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H I G H L I G H T S

! Experimental and computational
analysis of Al CVD from DMEAA.

! Multiscale computational framework
for the roughness evolution.

! Direct comparison to experimental
data with good agreement.

! Effective sticking coefficient includ-
ing chemical information.

! Prediction of electrical resistivity
through roughness simulations.
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a b s t r a c t

When composition and crystallographic structure remain constant, film properties mainly depend on
microstructure and surface morphology. In this case, the proper modeling of a growing film allows
linking the final surface features with the operating conditions at the reactor scale which in turn enables
the control of the properties of the final film. In this work, an experimentally supported, coarse-grained,
multiscale framework is applied for the modeling of the surface roughness of aluminum thin films
processed by chemical vapor deposition from dimethylethylamine alane. The multiscale framework is
developed by linking macroscopic transport phenomena based on continuum mechanics models with
nanoscale surface events which are simulated stochastically. The model reproduces experimental data
successfully, thus validating the method with good statistics. Finally, modeling of surface roughness
enables the estimation of the electrical resistivity in good agreement with corresponding measurements.

1. Introduction

The rapid advancement of thin films and coatings technologies

promoted their usage in a wide range of applications, e.g. micro-

electronic devices, solar cells, or biomedical products. Aluminum

(Al), the third most abundant element on the EarthÕs crust, is used

for the fabrication of integrated circuits due to its low electrical

resistivity (Lee et al., 2012, 2013, 2014). Moreover it is resistant to

corrosion (Hamasha et al., 2011) and to electromigration (Tan and

Roy, 2007). In addition it can be combined with other elements for

the formation of Al-based intermetallics with many degrees of

freedom for the exploration of original properties (Kadok et al.,

2015). Various methods are developed for the production of Al and
n Corresponding author.
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Al-containing thin films, among which chemical vapor deposition
(CVD) combines high growth rates and conformal coverage of
complex surfaces (Thomann et al., 2011). However CVD processed
Al films suffer from a rough microstructure, despite efforts made
to attenuate it (Vahlas et al., 2001).

Microstructural characteristics depend on process conditions
(surface temperature, pressure, flow rates, etc). In turn, they im-
pact the targeted properties such as electrical resistivity (Timal-
shina et al., 2015), hydrophobicity (Bormashenko et al., 2006;
Bravo et al., 2007) and adsorption of proteins (Rechendorff et al.,
2006; Zhdanov et al., 2008). Consequently, the technological im-
plementation of such process with regard to targeted specifica-
tions requires the establishment of a robust relation between
process parameters and films microstructure, e.g. surface rough-
ness. This can be met through the modeling of the CVD process
with the roughness as an output.

For most CVD processes, transport phenomena can be de-
scribed by macroscopic conservation equations for momentum,
mass, energy and species. Gas phase and surface chemistry are
described in these models by means of kinetic schemes consisting
of elementary reactions. However, the continuum description
breaks down as the length scale approaches the surface level.
Modeling the surface characteristics, e.g. roughness at the same
length scale used to model the bulk phase of a reactor, leads to the
loss of any structural information of the evolving surface (Barbato
et al., 2007). The limitation on the use of the continuum models
for the description of surface processes and the evolution of the
surface topography during film growth on initially flat surfaces has
led to the development of stochastic kinetic Monte Carlo (kMC)
modeling (Battaile and Srolovitz, 2002; Cavallotti et al., 2004;
Chaterjee and Vlachos, 2007; Collins et al., 2008; Gillespie, 1977,
2001; Katsoulakis and Vlachos, 2003) and multiscale modeling
(Cheimarios et al., 2011; Christofides et al., 2008; Crose et al., 2015;
Hu et al., 2010; Lam and Vlachos, 2001; Lou and Christofides,
2003; Rodgers and Jensen, 1998; Zhang et al., 2010). The rates of
surface processes, such as adsorption, desorption and surface mi-
gration, which are necessary for the kMC model, can be provided
by experimental data or from molecular dynamics (Rapaport,
2004) and by density functional theory calculations (Zorn et al.,
2009).

In multiscale models, the reactor scale is linked to the surface
level through the feeding of computational information. The first
efforts for linking deterministic macroscopic models with sto-
chastic kMC models have been made for the CVD of diamond
(Battaile et al., 1998; Srolovitz et al., 1997), while tries for the
coupling of the two different scales are reported for CVD processes
taking place in a vertical reactor without using any specific che-
mical system (Raimondeau and Vlachos, 2000). In the latter, due to
the low concentration of the precursor, the continuum equations
are solved decoupled. At the macroscopic level, the one-dimen-
sional partial differential equations provided by the similarity
transformation of the mass, momentum, energy and species
transport equations are used, whereas only one node of the
computational domain is chosen to be used for the kMC simula-
tions. The same model is also used by Lou and Christofides (2003)
for the estimation of the surface roughness, where the estimated
roughness from the multiscale framework is used as an input to a
proportional-integral (PI) controller for the successful regulation
of the surface roughness at the desired value.

