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Abstract. The stability of non-linear fractional differential equations is studied.
A sufficient stability condition on the non-linearity is given for the input-output
stability, thanks to many different reformulations of the system using diffusive rep-
resentations of dissipative pseudo-differential operators. The problem of asymptotic
internal stability is analyzed by a more involved functional analytic method. Finally,
a fractional version of the classical Hartman Grobman theorem for hyperbolic dy-
namical systems of order 1 is conjectured and reformulated, based upon known
necessary and sufficient stability conditions for linear fractional differential equa-
tions.

1 Statement of the problem

We are interested in the following problem involving a non-linear dynamics
f and a state z € R (for simplicity sake):

d*z(t) = f(z(t)) +u(t);  =(0) =, (1)

where d* is the Caputo regularized version of the so-called Riemann-Liouville
fractional derivative, with 0 < a < 1; meaning d®z = I'~%% = Y], %%, with
causal kernel Yj(t) = ﬁtﬂiil for the fractional integral operator I° of
order .

Problem (1) can be advantageously reformulated in the equivalent Abel-

Volterra equation:

2(t) = o + I [f(x(t) +u(t)]. )
Then, using Y, *Y1_, = Y] the Heaviside unit step, (2) can also be written
as:

2(t) = I° [f(2() + u(t) + 20 Vi o ()] 3)

* The author would like to thank Raphaél Krikorian, from Centre de
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alternatively, with the help of the new variable z(t) = z(t) — zo, and of the

new function f(z) = f(z + xp), (2) can also be written as:

2(t) = 17 | f(2(8) + u(t)] - (4)

As far as stability is concerned, trying to use geometrical or standard
analytical techniques (such as those used in the integer case, see [11]), i.e.
trying to extend them to the fractional differential case is of little help, unfor-
tunately; for the main reason that quadratic forms prove hard to fractionally
differentiate, since the fractional derivative is intrinsically a non-local pseudo-
differential operator.

On the contrary, using diffusive representations of pseudo-differential op-
erators (see [8,6,2]) proves useful, in so far as the problem can first be refor-
mulated into one (or many equivalent) way(s) that is classical, namely a first
order in time diffusion equation, on an infinite-dimensional state-space en-
dowed with an appropriate Hilbert structure. Quite standard energy methods
(Lyapunov functionals, LaSalle invariance principle) can therefore be used.

The paper is organized as follows:

e in section 2, the problem is reformulated in equivalent ways with many
advantages for the analysis; in particular stability properties are more
easily examined in this context; a main comparison result is established;

e in section 3, the problem is examined with null initial condition =y = 0,
it requires LaSalle invariance principle, and gives strong stability of the
internal state;

e in section 4, the problem of the initial condition alone is addressed: it
requires more specific analytical tools pertaining to the properties of the
heat equation, the use of which will be sketched as closely as possible;

e finally in section 5 we will indicate some natural extensions of the re-
sults, either straightforward (x € C or z € C", other diffusive pseudo-
differential operators that are dissipative: u > 0), or that seem to be

3

within reach but still need to be fully developped.

2 Diffusive formulations

In subsection 2.1, system (1) is transformed into a diagonal infinite-dimen-
sional system with an extra variable £ > 0, and a state (&,t). The heat
equation formulation can be recovered as follows: first let ¢ = 472n? with
n € R, then perform the inverse Fourier transform in the space of tempered
distributions, a heat equation is then obtained with an extra space variable
y and a state p(y,t) in subsection 2.2.
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2.1 Diagonal diffusive formulations

Output form In the scalar case, problem (4) is equivalent to (see [10]):

Drp(E.t) = —E(E,1) + Fz(t) +ult): $(.0) =0 £>0, (5a)
2(t) = / o (€) B(E.) dE (5b)

where u, stands for the diffusive representation of the fractional integral
operator %, that is: pq (§) = 522T 2.
The energy associated to this equation is:

1 (o]
Bat) = 5 [ mal® (0P e, 6)
for which it is easily proved that the following equality holds:
dE, > ~
o) = [T ena© W NP de+ 20 F) +20u). (@)
Jo
The functional spaces to be used are: Ho = Li (R"), Vo = L}, ), (RY)
and V,' = L%1+§)*‘ . (Rt), and V, < Hq < V,' with continuous and dense
injections.

