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Abstract

This paper presents a multi-aerial-robot coordi-
nation game theoretical approach to perform a
surveillance mission in a well-structured environ-
ment. Such a mission consists in constantly visit-
ing a set of points of interest while minimizing the
time interval between successive visits (idleness).
The proposed approach optimizes the agents’ ac-
tion selection based on an N-player (cooperative)
game framework. The main contributions are: (i)
the formulation of an original player’s utility func-
tion composed of parameters that are independent
from the action choices of the others players; (ii)
the demonstration that the game solution is the
Nash equilibrium, and this equilibrium can be ob-
tained by optimizing separately/individually the
single player’s action choice; (iii) the proposal of
a decentralized algorithm used to conduct the mis-
sion, which works considering minimum commu-
nication among players. Simulations evaluate the
different policies obtained, which are compared
using as metric the average idleness of all points
of interest. The proposed framework allows for the
decrease of the idleness of watched points com-
pared to random action selection, while keeping
some kind of randomness of motion (measured by
a predictability metric), which can likely be de-
sired to curb the prediction of the team surveil-
lance strategy by an intruder.

Introduction

The recent advancement in decision making techniques
for aerial robots, also known as drones, has significantly
increased the number of applications for a team of au-
tonomous agents. In certain scenarios, multi-robot sys-
tems are more desirable than a single robot due to
their robustness, stability, adaptability, and scalability
(Meng 2008). For instance, search and rescue missions
(Murphy et al. 2008; Suarez and Murphy 2011; Xue,
Zeng, and Zhang 2011), autonomous infrastructure in-
spection (Scaramuzza et al. 2014), or autonomous pa-
trolling systems (Amigoni, Basilico, and Gatti 2009;
Portugal and Rocha 2011; Hernández et al. 2013).

In particular, the multi-aerial-robot autonomous pa-
trolling or surveillance problem is very challenging: the

robots must navigate through the environment so dif-
ferent locations that are scattered in the operational
space, and they have to coordinate their actions in or-
der to optimize the time spent to cover all the desired
points of interest (Portugal and Rocha 2013a). One of
the key issues of a surveillance mission for a multi-robot
system is how to coordinate their behaviors in order to
optimize the global performance (Meng 2008). For ex-
ample, monitoring an area of interest requires that the
robots move repeatedly through the environment, and
the difficulty is to decide on the paths while optimizing
some performance criteria (Pasqualetti, Franchi, and
Bullo 2010). Moreover, since surveillance implies the
maximization of the number of visits to each node in
a given environment, a good surveillance strategy must
reduce the time interval between visits to the same lo-
cation (Chevaleyre 2004).

With the aim of evaluating surveillance stategies, a
comparative study using distinct topological environ-
ments and different team sizes is presented in (Portu-
gal and Rocha 2013b). This work analyzes the perfor-
mance and scalability of each patrolling approach. For
that, (Portugal and Rocha 2013b) proposed as an eval-
uation metric the average idleness of the graph (IdlG).
In the same point of view, (Chevaleyre 2004) demon-
strates that minimizing worst idleness will also lead to
a smaller average idleness. In any case, the smallest the
idleness, the better is the performance.

Another key point argued by some authors is that,
for security reasons, it should be suitable to consider
irregular time intervals to perform visits on desired lo-
cations while optimizing the strategy, in order to avoid
that a potential intruder could observe the movement
of the patrol members for some time and derive an ac-
curate belief of their strategies (Hernández et al. 2013;
Amigoni et al. 2010). The key idea is to make it more
difficult for an intruder to predict the motion strategy
of the team members.

In this kind of surveillance application, it is well
known that the minimal refresh time patrolling prob-
lem is NP-hard (Pasqualetti, Franchi, and Bullo 2010;
Portugal and Rocha 2011; Zhang and Kingston 2015).
This means that to update the state of each position
at each time step would be computational and mem-



ory expensive and impractical in real-world scenarios
(Meng 2008; Portugal and Rocha 2011). This is so be-
cause in order to improve the efficiency of the collective
searching strategy, the action of each robot does not
only depend on its own situation, but also on other
robots decisions.