Multiscale simulations of the CVD of Si have been performed
(Masi et al., 2000). In this system, only the species transport
equations are solved at the macroscopic level and the developed
kMC model does not take into account the formation of dimers
which is a characteristic of Si surfaces. The linking between the
two scales is performed through the deposition rate, by assuming
that it remains unchanged regardless the scale. The same

assumption has also been used in a different work for the CVD of
diamond (Grujicic and Lai, 2000). These studies confirmed that
process conditions, such as deposition temperature and mass
fraction of the precursor at the inlet of the reactor, have a sig-
nificant effect on the deposition rate and on the surface roughness
of the films (Lam and Vlachos, 2001).

More recently, the coupling of different length scales has been
attempted for the multiscale modeling of the deposition of Si
(Barbato et al., 2007, Cavallotti et al., 2004, 2005). There, the
macroscopic model is integrated based on the governing con-
servation equations, while the kMC model takes into account the
adsorption of multiple molecules and the formation of dimer
structures. Finally, multiscale frameworks are also developed for
plasma-enhanced CVD (PE-CVD); for instance, the formation of Si
thin films for solar cells (Crose et al., 2015) involves a macroscopic
model that consists of the 2-dimensional solution of the con-
tinuum equations and a hybrid kMC which accounts for more
events on the surface, such as hydrogen abstraction (Tsalikis et al.,
2013).

Multiscale frameworks offer a basis for the control of the op-
erating conditions at the reactor scale through regulation of sur-
face micro-/nano features such as roughness and porosity. In
Christofides et al. (2008), the multiscale model considers substrate
temperature as the manipulated input parameter for the tailoring
of the surface roughness. In Hu et al. (2010), film thickness,
roughness and porosity are simultaneously regulated using the
concentration of the precursor at the inlet of the reactor as the
manipulated parameter. Finally, precursor concentration and
modulation of the substrate temperature are used as inputs in
Crose et al. (2015) for the control of the physisorption of surface
radicals and consequently for the control of film growth rate and
roughness.

The multiscale computational framework described in the
present contribution is based on the assumption which has al-
ready been adopted in the past (Masi et al., 2000) according to
which the deposition rate remains unchanged regardless the
considered scale. At the macroscopic level, steady-state, 3D si-
mulations are performed for the solution of the governing equa-
tions and the computational information which is fed to the na-
noscale is the mass fraction of the Al precursor at the surface. The
derived kMC algorithm for the description of the microscopic state
is developed based on an existing model (Lam and Vlachos, 2001).

As a first approach to our experimental measurements and
without ignoring the crystallinity and the structure of the devel-
oped Al films, we choose to work with a coarse-grained kMC
model. The coarse-graining lies in the usage of a simple cubic
lattice despite the fcc structure and the (111) orientation of the
obtained Al films. The implementation of such an approximation,
results in a reduced number of interactions between the surface
atoms (five instead of twelve, respectively) and consequently in a
reduced computational effort, without sacrificing accuracy. In-
dicatively, the CPU time required for kMC simulations of the Al
surface is approximately 3 h; a similar to the presented kMC
model applied in Vlachos (2008), requires 73 min of CPU time, for
a 40"40 lattice and without incorporating migration events. Ac-
celeration of the computations can be achieved (1.8 min of CPU
time, for the latter case) when appropriate methods, such as the τ-
leap method, are applied (Gillespie, 2001; Vlachos, 2008). In
contrast, at the nanoscale level, exact atomistic simulations in-
stead of coarse-grained computations are used for the detailed
reproduction of the surface microstructure but highly increase the
computational requirements. An example is the homoepitaxial
growth of Ag on Ag (111) and the diffusion of Ag monolayer islands
on Ag (111) reported by Latz et al. (2012); in this model, the de-
tailed crystallographic structure of Ag along with interactions
among second nearest neighbors is used to perform on the fly



simulations for the reproduction of the exact Ag (111) growth. This
type of simulations yields an almost hundredfold increase of the
computational requirements and self-learning models are applied
to reduce the high computational cost (Latz et al., 2012). It will be
shown that, within these limitations, the simulated surfaces match
well the experimentally determined surface features of the films.

