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Abstract. A large class of viscoelastic and elastoplastic systems, frequently en-
countered in physics, are based on causal pseudo-differential operators, which are
hereditary: the whole past of the state is involved in the dynamic expression of the
system evolution. This generally induces major technical difficulties.

We consider a specific class of pseudo-differential damping operators, associ-
ated to the so-called diffusive representation which enables to built augmented
state-space realizations without heredity. Dissipativity property is expressed in a
straightforward and precise way. Thanks to state-space realizations, standard anal-
ysis and approximation methods as well as control-theory concepts may therefore

be used.

1 Introduction

Visco-elasticity and elasto-plasticity are difficult to take into account in con-
trol theory: modelling is most of time delicate and control of such systems is
quite an open problem. In particular the presence of discontinuous functions
generates non regular trajectories and therefore implies the possible existence
of fast or ”abnormal” behaviors in the solutions. However, accurate descrip-
tions of such singular phenomena are of great importance in many concrete
situations [6], [8], because they involve non negligible energy transfers and,
due to non-linearities;, have consequently significant effects on the system
evolution at slow time-scale.

A large class of such systems, frequently encountered in physics, are based
on causal pseudo-differential operators, sometimes with long-memory charac-
teristics: classical examples are fractional derivatives or integrals and various
combinations of them [9]. Pseudo-differential operators are hereditary: the
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whole past of the state is involved in the dynamic expression of the system
evolution. This generally induces major technical difficulties. Furthermore,
from the thermodynamical point of view, consistence of the model is a diffi-
cult question in most cases.

The pseudo-differential operators under consideration here are those which
admit a so-called diffusive representation i.e. which can be simulated by using
a non hereditary operator of diffusion type in a an augmented state space.
Analysis and approximation as well as control of the related models are then
performed in the context of this representation with classical tools of applied
mathematics. The dissipativity of the models admits a quantitative evalua-
tion by the way of internal (hidden) variables associated with the augmented
state space.

The paper is organized as follows.
In section 2, we state the problem and the associated framework.
The definition of pseudo-differential damping is given in section 3.

The section 4 is devoted to a constructive approach of diffusive represen-
tations in the perspective of concrete analysis and numerical simulations.

In section b, we state and prove the main result of the paper. This result
enables to transform the initial hereditary problem into a Cauchy one with
infinitesimal generator and energy functional.

In section 6, we apply this result to the problems introduced in section 2
and we exhibit the specific properties generated by the diffusive formulation,
namely about asymptotic behaviors.

Through numerical simulations, we finally treat an example of pseudo-
differentially damped second order system in section 7, in order to illustrate
the efficiency of the approach from the point of view of approximations.

2 Framework

Let £ a real separable Hilbert space with scalar product (.].), V a potential,
and:

HWes (REE) = Ly (RF€) (1)

a causal and continuous hereditary (the whole past X[y, of X at time ¢
is involved in H(X)(¢)) non linear operator [2]. We consider the following
autonomous functional dynamical equation:

X"+ H (X)+grad V(X) =0, (2)

with initial conditions: X (0) = Xy such that V(Xy) < +00, X'(0) = X[ € £.
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We define the (mechanical) energy of (X, X’)T by:
1 2
En(t) = VX0) + S IXO1e - (3)

If X e w>> (R;"; 5) is solution of (2), then we have:

loc

dEm(t)
dt
When H =0, (2) is conservative and obviously, B, (t) = Fpn(0).
If (M(X)()|X'(t))g > 0 t—a.e., then (2) is dissipative (on the trajectory
(X, x17),

=—(HX)OX' (1)) - (4)

Definition 1. The ”position-force” relation defined by H(X) is said ther-
modynamically consistent if there exists a Hilbert space F and:
Jw . VVli’coo (R;"; 5) — L. (R ; F) causal and continuous,

loc
3Q: > 0 apseudo — potential on F,
3P >0 anon — negative potential on F,

such that, for any = € VVli’coo (R;"; 5) :

d

(H(2)(D)]2" ()¢ = Qe (F(2)(1) + P (F(2)(1)) - ae. (5)

In the decomposition (5) of the mechanical power (H(x)(t)|x'(t))e, the
first term is the (positive) dissipation rate and the second term is the deriva-
tive of the free-energy function P(W(x)(t)).

