
Di�usive Representation forPseudo-Di�erentially DampedNon-Linear SystemsG�erard Montseny1, Jacques Audounet2, and Denis Matignon31 LAAS/CNRS, 7 avenue du Colonel Roche,31077 Toulouse cedex 4, France,montseny@laas.fr2 MIP/CNRS, Universit�e Paul Sabatier, 118 route de Narbonne,31068 Toulouse cedex 4, France,audounet@mip.ups-tlse.fr3 ENST, URA CNRS 820, dpt TSI, 46 rue Barrault,75634 Paris cedex 13, France,matignon@tsi.enst.frAbstract. A large class of viscoelastic and elastoplastic systems, frequently en-countered in physics, are based on causal pseudo-di�erential operators, which arehereditary: the whole past of the state is involved in the dynamic expression of thesystem evolution. This generally induces major technical di�culties.We consider a speci�c class of pseudo-di�erential damping operators, associ-ated to the so-called di�usive representation which enables to built augmentedstate-space realizations without heredity. Dissipativity property is expressed in astraightforward and precise way. Thanks to state-space realizations, standard anal-ysis and approximation methods as well as control-theory concepts may thereforebe used.1 IntroductionVisco-elasticity and elasto-plasticity are di�cult to take into account in con-trol theory: modelling is most of time delicate and control of such systems isquite an open problem. In particular the presence of discontinuous functionsgenerates non regular trajectories and therefore implies the possible existenceof fast or "abnormal" behaviors in the solutions. However, accurate descrip-tions of such singular phenomena are of great importance in many concretesituations [6], [8], because they involve non negligible energy transfers and,due to non-linearities, have consequently signi�cant e�ects on the systemevolution at slow time-scale.A large class of such systems, frequently encountered in physics, are basedon causal pseudo-di�erential operators, sometimes with long-memory charac-teristics: classical examples are fractional derivatives or integrals and variouscombinations of them [9]. Pseudo-di�erential operators are hereditary: the
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2 G�erard Montseny et al.whole past of the state is involved in the dynamic expression of the systemevolution. This generally induces major technical di�culties. Furthermore,from the thermodynamical point of view, consistence of the model is a di�-cult question in most cases.The pseudo-di�erential operators under consideration here are those whichadmit a so-called di�usive representation i.e. which can be simulated by usinga non hereditary operator of di�usion type in a an augmented state space.Analysis and approximation as well as control of the related models are thenperformed in the context of this representation with classical tools of appliedmathematics. The dissipativity of the models admits a quantitative evalua-tion by the way of internal (hidden) variables associated with the augmentedstate space.The paper is organized as follows.In section 2, we state the problem and the associated framework.The de�nition of pseudo-di�erential damping is given in section 3.The section 4 is devoted to a constructive approach of di�usive represen-tations in the perspective of concrete analysis and numerical simulations.In section 5, we state and prove the main result of the paper. This resultenables to transform the initial hereditary problem into a Cauchy one within�nitesimal generator and energy functional.In section 6, we apply this result to the problems introduced in section 2and we exhibit the speci�c properties generated by the di�usive formulation,namely about asymptotic behaviors.Through numerical simulations, we �nally treat an example of pseudo-di�erentially damped second order system in section 7, in order to illustratethe e�ciency of the approach from the point of view of approximations.2 FrameworkLet E a real separable Hilbert space with scalar product (:j:)E , V a potential,and:H :W 2;1loc �R+t ; E�! L1loc �R+t ; E� (1)a causal and continuous hereditary (the whole past X[0;t] of X at time tis involved in H(X)(t)) non linear operator [2]. We consider the followingautonomous functional dynamical equation:X 00 +H (X) + gradV (X) = 0; (2)with initial conditions: X(0) = X0 such thatV (X0) < +1; X0(0) = X00 2 E :



