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Effects of Transmission Belt Looseness on
Electrical and Mechanical Measurements of an

Induction Motor
Etienne Fournier, Antoine Picot, Jérémi Régnier, Christian Andrieux,

Jacques Saint-Michel and Pascal Maussion

Abstract—This article explores the impact of belt looseness
on electrical and mechanical quantities of a system driven by an
induction motor and a belt-pulley transmission. The effects of this
defect, for example the belt slipping or the apparition of spectral
signatures in some measurements, are first investigated under
steady state operation. Transient state tests are then performed
to analyse, in the time domain, the system response to a step of
the speed reference. The behaviour of different variables (slip,
speed, currents, etc.) is studied for different health conditions and
the increase of the belt looseness clearly impact the electric and
mechanical variables’ waveforms. The experimental tests carried
out in this study, under steady or transient state, show promising
results for the diagnosis of belt degradations. Perspectives of this
work are therefore detailed at the end of this paper.

Index Terms—Fault diagnosis, Condition monitoring, Mainte-
nance, Induction motors, Inverters, Variable speed drives, Belts,
Spectral analysis, Current measurement, Mechanical variables
measurement.

NOMENCLATURE

d or di Center distance between motor and load.
∆Ω Speed reference step level.
ff Supply frequency.
fr,belts Rotation frequency of the belts.
fr,load Rotation frequency of the load.
fr,motor Rotation frequency of the motor.
fs Sample frequency.
γa Axial vibration signal.
γr Radial vibration signal.
i1, i2, i3 Motor phase currents.
IA Currents instantaneous amplitude.
IM Induction motor.
Ωbelts Belts speed.
Ωload Load speed.
Ωmotor Motor speed.
Rt Transmission ratio.
SΩ Absolute belts slip.
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sΩ Relative belts slip.
X(f) Fourier transform of variable x(t) at the fre-
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I. INTRODUCTION

Electromechanical systems are often critical elements in
industrial plants. Their failure may provoke safety issues or un-
expected production shutdowns. Developing efficient condition
monitoring methods for electrical machines and transmission
elements is therefore necessary to optimize their maintenance.

Recent studies [1] have mainly focused on the diagnosis
of faults relative to electrical motors such as bearing faults
[2]-[7], rotor faults [8]-[11] or winding faults [12]-[14]. Some
research has also been done in the condition monitoring of
coupling elements, such as gears [15]-[16], which are critical
parts of the power transmission chain. However, few attention
has been paid on the condition monitoring of belt-pulley drives
[17].

Belts are widely employed in industrial applications such
as fans, pumps, compressors, etc. and especially flat and
trapezoidal belts (or V-belts). This extensive use is mainly due
to their benefits such as their high efficiency, the non-necessity
of aligned shafts, their tolerance for misalignment and their
low cost [18]. However, belt-pulley systems are subject to wear
and mechanical fatigue and can therefore lose their mechanical
properties during their lifetime. Belt looseness is an important
failure mode which increases the belt slip and thus accelerates
the wear process of the transmission system. This is caused
by a tension loss which may be caused by a variation of the
center distance between motor and load or by wear belts or
pulleys. In worst cases, belts deterioration may lead to pulleys’
grooves damages, critical slip between the motor and his load
and finally to the belts breakage [19]-[20].

In this context, the effects of belt looseness on a system
driven by an induction motor (IM) are studied in this paper.
First, the experimental system composed of an induction
motor, a belt-pulley transmission system and a load is pre-
sented and the degradation protocol is explained. Secondly, the
spectral content of several mechanical and electrical quantities
measured on the system is analysed for the different health
states of the belts in steady state operation. Then, the behaviour
of the same variables is studied in transient state condition
when a step of speed reference is applied to the motor.



Finally, a comparison of belt looseness effects under steady
and transient state condition is done and perspectives of this
work are detailed.