Let
E(t) = Em(t) + P(F(X)(1)) (6)
denote the energy of system (2), we easily deduce:

Proposition 1. If H(X) is thermodynamically consistent, then system (2)

is dissipative: for any (X, X') solution of (2),
dg—it) =—Q:(P(X)(t)) <0 t—a.e. (7)

Remark 1. Controls may be considered, under the general form: X"'+H (X)+
grad V(X) = u(t, X, X’). Classical viscous damping defined by BX’, B pos-
itive, may also be added without difficulty.

Eramples.

1. Viscous damping: H(X)(t) = BX'(t), B> 0, F=&, ¥(X) = X', Q:(¥)
(Belp)e, Ply) =0.
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2. Coulomb dry friction [1]:

ksign (X'(0)if X'(t) £ 0, k >0
:0’

E=R, H(X)(t) = {_v’ (X(t)ifX'(t)

F=R, V(X) =X, Qilp) = klgl, Ply) =0.
Note that, with function sign understood in the multivalued sense:
sign (0) = [—1, 1],

system (2) may be rewritten: X" + ksign (X') +V/(X) 30 ¢ - ae.
3. Hysteresis damping [19].

3 Pseudo-differential damping

3.1 Pseudo-differential operators

The operators A under consideration in this paper involve pseudo-differential
components [18]. They are causal and considered in a way parallel to the
classical one using Laplace transform instead of the Fourier one.

The analogy will not be emphasized here, essentially because these oper-
ators belong to a subclass which is more conveniently directly described by
a class of symbols.

For simplicity, we restrict the statement to scalar systems (£ = R); ex-
tension to the vector framework requires further technical adaptations (in
particular in infinite-dimensional cases, such as PDEs).

We denote by 8! (R) the space of causal tempered distributions on R [16]
and by £ the Laplace transform defined by: (Lu)(p) = 0+Oo e P%u(o) do.

A complex valued function on R+ x C will be defined as a symbol and,
when this expression makes sense, to such a symbol H we associate the causal
operator:

H(o,05) : S\ (R) = S, (R) (8)
z 2= H(c,0,)r = L7 [H(o,.) Lx].

In the case of Volterra (singular) operators: When H(o,.) = Lh(c,.), the
following is immediate:

Proposition 2. Let H a symbol such that For any o > 0, H(o,.) = Lh(o,.).
Then H (o, dy) is the Volterra operator:

(H(o,0,) %) (o) = /00 hio,o0 — T)x(r)dr = /00 h(o, )z (r) dr. (9)
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Rigorously speaking, the symbol of a causal Volterra operator is not
unique: it is only defined up to an algebraic quotient. Indeed, it is easy to see
that any k& such that A(o,7) = (o, 7) on 0 < 7 < o defines the same opera-
tor, but the associated symbol fI(O', .) = Lh(o,.) may obviously be different.

Note that in the convolutive case, h(o, 7) = h(7) and H(p) reduces to the
classical transfer function. Note also that various regularity properties with
respect to the o-variable may be considered, in accordance to the specific
needs of the problem in which such operators are involved.

3.2 Pseudo-differential damping

We study the two following types of damping which are of particular interest
in concrete situations:

e linear pseudo-differential visco-elasticity [6] defined by:
H(X) = H(, o)X, (10)

o pseudo-differential elasto-plasticity defined by [17]:

t

s:=8(X)(®) ::/0 | X' | dr, (11)

H(X) = [H(s,as) (x OS(X)—l)’] o S(X). (12)

The model (11), (12), both non-linear and hereditary and introduced by
P.-A. Bliman and M. Sorine [1], defines S as an intrinsic clock such that
relatively to the intrinsic time s = S(X(#)), the definition

Xg:=XoS(X)™! (13)
gives the linear law:
MHs(Xs) = H(s,05)X5. (14)

Such (endochrone) phenomena are frequently encountered in hysteresis the-
ories [19].