In this sense, recent papers have based their ap-
proaches on Game Theory (Amigoni et al. 2010;
Hernández et al. 2013; Meng 2008; Peshkin et al. 2000;
An et al. 2012; Khan 2007), which is an elegant way
to model an agent’s decision making process based
on the others agents decisions in a decentralized and
distributed way. An example of such a Game Theory
application is presented in (Hernández et al. 2013),
where Game Theory models of the multi-robot pa-
trolling problem are solved with the use of dynamic
and decentralized collaborative approach. Another in-
teresting solution is proposed by (Amigoni et al. 2010)
based on Game Theory, which develops a surveillance
strategy to drive mobile robots around a known envi-
ronment in order to avoid intrusions while implement-
ing a non deterministic strategy for their movements in
order to make more difficult the task of intruders for
they do not know a priori the stochastic distribution of
such motions. Others examples can be found in: (Meng
2008), which proposed an N-agent cooperative nonzero-
sum game to achieve an optimal overall robots behav-
iors; (Peshkin et al. 2000) described a gradient-descent
policy-search algorithm for cooperative multi-agent do-
mains, where they all share a common payoff; and, (An
et al. 2012) that investigated the use of zero-sum games
for the protection of critical infrastructures.

For the purpose of a cooperative surveillance mission
based on Game Theory, this work addresses the prob-
lem of monitoring a closed area by a team of drones
minimizing the time to revisit the points of interest
(idleness) while keeping some kind of randomness of
motion in order to render movements less predictable.
Note that, this is neither a coverage problem nor a ad-
versarial problem, but a mix of them. The issue is the
development of a dynamic and decentralized approach
to multi-aerial-robot cooperation in order to solve the
patrolling problem by implementing game theoretical
models. In this sense, the main contributions of this
work are:

• the formulation of an original player’s utility function
composed by three parameters that are independent
from the action choices of the others players;

• the demonstration that the game solution is a Nash
equilibrium, and that this equilibrium can be ob-
tained by optimizing separately and individually the
single player’s action choice;

• the proposal of a decentralized algorithm used to con-
duct the mission, which works considering minimum
communication among players.

In other words, an original heuristic utility function is
presented, where not only the path travel cost is consid-
ered, but also the current positions of the other players

and the last time since each point of interest was vis-
ited. And, based on this utility function, a coordinated
game is generated, where the Nash Equilibrium solution
guides the player’s behavior toward the team goal. In
order to reduce the computational complexity the fol-
lowing approach for the solving algorithm is proposed:
(1) a fixed path between nodes in the graph and its
cost are generated off-line considering the graph does
not change during the mission; and (2) the communica-
tion between agents and a new game occur only when
the destination of each drone has been achieved, instead
of at every time step (i.e. the communication is asyn-
chronous).

This work is organized as follows: the considered
surveillance problem, its game formulation and the de-
centralized algorithm proposed to solve this game is
presented in Section . Simulation experiments results
are shown in Section to evaluate the parameters of the
single player’s utility function, and their different poli-
cies are compared using as metric the average idleness
of all points of interest and the overall randomness of
the aerial robots’ movements. Finally conclusions and
future work are discussed in Section .

Problem formulation
This mission can be defined as a frequent visitation
problem of all preset points for an aerial robot (here
also called drone) team in the lowest possible time in-
terval without having a cycling behavior in order to
make the motion model less predictable.

The idea of this paper is to present a method of
coordination between drones, based on Game Theory,
that is capable of carrying out a monitoring mission
on a known topological model represented as a graph
G = (S,E). In this graph G, S is the set of nodes rep-
resenting the points of interest in the environment (i.e.
positions), and where the edges E ⊆ S× S define adja-
cency relationships between the nodes S, i.e., the possi-
ble paths between positions or points of interest. Each
edge has a cost that represents the time required to
move from one node to another. These costs are fixed.

To define the game problem, some assumptions were
taken:

• For simplicity, time was discretized in turns;

• Each node can be considered as a point of interest
that should be observed, i.e. looking for an intruder;

• Each destination node is a point where the commu-
nication among the drones team arises.

