

To link to this article: DOI: 10.1007/s00291-016-0436-0
URL: http://dx.doi.org/10.1007/s00291-016-0436-0

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 15987

To cite this version: Baydoun, Georges and Haït, Alain and Pellerin, Robert and
Clément, Bernard and Bouvignies, Guillaume A rough-cut capacity planning
model with overlapping. (2016) OR Spectrum, vol. 38 (n° 2). pp. 335-364.
ISSN 0171-6468

A rough-cut capacity planning model with overlapping

Georges Baydoun1 · Alain Haït2 ·
Robert Pellerin1 · Bernard Clément1 ·
Guillaume Bouvignies2

Abstract In the early phases of projects, capacity planning is performed to assess
the feasibility of the project in terms of delivery date, resource usage and cost. This
tactical approach relies on an aggregated representation of tasks in work packages.
At this level, aggressive project duration objectives are achieved by adopting work
package overlapping policies that affect both workload and resource usage. In this
article, we propose a mixed-time MILP model for project capacity planning with
different possibilities for overlapping levels between work packages. In the model, the
planning time horizon is divided into time buckets used to evaluate resource usage,
while starting and ending times for work packages are continuous. The model was
tested on a benchmark of 5 sets of 450 theoretical instances each. More than half of
the tested instances were solved to optimality within 500 s. Results also show that,
while overlapping is more beneficial for accelerating project delivery times, it can still
have a positive impact on project cost by allowing a better distribution of workload.

B Georges Baydoun
georges.baydoun@polymtl.ca

Alain Haït
alain.hait@isae.fr

Robert Pellerin
robert.pellerin@polymtl.ca

Bernard Clément
bernard.clement@polymtl.ca

Guillaume Bouvignies
guillaume.bouvignies@isae.fr

1 Department of Mathematics and Industrial Engineering, École Polytechnique, Montreal, Canada

2 Institut Supérieur de l’Aéronautique et de l’Espace-Supaero, University of Toulouse, Toulouse,
France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-016-0436-0&domain=pdf

G. Baydoun et al.

Finally, overlapping options seem to have less influence on the performance of the
model than project slack or number of work packages.

Keywords Rough-cut capacity planning · Concurrent engineering · Overlapping

1 Introduction

Overlapping is a common practice used in construction and in product development
projects to accelerate the execution of large projects. This technique consists of exe-
cuting in parallel two sequential activities by allowing a downstream activity to start
before the end of an upstream activity based on preliminary information. However, the
overlapping of activities can entail rework tasks and modifications as a result of the
transmission of complementary information after the start of the downstream activ-
ity (Berthaut et al. 2014). Activity overlapping thus allows the total duration of the
project execution to be reduced at the expense of additional workload and execution
cost associated with rework.

Several authors have studied the relation between rework and the amount of overlap
in a project conducted in a concurrent engineering context or fast-tracking mode. For
instance, Gerk and Qassim (2008) proposed a linear model for project acceleration
using crashing, overlapping and activity substitution. Activity crashing includes the
allocation of additional resources for an activity in order to accelerate its execution.
Activity substitution is another technique for accelerating projects by replacing one
(or more) activity with another activity.

Berthaut et al. (2014) and Grèze et al. (2012) proposed a more realistic approach by
restricting overlapping possibilities to a set of feasible overlap durations for each cou-
ple of overlappable activities, instead of considering a continuous and linear relation
between overlap amount and rework. This assumption is more realistic as overlapping
points between activities are defined through clear document or information exchange
in a concurrent engineering context, which limits the overlapping modes to a reduced
and discrete set of possibilities.

However, these resource-constrained project scheduling problem (RCPSP) models
are not suited for planners in the early phases of projects, as detailed activity con-
tent, duration, and resources are not precisely known, and as work intensity cannot be
assumed to be constant over execution time. Indeed, planners tend to adopt an aggre-
gate planning approach in large engineering projects where work packages (WPs) are
broadly defined as groups of multiple activities that could extend over a long period
(i.e. weeks or months) (Cherkaoui et al. 2013). In practice, project planning is done by
preparing several schedules at different phases of the project, where aggregation levels
depend on the ongoing phase and on the target audience. For instance, the front-end-
loading (FEL) approach, commonly used in large construction projects, is composed
of successive planning stages. Early phases involve tactical planning based on rough-
cut capacity planning (RCCP) techniques in order to fix all project milestones and
estimate resource usage. At this level, projects are divided into work packages (WPs)
which are clusters of activities. Rough-cut capacity planning (RCCP) models divide
the planning horizon into time buckets (or periods) used to evaluate critical resource

A rough-cut capacity planning model with overlapping

usage and by allowing resource allocation for WP to vary from one period to another
(De Boer 1998).