The main difficulties in the analysis of models of that type lie in their
heredity: the expression of #(X(t)) involves the whole past (Xo<r<¢) of X.
We will show in the sequel how to use diffusive representation:

e to state simple sufficient conditions on H (o, dy) (6 =t, s resp.) for ther-
modynamical consistency,

e to build non hereditary augmented state equations including an auxiliary
state-variable ¢(c, &) associated to the free energy of H.



6 Gérard Montseny et al.

4 Diffusive representation

In the following, we essentially consider the convolutive case, for simplicity.
Most of results remain available in the general case which sometimes requires
specific technical developments and will be presented in a further paper (see

also [11]).

We present here a simplified introduction to diffusive representations for
pseudo-differential operators of diffusive type. These causal operators are in
fact defined so as to admit a representation, using an augmented state space,
by a diffusive system.

As in the previous section, ¢ denotes a time-variable (¢ or s, with % =

[ X'])-

4.1 The algebra A’ of convolutive diffusive symbols

We first introduce the concept of diffusive symbol, on which are based the
diffusive state-space realizations.

Let H (o, ) an operator with symbol H (o, p). This operator is of diffusive
type when there exists 7i(o, £) such that ?7:

+oo —
mew=A ﬁ:?dapza%weRqa>m (15)

The solution @ of (15), when it exists, is unique and called the diffusive

symbol of H (s, 05).

Theorem 1. 7 is solution of (15) if and only if the impulse response of
H(o,85), denoted by h, is given by:

h(e,.) = La(o,.). (16)

Proof. (formal) From Laplace transform inversion formula and Fubini theo-
rem, for any ¢ > 0 and some a > 0:

a+ioo a+ioo +o0 ( )
hio,7) = #/ e’"H (o, p)dp = # epT/ Mp-l—% dé dp =
a—1 0

a—100

:/M<L/HM£J@ﬁw@&Z/@ﬁﬁmUaﬁzwmwﬂ
0 2t u p+E ’ o ’ 3 .

As a consequence of the analyticity of h(e, .), we have the so-called ” pseudo-
local property”:
Corollary 1. If H(o,0,) is of diffusive type, then:

singsupp (H (o, 85)x) C singsupp x (17)

for any x.
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Eramples.

1. We consider the particular case of fractional integrators and derivators
which are interesting due to their simplicity and popularity. The diffusive

symbol of H(t,8,) = 87 ““), Re (a(t)) > 0, is expressed by’:
(L, €) = prg—om, £>0. (18)
2. The diffusive symbol of H(d,) = 87 ' In(d,) is given by?:
(E) = tog — 75(6): (19)

the associated impulse response is h(t) = — ln( ) — 7.
3. The diffusive symbol of H(d;) = e??*Ei (ad;) is given by>:

Ai(E) = e (20)

the associated impulse response is h(t) = -|1-a'

4. Any stable rational transfer function Wlth real poles is the symbol of a
diffusive operator. Many other examples can be found in [10].

Obviously, thanks to linearity, the space of diffusive symbols is isomor-
phic to a subspace of pseudo-differential operators. Let us now consider two
convolutive operators H(J,), K(95), with respective diffusive symbols 77, 7
We have the following results [10]:

Theorem 2. The product operator H(0,) o K(05) is also diffusive. Its dif-
fusive symbol 1s defined by an internal product denoted by u#v. When T, v
are reqular, this product is expressed:

é). (21)

Theorem 3. Equipped with product #, the space A’ of convolutive diffusive
symbols 1s a commutative algebra of causal tempered distributions on Re, with
Fréchet topology.