II. MATERIAL

A. Test bench

The test bench used in this study is composed of :

• a squirrel cage IM with one pair of poles, a rated power
of 30 kW and a rated speed of 3000 RPM,

• a transmission system composed of two 160-mm diam-
eter pulleys and two trapezoidal belts with a length of
Lbelts = 1600mm (Texrope R© VP2 1600 SPA),

• a direct-current machine used to vary the torque delivered
by the IM.

and is illustrated in Fig. 1. The IM is fed by a PWM-

Fig. 1. Experimental test bench composed of an 30-kW IM (right), a belt-
pulley transmission system (middle) and a direct-current machine (left).

inverter with a constant V/f open-loop control law. Moreover,
the center distance d between the load machine and the
induction motor is adjustable and can be changed to increase or
decrease belts tension. In this way, tests can be carried out for
healthy conditions, with a proper tension of the belts, and for
faulty conditions by gradually decreasing the center distance
d between the motor and its load. Finally, since diameters of
the driven pulley Ddriven and the driver pulley Ddriver are
equals, the transmission ratio Rt = Ddriven/Ddriver is equal
to 1. An overall representation of the experimental system is
illustrated in Fig. 2.

B. Measurements

With a sample frequency fs = 100kHz, a 8-synchronous
channels data acquisition system has been used to measure
mechanical and electrical quantities of the system such as:

• radial and axial vibration signals (respectively γr and γa)
via two accelerometers (Dytran

TM
3055A2) placed on the

motor frame,
• motor and load mechanical speed signals (respectively

Ωmotor and Ωload) by using two encoders,
• motor phase currents i1, i2 and i3.

All recordings have a constant length Trecording equal to 5s.
Belts slip, noted SΩ, is calculated from both speed measure-
ments Ωmotor and Ωload according to

SΩ = Ωmotor −Rt.Ωload (1)

or defined in relative terms by

sΩ =
SΩ

Ωmotor
· 100 (2)

for all measurements.
Tests have been carried out for different center distances

d1 > d2 > d3 > d4 (3)

which correspond to the different belts looseness conditions
represented in Table I. The center distance d1 corresponds to

TABLE I
CENTER DISTANCES AND RELATED BELTS CONDITION USED DURING THE

EXPERIMENTAL TESTS.

Center distance Belts condition

d1 Healthy belts
d2 Moderate belts looseness
d3 Strong belts looseness
d4 Critical belts looseness

a correct belts tension which ensures an optimal functioning
of the system. On the contrary, the center distance d4 provokes
a critical looseness of the belts which even prevents the
system to work under the rated load and speed. Between
these two extreme cases, tests have been carried out for
two intermediate center distances d2 and d3 which produces
respectively moderate and strong belts looseness.

Tests have been realized for different speed and load
conditions of the IM. The operating conditions are however
presented in section III and IV since functioning points are
defined differently under steady and transient state tests.

III. EFFECT OF BELT LOOSENESS ON MECHANICAL AND
ELECTRICAL QUANTITIES UNDER STEADY STATE

OPERATION

A. Operating conditions

All results presented in this section have been obtained un-
der steady state conditions of the motor speed and load. Tests
have been realized for two motor speeds Ωn/2 = 1500RPM
and Ωn = 3000RPM and under five load levels I0 ' 15A,
In/2 ' 26A, 3In/4 ' 38A, 7In/8 ' 45A and In ' 52A.
For clarity reasons, spectra are only presented in this section
for Ωmotor = 1500RPM and Imotor = 52A but results are
similar for the other speed and load levels.

B. Belts slip

A priori, looseness affects the slip of the belts in two ways :
• The average value of the belts slip is susceptible to

increase with the decrease of the belt tension.
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Fig. 2. Illustration of the experimental test bench used to carry out the different tests of the study. A inverter-fed induction motor (right) drives a DC machine
(left) through a pulley-belt system (middle). The center distance d between the motor and its load is adjustable in order to change the belts looseness level.

• The spectral content of the belts slip may vary with the
looseness condition because of an eventual change of
belts grip behaviour or a possible belts flapping.

First, the evolution of the relative belts slip has been
plotted in Fig. 3 for different load conditions and for
Ωmotor = 1500RPM. It is clearly visible in Fig. 3 that belts
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Fig. 3. Evolution of the average value of the relative belts slip sΩ with the
looseness severity for different load levels and Ωmotor = 1500RPM.

looseness tends to increase the average value of belts slip sΩ,
especially for high load levels. Indeed, sΩ value is below 2%
for all load levels in healthy conditions whereas it reaches up
to 8% for critical belts looseness.