Balanced form Let us denote v, (§) = \/a (&), which is meaningful thanks
to u > 0 only; then by a straightforward change on v, and a slight abuse of
notations, we get:

Orb(E1) = —€0(E,1) + va() [F(®) +u®)]  ¥(,0) =0 &> 0(sa)

20 = [ vl vt de. (sb)
0
The energy associated to this equation is:
1 [ .
B =5 [ (e nPds. (9
0
The functional spaces to be used are: H = L*(R"), V = L{,  (R") and
V= L%HE)*I (R*). They are independent of a.

2.2 Heat equation formulations

Now, tempered distributions will be used: M,(y), with Fourier transform
mq (1) = 2 sin(an) |27 ' 2% for the output form, and N, (y), with Fourier
transform ng () = \/mq(n) for the balanced form. It is clear that, for % <
a < 1 both M,(y) o |y[ 20~ and Nu(y) o |y|~ (3= are regular L},
functions; for a = %, they are proportional to the Dirac measure 4, and for
0<a< % they are distributions of order 1 involving only finite parts: hence,
integral terms such as [, M, (y) ¢ (y,t) dy have to be understood in the sense

of duality brackets < M,, ¢(t) >=<1, p(t) >y v, .
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Output form System (5a)-(5b) is equivalent to:
Duiply,t) = B2p(y.1) + [F(=(0) +u(®)] 6w);  ¢(.,0) = 0,

2(t) = / Ma(y) oy, 1) dy = < Ma, o(t) > .

Balanced form System (8a)-(8b) is equivalent to:
Buiply,t) = B2y, 1) + [F(2(0) + u(®)] Naw)s (,0) =0,
)= [ Na) el dy =< Now o(0)>
The energy ass'ociated to this equation is:
B) = 3 [ I dy.

for which it is easily proved that the following equality holds:

0 = = [10,0.0F dy-+ 20 Fe0) + 2000,

(10a)

(10b)

(11a)

(11b)

(12)

(13)

The functional spaces to be used are: H = L*(R), V = H'(R) and V' =

HY(R). They are independent of «.

Remark 1. Note that these equivalent reformulations are interesting results

on their own, for the following reasons:

e the system is local in time,

e a natural energy functional E is provided on an energy space H, which
helps prove that the system is dissipative under some specific conditions

on the non-linearity f,

e aclassical (V,H,V’) functional analytic framework is being used, in which

regularity results can be more easily obtained,

e on the heat equation formulations, the (weak or strong) maximum prin-

ciple can be used, especially for comparison results,

e numerical approximation of diagonal diffusive formulations is straightfor-

ward, using standard schemes of numerical analysis (see [10]).

These features can not be captured on the original system (1) nor on any of

the Abel-Volterra forms (2)-(4).

2.3 A comparison result

On formulation (11a)-(11b) with an extra forced term denoted by g(t), the

following quadratic a priori estimate will be useful in the sequel:

S Ul + 10,0l = F(t. < Na 90) >) < Na l0) > + < (1), 9(0) >

The following theorem is an extension to the case a # § of a result of [1].
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Theorem 1. Suppose f(t,.) is strictly decreasing on R, let us consider @1, p2
solutions of:

Ovpj — 0205 = f(t,< Na, ¢; >) ® Na + g; (14)

such that t — z;(t) =< Ny, @;(t) >=<nq, ¢;(t) > be of class C* on [0,T].
If g1 > g2 on [0, T], then ¢1 > @2 and z1 > 22 on [0, T1.

Proof (Sketch of ). Function @ = @1 — 5 is the solution of:
af¢763¢ = [f(ta < N(!: ¥1 >) - f(ta < N(!: P2 >)]®Nm+(}1*(}2 ; ¢0 =0.

Multiplying this equation by #_ (where & = ¢, — &_ and &, &_ = 0) and
integrating over R leads to:

1
Sale |1 + 0.0 =
- [f(t7<N(17(p1 >)7f(t7<N(II(P2 >)] <Nﬂ7¢* >7<91792,¢7 >

Then, thanks to f strictly decreasing, — [f(t,21) — f(t,22)] (21 — 22)— < 0,
with z; =< N,, ¢; >. Hence, together with g; — g2 > 0, we get:

1
S Olle- | +]10:8 [ < 0+0

Then function ||$_|| is positive decreasing, with initial value 0, thus null a.e.
It follows that @1 > ¢y a.e.and 27 > 29 on [0, T]. O

3 Analysis of the case o =0

First, we get a main theorem, the corollary of which is the stability of sys-
tem (1) subject to specific conditions. Note that the proof needs to be per-
formed on one of the four equivalent diffusive formulations only.

