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2 J. Audounet, D. Matignon, and G. Montsenyalternatively, with the help of the new variable z(t) = x(t) � x0, and of thenew function ef(z) = f(z + x0), (2) can also be written as:z(t) = I� h ef(z(t)) + u(t)i : (4)As far as stability is concerned, trying to use geometrical or standardanalytical techniques (such as those used in the integer case, see [11]), i.e.trying to extend them to the fractional di�erential case is of little help, unfor-tunately; for the main reason that quadratic forms prove hard to fractionallydi�erentiate, since the fractional derivative is intrinsically a non-local pseudo-di�erential operator.On the contrary, using di�usive representations of pseudo-di�erential op-erators (see [8,6,2]) proves useful, in so far as the problem can �rst be refor-mulated into one (or many equivalent) way(s) that is classical, namely a �rstorder in time di�usion equation, on an in�nite-dimensional state-space en-dowed with an appropriate Hilbert structure. Quite standard energy methods(Lyapunov functionals, LaSalle invariance principle) can therefore be used.The paper is organized as follows:� in section 2, the problem is reformulated in equivalent ways with manyadvantages for the analysis; in particular stability properties are moreeasily examined in this context; a main comparison result is established;� in section 3, the problem is examined with null initial condition x0 = 0,it requires LaSalle invariance principle, and gives strong stability of theinternal state;� in section 4, the problem of the initial condition alone is addressed: itrequires more speci�c analytical tools pertaining to the properties of theheat equation, the use of which will be sketched as closely as possible;� �nally in section 5 we will indicate some natural extensions of the re-sults, either straightforward (x 2 C or x 2 C n , other di�usive pseudo-di�erential operators that are dissipative: � > 0), or that seem to bewithin reach but still need to be fully developped.2 Di�usive formulationsIn subsection 2.1, system (1) is transformed into a diagonal in�nite-dimen-sional system with an extra variable � > 0, and a state  (�; t). The heatequation formulation can be recovered as follows: �rst let � = 4�2�2 with� 2 R, then perform the inverse Fourier transform in the space of tempereddistributions, a heat equation is then obtained with an extra space variabley and a state '(y; t) in subsection 2.2.



Semi-Linear Di�usive Representations 32.1 Diagonal di�usive formulationsOutput form In the scalar case, problem (4) is equivalent to (see [10]):@t (�; t) = ��  (�; t) + ef(z(t)) + u(t) ;  (:; 0) = 0 � > 0 ; (5a)z(t) = Z 10 ��(�) (�; t) d� ; (5b)where �� stands for the di�usive representation of the fractional integraloperator I�, that is: ��(�) = sin��� ���.The energy associated to this equation is:E�(t) = 12 Z 10 ��(�) j (�; t)j2 d� ; (6)for which it is easily proved that the following equality holds:dE�dt (t) = � Z 10 � ��(�) j (�; t)j2 d� + z(t) ef(z(t)) + z(t)u(t) : (7)The functional spaces to be used are: H� = L2��(R+ ), V� = L2(1+�)��(R+ )and V�0 = L2(1+�)�1 ��(R+ ), and V� ,! H� ,! V�0 with continuous and denseinjections.Balanced form Let us denote ��(�) =p��(�), which is meaningful thanksto � > 0 only; then by a straightforward change on  , and a slight abuse ofnotations, we get:@t (�; t) = ��  (�; t) + ��(�) h ef(z(t)) + u(t)i ;  (:; 0) = 0 � > 0 ;(8a)z(t) = Z 10 ��(�) (�; t) d� : (8b)The energy associated to this equation is:E(t) = 12 Z 10 j (�; t)j2 d� ; (9)The functional spaces to be used are: H = L2(R+ ), V = L2(1+�)(R+ ) andV 0 = L2(1+�)�1(R+ ). They are independent of �.2.2 Heat equation formulationsNow, tempered distributions will be used: M�(y), with Fourier transformm�(�) = 2 sin(��) j2� �j1�2� for the output form, and N�(y), with Fouriertransform n�(�) = pm�(�) for the balanced form. It is clear that, for 12 <� < 1 both M�(y) / jyj�2(1��) and N�(y) / jyj�( 32��) are regular L1locfunctions; for � = 12 , they are proportional to the Dirac measure �, and for0 < � < 12 they are distributions of order 1 involving only �nite parts: hence,integral terms such as RRM�(y)'(y; t) dy have to be understood in the senseof duality brackets < M�; '(t) >=< 1; '(t) >V�0;V� .