Di�usive Representation for Non-Linear Systems 3We de�ne the (mechanical) energy of (X;X 0)T by:Em(t) = V (X(t)) + 12 kX 0(t)k2E : (3)If X 2W 2;1loc �R+t ; E� is solution of (2), then we have:dEm(t)dt = � (H(X)(t)jX 0(t))E : (4)When H � 0; (2) is conservative and obviously, Em(t) = Em(0):If (H(X)(t)jX 0(t))E � 0 t�a.e.; then (2) is dissipative (on the trajectory(X;X 0)T ).De�nition 1. The "position-force" relation de�ned by H(X) is said ther-modynamically consistent if there exists a Hilbert space F and:9	 :W 2;1loc �R+t ; E�! L1loc(R+t ;F) causal and continuous;9Qt � 0 a pseudo � potential onF ;9P � 0 a non� negative potential onF ;such that, for any x 2W 2;1loc �R+t ; E� :(H(x)(t)jx0(t))E = Qt (	 (x)(t)) + ddtP (	 (x)(t)) t� a:e: (5)In the decomposition (5) of the mechanical power (H(x)(t)jx0(t))E , the�rst term is the (positive) dissipation rate and the second term is the deriva-tive of the free-energy function P (	 (x)(t)):LetE(t) := Em(t) + P (	 (X)(t)) (6)denote the energy of system (2), we easily deduce:Proposition 1. If H(X) is thermodynamically consistent, then system (2)is dissipative: for any (X;X0) solution of (2),dE(t)dt = �Qt (	 (X)(t)) � 0 t� a:e: (7)Remark 1. Controls may be considered, under the general form:X00+H (X)+gradV (X) = u(t;X;X0): Classical viscous damping de�ned by BX 0; B pos-itive, may also be added without di�culty.Examples.1. Viscous damping:H(X)(t) = BX0(t); B � 0; F = E ; 	 (X) = X 0; Qt(') =(B'j')E ; P (') = 0:



4 G�erard Montseny et al.2. Coulomb dry friction [1]:E = R; H(X)(t) = �k sign (X 0(t)) ifX0(t) 6= 0; k > 0�V 0 (X(t)) ifX 0(t) = 0;F = R; 	 (X) = X0; Qt(') = kj'j; P (') = 0:Note that, with function sign understood in the multivalued sense:sign (0) = [�1; 1];system (2) may be rewritten: X00 + k sign (X 0) + V 0(X) 3 0 t - a.e.3. Hysteresis damping [19].3 Pseudo-di�erential damping3.1 Pseudo-di�erential operatorsThe operators H under consideration in this paper involve pseudo-di�erentialcomponents [18]. They are causal and considered in a way parallel to theclassical one using Laplace transform instead of the Fourier one.The analogy will not be emphasized here, essentially because these oper-ators belong to a subclass which is more conveniently directly described bya class of symbols.For simplicity, we restrict the statement to scalar systems (E = R); ex-tension to the vector framework requires further technical adaptations (inparticular in in�nite-dimensional cases, such as pdes).We denote by S0+(R) the space of causal tempered distributions on R [16]and by L the Laplace transform de�ned by: (Lu)(p) = R+10 e�p�u(�) d�:A complex valued function on R+ �C will be de�ned as a symbol and,when this expression makes sense, to such a symbolH we associate the causaloperator:H(�; @�) : S0+(R) ! S0+(R)x 7! z = H(�; @�)x = L�1 [H(�; :)Lx] : (8)In the case of Volterra (singular) operators: When H(�; :) = Lh(�; :), thefollowing is immediate:Proposition 2. Let H a symbol such that For any � > 0, H(�; :) = Lh(�; :).Then H(�; @�) is the Volterra operator:(H(�; @�)x) (�) = Z �0 h(�; � � � )x(� ) d� = Z �0 h(�; � )x(� ) d�: (9)