#T = —ﬁ(?*pv%) — T (@ pv

This induces an isomorphic algebra of convolutive pseudo-differential op-
erators. Thanks to closedness of A’ and continuity of #, both algebraic and
analytical developments* can therefore be performed in A’ which is the gen-
eral mathematical framework fitted to diffusive representation. We do not
describe here the topology of A’, we only give here-after a simply sufficient
condition for @ € A’ [10], [11]:

L fp f and pv f respectively denote the ”finite part” and ”principal value” distribu-
tions associated to non locally integrable functions f [16]. They may be viewed
as the derivative of sufficiently high order in the sense of distributions, of some
locally integrable functions. For example, pv% is the (causal) derivative of In(|z|)
and fp% is the derivative of the causal function In(z).

2 « denotes the Euler constant.

. o —u
® Ri(a) = f; £— du.

* Namely numerical analysis.
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Proposition 3. If % € LY(RY), thenme A,

4.2 Diffusive realizations of H (9, )

Standard realizations We consider the following input-output equation
(in a suitable Hilbert state-space):

801/)(0-a€) :li——of 1/)(0-a€) = l‘(o’), 1/)(0a€) == 0, c>0
y(o) = / (0, €) (0, €) d.

If & is the diffusive symbol of H (o, d5), then we have:

(22)

Theorem 4. The input-output correspondence x — y defined by (22) satis-
fies: y = H(o,05) x.

Proof. From (22), and Fubini theorem:
+ oo o
— m —&7 — dr d¢ =
) . Yy /0 /1(0',&)/0 et x(o :) T d¢
= / (/ (o, &) e‘gTdﬁ) z(c—r1)dr= / (LR) (o, 1)z (60— T)dT =
0 0 0

Ogh(a, o—r1)x(r)dr = (H(c,05)z) (o).

Definition 2. The input-output state equation (22) is called the standard
diffusive realization of H (¢, 05).

Various other state-space realizations may be built (see [10]); in particular,
by using Fourier transform with respect to 5, with ¢ = 47?n?:

Do®(o,A) — D3b(a,\) = x(0) (X)), @(0,A\)=0, A€R

y(o) = /_+OOW(U, \) @(o, \) dA. (23)

Remark 2. This last formulation, which gives to diffusive pseudo-differential
operators a physical meaning, is at the origin of the term ” diffusive represen-
tation”.

The following result will be fundamental in the sequel:

Lemma 1. The pseudo-differential operator ;1 H(0,) has diffusive symbol
LE:3TH

Proof. Tt is sufficient to prove that J is the diffusive symbol of d; 1. From the
well-known property £4(£) = 0:

ag/:ooawd&:/0+méaawd£:/+w6(—£w+x>d£:

400 +80 (24)
:—/ 561/)d€—|—9:/ 0 dé ==z
0 0
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Extended diffusive realizations Extended realizations enable to take into
account more general pseudo-differential operators. We consider here the fol-
lowing, which is well-adapted to visco-elastic and elasto-plastic phenomena.
It consists in derivating the output, which obviously leads to the state-space
realization of  — z = J, H (0, 05 )2:

31/)—1—&’1/)—1‘ $(0,6) =0, 0 >0

25
z:ag/ 7y dé = / (€ + o) de. (25)
0
Note that this last formulation is of the abstract form:
ax _ _
G =AX+ Bz, Xo=0 (26)
= C(X + Duz).

From lemma 1 and according the previously introduced notions and no-
tations, the following result is obvious:

Theorem 5. The correspondence © — y = H (9, )z realized by (22), is also

realized by:
3a¢+§1/)= z, ¥(0,§)=0,0>0
y= [ Sm-gv+ ) de (2)
0

Finite-dimensional approximate diffusive realizations They are ob-
tained from discretization of the £-variable in (25), following standard meth-
ods of partial differential equations and numerical analysis. We only give
some indications, more details will be found in the referenced papers.