Recognizing the need of practitioners to better support the project planning func-
tion in the early phases of projects, this paper proposes an exact RCCP model that
determines the order of execution in a set of WPs so as to minimize the total project
duration and/or project cost, while respecting precedence relations, resource con-
straints and taking into consideration overlapping possibilities. The proposed model
considers variable WP intensities and aggregate resource capacities.

The remainder of the paper is organized as follows. We first give a brief state of the
art of existing RCCP models and overlapping models in Sect. 2. We then introduce
the original mixed-time RCCP model in Sect. 3, before explaining our new RCCP
model with multiple overlapping modes in Sect. 4. Section 5 explains the generation
of our test instances, and an illustrative example is presented in Sect. 6. Finally, Sect.
7 analyzes the performance and the results of our model, before some concluding
remarks are provided in Sect. 8.

2 Related work

In the order acceptance stage of a project, companies tend to commit to due dates
without accurate knowledge of their resource capacities. The RCCP ensures, at an
aggregated level, that the capacities of critical resources are sufficient to complete a
project within its time and cost limits (De Boer 1998). Performed at the tactical level,
the RCCP is based on a horizon divided into time buckets (or periods) used to evaluate
the resource usage. TheWPs are defined by their work content, and resource allocation
can vary from one period to another. Capacity and resource allocation flexibility allow
the WP durations to be adapted according to time and cost-related considerations.
WPs may start or end during a period; therefore, it is possible to plan a WP and its
successor within the same period.

Aside from denominated RCCPmodels, RCPSPmodels, where intensities can vary
from period to period, are also suitable for the RCCP problem as they consider fixed
workload for each activity and variable resource usage between periods, and therefore
variable activity durations. RCPSP models that are suitable for the RCCP have several
names in the literature such as resource constrained project scheduling with variable
intensity activities (RCPSVP) and RCPSP with flexible resource profiles.

Wullink (2005) distinguishes three classes of solution approaches for the RCCP:
straightforward constructive heuristics, LP based heuristics and exact approaches.
Among existing RCCPmodels, Hans (2001) proposed an exact approach that consists
of determining the periods where each job can be executed, and then specifying the
fractions of the WP contents that are actually executed in each period. However, this
method can allow a predecessor and any direct successor to be performed in the same
period without determining their ending and starting times within the period, which
could lead to precedence infeasibility. Hans (2001) proposed two alternatives to avoid
this problem by over-constraining the problem. Taking a project scheduling point of
view, Kis (2005) proposed an RCPSP model with variable activity intensities, which

G. Baydoun et al.

forbids two activities with a direct precedence relation to be executed in the same
period.

More recently, Haït and Baydoun (2012) proposed an exact approach that consists
of using continuous time representation for events, together with a discrete evaluation
of resources. This means that start and ending dates of WPs can be determined within
a time period, making it possible to guarantee that precedence constraints will be
respected.Yet, resource consumptions are still evaluated globally over periods,making
the model suitable for planning at a tactical level where planning is performed in
practice on a period-by-period basis (i.e. resource availabilities and allocations are
determined per period).

Recently, Naber and Kolisch (2014) addressed the RCPSP with flexible resource
profiles, meaning that resource usage of an activity can vary from period to period.
Their objective is to minimize project makespan while respecting availabilities per
periods of all resources. They propose four different discrete-time MILP model
formulations based on existing formulations and compare their performance. Their
experiments show that the model called “FP-DT3”, that is based on the RCPSP
formulationofBianco andCaramia (2013) and theRCPSVPmodel ofKis (2005), dom-
inates the other formulations in both solution quality and run-time. Several heuristic
approaches have also been proposed to solve the RCCP problem including construc-
tive heuristics (De Boer 1998) and linear-programming based heuristics (Gademann
and Schutten 2005).

Although some authors proposed interesting extensions to the precedence relations
of RCPSVP models by allowing overlapping, none of these models considers over-
lapping and rework. In fact, Kis (2006) extended his RCPSVP model by introducing
feeding precedence constraints: a successor can start after a percentage of the exe-
cution of his direct predecessor is completed. Alfieri et al. (2011) extended feeding
precedence constraints to generalized precedence relations. However, both Kis (2006)
and Alfieri et al. (2011) do not take reworks into account. Moreover, the models of Kis
(2006) and Alfieri et al. (2011) have only one possibility of precedence constraints
and do not consider several feasible modes of overlapping with different amounts of
rework.

Despite these recent advances, models that consider feeding precedence constraints
do not allow the overlapping of WPs that are normally executed consecutively. This
concurrent engineering method is a trend in product development and is also widely
used in contexts such as construction in order to accelerate project execution. It also
adds flexibility in starting and ending times, allowing for better use of regular capacities
and thus reducing the need for external resources. However, overlapping adds work-
loads, “reworks”, on both down-stream and up-stream WPs (Berthaut et al. 2014).
Reworks are a result of information exchange and eventual alteration of the work,
which are caused by starting a down-stream WP before all finalized information is
available from up-stream WP.

