Lire la seconde partie de la thèse Annexe B - Images MEBE B.1 - Métallisation en utilisant le platine

Couche-mince de platine de métallisation sur la surface des fibres de carbone

Acc.V Spot Magn Det WD 20.0 kV 3.0 1600x BSE 11.0 AUX 0.3 Torr	Acc.V Spot Magn Det WD 20.0 kV 2.0 1600x SE 10.9	20 µm

Image MEBE du composite avant métallisation

Image MEBE du composite après métallisation

B.2 - Fibres de carbone issues des tests préliminaires (L9) B.2.1 - Fibres de carbone vierges IMS60 $\sigma_{t \text{ fibre}} = 4\ 092\ MPa$

B.2.2 - Fibres issues des traitements des composites RTM6 (m = 50 g)

Essais 1 : $T = 400 \,^{\circ}C$, t = 0.5 h, $Q_{\text{H2O}} = 200 g.h^{-1}$, $Q_{\text{N2}} = 450 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 5 \, 386 \, MPa$

Acc.V Spot Magn 20.0 kV 2.0 800x Det WD -20 μm SE 9.1

Essais 2 : $T = 400 \ ^{\circ}C$, t = 1 h, $Q_{H2O} = 300 g.h^{-1}$, $Q_{N2} = 900 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 4 670 MPa$

Essais 3 : $T = 400 \ ^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 400 g.h^{-1}$, $Q_{\text{N2}} = 1\ 800 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3\ 146\ MPa$

Essais 4 : $T = 500 \ ^{\circ}C$, $t = 0,5 \ h$, $Q_{\rm H2O} = 300 \ g.h^{-1}$, $Q_{\rm N2} = 1 \ 800 \ g.h^{-1}$, $\sigma_{t \ \rm fibre} = 3 \ 171 \ MPa$

Essais 5 : $T = 500 \ ^{\circ}C$, t = 1 h, $Q_{\text{H2O}} = 400 g.h^{-1}$, $Q_{\text{N2}} = 450 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 2 980 MPa$

Essais 6 : $T = 500 \ ^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 200 g.h^{-1}$, $Q_{\text{N2}} = 900 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 2 488 MPa$

Essais 7 : $T = 600 \,^{\circ}C$, t = 0.5 h, $Q_{\text{H2O}} = 400 g.h^{-1}$, $Q_{\text{N2}} = 900 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 2544 MPa$

Essais 8 : $T = 600 \,^{\circ}C$, t = 1 h, $Q_{\text{H2O}} = 200 g.h^{-1}$, $Q_{\text{N2}} = 1 \, 800 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 4 \, 224 \, MPa$

Essais 9 : $T = 600 \,^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 300 g.h^{-1}$, $Q_{\text{N2}} = 450 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 4 333 MPa$

B.3 - Fibres de carbone issues des plans d'expériences affinés (L4)

B.3.1 - Fibres de carbone vierges AS4C $\sigma_{t \text{ fibre}} = 3 651 MPa$

B.3.2 - Fibres issues des traitements des composites RTM6

Essai 1 : $T = 400 \,{}^{\circ}C, t = 1 \, h, Q_{\rm H2O} = 175 \, g.h^{-1}, \sigma_{t \, \rm fibre} = 3 \, 495 \, MPa$

Essai 2 : $T = 400 \,^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 325 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3 \, 285 \, MPa$

Essai 3 : $T = 500 \,^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 175 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3 \, 469 \, MPa$

Essai 4 : $T = 500 \ ^{\circ}C$, t = 1 h, $Q_{H2O} = 325 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3 447 MPa$

B.3.3 - Fibres issues des traitements des composites SR1710

Essai 1 : $T = 400 \ ^{\circ}C$, t = 1 h, $Q_{H2O} = 175 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3 566 MPa$

Acc.V Magn Det WD 20 µm

Essai 2 : $T = 400 \,^{\circ}C$, t = 2 h, $Q_{\rm H2O} = 325 g.h^{-1}$, σ_t fibre = 3 652 MPa

Essai 3 : $T = 500 \,^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 175 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3.612 MPa$

Essai 4 : $T = 500 \,^{\circ}C$, t = 1 h, $Q_{\text{H2O}} = 325 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3 377 MPa$

B.3.4 - Fibres issues des traitements des composites Sikadur 30 (fibre de carbone T700)