The microscopic algorithm does not explicitly include chemical
reactions on purpose; indeed, the chemical information is in-
corporated in the effective sticking coefficient through a fitting
process that correlates this parameter with surface temperature.
By fitting the microscopic sticking coefficient to the surface tem-
perature through the macroscopic Al deposition rate (it is recalled
that the deposition rate remains unchanged regardless the scale of
simulation), we virtually integrate all the steps involved in the
chemical reactions (precursor adsorption/desorption, decomposi-
tion, products adsorption/desorption, etc.) to end up with an ef-
fective sticking coefficient for Al atoms. This particular treatment
of the sticking coefficient allows performing fast and accurate
computations for the CVD of Al by implementing a procedure
which appears as a purely physical one; i.e., involving single Al
atomic events only.

Through this framework, we investigate the CVD of Al films
from dimethyl-ethylamine alane (DMEAA) by focusing on growth
rate and the surface roughness and we compare our computa-
tional results with experimental data obtained in similar condi-
tions. DMEAA exhibits relatively high vapor pressure at room
temperature facilitating its transport into the reactor, and low
process temperature allowing deposition on thermally sensitive
substrates. DMEAA processed Al films are oxygen/carbon-free (Yun
et al., 1998; Yun and Rhee, 1998) and present smoother micro-
structure than alternative Al precursors such as triisobutyl alu-
minum (Delmas and Vahlas, 2007). The reaction scheme and ki-
netics of DMEAA has been extensively studied in previous works
(Gladfelter, 1993; Jang et al., 1998; Venkateswaran et al., 1996;
Xenidou et al., 2010; Yun et al., 1998) and several reaction paths
have been proposed (Kim et al., 1996; Nakajima et al., 2003;
Simmonds et al., 1994; Xenidou et al., 2007; Yun et al., 1998).

Previous works dealing with the CVD of Al from DMEAA focus
on the investigation of the kinetic mechanisms and not on the
evolution of the microstructure (Aviziotis et al., 2015; Delmas and
Vahlas, 2007; Venkateswaran et al., 1996). Thus, it is important in
the present case to develop a computational framework which will
simulate the surface evolution and reproduce the experimentally
determined roughness. As a consequence, the tailoring of final
properties of interest is enabled. The evolution of the electrical
resistivity (whose low values for a metal are appealing for nu-
merous applications) as a function of process conditions through
their impact on the microstructure will be used in this manuscript
as a paradigm of this relationship.

The paper is organized as follows: first, we briefly present our
experimental work and then, we detail the multiscale framework
which enables the simulations at the surface level. Upon the de-
scription of the computational framework, we show the results
provided by this analysis and we compare them with the corre-
sponding experimental measurements. Finally, we show the de-
pendence of the electrical resistivity of Al thin films on surface
roughness and discuss the main findings of this work.

2. Experiments

The CVD of Al thin films is performed in a vertical, cylindrical,
stagnant flow, warm wall, stainless steel reactor which has been
previously described in detail (Xenidou et al., 2010).
20"10"1 mm3 silicon coupons were cut from 4″ Si (100) wafers
(Sil'tronix). They are etched in a (1 ml HF:10 ml H2O) bath for

1 min, sonicated in an acetone and ethanol bath for 5 min, dried in
Ar flow and baked in a furnace at 60 °C for 20 min. In each ex-
periment three substrates are placed horizontally at the center
(0 mm), the edge (24 mm) and at an intermediate location
(17 mm), on a 58 mm diameter susceptor (substrate holder) he-
ated by a resistance coil gyred just below the surface, where a
regulating thermocouple is also attached. Surface temperature Ts is
calibrated under primary vacuum by attaching a second thermo-
couple to the surface of a dummy Si coupon. In the presence of a
perforated shower plate which is facing the substrates, a homo-
geneous gas distribution is ensured, in contrast to a large re-
circulation zone that sets in when the shower plate is absent. The
60 mm diameter shower plate consists of 1450 holes of 0.76 mm
diameter each. DMEAA, is supplied by NanoMePS in a specifically
designed glass bubbler equipped with a 3-valve stainless steel
bypass system. It is maintained at 3 °C permanently; i.e. below the
freezing point of the compound, thus strongly limiting its de-
gradation (Jang et al., 1998). It is thermally regulated to 7 °C during
experiments. At this temperature, the partial pressure of DMEAA is
0.7 Torr (Jang et al., 1998). Pure nitrogen (99,998%, Air Products) is
fed through computer-driven mass flow controllers. Experiments
are performed in fixed conditions, namely total pressure of the
reactor Ptot¼10 Torr, thermal regulation of the lines = °T 100 Clines

and of the walls of the reactor = °T 75 Cwalls , while the N2 dilution
gas flow ( )Q N dilution,2

and the N2 carrier gas flow through the pre-

cursor ( )Q N prec,2
equal 305 and 25 standard cubic centimeters per

minute (sccm), respectively. Considering the relation proposed by
Hersee and Ballingal (1990), these conditions yield a maximum
flow rate Qprec of DMEAA in the input gas, equal to 2 sccm.