4 J. Audounet, D. Matignon, and G. MontsenyOutput form System (5a)-(5b) is equivalent to:@t'(y; t) = @2y'(y; t) + h ef(z(t)) + u(t)i �(y) ; '(:; 0) = 0 ; (10a)z(t) = ZRM�(y)'(y; t) dy =< M�; '(t) > : (10b)Balanced form System (8a)-(8b) is equivalent to:@t'(y; t) = @2y'(y; t) + h ef(z(t)) + u(t)i N�(y) ; '(:; 0) = 0 ; (11a)z(t) = ZRN�(y)'(y; t) dy =< N�; '(t) > : (11b)The energy associated to this equation is:E(t) = 12 ZR j'(y; t)j2 dy ; (12)for which it is easily proved that the following equality holds:dEdt (t) = � ZR j@y'(y; t)j2 dy + z(t) ef(z(t)) + z(t)u(t) : (13)The functional spaces to be used are: H = L2(R), V = H1(R) and V 0 =H�1(R). They are independent of �.Remark 1. Note that these equivalent reformulations are interesting resultson their own, for the following reasons:� the system is local in time,� a natural energy functional E is provided on an energy space H, whichhelps prove that the system is dissipative under some speci�c conditionson the non-linearity f ,� a classical (V ;H;V 0) functional analytic framework is being used, in whichregularity results can be more easily obtained,� on the heat equation formulations, the (weak or strong) maximum prin-ciple can be used, especially for comparison results,� numerical approximation of diagonal di�usive formulations is straightfor-ward, using standard schemes of numerical analysis (see [10]).These features can not be captured on the original system (1) nor on any ofthe Abel-Volterra forms (2)-(4).2.3 A comparison resultOn formulation (11a)-(11b) with an extra forced term denoted by g(t), thefollowing quadratic a priori estimate will be useful in the sequel:12 @tk'k2 + k@y'k2 = f(t; < N�; '(t) >) < N�; '(t) > + < g(t); '(t) >The following theorem is an extension to the case � 6= 12 of a result of [1].



Semi-Linear Di�usive Representations 5Theorem 1. Suppose f(t; :) is strictly decreasing on R, let us consider '1; '2solutions of:@t'j � @2y'j = f(t; < N�; 'j >)
N� + gj (14)such that t 7! zj(t) =< N�; 'j(t) >=< n�; c'j(t) > be of class C1 on [0; T ].If g1 � g2 on [0; T ], then '1 � '2 and z1 � z2 on [0; T ].Proof (Sketch of). Function � = '1 � '2 is the solution of:@t��@2y� = [f(t; < N�; '1 >)� f(t; < N�; '2 >)]
N�+g1�g2 ; �0 = 0 :Multiplying this equation by �� (where � = �+ � �� and �+ �� = 0) andintegrating over R leads to:12@tk��k2 + k@x��k2 =� [f(t; < N�; '1 >)� f(t; < N�; '2 >)] < N�; �� > � < g1 � g2; �� >Then, thanks to f strictly decreasing, � [f(t; z1)� f(t; z2)] (z1 � z2)� � 0,with zj =< N�; 'j >. Hence, together with g1 � g2 � 0, we get:12 @tk��k2 + k@x��k2 � 0 + 0Then function k��k is positive decreasing, with initial value 0, thus null a.e.It follows that '1 � '2 a.e. and z1 � z2 on [0; T ]: ut3 Analysis of the case x0 = 0First, we get a main theorem, the corollary of which is the stability of sys-tem (1) subject to speci�c conditions. Note that the proof needs to be per-formed on one of the four equivalent di�usive formulations only.Theorem 2. As soon as the input u has stopped, and provided f is strictlydecreasing with x f(x) < 0, we get: k (:; t)kH ! 0 and x(t)! 0 as t!1.Proof (Sketch of). The goal is to apply LaSalle invariance principle (see e.g.[3]); to this end, we proceed in six steps:1. system (5a)-(5b) is dissipative: from (7); _E�(t) � 0 thanks to x f(x) < 0,2. moreover _E� = 0 if and only if  (:) = 0 ��� a.e.,3. for any  0 2 H�, the trajectory f (:; t)gt�0 is precompact (see [9]),4.  ! 0 in H� strongly as t!1,5.  * 0 in V� weakly,6. hence, x(t) =< 1;  (:; t) >V�0;V�! 0 as t!1. ut