Essai 1 : $T = 400 \ ^{\circ}C$, t = 1 h, $Q_{\text{H2O}} = 60 g.h^{-1}$, σ_t fibre = 4 186 MPa

Essai 2 : $T = 400 \,{}^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 90 g.h^{-1}$, $\sigma_{t \text{ fibre}} = 3 \,957 \,MPa$

Essai 3 : $T = 500 \ ^{\circ}C$, t = 2 h, $Q_{\text{H2O}} = 60 g.h^{-1}$, σ_t fibre = 3 451 MPa

Essai 4 : $T = 500 \ ^{\circ}C$, t = 1 h, $Q_{\text{H2O}} = 90 g.h^{-1}$, σ_t fibre = 3 657 MPa

B.3.5 - Fibres issues des traitements des composites PPS

Essai 3 : $T = 600 \ ^{\circ}C, t = 2 h, Q_{\text{H2O}} = 60 g.h^{-1}$

	Symbol	e		$f(\alpha)$			g(a)			Déno	minatio	n		Mécanisme							
	S1		4[-lr	$(1-\alpha)]^{3/4}$	⁴ (1-α)	[·	-ln(1-α)]	1/4						Nucléation et croissance des nucléus $n=1/4$							
	S2		$3[-\ln(1-\alpha)]^{2/3}(1-\alpha)$			[·	$[-\ln(1-\alpha)]^{1/3}$			Équ	uation		C	Croissance des nucléus en 3-D <i>n</i> =1/3							
	S3		$2[-\ln(1-\alpha)]^{1/2}(1-\alpha)$			$[-\ln(1-\alpha)]^{1/2}$				d'Avrai	ni-Erofe	ev	C	Croissance des nucléus en 2-D <i>n</i> =1/2							
	S4		$(3/2)[-\ln(1-\alpha)]^{1/3}(1-\alpha)$			[·	$[-\ln(1-\alpha)]^{2/3}$						Nuc	Nucléation et croissance des nucléus <i>n</i> =2/3							
	S5		(1-\alpha)				-ln(1-α)	Nucléation aléatoire d'1er ordre					Loi de désintégration uni-moléculaire <i>n</i> =1							
	S6		1			α			Réaction d'interphase (1er ordre, symétrie plane)					Réaction d'interphase en 1-D, <i>n</i> =1							
	S7		$(1-\alpha)^{1/2}$			2	$2[1-(1-\alpha)^{1/2}]$			Symétrie cylindrique				Réaction d'interphase en 2-D, <i>n</i> =1/2							
	S 8		$(1-\alpha)^{2/3}$			$3[1-(1-\alpha)^{1/3}]$			Symétrie sphérique				F	Réaction d'interphase en 3-D, <i>n</i> =1/3							
	S9		(1/2) <i>a</i> ⁻¹											Diffusion en 1-D, symétrie plane							
	S10		$-1/\ln(1-\alpha)$			(1-	$(1-\alpha)\ln(1-\alpha)+\alpha$				1.66		D	Diffusion en 2-D, symétrie cylindrique							
	S11		1/	$(1-\alpha)^{1/3}$	³ -1]	1-(2	2/3)α-(1·	$-\alpha)^{2/3}$	Loi de diffusion				Diffusion en 3-D, Ginstling-Brounstein								
	S12		(3/2)(1	$-\alpha)^{2/3}[1-$	$(1-\alpha)^{-1/3}$]	[$1-(1-\alpha)^{1/2}$	3]2					Diffusion en 3-D, équation de Jander								
	S13			4(1-α) ^{3/}	4		$\alpha^{1/4}$							n=1/4							
	S14			$3(1-\alpha)^{2/2}$	3		$\alpha^{1/3}$						<i>n</i> =1/3								
	S15			$2(1-\alpha)^{1/2}$	2		$\alpha^{1/2}$		Fonction de puissance					<i>n</i> =1/2							
	S16		(3	$3/2)(1-\alpha)$)1/3		$\alpha^{2/3}$							<i>n</i> =2/3							
	S17		(1/2)/(1- <i>α</i>)				1-(1- <i>α</i>) ²			D/ //	1/ 1			Seconde ordre							
	S18		$(1/3)/(1-\alpha)^2$		$1 - (1 - \alpha)^3$				Reactio	on d'ord	re		Troisième ordre								
Ann	exe D	- Vale	urs m	oveni	nes de	Sipo	ur les	18 foi	nction	s d'av	ancer	nent e	en pyr	olvse	et en '	vapo-	therm	olvse			
	<u>S1</u>	57	<u>53</u>	$\overline{S_A}$	$\overline{S_5}$	$\overline{s_6}$	57	<u>s</u>	$\overline{S_{Q}}$	<u>s₁₀</u>	<u></u>	517	$\overline{s_{13}}$	<u> </u>	<u>s₁₅</u>	$\overline{s_{16}}$	<u></u>	<u>5</u> <u>518</u>			
	1	2	0	т	0	U	57	Com	posite F	RTM6	11	12	10	14	10	10	17	10			
Pyro	0.017	0.012	0.009	0.007	0.006	0.018	0.009	0.007	0.011	0.009	0.026	0.063	0.048	0.033	0.013	0.015	0.013	0.026			
Vapo	0.064	0.045	0.027	0.018	0.009	0.052	0.023	0.017	0.037	0.047	0.131	0.178	0.135	0.093	0.052	0.064	0.039	0.152			
	Composite SR1710																				
Pyro	0.011	0.008	0.007	0.007	0.008	0.011	0.007	0.007	0.007	0.005	0.021	0.040	0.030	0.020	0.038	0.206	0.009	0.020			
Vapo	0.011	0.008	0.007	0.007	0.008	0.011	0.007	0.007	0.007	0.005	0.018	0.040	0.030	0.020	0.037	0.189	0.008	0.016			
Composite M21																					
Pyro	0.0030	0.0021	0.0027	0.0033	0.0037	0.0015	0.0025	0.0029	0.0090	0.0214	0.0758	0.0065	0.0041	0.0024	0.0034	0.0038	0.0027	0.0996			
Vapo	0.0027	0.0024	0.0027	0.0029	0.0030	0.0021	0.0025	0.0027	0.0102	0.0223	0.0743	0.0046	0.0032	0.0025	0.0036	0.0045	0.0032	0.1011			
								Com	posite P	i-Preg											
Pyro	0.008	0.006	0.006	0.006	0.007	0.011	0.006	0.006	0.006	0.004	0.016	0.043	0.032	0.021	0.107	0.403	0.008	0.015			
Vapo	0.010	0.009	0.008	0.008	0.009	0.011	0.008	0.008	0.008	0.007	0.017	0.038	0.028	0.019	0.073	0.272	0.009	0.015			