• Each drone will select, only once it reaches its des-
tination point, the next point to visit, based on the
available information of the others. This means that a
new action selection problem will be considered by a
drone only when this one has reached the destination
point, instead of each time step;

• The drones are defined as ”Conscientious Cognitive”
agents (Portugal and Rocha 2011), i.e., they choose
the next point to visit in the global graph, instead of



in their neighborhood. So, at each time interval, each
drone can move from one node to another adjacent,
without necessarily selecting a new point of interest;

• All drones have perfect knowledge of the graph
model, of their own positions in the graph, the last
position informed by the others and their destinations
in the graph;

• We assume that each drone can avoid obstacles and
collisions;

• The horizon of the mission is considered as infinite.

Therefore, under these assumptions, a Game Theory
formulation of the problem is proposed.

Game theory problem formulation
The surveillance mission is defined as a dynamic game,
where the costs at each time step depend on: the min-
imal distance between points of interest represented as
nodes in a graph, the actual position (node) of the
robots and the last time since points of interest (nodes)
were visited. Formally, it can be defined as a N-player
finite game Γ = (N,A, u), where:

• N = {1, · · · , n} is the finite set of n players, indexed
by i;

• A = A1×A2×· · ·×An represents all possible actions
to be taken by all drones;

• u = h(u1, · · · , ui, · · · , un) is the payoff function
which is function of the payoff of each single player,
with u : A → R, and ui : Ai → R for each
player i.

Players’ actions. In conformity with the Game The-
ory formulation, ā = [a1, a2, · · · , an] is defined as the
vector of actions for all n ∈ N drones and Ai =
{a1
i , a

2
i , · · · , a

q
i }, where q is the number of actions at

the disposal of the ith drone. Observe that the sets of
actions Ai do not need to be equal for all drones; how-
ever, in the scenario we are modeling, we will consider
the possible actions to be all equal. Then, one may con-
clude that A = An and the cardinality |A| = q. An-
other point is that, the set A is equal to the subset of
states S = R ⊂ S meaning that the drone can choose
as an action any node sk ∈ S, then A = S.

Payoff function. According to the posi-
tions/destinations of drones at time step t, the
utility function µt can be calculated. The utility is
defined as the summation of the utilities of all players
involved in the game, i.e.,

µt(ā, s̄t) =
∑
ā∈A

µti(ā, s̄
t) (1)

where ā is the vector of actions and s̄t is the state of
the drones at time t.

The utility functions for each drone i ∈ N at time t
is defined as

µti(ā, s̄
t) = δi(ai, s

t
i) + λ−i(ai, s̄

t
−i)− ρti(ai) (2)

where:

• δi(·) is the cost to go for the drone i from the cur-
rent position, i.e., the distance for the drone to move
from its current position sti to all its possible future
locations aki ∈ Ai, with k ∈ {1, · · · , q}. There-
fore, considering that f∗(sti, a

k
i ) is the optimal dis-

tance cost that refers to the optimal (or sub-optimal,
when the optimal cannot be calculated) path from
node sti to aki , one gets:

δi(a
k
i , s

t
i) = f∗(sti, a

k
i ) (3)

• λ−i(·) is the weighted sum of all other drones inverted
distance (Ψ(·)), where inverted distance is defined as
a value that is equal to the maximum distance for
the nearest point and decreases with the distance.
Therefore, for the chosen action aki ∈ Ai we have:

Ψj(s
t
j , a

k
i ) = max

apj∈Aj

(δj(a
p
j , s

t
j)) + min

arj∈Aj

(δj(a
r
j , s

t
j))

− δj(a
k
i , s

t
j). (4)

The idea here is to make the points more distant from
the other drones more attractive for drone i, then,
λ−i(·) for a determined action aki ∈ Ai is given by:

λ−i(a
k
i , s̄

t
−i) =

n−1∑
j=1

{Ψj(s
t
−i,j , a

k
i )}

n− 1
| j 6= i. (5)

• Finally, ρti(a
k
i ) is the expected reward to reach the

node aki . These values are collected (turn into zero)
when a drone passes over the position and increase by
a factor γn each time step that they are not visited,
where γ is a normalizer constant and n is the number
of drones:

ρt+1
i (aki ) = ρti(a

k
i ) + (γn) | γ ∈ [0, 1] (6)

Note that since all action sets Ai are equal to A, the
expected reward is equal for all drones.