Theorem 2. As soon as the input u has stopped, and provided f is strictly
decreasing with x f(z) < 0, we get: ||Y(., 1)l = 0 and 2(t) — 0 as t = oc.

Proof (Sketch of ). The goal is to apply LaSalle invariance principle (see e.g.
[3]); to this end, we proceed in six steps:

system (5a)-(5b) is dissipative: from (7), E,(t) < 0 thanks to z f(z) < 0,
moreover B, = 0 if and only if ¢(.) = 0 pga— a.e.,

for any 1o € Ha, the trajectory {¢(.,t)}+>0 is precompact (see [9]),

1 — 0 in H, strongly as t — oo,

1 — 0 in V, weakly,

hence, z(t) =< 1,9(.,t) >y p, +0ast —o00. O

S Otk W=
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Remark 2. In the case when f is linear, that is f(z) = Az, the condition on
f reads A < 0; by a simple extension to the complex-valued case, one easily
gets Re(A\) < 0, which happens to be sufficient but not necessary, since the
optimal stability result for the linear case is: |arg(A)| > aF (see [5,6]).

Remark 3. Function f can be discontinuous at 0, in which case the results
are still valid, though care must be taken that f is a multivalued function
with f(0) 3 0, and the following differential inclusion:

Oy, 1) — Bp(y,t) — | F(z(1)) +u(t)| ® Na 3 05 (,,0) = 0, (15a)
z(t) = < Na, @(t) >, (15b)

which is nothing but a diffusive representation for the non-linear fractional
differential inclusion:

d*z(t) — f(z(t)) —u(t) 3 0;  (0) = xo. (16)

Once the well-posedness nature of problem (15a)-(15b) has been established,
the solution z = xg + z of (16) is uniquely determined as an output.

4 Analysis of the case g # 0

This seems to be a more difficult problem than the previous one, mostly
because of the long-memory behaviour.

4.1 Formulation through an extra forced term

From reformulation (3), the pseudo-initial condition zg in (1) can be taken
into account by an extra input v instead of u in any of the equivalent diffusive
formulations of section 2 with f, and can therefore be interpreted as a forced
term, namely: v(t) = xg ﬁt:’ + u(t).

Unfortunately, we cannot expect to use the stability result above (the-
orem 2), for it is clear that the extra input will never stop: the everlasting

behaviour of the extra input comes from the hereditary aspect of the problem.

4.2 Formulation by a change of function and variable

From reformulation (4), the pseudo-initial condition xq in (1) can be taken
into account by a change of variable z = x — x5 and a change of function
f(z) = f(xg + 2); we then use the heat equation formulation in balanced
form (11a)-(11b). Suppose u = 0 from ¢ = 0 on (the extension to u = 0
from ¢ = tp will be addressed at the end of the section). Let zg < 0%, then

F(0) = f(zo) > 0.

! the case zo < 0 is treated similarly.
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Lemma 1. @ et z are increasing functions of t.

Proof. With g(t) = =N, ® f(0) 1j0,77, ¢, is a solution of:

Brpy — 020, = No @ f(2) + g(t); g0 =0;

it is identically zero on [0, T'];* hence, thanks to the comparison result (the-
orem 1) with g(t) <0, we get ¢ (..t) = p(,t —T) < (., t), thus as Ny >0,
< Noyo(,t =T) > << Ny,p(.,t) > O

Lemma 2. limz < —xg.

Proof. Otherwise, by continuity, 3¢ such that z(tg) = —zo = f(2(tg)) = 0,
because ¢ is increasing; from what we deduce that:

e cither ¢ = cte, that is an equilibrium state, implying ¢ is constant V¢ > #,
hence z(t) is constant.

e or ¢ # cte, in which case the concavity is of constant sign and negative,
which contradicts ¢ increasing and g9 =0. O

Lemma 3. There exists a unique equilibrium state poo = cte, and 2z, =
—Xp.