Annexe C - Expression de $f(\alpha)$ des modèles cinétiques des réactions d'état solide utilisés dans la méthode IKP

Annexe E - Configurations des paramètres de modélisation E.1 - Configuration des paramètres du modèle du pilote en régime stationnaire

Géométrie (symétrie axiale) du four pilote en 2D (mm)

Propriétés de la vapeur d'eau :

Pression absolue $P_A = P + 1$ atm Débit massique normal m = 50 ou 150 g. h^{-1} Pression à la sortie du four $P_0 = 1$ atm Température initiale $T_0 = 20$ °C Température de la vapeur d'eau à l'entrée du four $T_1 = 400$ ou 500 °C Température des résistances chauffantes $T_2 = T_1 + 100$ °C

Refroidissement par convection forcée :

Longueur de la plaque virtuelle L : 0,6 mVitesse du fluide externe $V_{\text{ext}} = 0,5 m.s^{-1}$ (fluide externe = l'air à 20 °C et 1 *atm*)

E.2 - Configuration des paramètres du modèle de la dégradation d'un CFRP

$C_{p \text{ fib}} = 710 \ J.kg^{-1}.K^{-1}$	Capacité calorifique massique à pression constante de la fibre de carbone
$\rho_{\rm fib} = 1\ 800\ kg.m^{-3}$	Masse volumique de la fibre de carbone
$k_{\rm fib} = 10 \ W.m^{-1}.K^{-1}$	Conductivité thermique de la fibre de carbone
$C_{p \text{ rés}} = 2\ 000\ J.kg^{-1}.K^{-1}$	Capacité calorifique massique à pression constante de la résine
$\rho_{\rm rés} = 1 \ 140 \ kg.m^{-3}$	Masse volumique de la résine
$k_{\rm rés} = 0,2 \ W.m^{-1}.K^{-1}$	Conductivité thermique de la résine
$h = 8 W.m^2.K^{-1}$	Coefficient de transfert de chaleur de la vapeur d'eau
$T_{\infty} = 773,15 \ K$	Température de la vapeur d'eau surchauffée
$k_{\text{paroi}} = 0,075 \ W.m^{-1}.K^{-1}$	Conductivité thermique de la paroi du creuset
e = 2,5 mm	Épaisseur de la paroi du creuset
$T_{\rm ext} = 673,15 \ K$	Température de la paroi externe du creuset
$Q_{\rm w} = 2257 \ kJ.kg^{-1}$	Chaleur latente de vaporisation de l'eau
$\beta_{v} = 3,87.10^{-8} kg.m^{-2}.s.Pa$	Coefficient de transfert de masse de la vapeur d'eau
T = 293,15 K	Température initiale du composite