Secondly, spectra of the belts slip SΩ have been computed
for the different health conditions of the belts and are plotted
in Fig. 4. We can notice that the three harmonic families
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Fig. 4. Evolution of the belts slip spectrum SΩ(f) with the looseness severity
for Imotor = 52A and Ωmotor = 1500RPM.

SΩ(k.fr,belts), SΩ(k.fr,load) and SΩ(k.fr,motor) dominate the
belts slip spectrum and are impacted by the looseness level of
belts. The rotation frequency of the two belts is noted fr,belts
and is defined according to

fr,belts =
πDdriver

Lbelts
· fr,motor (4)

It is visible that harmonics SΩ(fr,belts) and SΩ(2fr,belts)
respectively decrease and increase with the severity of the
fault. We also remark a shift of the harmonic SΩ(fr,load) with
the fault level since the rotation frequency of the load fr,load
decreases with the belts looseness level. Its level remains stable



for the four belts condition. Finally, it is difficult to state on
the behaviour of harmonic SΩ(fr,motor) since its frequency is
close to the one of SΩ(fr,load) for the two healthiest belts
conditions. However, its level seems to increase with the
looseness severity for the two poorest health conditions of the
belts.

C. Motor vibrations

As illustrated in Fig. 2, two accelerometers have been
placed in radial and axial position on the IM frame. The
spectra of the vibration signals γr(t) and γa(t) thus obtained
have been computed for the different health conditions of
the belts. For clarity reasons and since the spectral content
of both vibration signals is alike and evolves similarly with
the considered fault, only axial vibrations spectra Γa(f) are
represented in Fig. 5. The three frequency families k.fr,belts,
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Fig. 5. Evolution of the axial vibrations spectrum Γa(f) with the looseness
severity for Imotor = 52A and Ωmotor = 1500RPM.

k.fr,load and k.fr,motor also dominate the low frequency part
of the vibrations spectral content. However, the evolution of
the looseness severity hardly affects their level. Only the shift
of harmonic Γa(fr,load) betrays the tension loss of the belts.

D. Motor speed

The motor speed, as well as the load speed, has been
measured by an encoder and recorded for each health condition
of the belts. Its spectral content may also be affected by a
change of the transmission system properties. Therefore, the
spectrum Ωmotor(f) of the motor speed has been plotted in
Fig. 6 for the four looseness levels. Several observations can
be made on the motor speed spectrum and on its evolution
with the looseness level. First, the shift of the harmonic
Ωmotor(fr,load) is also visible in the speed spectrum but it is
accompanied here by a rise of its level with the fault severity.
Secondly, harmonics Ωmotor(fr,belts) and Ωmotor(2fr,belts)
are also impacted by the considered default and evolve in
the same way that harmonics SΩ(fr,belts) and SΩ(2fr,belts)
with its severity. Finally, it is visible that the harmonic
Ωmotor(fr,motor) strongly increases with the belts looseness
level.
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Fig. 6. Evolution of motor speed spectrum Ωmotor(f) with the looseness
severity for Imotor = 52A and Ωmotor = 1500RPM.

E. Motor phase currents

The study of mechanical variables have shown that several
frequency families , such as k.fr,belts, k.fr,load and k.fr,motor,
are susceptible to react with the increase of the belts loose-
ness. Vibration and motor speed signals are however not
automatically measured by industrial variable speed drives,
specially for low power systems. This remark is even more
valid for the load speed signal. In view of industrial detection
of belt looseness, it is therefore interesting to analyse the
spectral content of the IM phase currents since they are often
available for control purposes. The spectrum I1(f) of motor
phase current i1 is plotted in Fig. 7 for the different belts
looseness conditions. The frequency families considered in the
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Fig. 7. Evolution of phase current spectrum I(f) with the looseness severity
for Imotor = In and Ωmotor = 1500RPM.