Independent experiments are performed at eight different Ts, in
the range 139–241 °C. Deposition time is 1 h and deposition rate is
evaluated directly by weight difference of the substrates before
and after deposition, using a microbalance (Sartorius) with
710 μg accuracy. Three independent weight measurements are
carried out before and after the experiment and their average
value is considered. The maximum (minimum) deviation from this
average value is estimated by the difference between the mini-
mum (maximum) value before the experiment and the maximum
(minimum) value after the experiment. Hence, the average value
of the weight lies always within the limits of the maximum and
minimum deviations.

Surface roughness is determined with an optical interferometer
(Zygo NewView 100) allowing measurements of average rough-
ness down to 0.1 nm and peak-to-valley heights of up to several
mm (Seah et al., 2006). Thus, the method is appropriate to quan-
tify the roughness of Al films for which the root mean square
(RMS) roughness is less than 1 mm. We report RMS roughness of
samples located at the edge of the susceptor averaged on three
different points of each sample surface, since we have observed
from the experimental work that the deposition rate of samples at
this position best match the theoretical trend of an Arrhenius plot
(Aviziotis et al., 2015). Finally, the electrical resistivity of Al thin
films is measured in a home-made resistivity apparatus based on
the four-point probe method (Samélor et al., 2010).

3. Multiscale analysis

The multiscale computational framework is sketched in Fig. 1. It
shows the linking of the reactor scale (macroscale) with the sur-
face topology of the film, developed on an initially flat surface. The
term “linking” is used instead of coupling, since we apply a one-
way communication between the two scales involved; upon con-
vergence of the iterative solution of the discretized governing
partial differential equations, the macroscopic model feeds the



microscopic algorithm with the computed mass fractions of the
precursor, thus launching the simulation of the surface evolution.
The effect of microscopic features on macroscopic phenomena is
not a matter of investigation in the present case. In the next
subsections, we discuss the computational aspects for the two
different scales.

3.1. Macroscopic modeling

A 3D model of the CVD reactor is built, based on the governing
equations describing transport phenomena and chemical reactions
inside the reactor. Continuity, momentum, energy and species
conservation equations augmented with realistic boundary con-
ditions (Cheimarios et al., 2010; Deen, 1998) are discretized in 3D
and solved at steady state with the commercial software Ansys/
Fluent in order to compute the mass fractions of the precursor at
the surface. The set of governing equations is described in details
elsewhere (Cheimarios et al., 2010). CVD of Al from DMEAA can be
described by two reactions, a volumetric (Eq. (1)) and a surface
reaction (Eq. (2)) (Han et al., 1994; Yun et al., 1998), as follows:

→ + ( )( ) ( ) ( )DMEAA AlH DMEA 1g g g3

→ + +
( )( ) ( ) ( ) ( )DMEAA Al DMEA H

3

2
,

2g s g g2

here DMEA denotes the dimethylethylamine ([( ) ] )CH C H N3 2 2 5 li-
gand, which, in the case of reaction (2), is rapidly desorbed from
the surface together with molecular hydrogen (Nakajima et al.,
2003). For both reactions, a first order Arrhenius kinetics is im-
plemented and the reaction rate, rkin is calculated from Eq. (3).

= −
( )

α
⎛

⎝
⎜

⎞

⎠
⎟r k

E

RT
Cexp ,

3
kin i i

i

s
DMEAA i, 0,

,
,

where the index i represents either the volumetric or the surface
reaction, k0 is the pre-exponential factor, αE is the activation en-
ergy, R is the universal gas constant and CDMEAA is the concentra-
tion of the precursor. In a previous work (Aviziotis et al., 2015), the
values of the pre-exponential factors and activation energies were

determined as = × −k s7.39 10gas0,
5 1 and =k 5.858 m/ssur0, ,

=αE 40.006 kJ/molgas, and =αE 19.682 kJ/molsur, , for the volumetric

and the surface reactions, respectively. The boundary conditions
imposed at the macroscopic level are described elsewhere (Chei-
marios et al., 2010) and the parameters s and ϵ k/ of the Lennard-
Jones potential needed for the estimation of the properties of the
gas phase mixture in the CVD reactor are calculated with group
contribution methods (Poling et al., 2001).

3.2. Nanoscale model

The model at the nanoscale is stochastic and is based on a kMC
algorithm. For the description of surface events during deposition
on an initially flat surface, a pseudo-3D stochastic kMC model on a
rectangular lattice is developed and the solid on solid approx-
imation (SOS) is adopted (Gilmer and Bennema, 1972). Microscopic
events at the surface are modeled as Markov processes by tran-
sition probabilities per unit time (Bernd, 2004). The adsorption
rate, i.e., the probability of an impinging atom to stick to the sur-
face upon collision, is given by the kinetic theory for ideal gases
(Eq. (4)) (Lam and Vlachos, 2001):

π
=

( )
αR

s P

C mk T2
.

