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Abstract—The use of low pressure non-equilibrium plasma
as epsilon negative medium for a zero-order spherical antenna
resonator is considered. Static behaviour of the resonance for
a non-homogeneous plasma is investigated under quasi-static
assumption and discrete radial description of the plasma. An-
alytical and numerical results are consistent and show that the
implementation of such a plasma-based antenna is possible.

Index Terms—miniaturization, low pressure non-equilibrium
plasma, ENG resonator.

I. INTRODUCTION

For many applications, antenna miniaturization is of particu-
lar interest, especially in the VHF-band where the wavelength
is about one meter. Many different miniaturization techniques
have been investigated [1]. Amongst them, the use of a nega-
tive permittivity medium has been proposed in order to create
a so-called Epsilon NeGative (ENG) spherical resonator [2],
[3]. Small ENG spheres can indeed reveal a resonant behaviour
when disturbed by incident field.

This scattering behaviour can be found using Mie theory
and can be reduced in our case to a Laplace problem by
assuming a quasi-static response of the sphere. Let us consider
the general scattering problem shown in Figure 1. It consists
of a homogeneous sphere of radius a, filled with an isotropic
dielectric with relative permittivity εp and surrounded by
vacuum. If we assume that this sphere is small compared with
the wavelength (ka� 1), one can determine under quasi-static
assumption the normalized polarizability α of such a sphere
immersed in a constant vertically polarized E-field by solving
Laplace equation for the scalar potential [2]:

α = 3
εp − 1

εp + 2
(1)

This expression exhibits the well-known static resonance
of a negative permittivity sphere when εp = −2. Note that
although (1) is valid for ka = 0 only, this approach still
provide relevant information on the resonance for ka � 1
[4].

Practical implementations of this static resonance based on
metamaterials confirmed the previous analytical result [5], [6].
In this work, we suggest to realize this ENG resonator using
a plasma discharge. The plasma indeed exhibits this property
and its parameter settings let us foresee a possible tunability.

Fig. 1. Schema of the scattering problem of a homogeneous sphere in a
constant vertically E-field.

However, the use of a low pressure non-equilibrium plasma
involves many practical downsides that need to be consid-
ered. This paper will address the following problems: plasma
confinement, non homogeneous permittivity, dispersion, and
losses.

II. LOW PRESSURE NON-EQUILIBRIUM PLASMA
PROPERTIES

A plasma is an ionized gas whose global charge remains
macroscopically neutral. In a low pressure non-equilibrium
plasma, only electrons have enough energy to ionize the gas
and the degree of ionization δ (ratio of free-moving electrons
to the total amount of particles) is usually low: δ < 10−3.

Non-magnetized low pressure non-equilibrium plasma
medium can be represented by its complex relative permittivity
εp which obeys the well-known Drude model [7]:

εp(ω) = 1−
ω2
p

ω(ω + iν)
(2)

where ν is the electron collision frequency which represents
the losses (hereafter ν is set to 40 MHz) and ωp is the plasma
angular frequency defined by:

ωp =

√
e2ne
meε0

(3)

with e the Coulomb charge, ne the electron density, me the
mass of electron and ε0 the vacuum permittivity.

Considering the problem of a plasma sphere, one must note
that the electron density ne will not be uniform in the sphere
and neither will the relative permittivity εp. To determine the



Fig. 2. Schema of the scattering problem of a homogeneous sphere in a
constant vertically E-field surrounded by a glass shell (εs = 5.5)

permittivity profile inside a sphere of radius ap, one must find
the electron density profile. Considering a sphere of plasma
ignited by a radial source term Q(r) proportional to the
electron density ne, as it is usually the case for weakly ionized
plasma, the equation of continuity is [8]:

∂ne
∂t
−D∆ne = Q(r) (4)

where D is the diffusion coefficient.
In steady state, (4) becomes a Poisson-type differential

equation. As a consequence of the spherical symmetry, ne is
only a function of r. Solving (4), ne can be expressed with a
Bessel function of the first kind of order n = 0 [8]. For small
r, we approximate the Bessel function of the first kind by a
polynomial function of degree 2. Assuming the density fall is
about 70 % at the outer limit of the plasma, we can define a
density profile for r < ap as follow:

ne(r) = n0e

[
1− 0.7

(
r

ap

)2
]

(5)

The influence of such a density profile is studied later.