6 J. Audounet, D. Matignon, and G. MontsenyRemark 2. In the case when f is linear, that is f(x) = �x, the condition onf reads � < 0; by a simple extension to the complex-valued case, one easilygets <e(�) < 0, which happens to be su�cient but not necessary, since theoptimal stability result for the linear case is: j arg(�)j > ��2 (see [5,6]).Remark 3. Function f can be discontinuous at 0, in which case the resultsare still valid, though care must be taken that f is a multivalued functionwith f(0) 3 0, and the following di�erential inclusion:@t'(y; t) � @2y'(y; t)� h ef(z(t)) + u(t)i
N� 3 0 ; '(:; 0) = 0 ; (15a)z(t) = < N�; '(t) > ; (15b)which is nothing but a di�usive representation for the non-linear fractionaldi�erential inclusion:d�x(t)� f(x(t)) � u(t) 3 0 ; x(0) = x0 : (16)Once the well-posedness nature of problem (15a)-(15b) has been established,the solution x = x0 + z of (16) is uniquely determined as an output.4 Analysis of the case x0 6= 0This seems to be a more di�cult problem than the previous one, mostlybecause of the long-memory behaviour.4.1 Formulation through an extra forced termFrom reformulation (3), the pseudo-initial condition x0 in (1) can be takeninto account by an extra input v instead of u in any of the equivalent di�usiveformulations of section 2 with f , and can therefore be interpreted as a forcedterm, namely: v(t) = x0 1� (1��) t��+ + u(t).Unfortunately, we cannot expect to use the stability result above (the-orem 2), for it is clear that the extra input will never stop: the everlastingbehaviour of the extra input comes from the hereditary aspect of the problem.4.2 Formulation by a change of function and variableFrom reformulation (4), the pseudo-initial condition x0 in (1) can be takeninto account by a change of variable z = x � x0 and a change of functionef(z) = f(x0 + z); we then use the heat equation formulation in balancedform (11a)-(11b). Suppose u = 0 from t = 0 on (the extension to u = 0from t = t0 will be addressed at the end of the section). Let x0 < 01, thenef(0) = f(x0) > 0.1 the case x0 < 0 is treated similarly.



Semi-Linear Di�usive Representations 7Lemma 1. ' et z are increasing functions of t.Proof. With g(t) = �N� 
 ef(0)1[0;T ], 'g is a solution of:@t'g � @2y'g = N� 
 ef(z) + g(t); 'g0 = 0 ;it is identically zero on [0; T ];2 hence, thanks to the comparison result (the-orem 1) with g(t) � 0, we get 'g(:; t) = '(:; t� T ) � '(:; t), thus as N� � 0,< N�; '(:; t� T ) >�< N�; '(:; t) >. utLemma 2. lim z � �x0:Proof. Otherwise, by continuity, 9t0 such that z(t0) = �x0 ) ef(z(t0)) = 0,because ' is increasing; from what we deduce that:� either ' = cte, that is an equilibrium state, implying ' is constant 8t > t0,hence z(t) is constant.� or ' 6= cte, in which case the concavity is of constant sign and negative,which contradicts ' increasing and '0 = 0. utLemma 3. There exists a unique equilibrium state '1 = cte, and z1 =�x0.Proof. At the equilibrium, @2y'1 = �N� 
 ef(z1). N� being positive, theconcavity of '1 is of constant sign and negative, which is contradictorywith ' increasing and '0 = 0, except if '1 is constant. Thus, ef(z1) = 0necessarily and z1 = �x0 for f is injective. utLemma 4. z ! �x0.Proof. lim z exists and � �x0. If z� = lim z < �x0, then ef(z) � k > 0,which implies that on any compact subset [�Y; Y ], @t' > @2x' + N� 
 k.From which we can easily deduce that '! +1; more precisely:8K; Y; 9t0; '(y) � K for y 2 [�Y; Y ];hence z =< N�; ' >� K R Y�Y N� dy > z� for K large enough, which iscontradictory. utCorollary 1. x! 0 as t!1.Corollary 2. It can be shown that the equilibrium state '1 is asymptoticallyreached, in the following sense: ' ! '1 uniformly on any compact subset,that is in the weak-� topology of L1(R).2 Here g has been computed in such a way as to delay the start of the di�usionprocess by T .