Qext portée par le creuset

Flux de chaleur entrants et sortants du système (plaque composite)

$v_1 ackslash v_2$	1	2	3	4	5	6	7	8	10	12	20	40	60	•
1	161	200	216	225	230	234	237	239	242	244	248	251	252	254
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5
3	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.79	8.74	8.66	8.59	8.57	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	5.96	5.91	5.80	5.72	5.69	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.74	4.68	4.56	4.46	4.43	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.06	4.00	3.87	3.77	3.74	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.64	3.57	3.44	3.34	3.30	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.35	3.28	3.15	3.04	3.01	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.14	3.07	2.94	2.83	2.79	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.98	2.91	2.77	2.66	2.62	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.85	2.79	2.65	2.53	2.49	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.75	2.69	2.54	2.43	2.38	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.67	2.60	2.46	2.34	2.30	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.60	2.53	2.39	2.27	2.22	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.54	2.48	2.33	2.20	2.16	2.07
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.38	2.31	2.16	2.03	1.98	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.35	2.28	2.12	1.99	1.95	1.84
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.16	2.09	1.93	1.79	1.74	1.62
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.93	1.85	1.68	1.52	1.45	1.28
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.83	1.75	1.57	1.39	1.32	1.00

Annexe F - Fractiles de la loi de Fisher-Snedecor (F) (extrait). P = 0,95

 v_1 : degrés de liberté du numérateur (inter-groupe)

v2 : degrés de liberté du dénominateur (intra-groupe)

Annexe G - Terminologie spécifique dans le domaine des plans d'expériences

Degré de liberté Nombre de valeurs qui peuvent être fixées librement pour spécifier un système.

Facteur	La variable qui influe sur une réponse.							
Facteur interne	Un facteur contrôlable par l'opérateur.							
Facteur catégorique	Un facteur dont les valeurs sont fixées et ne sont pas forcément numériques.							
Facteur continu	Un facteur dont les valeurs sont représentées par des nombres continus.							
Hypothèse nulle Hypothèse que l'on doit rejeter ou ne pas rejeter (accepter) à l'issue du test.								
Niveau	L'une des valeurs d'un des facteurs dans un plan d'expériences.							
Réponse	La grandeur d'intérêt.							
Seuil de signification	Valeur du risque de première espèce lorsque l'hypothèse nulle est une hypothèse simple. Valeur maximale du risque de première espèce lorsque l'hypothèse nulle est une hypothèse composite.							
Statistique t	La variable auxiliaire <i>t</i> .							
Table (d'expériences)	Un tableau dans lequel chaque ligne correspond à un essai expérimental indiquant les niveaux que doivent prendre les facteurs étudiés.							
Table orthogonale	Une table d'expériences est orthogonale par rapport à un modèle si tous les éléments de ce modèle sont orthogonaux dans cette table d'expériences. Deux facteurs sont orthogonaux dans une table d'expériences, si tous les couples de niveaux de ces facteurs existent et sont en nombre identique.							
Test F	Test où la statistique utilisée suit une loi de F lorsque l'hypothèse nulle est vraie. Il intervient notamment dans les problèmes suivants : test de l'égalité des variances de deux lois normales, à partir des variances estimées sur deux échantillons indépendants ; test intervenant dans l'analyse de la variance.							
Valeur critique	Dans un test d'hypothèse, valeur qui sert de limite et à laquelle on compare celle observée sur l'échantillon afin de déterminer si l'on doit rejeter ou non l'hypothèse							
Valeur F	La variable auxiliaire F d'un modèle, F = Moyenne des carrés de la régression / Moyenne des carrés des résidus du modèle.							
Valeur <i>p</i> Dans	un test statistique, la valeur p (ou la probabilité critique) est la probabilité d'obtenir la même valeur (ou une valeur encore plus extrême) du test si l'hypothèse nulle était vraie. Si cette valeur p est inférieure à la valeur du seuil préalablement défini (traditionnellement 5% ou 1%), on rejette l'hypothèse nulle.							