Given a finite mesh yx = {&x f1<k<x C RT,and 2x = {A; (&)} asuitable
set of interpolating functions, a finite-dimensional approximation of ¢ defined
by (22) is obtained by:

21/) ) Ag(€ (28)

and an approximation of y (defined by (22)) is then deduced:
+oo K oo
o) = [ mide :,;1”(”’&’“)/0 70, ) € A (€) de

= (o) (o)

Under simple and natural hypothesis on xx and {2 and according to fitted
topologies, we may state:

(29)
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Proposition 4. The finite-dimensional approximate realization of ¥ — y =

H(o,05)x :

Wi — ¢ gy 4 2, ¥x(0) =0
K

~ _ 30
y= Zﬂk Uk (30)
k=1
1s convergent when K — 400:
y— H(o,05)x — 0. (31)

Corollary 2. The finite-dimensional approzimate realization of © — 2z =

9. H (o, 05 ) :

W = &by + 2, Y(0) =0
K

s (32)
= T (<& ) =D gk Uk +pow
k=1 k=1
18 convergent:
Z— 0,H(0,0,)x — 0. (33)

From a different point of view, thanks to topological density of the space of
measures in A’, optimal K-dimensional diffusive realizations of the form (32)
may easily be obtained by solving (15). Solutions are built in the pseudo-
inversion sense®, with T € Mg C A’, the K-dimensional space of Dirac
measures with support xx. This requires Hilbertian formulations and is not
presented here (see [10]). An example of optimal approximate diffusive real-
ization is given in section 7.

5 Main result

In order to built dynamical models for pseudo-differential visco-elasticity and
elasto-plasticity, we prove the following result on which will be based the ther-
modynamical consistency of K. It gives a sufficient (and probably necessary)
condition to get positiveness of operator H(J,).

Theorem 6. If the diffusive symbol @ of 071 H(D,) is such that:
Juv e LL (RY)NA, pv>0, 1= d#u+v, (34)
then we have the following balanced diffusive realization of z = H(Jy)w:
3gs0+§0g§ = (VE+VEV) 2, ©(0,6)=0,0>0
7= /0 [(VE—=VEV) p+rva] dE.

Furthermore we have the estimate for any o > 0:

Foo 2
o) H0)2() = G lellionn + [ (VEo—alol) de. (36)

(35)

5 Orthogonal projection.
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Proof. 1. By change of function ¢ = \/ﬁ%\/ﬁ_u and theorem 5,

+oo +00 400
= [T - epavayae= [ pwdsr [T v(cgn+apde =
0] too 0 + 0

=/ a#u<—5w+x>d5+/ V(= + o) de =

0 0

+oo +oo
:/0 (=&Y +x) d&’:@g/o g dé = 0,0, H(9,)r = H(0,)x.
2. Furthermore,

+oo
J:H(@U)x:x/o [(\/ﬁ—\/é’_y)go—l—xy] dé =
+oo
:/0 [x\/ﬁgo—x\/é’_ygo—l—xzy] d¢ =

+oo

= (¢ +u (VE+VEY) o4 (9" —2VEv pa+ 2 v)] dE =

u + oo + oo

=/ go[—€g0+x(\/ﬁ+\/€_1/)]d€+/o (VEp —a ) de =
:60(5/:00@2d&)+/0+oo(¢€so—xﬁ)2d£.

Remark 3. 1. Property (36) is in fact much more precise than positiveness

(fOE 2H(Jy)x do > 0) which, in the context of diffusive representation,
appears as a simple corollary.

2. Besides positiveness, relation (36) suggests the natural Hilbert energy
state-space for (35): F = LZ(R%").

As a consequence, we have in the particular case of fractional operators:

Corollary 3. For H(Jy) = k102" + ko052, k1, ka > 0, 0 < ag,02 < 1,
properties (34), (35), (36) are verified, with:
“(g) _ k2sm(ﬂ—o{2)g%2, I/(g) _ kl sin(m(l—oy)) 1

- - a1

(37)

ﬁ(f) _ kl sin(m(l—aq)) 1 + k’z sin(m(1+a2)) fngl—oQ )

T gl- T

Proof. Obvious from (18) and lemma 1.