Based on the definition of the utilities, the minimal
global cost for this game would be:

µt∗(ā, s̄t) = min
ā∈A

µt(ā, s̄t) (7)

Notice that the utilities for each drone i, µti(·), is only
directly dependent on ai and only indirectly takes into
consideration the actions of all other drones (through
λ−i(·)). So, individual’s utility functions are composed
by three parameters that are, by definition, independent
from the action choices of the others players. In this
sense, (7) may be rewritten as:

µt∗(ā, s̄t) = min
a1∈A1

µt1(a1, s̄
t)+· · ·+ min

an∈An

µtn(an, s̄
t) (8)

Therefore, the minimal global cost strategy solution
for drone i, σti

∗
, is adopted for the decoupled game as

described in:

σti
∗

= argmin
ai∈Ai

µti(ai, s̄
t) (9)



It means that for this formulation the action choice
for drone i is independent from the action choices of
the others drones. We are now ready to enunciate and
prove the following theorem:

This result is summarized in the following theorem.

Theorem 1. The N-player finite game Γ = (N,A, u)
with utility functions defined in (1) and (2) possess a
pure-strategy equilibrium.

Proof. Let us consider a Wonderful Life Utility for
drone i.

WLUi = φ(z)− φ(z−i)

where z is the collection of all players and z−i is the
collection of all players except player i. It is clear, that
if one considers φ = µt(·), then

WLUi = µi(·)

Therefore, the game Γ becomes a Potential Game, i.e.,
the drones’ utilities µi(·) are aligned to the global utility
µ(·). Therefore, it is guaranteed to have a pure-strategy
equilibrium according to Corollary 2.2 of (Monderer
and Shapley 1996).

Moreover, it may be verified that this pure-strategy
equilibrium is indeed the Nash equilibrium of the game
(Philip, Givigi Jr, and Schwartz 2014), for:

µt(ā∗, s̄t) ≤ µt([a∗1, · · · , a∗j−1, aj , a
∗
j+1, · · · , a∗n], s̄t), ∀j ∈ N.

Finally, notice that this decentralized approach,
where the action selection is formalized as a potential
game, allows to drones to take decision in an asyn-
chronous way, as each drone selects the next action
only once it reaches the destination point based only
on available (last) information.

Algorithm for coordination

Algorithm 1 presents the process inside each drone. To
better explain this algorithm we introduce two execu-
tion status on which drones’ action selection relies. Be-
fore a drone starts to move it changes its status to Busy
and when it arrives at the destination point it changes
to NotBusy.

When one of then is NotBusy, i.e when it reaches a
destination point, (line 2 of Alg. 1), it sends a message
of its position and updates its knowledge of the position
of the NotBusy drones and the destination position for
the Busy ones (lines 3 and 4). Then, the drone changes
the cost value of its current position sti to ∞ which
forces it to move to somewhere else (line 5). After, it
proceeds all calculations for compute the cost vector µti,
and it selects the minimal cost strategy (lines 6 and 7)
applying the proposed approach. The concerned drone
computes the global minimal cost knowing that the oth-
ers will do the same. In this way, using game theory to
predict what others will do, coordination arises. Finally,
it informs its next destination to the others, change its
status, and starts to navigate again (lines 8-10).

Algorithm 1 Patrol mission for Dronei
1: while True do
2: if status == NotBusy then
3: report current position
4: read messages
5: assign infinity to current position cost -

f∗(sti, s
t
i) =∞

6: compute the cost vector µti (Eq. (2))
7: find and select the minimal cost strategy (Eq.

(9))
8: report destination
9: assign Busy to its current status

10: start navigation
11: else
12: if position == destination then
13: assign NotBusy to its current status
14: else
15: continue navigation
16: end if
17: end if
18: end while

When the drone is Busy, it only continuously veri-
fies if the destination point is reached, if is the case,
it changes its status to NotBusy, if not, it continues to
navigate (lines 11-15).

To evaluate the proposed approach an application
case is presented next.

Simulation Experiments

Setup

The topological model considered for experiments is
shown in Figure 1. This topological model is repre-
sented by the graph G = (S,E) in that the nodes
S = R∪D represent some positions in the environment,
with R = {r1, r2, ..., rq} the set of positions inside the
rooms and corridors (points of interest) and D the set
of doors. The edges E ⊆ S × S define adjacency rela-
tionships between the nodes S, i.e., the possible paths.
Each edge has a fixed cost associated with, here, the
time required to move from one node to another.