III. INFLUENCE OF A CONTAINING LAYER

As shown in Figure 2, the homogeneous plasma εp is now
surrounded by a shell made of glass (permittivity εs = 5.5)
and its static behaviour is studied. One can solve the Laplace
equation by considering the following boundary conditions at
each interface: continuity of both scalar potential and radial
component of the electric displacement field. Let ap be the
radius of the plasma sphere and e the thickness of the glass
shell surrounding the plasma. The polarizability of the system
is [9], [10]:

α = 3
β(εs − 1)(εp + 2εs) + (2εs + 1)(εp − εs)
β(εs + 2)(εp + 2εs) + 2(εs − 1)(εp − εs)

(6)

where β = (
ap+e
ap

)3 stands for the cubic radius ratio.
Figure 3 shows how the required plasma relative permittivity

changes relatively to β and εs to guarantee the static resonance.
For a given cubic radius ratio β, if we increase the permittivity
of the shell, the system will require a higher |εp| to resonate,
which means a raise in electron density ne. On the other hand,
for a given εs, decreasing β will asymptotically lead to a

Fig. 3. Required plasma relative permittivity to enable the resonance of a
plasma-shell system regarding to both shell relative permittivity εs and cubic
radius ratio β

Fig. 4. Schema of the scattering problem of a N -layers plasma sphere of
constant permittivity εpi , for i = 1 to N surrounded by a glass shell εs.

single-layered system whose plasmonic resonance is given by
εp = −2, which is consistent with (1).

Finally, the shell acts as an additional dielectric layer that
offsets the resonance (regarding to the geometric and electric
parameters) without cancelling it.

IV. INFLUENCE OF THE RADIAL GRADED PLASMA

We now consider the geometry presented in Figure 4 to
analyse the influence of a non homogeneous electron density.
we assume ne to be r-dependent only, according to a profile
given by (5). The plasma can then be divided into N layers
of constant thickness (shell number i with radius iapN ). For
each layer, considering ne as constant and equal to the electron
density at the median radius i, we can combine (2), (3) and (5)
to derive the permittivity εpi . Therefore, we can again solve the
Laplace equation to find the overall polarizability and highlight
potential resonances.

The design parameters are: an outer radius a defined by
a = ap + e = 45 mm, a shell thickness e = 2.14 mm and a
peak value of electron density n0e = 4.5 × 109 cm−3. Figure 5
represents the resonant frequencies found for different values
of N . When N increases, the observed resonant frequency
approaches the converged value of 300 MHz in that case.

It is clear from Figure 5 that one might consider enough
layers to get accurate results. Thereafter, we will use N = 11
layers to approximate the spherical resonator. It corresponds to



Fig. 5. Analytical resonant frequencies of a N -layered plasma-shell system
for different values of N . The density profile is given by 5 with n0

e =
4.5 × 109 cm−3 and converged value is fres = 300 MHz.

Fig. 6. Radial profile of permittivity obtained for n0
e = 4.5 × 109 cm−3. The

blue curve represents the continuous profile and the red curve (with markers)
represents the 11-layers approximated profile.

a resonant frequency f0 = 302 MHz (i.e. an error of 0.6 %).
Figure 6 shows the resulting permittivity profile at 302 MHz.
Note that n0e was obtained by parametric analysis so that the
converged value is 300 MHz.

V. IMPEDANCE MATCHING

Now that we have settled all the geometric (a, e and N )
and electric (εpi ) parameters of the spherical resonator, we
can compute a full wave simulation of a plasma-based ENG
antenna using commercial software Ansys HFSS. Each plasma
layer is represented by a dielectric medium whose permittivity
follows the Drude model from (2).