6 Application to pseudo-differentially damped systems.

6.1 Thermodynamical consistence of H

The following results are then deduced from theorem 6, by ordinary compu-
tations:
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Theorem 7. If H(J;) satisfies hypothesis of theorem 6, then H(X) = H () X'

1s thermodynamically consistent, by taking:
F= L2(Rgr),
ex(t) = ¢(t,.), pdefined by (35), with 2(t) := X'(t),
)= [ (Ve Vi xm) a
P(p) = $ llellzamsy
Proof. Obvious from theorem 6 and definition 1 with £ = R.

Theorem 8. If H(J,) satisfies hypothesis of theorem 6, then Hs(Xg) =
H(s,05)X§ (see section 3.2) is thermodynamically consistent, by taking:

¢
5:/ | X’ | dr,
0

F= Lz(Rg—)a
(39)
ex (1) = o(s(t),.), g0+deﬁnedby (35) w1thx( ) = L X(1(s)),
@ (o) = ot | (|X’ IWEe - V@ X)) de.

Plp) =3 ||80||L2(R+) :

Proof. Similar to theorem 7, with :
Qo) = /0+°° (VEe— Vi@ 2 ae =
+eo +eo
= [ (VEe- i) de= [T (VEe - VATE At ae

6.2 Time-local state-space realizations of (2)

By coupling the diffusive realization of H and the main state equation, we
obtain suitable global models for pseudo-differentially damped systems, with
existence of an infinitesimal generator (time-local system):

Corollary 4. (concrete state-space realizations) Denoting:

= V() = VEv(€) and MT(€) = \/u(€) + VEv(€), (40)

non hereditary global state-space realizations of (2) (Cauchy problems) are
then explicitly built:

visco-elastic model :
+oo
{aEXJr/ (Mt +0,X @v]dé+V'(X)=0 (41)
0
8tg0+€g0—8tX®M :0,
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elasto-plastic model:
+oo
35)(—1—/ [MT ¢ +sign (8 X)@v]dé+V'(X)30 (42)

0
8tg0+€g0|8tX|—8tX®M :0,

with initial condition (Xo, X, po) and energy functional:

B{t) = VIX0) + 3 @X0) 4 5 ol M agms (13)
such that:
dz—f) — Qi (p(t,)) <0 VE>0. (44)

Proof. Obvious from:
dX dX dt X'
— = —— = — csign(X’ 4
B = ds o < Sen() (45)

and:

ds
Ovp = Osp -0 = Bsp | X' (46)

Remark 4. Dry friction dissipation is obtained by (42) with M = Mt = 0,
v=2_4.

Under weak hypothesis, existence and uniqueness of the solution of (41),
(42) in a fitted Hilbert state-space G can therefore be proved from classical
energy-based methods of partial differential equations (Galerkin method for
example). Note that in the non Lipschitz case (42), existence of a priori
energy estimates proves to be decisive in order to suppress mathematical
ambiguousness inherent to such systems [13].

Furthermore, finite-dimensional convergent approximations of (41), (42)
can efficiently be elaborated from energy error estimates. This enables to
build finite-dimensional differential approximated models with arbitrary pre-

cision, of the form: fl—’i = F(z), 2(t) e RV,

Finally, thanks to the existence of an infinitesimal generator for (41) and
(42) (induced by (35)), classical tools of control theory may be employed.
Note that the damping function, defined by the abstract form #(X) and
equivalently by the concrete state-space realization (35), may also be consid-
ered as a pseudo-differential (closed-loop) control, constructed for example
by minimization of a cost functional 7 (7). Indeed, pseudo-differential diffu-
sive controls have proved to be of particular interest for robustness purposes
in linear control problems (see [3], [4], [5], [12]). From a slightly different
point of view, such methodologies have also successfully been used in pseudo-
differential passive control of linear infinite-dimensional systems in [14], [15],