Proof. At the equilibrium, 3}¢. = —No ® f(2s0). No being positive, the
concavity of ¢., is of constant sign and negative, which is contradictory
with ¢ increasing and ¢q = 0, except if ¢, is constant. Thus, f(z,) = 0
necessarily and z,, = —xq for f is injective. 0O

Lemma 4. z — —xg.

Proof. lim z exists and < —xg. If 2* = limz < —uxg, then f(z) >k >0,
which implies that on any compact subset [—Y, Y], 8;p > 02¢ + N, ® k.
From which we can easily deduce that ¢ — +o00; more precisely:

VKa Y: Et(], 4,0(,1/) Z K for y € [7Y7 Y]:

hence z =< Ny, p > 2> Kfz/y N,dy > z* for K large enough, which is
contradictory. 0O

Corollary 1. x — 0 as t — oo.

Corollary 2. It can be shown that the equilibrium state @~ is asymptotically
reached, in the following sense: ¢ — Qoo uniformly on any compact subset,
that is in the weak-x topology of L>°(R).

2 Here g has been computed in such a way as to delay the start of the diffusion
process by T'.
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The previous analysis amounts to the mazimum principle for the case a #
%. The formulation by a heat equation (namely, heat equation formulations)
can not be overcome; it gives valuable information thanks to the evolution of
an internal state of infinite dimension, from which the long-memory behaviour
stems: this aspect is rather well controlled (from a functional analytic point of
view) thanks to the specific properties of the heat equation. This is certainly
one of the most remarkable applications of DR of PDOs; these techniques
provide not only straightforward numerical schemes for the approximation,
but also very sharp estimates for the analysis of the problem (and especially
for asymptotic analysis).

Remark 4. Tt is noteworthy that < N,,p(.,t) > tends to —xzg as t = oo,
but < Ny, s > is not properly defined, because N, and ¢, do not belong
to dual spaces (except in the case a = %) To some extent, the maximum
principle forces this limit to exist without degenerating, but ¢(t) diverges in
the energy space L2(R) (weak-* convergence in L>°(R)).

When u = 0 for ¢ > tg, the state ¢ is initialized by ¢o(y) = ¢(to,y)
at time tq, with null input but z9 = z(ty) # 0 in general. Then, as the
autonomous dynamics generated by g # 0 is stable (diffusion), it is the sta-
bility /unstability generated by zy which will play the major role and enable
to conclude in a similar way.

5 Further extensions

The conditions can easily be extended to the complex-valued case, namely
Re(z* f(z)) < 0, and also to the vector-valued case, as Re(z f(z)) < 0; and
the monotonicity of f must be translated in an appropriate way.

Moreover, the whole set of results obtained thanks to diffusive formula-
tions can be extended to any other diffusive pseudo-differential operator of
dissipative nature, that is yu > 0.

Finally, in order to extend the sufficient stability condition, a more ac-
curate result can be conjectured, as a fractional version of the Hartman
Grobman theorem, namely:

Theorem 3 (Conjecture). The local stability of the equilibrium z* = 0 of
the non-linear fractional differential system d*x = f(x) is governed by the
global stability of the linearized system near the equilibrium d*x = Az, where
A= f'(0) € C, namely:

o z* =0 is locally asymptotically stable if | arg(A)| > aF,

o z* =0 is not locally stable if |arg(A\)| < aF.

Note that nothing can be said if | arg(A)| = a%, in which case the linearized
system is asymptotically oscillating.
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The idea is to use a semi-linear diffusive reformulation of the system, and
then an infinite-dimensional version of the Hartman-Grobman theorem; more
precisely:

8t¢:a§@+f(< Na7(p>)®NOé: @0:0: (173‘)
z(t) = zo+ < Na,@(t) >, (17b)

is of the form J;¢p = F(yp) with F linearizable in a weak sense (unbounded
operators), F' = L+ B with L = 85 +1 the linear part and B a non-linear term
of lower differential order; the solution and stability of (17a)-(17b) is known
exactly when F reduces to L. Care must be taken that the equilibrium state
P does mot belong to the energy space: specific methods from functional
analysis and semi-linear diffusion PDEs must be investigated in order to
tackle the problem properly.
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