4tot B s

0

here Ra is the adsorption rate, s0 is the sticking coefficient, P is
the partial pressure, Ctot is the concentration of free surface sites
where adsorption events occur, m is the molecular weight of solid
Al, and kB is the Boltzmann constant. For the calculation of s0, we
adopt a fitting procedure; the computed deposition rate is com-
pared with the corresponding experimental one for each Ts and at
each position of the substrates on the susceptor. This comparison
provides a 4th degree polynomial relation between s0 and Ts (Eq.
(5)) which is used during microscopic simulations. The fitting is
performed within the Matlab software with a polyfit function
procedure.

The sticking coefficient is a technical term which is used in the
literature to illustrate the efficiency of the process towards film
growth; it depends on all process parameters (e.g., temperature,
pressure, chemistry) and varies as a function of operating condi-
tions (Vahlas et al., 1998). In the present model, the implementa-
tion of such a relation for s0 materialized by Eq. (5), provides a
correlation between the sticking coefficient and the deposition
temperature while implicitly integrating chemical reactions in the
microscopic algorithm. In other words, we simulate the CVD
process by performing physical vapor deposition microscopic cal-
culations.

= − × × + × ×

− × × + × − ( )

− −

−

s T T

T T

3.7316 10 6.7438 10

4.5612 10 13.69 1538.6 5

s s

s s

0
8 4 5 3

2 2

The given dependence of s0 on Ts is valid only for the tem-
perature range used in this work, as the fitting is based only on
experimental results obtained in this range. The graphical illus-
tration of Eq. (5) is presented in Fig. 2. It appears that increase of Ts
results in the increase of sticking coefficient.

This correlation has already been observed in the literature
(Kim et al., 1991; Matsuda et al., 1990; Raupp and Cale, 1989;

Fig. 1. Schematic description of the multiscale framework: the reactor scale (macroscale) applies the experimental operating conditions to simulate the transport phe-
nomena and feeds the microscopic model with the computed mass fractions at the surface (nanoscale). The deposition rate remains unchanged regardless the simulated
scale.



Yanguas-Gil et al., 2009) and can be explained by the low pressure
(flux-limited regime) (Yanguas-Gil et al., 2009), by the positive
apparent activation energy of the process (Raupp and Cale, 1989)
and by the absence of a secondary species which would operate as
an inhibitor for the reaction (Yanguas-Gil et al., 2009).

Finally, the concentration of the sites on the surface is con-
sidered to be 1019 sites/m2 while partial pressure is calculated
based on the mass fraction of the precursor provided by the
macroscale. At this point, we assume that the precursor which
reaches the surface and is available for the surface reaction, is
converted totally to Al atoms, since all the chemical information is
incorporated in the sticking coefficient.

The desorption rate depends on the local activation energy. In
the computational framework, we consider interactions only
among the nearest neighbors, five in the present case, since a
simple cubic lattice is adopted. In this first-nearest neighbor in-
teraction (Gilmer and Bennema, 1972), the probability of an ada-
tom reaching the surface to perform a microscopic event depends
only on the atom of the bottom layer and the four atoms of the
same layer that surround the selected adatom.

The desorption rate is calculated from Eq. (6).

ν( ) = −
( )

⎛

⎝
⎜

⎞

⎠
⎟R n

nE

k T
exp ,

6
d

B s
0

with E the single bond energy, ν0 the frequency factor and
= …n 1, 2, , 5 the number of nearest neighbors. The desorption

energy of an adatom from the surface is taken to be 77.19 kJ/mol
(Rodgers and Jensen, 1998), while for the frequency factor a typical
value of 1012 s$1 is chosen based on literature (Albao et al., 2013).