[3].
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6.3 Analysis of asymptotic behaviors

From (44), specific techniques like LaSalle invariance principle [7] then enable
to find asymptotic equilibrium states. In (42), they systematically depend on
the initial condition:

V (X0, X§,00) €6, 31 (Xe,0,90) €3, suchthat :

E(t) 4 Boo = V(Xeo) + 3 llocoll”

(47)
X(t) 2 Xeo, 8:X(1) =0, 0(t,.)—¢c stronglyian(Rg'),
with the following characteristic equation for equilibrium:
+oo
[MT(&’) ono(g)‘i'aoo I/(f)] df: _V/(Xoo)a (48)

0
oo € sign (0) = [—1,1].

Note that this last expression explicitly involves the diffusive realization
of H(X), through its characteristic parameters M and v. Excepted in very
simple cases (dry friction), such an explicit characterization is not accessible
from initial formulation (2).

7 An example of numerical simulation

7.1 Problem statement

In order to highlight the efficiency of diffusive representation from the point
of view of numerical simulations, we consider the second order oscillator with
viscoelastic damping H(X) := A 97X/, 0<a <1, A>0:

OX = =29 7*X — f(X). (49)
From corollary 4 and (18), model (49) is equivalently transformed into:
+ oo
2 _ sin(amw i _
0fX = /\/ wea— W dg f(X)=0 (50)

Ouib = —€ 9 4+ 8,X .

A K-dimensional optimal diffusive approximation of d; * has been per-
formed (see section 4.2), with the following parameters®:

a=0.75
K =25

& =0.001
&95 = 50000

5’% = 2.093102,
k

5 K = 25 has been chosen for high precision. Smaller values of K are generally
sufficient in physical situations.
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(pr)1<k<as = (0.43463, -0.32584, 0.16799, 0.02225, 0.07070, 0.06959,
0.09374, 0.10293, 0.13561, 0.14745, 0.19909, 0.20862, 0.29512, 0.29128,
0.44231, 0.39891, 0.67268, 0.52850, 1.04661, 0.64882, 1.69943, 0.74395,
1.87083, 3.89598, 3.38926).

Under such conditions, with:
A=1 < k < [{dlag(_gk)a B = (L 1., 1)Ta C= (/’Lk)lfkf25a Xp =X,

model (50) can be rewritten under the form:

=X
G =—(X1) =ACY (51)

L — Ay + BX,.

System (51) has been simulated by classical Runge-Kutta method, with
A = 2, in the linear: f(X) = X, and non-linear: f(X) = sin X cases.

7.2 Numerical results

The frequency response and the pole-zero map” of the approximation of 4,% 7
are given in figures 1, 2. Note that on 6 decades, phase is constant (67.5°)
and magnitude decreases at rate of 0.75 x 20dB/dec; these properties are
characteristic of fractional integrators.

Evolution of the linear system is shown in figures 3, 4, 5. Long memory
viscoelastic behavior is clearly visible: after a few oscillations generated by
the elastic component of H(X), X(t) slowly decreases to 0, involving both
the viscous and elastic component of the pseudo-differential damping.

In figures 6, 7, 8, non-linearity significantly affects the evolution: due to
the elastic component of #(X), small overshoots appear at the beginning,
while the viscoelastic counterpart considerably slackens the system. This is
the consequence of the particular choice of initial conditions, near an unstable
equilibrium point (sin(Xg) ~ 0).

More detailed simulations (namely in presence of elastoplastic damping)
will be presented in a further paper devoted to numerical approximation.

" Only the domain [—0.1,0] 4 §[—0.002,0.002] is visible in the figure.
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Bode Diagrams
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Fig. 2. Pole-zero (partial) map of the approximate 9"
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Evolution of angle y (<) and pulsation dy (- -)
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Fig. 6. Non-linear model 3} X + 23} T*X +sin(X) =0
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