To evaluate the approach, a patrol simulator has been
developed in Python 2.7.8. In this simulation model
there are 25 points of interest (R), the 7 doors are
considered as connection points (D) and 60 edges, i.e.
|R| = 25, |D| = 7, |E| = 60 respectively, as shown in
Figure 1. Please note that, the set S of possible loca-
tions is equal to R (we do not consider doors - these
specific connection points - as points of interest), and
the set of actions Ai of each drone is equal to S.

Figure 2 shows a moment during the mission with
three drones. In this simulation, the color of the floor is
related to the idleness of the point, the blue areas are
associated with greater rewards ρt.

We note that, as commented before, the approach
presented in this paper is neither a coverage problem
nor an adversarial problem, but a mix of them. The
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Figure 1: Topological model with the points of interest
and all possible transitions.

Figure 2: Geometric model.

mixed problem proposed, as far as we know, is for the
first time studied, and for this reason a comparison to
previous approaches is not straightforward possible.

In this context and in order to verify the performance
of the patrolling algorithm considering different num-
bers of drones in the team and the influence of each
component of the utility function (δ, λ and ρ from eq.
2), five scenarios were designed:

• complete Utility - where all components of the utility
function were used;

• no Reward - where ρ was removed from the utility
function;

• no Inverse - where λ was removed from the utility
function;

• only Distance - where ρ and λ were removed from the
utility function;

• random - where the drones select their destinies ran-
domly.

1000 missions for each scenario were played and each
patrol mission ran until each point of interest was vis-
ited at least fifty times.

Metrics

This study has been focused on (1) the interval between
visits (idleness) and (2) the difficulty of prediction of
the next position of the patrols (predictability). For the
first one the average idleness of the graph IdlG (Por-
tugal and Rocha 2013b) was used as a metric, and for
the second one, the Ljung-Box test (Box, Jenkins, and
Reinsel 2008) results were considered.

The average idleness of the graph (IdlG) proposed by
(Portugal and Rocha 2013b) is defined as:

Starting with the instantaneous idleness (Idltk) of a
position si ∈ S in the time step tk:

Idltk(si) = tk − tlastvisit
(10)

where tlastvisit
corresponds to the last time step when

that point si was visited by a drone. Consequently, the
average idleness (Idlm) of a point si in a total time T
is defined as:

Idlm(si) =

T∑
k=0

Idltk(si)

T
(11)

And, finally, the average idleness of the graph (IdlG)
is defined as:

IdlG =

|S|∑
i=0

Idlm(si)

| S |
(12)

where | S | represents the cardinality of the set S.
On the other hand, to evaluate how “unpredictable”

the drone paths were, the Ljung-Box test was used. This
statistical test allows the measurement of the ”overall
randomness” based on a number of lags of a time series
by means of a single value Q:

Q = p(p+ 2)

m∑
l=1

ρ̂2
l

p− l
(13)

and:

ρ̂l =

p−l∑
k=1

(Yi − Ȳ )(Yi+l − Ȳ )

p∑
k=1

(Yi − Ȳ )2

(14)

where p is the sample size, m is the number of lags being
tested, ρ̂l is the autocorrelation function (ACF ) at lag
l and Y = (Y1, · · · , Yp) are the measurements. For a
significance level α, the critical region for rejection of
the hypothesis of randomness is given by the percentile
(1 − α) of the chi-squared distribution with m degrees
of freedom:

Q > χ2
1−α,m (15)

Thus, if Eq. 15 is TRUE it is possible to say that ex-
ists a linear correlation, in other words, the information
of past positions allows an inference of future positions.
Moreover, Q weights the correlation process, i.e., the
higher the value the greater the correlation.



Obviously, all tested scenarios have a high degree of
autocorrelation between adjacent and near-adjacent po-
sitions, due to the movement model of the drones. Even
though, Q can identify an appropriate time series model
even when the data are not random.