Surface migration is modeled as desorption followed by re-
adsorption and its transition probability is given by:

ν ν( ) = −
( )

⎛

⎝
⎜

⎞

⎠
⎟R n

nE

k T
exp ,

7
m

B s
0 1

where ( )ν =
−

exp
E E

k T1
m

B s
is a pre-exponential factor associated with

the energy difference that an adatom on a surface has to overcome
for hopping from one lattice site to an adjacent one, in the zero
adsorbate concentration limit. For simplicity, the migration fre-
quency, ν0, is taken to be equal to that of desorption (Eq. (6)). Em is
the migration energy. Since the initial Si surface is covered quickly
by Al adatoms, we only consider the migration energy corre-
sponding to the diffusion of Al on Al which equals 6.465 kJ/mol

(Papanicolaou et al., 2001). Within the model, this migration en-
ergy accounts for both in-plane (intralayer) and across step edges
(interlayer) diffusion. In such a way, we implicitly assume a
Schwoebel-Ehrlich (ES) barrier equal to 0. The zero ES value is
adopted also in previous works (Huang et al., 1998; Liu et al.,
2002), where an atomistic simulator for the 3D growth of Al is
applied and a small effect has been observed for crossing Al (111)
steps, except for very low temperatures. In the present study,
appropriate simulations performed in the investigated tempera-
tures (139–241 °C), indicate that the number of surface migration
events is negligible compared to adsorption events, thus validating
the ES¼0 assumption. However, in agreement with results re-
ported for Al growth (Liu et al., 2002; Stumpf and Scheffler, 1996)
and for Ag and Fe growth (Evans et al., 2006), at lower tempera-
tures the rougher growth is attributed to the existence of a small
ES barrier. Indeed, the ES energy barrier may not be neglected at
sufficiently low process temperature.

The time step of the method is given by:

ξ
Δ = −

( )
t

R

ln
,

8tot

where ξ is a random number in the (0, 1) interval and Rtot is the
total transition probability per unit time which is expressed as:

∑ν ν= + [ + ] −
( )

α

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟R R N N

nE

k T
1 exp ,

9
tot T

n

n
B s

0 1

1

5

with NT the total number of active atoms on the surface of the
simulated lattice and Nn the amount of atoms with n nearest
neighbors.

It should be noted that among the R-quantities, only adsorption
is fitted to experimental data; migration and desorption are not.
Their relative importance on the RMS roughness is discussed
below.

The surface is initially flat and it is updated after every ad-
sorption, desorption, or migration event. For simulations, periodic
boundary conditions are used, i.e., for every atomwhich moves out
of the boundary of the computational domain, there is an atom
which enters the domain from the opposite boundary of the lat-
tice. Since the adsorption probability is site independent, the
surface atoms are grouped into classes according to their number
of nearest neighbors. The total probability for a given class is given
by Eq. (9). The transition probabilities are computed a priori and
every kMC trial is successful. After each event, time evolution is
performed in a continuous way based on the duration of the event.

The structure of the kMC algorithm is presented in Fig. 3. It
starts by selecting a random number. Based on its magnitude, a
microscopic event (adsorption, desorption or migration) and a
class are selected. Subsequently, a site is randomly selected from
the class and the microscopic process is finally executed. After
each event, the classes are updated and the transition probabilities

Fig. 2. The dependence of s0 on Ts, within the investigated temperature range.

Fig. 3. Selection of a microscopic event and a class. A class is consisted of a group of
atoms according to the number of their first neighbors in order to reduce the
computational cost.



are recomputed. This update is of high computational cost, thus it
is chosen to be performed locally, around the nearest neighbors of
the atom, avoiding the screening of the whole surface. The local
update of the algorithm yields important savings in computational
time and it is practically independent of the lattice size (Reese
et al., 2001).

For the calculation of deposition rates (DR), we simply compute
the difference between adsorption and desorption rates:

= − ( )αDR R R . 10d

In order to calculate the two rates accurately and to reduce
noise effects, we use the event-counting method (Lam and Vla-
chos, 2001), e.g., for the calculation of the adsorption rate we
count the events which led to the adsorption of atoms on the
surface and this number is divided by the time period within
which adsorption events have been performed. Then, surface
roughness is determined using the formula of the RMS roughness,
shown in Eq. (11):
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where =N N Ns x y is the lattice size used in this work

( = =N N120, 120x y ) and hi j, is the thickness of the film at each
lattice site.

Finally, for the estimation of electrical resistivity, we apply the
extended Fuchs-Sondheimer model (FS model) (Timalshina et al.,
2015), which is described by Eq. (12):

ρ ρ
λ

αω= ( − )( + )
( )

β

d
p

3

8
1 1 ,

12bulk0

where ρ = μΩ2.7 cm
bulk

(Giancoli, 2013) is the resistivity of Al,
λ¼5 nm (Kanter, 1970) is the electron mean free path in Al films, d
is the thickness of the film and p is the specularity parameter
ranging from 0 (completely diffuse) to 1 (specular scattering)
(Timalshina et al., 2015). The effect of RMS roughness is denoted
byω ω( = )RMS and α β, are additional empirical parameters that
can be adjusted to fit the data (Timalshina et al., 2015).

Despite the high film thickness (ca.>500 nm) of our films which
affects the outcome of the FS model (Timalshina et al., 2015), we
choose this particular model because it takes into account the RMS
roughness explicitly. Besides, the purpose of this work is to de-
monstrate that an integrated multiscale model enables the pre-
diction of the properties of the final film and the detailed mod-
eling of electrical resistivity exceeds this target.