Di�usive Representation for Non-Linear Systems 5Rigorously speaking, the symbol of a causal Volterra operator is notunique: it is only de�ned up to an algebraic quotient. Indeed, it is easy to seethat any eh such that eh(�; � ) = h(�; � ) on 0 < � < � de�nes the same opera-tor, but the associated symbol eH(�; :) = Lh(�; :) may obviously be di�erent.Note that in the convolutive case, h(�; � ) = h(� ) and H(p) reduces to theclassical transfer function. Note also that various regularity properties withrespect to the �-variable may be considered, in accordance to the speci�cneeds of the problem in which such operators are involved.3.2 Pseudo-di�erential dampingWe study the two following types of damping which are of particular interestin concrete situations:� linear pseudo-di�erential visco-elasticity [6] de�ned by:H(X) = H(t; @t)X 0; (10)� pseudo-di�erential elasto-plasticity de�ned by [17]:s := S(X)(t) := Z t0 jX0j d�; (11)H(X) = hH(s; @s) �X � S(X)�1�0i � S(X): (12)The model (11), (12), both non-linear and hereditary and introduced byP.-A. Bliman and M. Sorine [1], de�nes S as an intrinsic clock such thatrelatively to the intrinsic time s = S(X(t)), the de�nitionXS := X � S(X)�1 (13)gives the linear law:HS(XS ) = H(s; @s)X 0S : (14)Such (endochrone) phenomena are frequently encountered in hysteresis the-ories [19].The main di�culties in the analysis of models of that type lie in theirheredity: the expression of H(X(t)) involves the whole past (X0���t) of X.We will show in the sequel how to use di�usive representation:� to state simple su�cient conditions on H(�; @�) (� = t; s resp.) for ther-modynamical consistency,� to build non hereditary augmented state equations including an auxiliarystate-variable '(�; �) associated to the free energy of H.



6 G�erard Montseny et al.4 Di�usive representationIn the following, we essentially consider the convolutive case, for simplicity.Most of results remain available in the general case which sometimes requiresspeci�c technical developments and will be presented in a further paper (seealso [11]).We present here a simpli�ed introduction to di�usive representations forpseudo-di�erential operators of di�usive type. These causal operators are infact de�ned so as to admit a representation, using an augmented state space,by a di�usive system.As in the previous section, � denotes a time-variable (t or s, with dsdt =jX0j).4.1 The algebra �0 of convolutive di�usive symbolsWe �rst introduce the concept of di�usive symbol, on which are based thedi�usive state-space realizations.LetH(�; @�) an operator with symbolH(�; p). This operator is of di�usivetype when there exists�(�; �) such that ??:H(�; p) = Z +10 �(�; �)p + � d�; p = i!; ! 2 R; � > 0; (15)The solution �� of (15), when it exists, is unique and called the di�usivesymbol of H(�; @�).Theorem 1. � is solution of (15) if and only if the impulse response ofH(�; @�), denoted by h, is given by:h(�; :) = L�(�; :): (16)Proof. (formal) From Laplace transform inversion formula and Fubini theo-rem, for any � > 0 and some a > 0:h(�; � ) = 12i�Z a+i1a�i1 ep�H(�; p) dp = 12i�Z a+i1a�i1 ep�Z +10 �(�;�)p+� d� dp == Z +10 � 12i�Z a+i1a�i1 ep�p+� dp� �(�; �) d� = Z +10 e��� �(�; �) d� = (L�) (�; � ):As a consequence of the analyticity of h(�; :), we have the so-called "pseudo-local property":Corollary 1. If H(�; @�) is of di�usive type, then:sing supp (H(�; @�)x) � sing supp x (17)for any x.