Valorisation de déchets composites à matrices polymériques renforcées de fibres de carbone par un procédé de vapo-thermolyse

Résumé

Le composite à matrices polymériques renforcées de fibres de carbone (CFRP) est un matériau précieux en raison de ses excellentes propriétés mécaniques, légèreté et durabilité. Un gain important d'efficacité et une réduction des émissions de carbone peuvent être obtenus en remplaçant les pièces métalliques par les CFRPs dans l'industrie du transport. Toutefois, le recyclage de déchets CFRP est problématique, car le renfort de fibres de carbone est

chimiquement lié à la matrice de résine réticulée. Néanmoins, la réutilisation de fibres de carbone couteuses rend le recyclage des CFRPs potentiellement viable en termes d'économie. Dans notre laboratoire, une étude multi-échelle d'un procédé de vapo-thermolyse a été réalisée, dont l'objectif est de séparer les fibres de carbone de matrices polymériques en utilisant la vapeur d'eau surchauffée. Afin d'obtenir une meilleure compréhension du comportement de dégradation thermique des matériaux CFRP, de nombreuses analyses thermiques ainsi que les caractérisations physico-chimiques ont été effectuées sur différentes fibres de carbone, résines polymériques (époxyde ou polyphénylène sulfide) et les composites correspondants. Une étude cinétique a été également abordée. Les plans d'expériences réalisées à l'échelle pilote dans un réacteur sophistiqué permettent de déterminer les conditions optimisées apparaissent propres, sans résine et conservent plus de 90% de leur résistance à la traction d'origine. Les phases gazeuse et liquide émises ont également été quantitativement analysées. La modélisation de l'écoulement et des transferts thermiques du réacteur ainsi que la simulation de la dégradation de matrices polymériques montrent les résultats comparables avec les observations expérimentales. L'analyse du cycle de vie indique que le recyclage des CFRPs peut être favorable pour l'environnement par rapport au scénario de mise en décharge.

Mot clés : déchet composite, matrice polymérique, fibre de carbone, valorisation, vapo-thermolyse, plan d'expériences

Abstract

Carbon fiber reinforced polymer-matrix composite (CFRP) is a highly valued material because of its exceptional strength, rigidity, light weight and durability. Significant fuel efficiency gains and carbon emission reduction can be obtained by replacing metal parts in automotive components with CFRPs. However, the recycling of CFRP waste is problematic because the reinforcement (carbon fiber) is chemically bonded to the cross-linked matrix resin. Nevertheless, the reuse of expensive carbon fibers makes the recycling a potentially economically viable option. A thermal process to separate carbon fibers from polymer matrix by using superheated steam has been studied in our laboratory at both bench and pilot scale. In order to understand the thermal degradation behavior of the CFRP materials, the thermal analyses along with the physicochemical characterizations of various carbon fibers, polymer resins (epoxy or polyphenylene sulfide) as well as the corresponding composites have been carried out. A kinetic study has also been conducted. The experimental design performed in a sophisticated pilot reactor helps to determine the optimal experimental conditions of the process in a semi-industrial scale. Reclaimed carbon fibers from optimized steam-thermolysis appear resin free and exhibit over 90% of their original tensile strength. The gas and liquid phases emitted from the process have also been analyzed quantitatively. The flow modeling of the reactor and the simulation of the polymer thermal degradation are in close agreement with the experimental observations. The life cycle assessment shows that the CFRP recycling can be environmentally beneficial compared to the disposal scenario.

Key words : composite waste, polymer matrix, carbon fibre, recycling, steam-thermolysis, experimental design

Sheng Yin YE Courriel : <u>shengyin.ye@mines-albi.fr</u> Établissement : Institut National Polytechnique de Toulouse (INP Toulouse) Laboratoire : Centre de Recherche d'Albi en génie des Procédés des Solides Divisés, de l'Énergie et de l'Environnement (RAPSODEE) École Doctorale : Mécanique, Énergétique, Génie civil et Procédés (MEGeP)