As shown in Figure 7, this antenna consists of a half sphere
resonator coupled to a 50-Ω coaxial probe and placed above an
infinite ground plane. The blue part represents the glass shell
surrounding the 11 layers plasma sphere. The 50-Ω coaxial
probe is a cylinder of radius r = 4 mm and length l = 40 mm.
Note that, in each layer, we take into account plasma losses
(ν = 40 MHz).

Fig. 7. Cut-view of a N -layered plasma surrounded by a glass shell and
coupled to a 50-Ω coaxial probe. Only one quarter was used as xz and
yz symmetry planes were used to reduce the number of tetrahedra (close
to 90000)

Fig. 8. Simulated input impedance of the coaxially fed ENG resonator around
its resonant frequency.

Fig. 9. Simulated S-Parameter of the coaxially fed ENG resonator around
its resonant frequency.

The corresponding input impedance and S-parameter are
given in Figure 8 and Figure 9, respectively. As predicted by
the analytical model, a resonance occurs at f = 302 MHz. This
resonance is well-adapted to a 50-Ω transmission line. We also
observe in Figure 8 a strong antiresonance at f = 284 MHz.



Fig. 10. Simulated radiation efficiency (green curve with stars) and total
efficiency (blue curve with circles) of the coaxially fed ENG resonator around
its resonant frequency.

VI. RADIATION PARAMETERS

Using Ansys HFSS, we compute the radiation efficiency at
f = 302 MHz and compare it to the analytical value that can
be found in [11]:

ηrad =
1

1 + 3
√
3ν

2(ka)3ωp

(7)

where ka = 0.28 and ν = 40 MHz in our case.
Note that the plasma angular frequency ωp is not constant in

the sphere. E-field and H-field plots on Ansys HFSS confirm
however that the resonance is located at the outer plasma
layer. Thus, ωp is taken at r = ap, that is to say a value of
2.2 × 109 rad.s−1. The resulting analytical radiation efficiency
is ηrad = 33 %, which is close to numerical results plotted in
Figure 10.

Finally, the quality factor Q of the simulated antenna
is derived and compared with the well-known fundamental
limit [12]:

Qmin = ηrad

(
1

(ka)3
+

1

ka

)
= 12.1 (8)

The simulated Q-factor is calculated using Yaghijan and
Best approach [13]. Using the simulated antenna input
impedance Zin(ω) = RA(ω) + jXA(ω) (see Figure 8), we
can determine the following Q-factor at resonance:

QY ag(ω0) =
ω0

2RA

√
(R′A)

2
+

(
X ′A +

|XA|
ω0

)2

(9)

At the resonant frequency, we find QY ag = 43.1 which
represents about 3.57 times the fundamental limit. This value is
not optimum and suggests that the geometry can be improved
to enhance the bandwidth and the radiation efficiency.

Figure 11 represents the gain obtained at resonance fre-
quency for both φ and θ planes. It exhibits the classical
radiation patterns of a small electric dipole.

Fig. 11. Simulated radiation pattern of the coaxially fed ENG resonator
at resonance frequency f = 302 MHz. Blue curve (triangles) represents the
realized gain at φ = 0◦ and red curve (circle) represents the realized gain at
θ = 0◦

VII. CONCLUSION

A plasma-based spherical ENG resonator coupled to a
coaxial probe was studied here. We have considered a lossy
dispersive plasma whose permittivity is not homogeneous and
that is surrounded by a dielectric shell. Analytical approach
and numerical simulations confirmed that the static resonance
observed in small homogeneous sphere still occurs but the
frequency response is shifted regarding to the plasma gradient
and the shell properties.

Numerical results are in good agreement with analytical pre-
sizing of such a resonator. The antenna radiation efficiency was
found to be close to analytical limits and a good matching was
reached.

Future work will focus on optimizing the current design
to improve Q-factor and enhance impedance matching which
remains a non trivial challenge for this kind of antennas. Fur-
thermore, a prototype is currently in development to confirm
the feasibility of a plasma-based electrically small antenna.
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