study of mechanical quantities are modulated by the supply
frequency ff in the case of phase currents. It is observed
in Fig. 7 that the behaviour of harmonics I(ff + k.fr,belts),
I(ff + k.fr,load) and I(ff + k.fr,motor) with the increase of
belts looseness is strongly similar to the one of the motor
speed harmonics Ωmotor(k.fr,belts), Ωmotor(k.fr,load) and
Ωmotor(k.fr,motor). Mechanical effects of belts looseness are
therefore well reflected in the spectral content of electrical



quantities such as motor phase currents. Moreover, since load
speed and belt slip are usually not measured on industrial
drives, harmonics I(ff + k.fr,belts) and I(ff + k.fr,load)
may be difficult to track if belts slip changes over time.
Current harmonics I(ff + k.fr,motor) are however easy to
calculate since the rotation frequency of the motor fr,motor

is measured or estimated on most variable speed drives. A
belt diagnosis strategy may therefore be defined for industrial
systems by monitoring the current harmonic I(ff +fr,motor).
The mean elevation of the harmonic I(ff + fr,motor) from
its value with healthy belts has been calculated for each
belts condition. These values have been computed with a
number of recording Nrec = 20 for each operating point and
results are presented in table II. It is clearly visible that the

TABLE II
EVOLUTION OF THE CURRENT HARMONIC I(ff + fr,motor) AVERAGE

VALUE WITH THE BELTS LOOSENESS SEVERITY AND FOR DIFFERENT
LOAD CONDITIONS AT Ωmotor = 1500RPM.

Load level Moderate
looseness

Strong
looseness

Critical
looseness

I0 ' 15A + 1dB + 0dB + 0dB
In/2 ' 26A + 16dB + 15dB + 18dB

3In/4 ' 39A + 10dB + 16dB + 18dB
7In/8 ' 45A + 14dB + 13dB + 19dB

In ' 52A + 12dB + 11dB + 14dB

increase of the belts looseness provokes an elevation of the
considered harmonic. This rise tends to be greater with the
fault severity but it is not always valid. Moreover, a minimal
load torque seems necessary to observe this phenomenon.
The level of I(ff + fr,motor) is indeed not affected by the
tension loss of the belts for no load condition (Imotor = I0).
Results are however significant and show the possibility of
monitoring belts looseness condition from the motor current
measurements.

IV. EFFECT OF BELT LOOSENESS ON MECHANICAL AND
ELECTRICAL QUANTITIES UNDER TRANSIENT STATE

OPERATION

The belts looseness degradation has a clear influence on the
spectral content of mechanical (speed, belts slip, vibrations)
and electrical variables (phase currents) under steady state
operation. However, the mean elevation of the belts slip
illustrated in Fig. 3 is not efficiently used to diagnosis the
belts condition. Therefore, the main idea of this section is to
exacerbate the belts slip with sudden accelerations imposed to
the system and to analyse the dynamic response of the different
system’s variables under different belts looseness conditions.

A. Operating conditions
In this section, a speed reference step ∆Ω is applied to

the system at a time Tstep = 1s. The motor speed reference
therefore rises from Ω1 = 2000RPM to Ω2 = 2500RPM under
the load condition Imotor = 38A. All dynamic tests have been
carried out for two conditions of the belts : healthy belts and
moderate belts looseness.

B. Belts slip

The step response of the relative belts slip sΩ(t) has been
illustrated in Fig. 8 for the two belts looseness condition
considered in this section. We first observe in Fig. 8 that belts
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Fig. 8. Dynamic response of the relative belts slip sΩ(t) to the speed
reference step ∆Ω for healthy and loosen belts under the load level
Imotor = 38A.

slip, during steady state conditions (before t = 1s and after
t = 1, 9s), is slightly higher with moderate belts looseness than
in healthy case, as it was illustrated in Fig. 3. However, the
torque impact due to the sudden motor acceleration provokes
an important rise of the belts slip which reaches up to 10%
with loosen belts compared to only 4% when using healthy
belts.