In the end, in order to use this values as a metric of
predictability (π) in the present work, Q for each sce-
nario c was normalized by the worst value (per number
of drones n):

πnc =
Qnc

max(Qn)
(16)

In this work, for a specific number of drones, the de-
grees of freedom m were selected among all scenarios as
the smallest median number of steps necessary to com-
plete a cycle (i.e., to visit all positions at least once)
with an α = 0.05.

Results

Figure 3 shows that increasing the number of drones
implies the convergence of idleness, which will be zero
when the number of drones reaches the number of
points of interest. Nevertheless, looking to these charts
it is possible to infer the minimal number of drones
to achieve the goal of the mission in an efficient way,

defined as the ratio |N |
IdlG

(best cost-benefit ratio). In-
terestingly, in the no Inverse scenario, differently from
the others, the idleness seems to be almost steady with
two drones or more. The reason for that must be inter-
preted with caution, but it seems that when they do not
need to coordinate their moves (and that is in essence
what λ do), they can reach a local optimum very fast;
however, these values will eventually decrease to zero.
Also, it can be seen that the variance decreases with the
number of drones, except for the no Inverse scenario.
Together these results provide important insights into
the approach presented. It is easy to observe the im-
portance of each cost variable and their contribution
for idleness.

The increase of the mission performance with the rise
in the number of drones in all scenarios for both met-
rics, idleness and predictability, is shown in Figure 4.
The results also indicate that when ρ was not used (no
Reward) the paths became more predictable (greater
values of π). With a single drone the scenarios no Re-
ward and only Distance achieved the same value, as
expected, since, in this case, they have the same utility
function.

On the other hand, still looking to the single drone
case, a very predictable path can be identified for no
Inverse and complete Utility scenarios. A possible ex-
planation for these results may be that they tried to
maximize the reward earned at each iteration. Interest-
ingly, for more than one drone, the no Reward scenario
appears to maintain predictable paths. Overall, these
charts indicate that the best scenario is the complete
Utility.

The charts in Figure 5 present a slice of the surveil-
lance mission for three drones with 100 arbitrarily col-

lected steps from all scenarios, where each line repre-
sents the path of a drone. What is interesting here is
that in complete Utility, no Reward and only Distance
the drones tend to maintain themselves in a separated
sector from the others. The Random scenario presented,
as expected, the worst results as the drones moved ran-
domly around the environment. In complete Utility and
no Inverse, the path were longer than the others and
with almost no local cycles, indicating global movement
in contrast with some “sawtooth” path in the others
charts. Another interesting behavior is observed in the
no Inverse scenario where it seems like that the drones
are following each other, maintaining almost the same
path. The most striking observation to emerge from the
data comparison is that the complete Utility generated
longer and clearer paths, maintaining the drones sepa-
rated for almost all time and changing the patrol sectors
once in a while.

Conclusion and future work

A multi-aerial-robot game theoretical surveillance ap-
proach is proposed in this paper. The main contribu-
tions are the development of a dynamic and decentral-
ized approach to cooperation in order to solve the pa-
trol problem by implementing game theoretical mod-
els. In this way, a heuristic utility function is presented,
where not only the travel cost is considered, but also
the current positions of the other team members as
well as the last time each point of interest was vis-
ited. Based on this utility function, an N-player game
is played inside each drone, wherein the Nash Equilib-
rium was applied to the drones in order to make their
decisions. To improve the real-time performance, the
game is played only in the destination points of each
drone. Five scenarios and two metrics were designed
and used to evaluate the proposed model. Overall, the
results indicate that the proposed utility function can
minimize the idleness while also minimizing the patrol
predictability.

There is abundant room for further progress in this
proposed model. Future studies should consider:

• an unreliable human operator in the control loop;

• an intruder and different payoff values for drones and
positions;

• leader-follower equilibria;

• uncertainty in the movements and in the detection of
the evader;

• imperfect and not cost-free communication.

As it is known, depending on the type of game
used, the computational complexity would become in-
tractable with a large-scale team. This was the reason
why a potential game was proposed. Furthermore, in
the near future we intend to investigate the scalability
of this approach. Also, new models for the utilities of
the drones will be the focus of future investigations.



Figure 3: Average idleness of the graph per number of drones.

Figure 4: Predictability versus idleness.
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