4. Results and discussion

Fig. 4 presents the dependence of the RMS roughness on the
temperature for both experimental measurements and computa-
tional predictions. The RMS roughness of Al films deposited at the
lower Ts (139 °C) is high (0.6 mm). RMS decreases with increasing
temperature and shows a minimum value of 0.15 mm at ca. 198 °C.
Above this temperature RMS seems stable. It has been reported that
above 200 °C the RMS slightly increases (Yun et al., 1998) but in our
case such slight increase would lie within deviation intervals. Surface
roughness is closely related to the change of the microstructure of
the film. At a surface temperature below 150 °C, the Al film is not
continuous and is composed of grains with a broad size distribution,
resulting in high roughness. On the other hand, increasing Ts from
150 °C up to 227 °C results in smoother surface morphology with
coalesced grains and decreasing open porosity with increasing de-
position temperature. The computational model accurately

reproduces the experimental data, since all the predicted RMS values,
except for Ts¼198 °C, lie within the intervals of deviations. We as-
sume that there is no physical reason of such an anomalous variation
of the RMS at this particular Ts and its experimental value is attrib-
uted to an offset position.

Fig. 5 shows the number of possible surface events (adsorption,
migration, desorption) – directly correlated with R-quantities (Eq.
(9)) as a function of Ts. It can be observed that in the investigated
temperature range, adsorption dominates the process, since the
number of adsorption events is much higher than the corre-
sponding number of migration and desorption events. Migration
and desorption are enhanced as temperature increases and on the
other hand, adsorption is restrained but the difference between
them remains high. Despite the predominance of adsorption, the
impact of the migration on the behavior of the RMS roughness is

Fig. 4. Evolution of RMS roughness with surface temperature, Ts. Experimental
data (squares) and multiscale calculations (triangles) are shown. Error bars corre-
spond to deviations from minimum and maximum experimental values.

Fig. 5. The number of surface events, adsorption, migration, desorption, as a
function of Ts. Adsorption, migration and desorption events are illustrated by black
squares, green triangles and brown circles, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)



significant. In particular, it can be seen that as the number of
migration events increases, the surface roughness decreases. This
behavior is attributed to the fact that at low temperatures, the
process is limited by the surface reaction and adsorption on the

surface (Aviziotis et al., 2015) which prevents diffusion from dis-
seminating the atoms on the surface. On the other hand, at higher
temperatures, diffusion dominates deposition yielding the more
uniform distribution of the atoms on the surface; thus, the RMS
roughness is reduced. Desorption may affect the RMS roughness in
the sense that atoms that desorbed from the surface can re-adsorb
in such lattice sites that roughness decreases. The main impact of
desorption is on the deposition rate; at high temperatures, where
it is observed that desorption events are increased, the Al de-
position rate is reduced (Aviziotis et al., 2015; Xenidou et al., 2010).

Fig. 6 shows the simulated surfaces (6a, 6b) and the corre-
sponding experimentally obtained surfaces (6c, 6d) characterized
by interferometry. The surfaces are processed at 151 °C (6a, 6c) and
227 °C (6b, 6d) and the surface heights are shown for each tem-
perature. Although we are performing coarse-grained and not
atomistic simulations at the nanoscale level, we observe that there
are similarities among the simulated and experimental surfaces.
Despite the fact that at low Ts the surface seems more homo-
geneous, the difference between the minimum and the maximum
height is bigger and thus, the RMS is higher. On the other hand, at
high Ts the surface seems rougher at a large scale but the small
differences among the surface heights yield lower RMS values.

Fig. 7 presents the experimentally measured (red points) and
the computed (black points) electrical resistivity. The former refer
to the experimental RMS axis, while the latter to the multiscale
model and to the simulated RMS axis. It can be seen that electrical
resistivity increases with increasing roughness from μΩ10 cm at
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Fig. 6. The morphology of the surface as predicted by the multiscale computational framework ((a), (b)) and as obtained by optical interferometry ((c), (d)) for 151 °C and
227 °C, respectively. Color scale is the same for both experimental and computational results which are at the same Ts. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

o

Fig. 7. The measured (red spheres) and estimated with the multiscale model (black
spheres) electrical resistivity of Al films as a function of the experimental and the
simulated RMS roughness. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)



RMS 0.15 mm to ca. μΩ80 cm at RMS 0.6 mm. These values and the
observed evolution of the electrical resistivity are attributed to the
increased scattering of the rough surfaces and to their significant
contribution to the resistivity (Machlin, 2006). Moreover, grain
boundary scattering may contribute a significant excess resistivity
in polycrystalline Al films, since the grain boundaries do not
scatter the conduction electrons (Francombe, 1988). Finally, O

contamination within the film can lead to higher resistivity values.
The dependence of the electrical resistivity on the RMS roughness
has also been reported for other materials (Tang et al., 2003; Ti-
malshina et al., 2015).