8 J. Audounet, D. Matignon, and G. MontsenyThe previous analysis amounts to the maximum principle for the case � 6=12 . The formulation by a heat equation (namely, heat equation formulations)can not be overcome; it gives valuable information thanks to the evolution ofan internal state of in�nite dimension, from which the long-memory behaviourstems: this aspect is rather well controlled (from a functional analytic point ofview) thanks to the speci�c properties of the heat equation. This is certainlyone of the most remarkable applications of DR of PDOs; these techniquesprovide not only straightforward numerical schemes for the approximation,but also very sharp estimates for the analysis of the problem (and especiallyfor asymptotic analysis).Remark 4. It is noteworthy that < N�; '(:; t) > tends to �x0 as t ! 1,but < N�; '1 > is not properly de�ned, because N� and '1 do not belongto dual spaces (except in the case � = 12 ). To some extent, the maximumprinciple forces this limit to exist without degenerating, but '(t) diverges inthe energy space L2(R) (weak-� convergence in L1(R)).When u = 0 for t > t0, the state ' is initialized by '0(y) = '(t0; y)at time t0, with null input but x0 = x(t0) 6= 0 in general. Then, as theautonomous dynamics generated by '0 6= 0 is stable (di�usion), it is the sta-bility/unstability generated by x0 which will play the major role and enableto conclude in a similar way.5 Further extensionsThe conditions can easily be extended to the complex-valued case, namely<e(x� f(x)) < 0, and also to the vector-valued case, as <e(xH f(x)) < 0; andthe monotonicity of f must be translated in an appropriate way.Moreover, the whole set of results obtained thanks to di�usive formula-tions can be extended to any other di�usive pseudo-di�erential operator ofdissipative nature, that is � > 0.Finally, in order to extend the su�cient stability condition, a more ac-curate result can be conjectured, as a fractional version of the Hartman{Grobman theorem, namely:Theorem 3 (Conjecture). The local stability of the equilibrium x� = 0 ofthe non-linear fractional di�erential system d�x = f(x) is governed by theglobal stability of the linearized system near the equilibrium d�x = �x, where� = f 0(0) 2 C , namely:� x� = 0 is locally asymptotically stable if j arg(�)j > ��2 ,� x� = 0 is not locally stable if j arg(�)j < ��2 .Note that nothing can be said if j arg(�)j = ��2 , in which case the linearizedsystem is asymptotically oscillating.



Semi-Linear Di�usive Representations 9The idea is to use a semi-linear di�usive reformulation of the system, andthen an in�nite-dimensional version of the Hartman-Grobman theorem; moreprecisely:@t' = @2y'+ ef(< N�; ' >)
N�; '0 = 0; (17a)x(t) = x0+ < N�; '(t) > ; (17b)is of the form @t' = F (') with F linearizable in a weak sense (unboundedoperators), F = L+B with L = @2y+l the linear part and B a non-linear termof lower di�erential order; the solution and stability of (17a)-(17b) is knownexactly when F reduces to L. Care must be taken that the equilibrium state'1 does not belong to the energy space: speci�c methods from functionalanalysis and semi-linear di�usion PDEs must be investigated in order totackle the problem properly.References1. J. Audounet, V. Giovangigli, and J.-M. Roquejo�re, A threshold phenomenonin the propagation of a point-source initiated 
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