To fill this gap, we propose a mixed integer linear-programming model, which
is an extension of the RCCP model proposed by Haït and Baydoun (2012), where
predecessor–successor WPs can overlap according to multiple overlapping modes.
This extended model assumes that each overlapping mode can be defined by the
percentage of execution of a predecessor WP that needs to be reached in order to start

A rough-cut capacity planning model with overlapping

the successor, as well as the amount of reworks on both WPs. The model is further
explained in the following section.

3 Mixed-time RCCP model

This section presents the original model by Haït and Baydoun (2012). It combines a
continuous time representation of the starting and ending dates of WPs and a discrete
time evaluation of resources. A set of binary variables ensures the relation between
starting time, ending time and durations over periods. These durations give minimum
and maximum workload that can be assigned to the period.

In this section only, the starting and ending times ofWP i are denoted by continuous
variables t0i and t1i , respectively. Binary variables z

0
i p and z

1
i p equal 1 if the starting and

ending times (respectively) of WP i occur during or before time period p. Variables
dip and lip are respectively the duration and the assigned workload of WP i over the
period p. In Sect. 4, the aforementioned notationswill be generalized in order to handle
overlapping. Other definitions that are relevant to this section are given in Table 1.

In addition to basic definition-related constraints, there are four types of constraints
for themodel byHaït andBaydoun (2012): those ensuring the link between continuous
and binary variables for starting and ending times, the ones concerning the durations
over periods, scheduling constraints, and finally, workload and intensity constraints.

3.1 Continuous/binary variables constraints

The following constraints (1)–(3) ensure that binary variables z0i p and z
1
i p equal 1 only

in the periods during or after starting and ending events (respectively). These binary
variables were first introduced by Pritsker andWatters (1968) as a step formulation for
scheduling with limited resources, and used by several other authors including Bianco
and Caramia (2013). However, only the model by Haït and Baydoun (2012) used them

Table 1 Nomenclature: sets and parameters

Set/parameter Description

P, D, H Set of time periods (p ∈ P), duration of a period, time horizon H = D.|P|.
Period p starts at time D(p − 1) and finishes at D.p

I Set of work packages (i ∈ I)

RDi ,DDi Release date and due date of WP i

Succi Set of successors of i (Finish-to-Start, without overlapping)

Li Total required workload for WP i

Bmin
i , Bmax

i Minimum and maximum workload that can be assigned for i during a period
of duration D

R Set of resources (r ∈ R)

Krp Available regular capacity of resource r during period p

Air Fraction of the workload of i provided by resource r

Cext
r Unitary cost of extra-capacity for resource r

G. Baydoun et al.

t

p

D · (p− 1) D · p

(a)

(b)

(c)

(d)

(e)

(f)

t0 t1

t0 t1

t0 t1

t0 t1

t0 t1

t0 t1

Fig. 1 The six possible configurations for a WP regarding a time period p

in the context of a mixed continuous and discrete time representation.

tci ≥ D · p · (
1 − zcip

) ∀i ∈ I, c ∈ {0, 1}, p ∈ P (1)

tci ≤ D · p + H · (
1 − zcip

) ∀i ∈ I, c ∈ {0, 1}, p ∈ P (2)

zcip+1 ≥ zcip ∀i ∈ I, c ∈ {0, 1}, p ∈ {1 . . . |P| − 1} (3)

3.2 Durations over periods

When considering a WP i and a time period p, starting and ending events can be
before, during, or after p. Therefore, each couple WP i and time period p has six
possible configurations, depicted in Fig. 1.

The following constraints give the relations between WP durations over periods
(denoted dip) on one side, binary variables z0i p and z1i p and continuous time variables

t0i and t1i on the other side:

dip ≤ D ·
(
z0i p − z1i p−1

)
∀i ∈ I, p ∈ P (4)

dip ≥ D ·
(
z0i p−1 − z1i p

)
∀i ∈ I, p ∈ P (5)

dip ≥ t1i − D · p + D · z0i p−1 − H ·
(
1 − z1i p

)
∀i ∈ I, p ∈ P (6)

dip ≥ D · p ·
(
1 − z0i p−1

)
− t0i − D · z1i p ∀i ∈ I, p ∈ P (7)

|P|∑

p=1

dip = t1i − t0i ∀i ∈ I (8)

Constraints (4) forcedip to 0whenWP i is not active during period p [configurations
(a) and (c)] and limit its value to period duration D if i and p are in any of the four
other configurations. Inequalities (5), (6), and (7) concern configurations (d), (e), and
(f) respectively. Inequalities (5) give dip lower-bounds if WP i begins before period p

A rough-cut capacity planning model with overlapping

and is not completed during p. Constraints (6) [respectively (7)] provide lower-bounds
for dip when WP i is finished (respectively started) in period p. Finally, constraints
(8) provide global coherence between starting and ending times, and durations per
periods.