Di�usive Representation for Non-Linear Systems 7Examples.1. We consider the particular case of fractional integrators and derivatorswhich are interesting due to their simplicity and popularity. The di�usivesymbol of H(t; @t) = @��(t)t ; <e (�(t)) > 0; is expressed by1:�(t; �) = sin(��(t))� fp ���(t); � > 0: (18)2. The di�usive symbol of H(@t) = @�1t ln(@t) is given by2:�(�) = fp1� �  �(�); (19)the associated impulse response is h(t) = � ln(t)� :3. The di�usive symbol of H(@t) = ea@tEi (a@t) is given by3:�(�) = e�a� ; (20)the associated impulse response is h(t) = 1t+a :4. Any stable rational transfer function with real poles is the symbol of adi�usive operator. Many other examples can be found in [10].Obviously, thanks to linearity, the space of di�usive symbols is isomor-phic to a subspace of pseudo-di�erential operators. Let us now consider twoconvolutive operators H(@�), K(@�), with respective di�usive symbols �, �.We have the following results [10]:Theorem 2. The product operator H(@�) �K(@�) is also di�usive. Its dif-fusive symbol is de�ned by an internal product denoted by �#�: When �; �are regular, this product is expressed:�#� = �� (� � pv1� )� � (� � pv1� ): (21)Theorem 3. Equipped with product #, the space �0 of convolutive di�usivesymbols is a commutative algebra of causal tempered distributions on R�, withFr�echet topology.This induces an isomorphic algebra of convolutive pseudo-di�erential op-erators. Thanks to closedness of �0 and continuity of #, both algebraic andanalytical developments4 can therefore be performed in �0 which is the gen-eral mathematical framework �tted to di�usive representation. We do notdescribe here the topology of �0, we only give here-after a simply su�cientcondition for � 2 �0 [10], [11]:1 fp f and pvf respectively denote the "�nite part" and "principal value" distribu-tions associated to non locally integrable functions f [16]. They may be viewedas the derivative of su�ciently high order in the sense of distributions, of somelocally integrable functions. For example, pv 1x is the (causal) derivative of ln(jxj)and fp 1x is the derivative of the causal function ln(x).2  denotes the Euler constant.3 Ei(a) = R +1a e�uu du:4 Namely numerical analysis.



8 G�erard Montseny et al.Proposition 3. If �1+� 2 L1(R+), then � 2 �0.4.2 Di�usive realizations of H(@�)Standard realizations We consider the following input-output equation(in a suitable Hilbert state-space):8<:@� (�; �) + �  (�; �) = x(�);  (0; �) = 0; � > 0y(�) = Z +10 �(�; �) (�; �) d�: (22)If � is the di�usive symbol of H(�; @�), then we have:Theorem 4. The input-output correspondence x 7! y de�ned by (22) satis-�es: y = H(�; @�)x:Proof. From (22), and Fubini theorem:y = Z +10 �(�; �) Z �0 e��� x(� � � ) d� d� == Z �0 �Z +10 �(�; �) e���d�� x (� � � ) d� = Z �0 (L�) (�; � )x (�� � ) d� =Z �0 h(�; �� � )x(� ) d� = (H(�; @�)x) (�):De�nition 2. The input-output state equation (22) is called the standarddi�usive realization of H(�; @�):Various other state-space realizations may be built (see [10]); in particular,by using Fourier transform with respect to �, with � = 4�2�2:8<:@��(�; �)� @2��(�; �) = x(�) �(�) ; �(0; �) = 0; � 2 Ry(�) = Z +1�1 M (�; �)�(�; �) d�: (23)Remark 2. This last formulation, which gives to di�usive pseudo-di�erentialoperators a physical meaning, is at the origin of the term "di�usive represen-tation".The following result will be fundamental in the sequel:Lemma 1. The pseudo-di�erential operator @�1� H(@�) has di�usive symbol�#�.Proof. It is su�cient to prove that � is the di�usive symbol of @�1� . From thewell-known property � �(�) = 0:@�Z +10 �  d� = Z +10 � @� d� = Z +10 � (�� + x) d� == �Z +10 � �  d� + xZ +10 � d� = x: (24)



Di�usive Representation for Non-Linear Systems 9Extended di�usive realizations Extended realizations enable to take intoaccount more general pseudo-di�erential operators. We consider here the fol-lowing, which is well-adapted to visco-elastic and elasto-plastic phenomena.It consists in derivating the output, which obviously leads to the state-spacerealization of x 7! z = @�H(�; @�)x:8<:@� + �  = x;  (0; �) = 0; � > 0z = @�Z +10 � d� = Z +10 � (��  + x) d�: (25)Note that this last formulation is of the abstract form:� dXdt = AX +Bx; X0 = 0z = C(X +Dx): (26)From lemma 1 and according the previously introduced notions and no-tations, the following result is obvious:Theorem 5. The correspondence x 7! y = H(@�)x realized by (22), is alsorealized by:8<:@� + �  = x;  (0; �) = 0; � > 0y = Z +10 �#� (��  + x) d�: (27)Finite-dimensional approximate di�usive realizations They are ob-tained from discretization of the �-variable in (25), following standard meth-ods of partial di�erential equations and numerical analysis. We only givesome indications, more details will be found in the referenced papers.Given a �nite mesh �K = f�kg1�k�K � R+, and 
K = f�k(�)g a suitableset of interpolating functions, a �nite-dimensional approximation of  de�nedby (22) is obtained by:e (�; �) = KXk=1 (�; �k)�k(�); (28)and an approximation of y (de�ned by (22)) is then deduced:ey(�) = Z +10 � e d� = KXk=1 (�; �k)Z +10 �(�; �) � �k(�) d�= KXk=1�k(�) k(�): (29)Under simple and natural hypothesis on �K and 
K and according to �ttedtopologies; we may state:



10 G�erard Montseny et al.Proposition 4. The �nite-dimensional approximate realization of x 7! y =H(�; @�)x :8><>: d kdt = ��k  k + x;  k(0) = 0ey = KXk=1�k  k (30)is convergent when K ! +1:ey �H(�; @�)x! 0: (31)Corollary 2. The �nite-dimensional approximate realization of x 7! z =@�H(�; @�)x :8><>: d kdt = ��k  k + x;  k(0) = 0ez = KXk=1�k (��k  k + x) = KXk=1�k  k + �0 x (32)is convergent:ez � @�H(�; @�)x! 0: (33)From a di�erent point of view, thanks to topological density of the space ofmeasures in �0, optimal K-dimensional di�usive realizations of the form (32)may easily be obtained by solving (15). Solutions are built in the pseudo-inversion sense5, with � 2 MK � �0, the K-dimensional space of Diracmeasures with support �K . This requires Hilbertian formulations and is notpresented here (see [10]). An example of optimal approximate di�usive real-ization is given in section 7.5 Main resultIn order to built dynamical models for pseudo-di�erential visco-elasticity andelasto-plasticity, we prove the following result on which will be based the ther-modynamical consistency of H. It gives a su�cient (and probably necessary)condition to get positiveness of operator H(@�).Theorem 6. If the di�usive symbol � of @�1� H(@�) is such that:9�; � 2 L1loc(R+) \�0; �; � � 0; � = �#�+ �; (34)then we have the following balanced di�usive realization of z = H(@�)x:8<:@�'+ � ' = �p�+p� �� x; '(0; �) = 0; � > 0z = Z +10 ��p��p� ��'+ � x � d�: (35)Furthermore we have the estimate for any � > 0:x(�)H(@�)x(�) = dd� 12 k'k2L2(R+) + Z +10 �p� '� x(�)p��2 d�: (36)5 Orthogonal projection.



Di�usive Representation for Non-Linear Systems 11Proof. 1. By change of function  = 'p�+p� � and theorem 5,z = Z +10 ((�� ��) + � x) d� = Z +10 � d� + Z +10 � (�� + x) d� == Z +10 �#� (�� + x) d� + Z +10 � (�� + x) d� == Z +10 � (�� + x) d� = @�Z +10 � d� = @�@�1� H(@�)x = H(@�)x:2. Furthermore,xH(@�)x = xZ +10 ��p� �p� ��'+ x � � d� == Z +10 �xp� ' � xp�� ' + x2 �� d� == Z +10 ��� '2 + x �p� +p��� '+ �� '2 � 2p�� 'x+ x2 ��� d� == Z +10 ' ��� '+ x �p�+p���� d� + Z +10 �p� ' � x p��2 d� == @� �12Z +10 '2 d��+ Z +10 �p� '� x p��2 d�:Remark 3. 1. Property (36) is in fact much more precise than positiveness(R �0 xH(@�)x d� � 0) which, in the context of di�usive representation,appears as a simple corollary.2. Besides positiveness, relation (36) suggests the natural Hilbert energystate-space for (35): F = L2(R+� ).As a consequence, we have in the particular case of fractional operators:Corollary 3. For H(@�) = k1 @�1� + k2 @��2� ; k1; k2 � 0; 0 < �1; �2 < 1;properties (34), (35), (36) are veri�ed, with:�(�) = k2 sin(��2)� 1��2 ; �(�) = k1 sin(�(1��1))� 1�1��1 ;�(�) = k1 sin(�(1��1))� 1�1��1 + k2 sin(�(1+�2))� fp 1�1+�2 : (37)Proof. Obvious from (18) and lemma 1.6 Application to pseudo-di�erentially damped systems.6.1 Thermodynamical consistence of HThe following results are then deduced from theorem 6, by ordinary compu-tations:



