d! .
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Figure2: Bode diagrams of the exat transfer funtion H

2

(i!) and of

�



M



(i!) : �

�

for

� = 1, � = 0:3, �

1

= 0, �

2

= 10

�10

, with 4 omplex onjugate pairs of poles on [s

1

; s

2

℄

and 16 poles on R

�

(

min

= �10

3

). Poles are spaed with a geometri sequene.

5 Conlusion

Our method sums up as follows. We derive the transfer funtions in the Laplae

domain. We perform a omplex analysis: asymptoti expansions, poles and branh-

points, hoie of uts in the left-half omplex plane. Finally, the parameters of

the approximated model are optimized in a least-square sense on a path in the

Laplae domain, using either the uts or a � -ontour enirling all the singulari-

ties; the error is evaluated in the frequeny domain. The time-domain simulations

an be done straightforwardly.
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