C. Motor speed

The drop-out of the belt-pulley adherence observed in
Fig. 8 surely affects other physical variables of the system,
starting with the motor speed. The step-response of Ωmotor(t)
has therefore been illustrated in Fig. 9 for both looseness
conditions considered in this section. We can observe that the
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Fig. 9. Dynamic response of motor speed Ωmotor(t) to the speed reference
step ∆Ω for healthy and loosen belts under the load level Imotor = 38A.

speed rise is clearly affected by the tension loss of the belts
during the acceleration phase. With loosen belts, the motor
speed first increases faster since the load is not fully driven
(high value of sΩ). In the second part, the motor speed Ωmotor

rises slower and merges with its dynamic response obtained
in healthy condition since the belts slip falls and the load has
to be fully accelerated too.



D. Motor phase currents

The change in the motor speed behaviour between healthy
and loosen belts may change the dynamic response of electri-
cal quantities. The response of phase current i1 has been plot-
ted in Fig. 10 in order to observe this phenomenon. The current
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Fig. 10. Dynamic response of motor phase current i1(t) to the speed
reference step ∆Ω for healthy and loosen belts under the load level Imotor =
38A.

increase due to the system acceleration is clearly visible at
Tstep = 1s. However, the difference between healthy and
loosen belts is difficult to observe because of the sinusoidal
waveform of i1 (t). In order to overcome this problem, the
instantaneous amplitude IA(t) of phase currents i1(t), i2(t)
and i3(t) has been calculated by using the Concordia trans-
form. Details about IA(t) calculation are presented in [21].
The results obtained for both belts conditions are illustrated in
Fig. 11 and the impact of the looseness level is better noticed
from signal IA(t) than from the current signal itself. Indeed,
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the dynamic response of the currents instantaneous amplitude
IA(t) is distorted when the belts looseness level increase. The
currents’ amplitude peak is attenuated in the first part of the
step-response when loosen belts are used instead of healthy
belts. Moreover, the drop of IA(t) is visibly slower in faulty
condition.

Phenomena observed in this section, i.e. the distortion of
the dynamic response of motor speed and currents, are also
visible for different load conditions. The load level visibly
enhances the changes between healthy and faulty belts con-
dition as it was the case for steady state results. Moreover,

higher (∆Ωhigh = 1000RPM) and lower (∆Ωlow = 100RPM)
speed reference step have been used and the same distortions
in the variables’ responses are observed, with an amplitude
depending on the speed reference step applied to the system.

V. DISCUSSION, CONCLUSION AND PERSPECTIVES

Belts looseness effects on mechanical and electrical vari-
ables of a system driven by an inverter-fed IM and a belt-pulley
coupling have been studied in this paper. The spectral analysis
performed under steady state on the different measurements
have shown that several frequency families are sensitive to
the belts looseness condition. Spectral signatures are partic-
ularly visible on phase currents which are often available in
industrial drives for control purposes. A belt diagnosis strategy
can therefore be envisaged by monitoring the phase current
harmonic I(fr,motor).

Transient state tests have also been carried out by applying a
speed reference step ∆Ω to the motor. The belts slip is clearly
exacerbated and the dynamic response of the motor speed
Ωmotor and of the currents IA are consequently distorted. As it
stands, it seems difficult to use these transient state phenomena
to produce a fault signature related to the belts condition. Time
domain quantities such as currents’ overshoot or rise time
indeed appears not to be optimal fault indicators because they
do not reflect the entire distortion of the considered variable.

An interesting perspective however consists in applying a
square-wave speed reference signal to the system and to study
the variables’ responses in the frequency domain. Indeed, a
square-wave signal with a small amplitude ∆Ωsquare and a
frequency fsquare may be added to the steady state speed
reference Ωref and will hardly affect the system performances
during the recording time. Any distortion of their response
due to belt looseness will produce a change in their spectral
content at well known frequencies multiple of fsquare. A few
tests have been realized with square-wave speed reference
signal in order to detect belts looseness and the study of
harmonics IA(k.fsquare) show promising results. A complete
test campaign of this pseudo-steady state method will be
achieved for different speed and load conditions and results
will be presented in a future paper. Moreover a comparison
between the steady state results presented in section III and
those obtained with the pseudo-steady state tests will be
provided too.
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