12 G�erard Montseny et al.Theorem 7. IfH(@t) satis�es hypothesis of theorem 6, then H(X) = H(@t)X 0is thermodynamically consistent, by taking:F = L2(R+� );'X (t) = '(t; :); 'de�ned by (35);withx(t) := X 0(t);Qt(') = Z +10 �p� '�p�(�)X 0(t)�2 d�;P (') = 12 k'k2L2(R+) : (38)Proof. Obvious from theorem 6 and de�nition 1 with E = R.Theorem 8. If H(@s) satis�es hypothesis of theorem 6, then HS(XS) =H(s; @s)X 0S (see section 3.2) is thermodynamically consistent, by taking:s = Z t0 jX 0j d�;F = L2(R+� );'X (t) = '(s(t); :); ' de�ned by (35)withx(s) := ddsX(t(s));Qt(') = 1(X0(t))2 Z +10 �jX0(t)jp� '�p�(�)X 0(t)�2 d�;P (') = 12 k'k2L2(R+) : (39)Proof. Similar to theorem 7, with :Qt(s)(') = Z +10 �p� '�p�(�) dXds �2 d� == Z +10 �p� '�p�(�)X0 dtds�2 d� = Z +10 �p� ' �p�(�) X0(t(s))jX0(t(s))j�2 d�:6.2 Time-local state-space realizations of (2)By coupling the di�usive realization of H and the main state equation, weobtain suitable global models for pseudo-di�erentially damped systems, withexistence of an in�nitesimal generator (time-local system):Corollary 4. (concrete state-space realizations) Denoting:M (�) :=p�(�)�p� �(�) and M y(�) :=p�(�) +p� �(�); (40)non hereditary global state-space realizations of (2) (Cauchy problems) arethen explicitly built: visco-elastic model :8<:@2tX + Z +10 �M y' + @tX 
 � � d� + V 0(X) = 0@t'+ � '� @tX 
M = 0; (41)



Di�usive Representation for Non-Linear Systems 13elasto-plastic model:8<:@2tX + Z +10 �M y'+ sign (@tX) 
 � � d� + V 0(X) 3 0@t'+ � ' j@tXj � @tX 
M = 0; (42)with initial condition (X0; X00; '0) and energy functional:E(t) = V (X(t)) + 12 (@tX(t))2 + 12 k'(t; :)k2L2(R+) ; (43)such that:dE(t)dt = �Qt ('(t; :)) � 0 8t > 0: (44)Proof. Obvious from:dXds = dXdt dtds = X0jX0j 2 sign(X 0) (45)and:@t' = @s' dsdt = @s' jX 0j: (46)Remark 4. Dry friction dissipation is obtained by (42) with M = M y = 0;� = �:Under weak hypothesis, existence and uniqueness of the solution of (41),(42) in a �tted Hilbert state-space G can therefore be proved from classicalenergy-based methods of partial di�erential equations (Galerkin method forexample). Note that in the non Lipschitz case (42), existence of a priorienergy estimates proves to be decisive in order to suppress mathematicalambiguousness inherent to such systems [13].Furthermore, �nite-dimensional convergent approximations of (41), (42)can e�ciently be elaborated from energy error estimates. This enables tobuild �nite-dimensional di�erential approximated models with arbitrary pre-cision, of the form: dzdt = F (z); z(t) 2 RN .Finally, thanks to the existence of an in�nitesimal generator for (41) and(42) (induced by (35)), classical tools of control theory may be employed.Note that the damping function, de�ned by the abstract form H(X) andequivalently by the concrete state-space realization (35), may also be consid-ered as a pseudo-di�erential (closed-loop) control, constructed for exampleby minimization of a cost functional J (�). Indeed, pseudo-di�erential di�u-sive controls have proved to be of particular interest for robustness purposesin linear control problems (see [3], [4], [5], [12]). From a slightly di�erentpoint of view, such methodologies have also successfully been used in pseudo-di�erential passive control of linear in�nite-dimensional systems in [14], [15],[3].