As previously mentioned, the extended FS model (Eq. (12)) is
applied to estimate the electrical resistivity of Al films, while the
thickness and the RMS roughness are provided by multiscale si-
mulations. Concerning the specularity parameter, we assume a
completely diffuse scattering from both the top and bottom sur-
faces of the Al film, that is p¼0, a statement that holds true for
surfaces with high roughness (Kanter, 1970). Finally, by fitting the
estimated resistivity to the experimental data, we find α = 30,
β = 5.6. The physical meaning of these parameters is not clear
(Timalshina et al., 2015) and their fit may not be unique. However,
we privilege the accuracy of the computed RMS values in order to
have a reliable estimation of the electrical resistivity. The estima-
tion of the electrical resistivity with the extended FS model ap-
pears to be fairly good with regard to the corresponding experi-
mental measurements and both datasets present the same trend.
As roughness decreases, the discrepancy between experimental
data and results provided by the multiscale model increases. This
is attributed to the fact that in our estimations we do not in-
corporate any information for grain boundaries or contamination.

The accurate simulation of the surface microstructure and the
control of RMS roughness through the variation of the operating
conditions of the reactor, enable the control of the properties of
the final film, such as the electrical resistivity. Assuming that
surface roughness of crystalline materials often corresponds to the
existence of grain boundaries, it may account for the increase in
electrical resistivity through grain boundaries scattering of the
electrons.

5. Conclusions

We experimentally and computationally investigate the RMS
roughness and the electrical resistivity of Al films produced by a
CVD process from DMEAA. In particular, for the two parameters
we compare the experimentally measured values with those ob-
tained by performing multiscale computations. Multiscale com-
putations allow fetching from the surface of the growing film the
information needed to compute the aforementioned properties.

The multiscale framework uses a 3D model of the reactor,
based on the conservation equations, which computes the mass
fractions of the precursor on the vicinity of the substrate. The
outcome is fed to a nanoscale model, based on the kinetic Monte
Carlo method, which simulates the evolution of the film and
computes its surface roughness and its electrical resistivity. The
chemical information for the decomposition of the precursor on
the surface are incorporated in the sticking coefficient. For the
latter, we implement a deposition temperature dependent func-
tion by fitting experimental deposition rates at various tempera-
tures and at various positions on the susceptor.

The obtained results are compared with values of surface
roughness of Al films processed in the same conditions. The ex-
perimentally determined RMS roughness decreases with increas-
ing the surface temperature, from 0.6 mm at 139 °C to 0.15 mm at
198 °C. The calculated RMS values lie within the deviations of
experimental measurements. A very good agreement is obtained

between the experimental measurements and those calculated by
the multiscale framework.

At low process temperature, adsorption dominates the process,
while diffusion and migration events are few. Temperature in-
crease results in the enhancement of migration and desorption
which in turn results in the decrease of the surface roughness due
to smoother distribution of atoms on the surface. Thus, despite the
fact that adsorption is fitted to experiments, while desorption and
migration are not, the impact of the two latter on the growth of
the surface renders an unconstrained multiscale model.

The electrical resistivity of the films increases with increasing
surface roughness from μΩ10 cm at RMS 0.15 mm to ca. μΩ80 cm

at RMS 0.6 mm, mainly due to the increased scattering caused by
rough surfaces and to higher grain boundaries density which re-
sults in the entrapment of electrons. The behavior of the electrical
resistivity is quantitatively reproduced when the calculated re-
sistivity is correlated with the simulated RMS of the films.

The presented multiscale computational framework can be
implemented to perform similar analysis for other materials or for
the simulation of similar surface phenomena taking into con-
sideration the formation of more complex structures, such as di-
mers or trimers. The incorporation of chemical reactions at the
nanoscale and the consideration of the crystallographic structure
of the Al films (here fcc) within the nanoscale algorithm are under
way. Thus, more species could be accounted for, and the simula-
tion of more complex processes and surface features, such as is-
land formation, grain boundaries and height-height correlation
could be enabled. Regarding the calculation of the porosity evo-
lution within the film, the SOS approximation should be replaced
by triangular lattice models which, in contrast to the SOS models,
can accommodate the formation of vacancies. In that case, alter-
native multiscale methods such as coarse-graining with low-order
macroscopic variables or equation-free methodologies will be
implemented, to cope with the associated increased computa-
tional effort.
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