14 G�erard Montseny et al.6.3 Analysis of asymptotic behaviorsFrom (44), speci�c techniques like LaSalle invariance principle [7] then enableto �nd asymptotic equilibrium states. In (42), they systematically depend onthe initial condition:8 (X0; X 00; '0) 2 G; 9 ! (X1; 0; '1) 2 G; such that :E(t) # E1 = V (X1) + 12 k'1k2 ;X(t) ! X1; @tX(t)! 0; '(t; :)�!'1 strongly inL2(R+� ); (47)with the following characteristic equation for equilibrium:Z +10 �M y(�)'1(�) + �1 �(�)� d� = �V 0(X1);�1 2 sign (0) = [�1; 1]: (48)Note that this last expression explicitly involves the di�usive realizationof H(X), through its characteristic parameters M and �. Excepted in verysimple cases (dry friction), such an explicit characterization is not accessiblefrom initial formulation (2).7 An example of numerical simulation7.1 Problem statementIn order to highlight the e�ciency of di�usive representation from the pointof view of numerical simulations, we consider the second order oscillator withviscoelastic damping H(X) := � @��t X 0; 0 < � < 1; � > 0:@2tX = �� @1��t X � f(X): (49)From corollary 4 and (18), model (49) is equivalently transformed into:8<:@2tX = ��Z +10 sin(��)� ��  d� � f(X) = 0@t = ��  + @tX : (50)A K-dimensional optimal di�usive approximation of @��t has been per-formed (see section 4.2), with the following parameters6:� = 0:75K = 25�1 = 0:001�25 = 50 000�k+1�k = 2:093102 ;6 K = 25 has been chosen for high precision. Smaller values of K are generallysu�cient in physical situations.



Di�usive Representation for Non-Linear Systems 15(�k)1�k�25 =(0.43463, -0.32584, 0.16799, 0.02225, 0.07070, 0.06959,0.09374, 0.10293, 0.13561, 0.14745, 0.19909, 0.20862, 0.29512, 0.29128,0.44231, 0.39891, 0.67268, 0.52850, 1.04661, 0.64882, 1.69943, 0.74395,1.87083, 3.89598, 3.38926).Under such conditions, with:A = 1 � k � Kdiag(��k); B = (1; 1; :::;1)T ; C = (�k)1�k�25; X1 := X;model (50) can be rewritten under the form:8>>>><>>>>: dX1dt = X2dX2dt = �f(X1) � �C  d dt = A +B X2: (51)System (51) has been simulated by classical Runge-Kutta method, with� = 2, in the linear: f(X) = X, and non-linear: f(X) = sinX cases.7.2 Numerical resultsThe frequency response and the pole-zero map7 of the approximation of @ 0:75tare given in �gures 1, 2. Note that on 6 decades, phase is constant (67:5�)and magnitude decreases at rate of 0:75 � 20 dB=dec; these properties arecharacteristic of fractional integrators.Evolution of the linear system is shown in �gures 3, 4, 5. Long memoryviscoelastic behavior is clearly visible: after a few oscillations generated bythe elastic component of H(X), X(t) slowly decreases to 0, involving boththe viscous and elastic component of the pseudo-di�erential damping.In �gures 6, 7, 8, non-linearity signi�cantly a�ects the evolution: due tothe elastic component of H(X); small overshoots appear at the beginning,while the viscoelastic counterpart considerably slackens the system. This isthe consequence of the particular choice of initial conditions, near an unstableequilibrium point (sin(X0) ' 0).More detailed simulations (namely in presence of elastoplastic damping)will be presented in a further paper devoted to numerical approximation.7 Only the domain [�0:1;0] + i[�0:002; 0:002] is visible in the �gure.
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