3.3 Scheduling constraints

EachWP has its own time window, consisting of a release date RDi and due date DDi .
Constraints (9) and (10) ensure that WP i is executed in its allowed time window.
Moreover, a successor cannot start before its predecessor is completed [constraints
(11)].

t0i ≥ RDi ∀i ∈ I (9)

t1i ≤ DDi ∀i ∈ I (10)

t0j ≥ t1i ∀i ∈ I, j ∈ Succi (11)

3.4 Workload and intensity constraints

Intensity constraints ensure that the part of a WP’s workload assigned to a period, lip,
respects minimum and maximum allowed intensities Bmin

i and Bmax
i [constraints (12)

and (13)]. Workload constraints guarantee that the total assigned workload over the
time horizon matches the required workload for the WP [equalities (14)].

lip ≥ Bmin
i · dip

D
∀i ∈ I, p ∈ P (12)

lip ≤ Bmax
i · dip

D
∀i ∈ I, p ∈ P (13)

∑

p∈P

lip = Li ∀i ∈ I (14)

3.5 Definition-related constraints

The following constraints are straight-forward results of definitions of makespan,
regular and extra resource allocations yrp and yextrp , and cost. Variables yrp and yextrp are
respectively regular and non-regular allocations for resource r during period p. While
we dispose of Krp regular capacity for resource r during period p [constraints (17)],
extra capacities come at an additional price. Project cost is calculated as the total cost
of extra capacities used for the whole project [constraint (18)].

makespan ≥ t1i ∀i ∈ I (15)

yrp + yextrp ≥
∑

i∈I
Air · lip ∀r ∈ R, p ∈ P (16)

yrp ≤ Krp ∀r ∈ R, p ∈ P (17)

G. Baydoun et al.

cost =
∑

r∈R

∑

p∈P

Cext
r .yextrp (18)

Possible objective functions are project makespan, project cost, or a trade-off
between makespan and cost.

4 Mixed-time RCCP model with overlapping

Overlapping is a trend in construction projects in order to accelerate project execu-
tion. Themixed-timeRCCPmodel only considers Finish-to-Start precedence relations
between WPs and is inadequate to create tactical project plans with overlapping
between WPs. To better support project planners, we propose an extension to the
mixed-time RCCP model in order to allow overlapping.

4.1 Overlapping work packages

Our newmodel is based on the same representation of time and events of WP start and
WP end, but adds a third type of events: intermediate milestones. These milestones
reflect the attainment of a certain development state of a WP. They may correspond to
important decision making moments, or the completion of key deliverables.

Figure 2 presents an example of a WP A with one successor. WP B can start after
the milestone t1A, overlapping its predecessor. WP A is divided into two parts by this
milestone and the ending event of A is now denoted t2A. The position of t

1
A depends on

the workload repartition from the beginning of A.
More generally, a WP i may have several overlapping milestones (one for each

successor that may overlap). We denote by Ci the number of these milestones that
cut the work package. WP i is therefore divided into Ci + 1 parts. The milestones
are denoted t1i . . . tCi

i and tCi+1
i is the end of the WP. Each part c has its own set of

Fig. 2 Work package A with one successor B that can overlap

A rough-cut capacity planning model with overlapping

durations over the periods, denoted dcip, and assigned workload during the periods, l
c
ip.

We also define overlapping durations over periods d̄i j p (e.g. d̄ABp in Fig. 2).
Finally, as explained in Sect. 1, overlapping involves a certain quantity of rework

that affects the successor as well as the predecessor. This additional work is performed
during the overlap and will be represented by variables l̄ predi j p and l̄ succi j p for the prede-
cessor and the successor, respectively.

4.2 Overlapping modes

Take again the example of Fig. 2. The new model has to answer the question: “how
to overlap ?” by choosing among several positions of milestone t1A. For example, it
could be possible to start B after 60 % of the workload of A is complete, with a certain
amount of rework. B could also start after 80 % of A, less interesting in terms of
project duration but with fewer rework. Finally, B could start after the end of A, with
no rework. Hence we have to choose among three overlapping modes between A and
B. Note that there is only one milestone t1A and its position will change according to
the selected mode.

Consider now the case of a WP A and two successors, B and C , that may overlap.
WP A is therefore divided into three parts (CA = 2). WP B can start after 70 or 100 %
(no overlapping) of A is complete in terms of workload. WP C can start after 35 and
100 % of the total workload of A. These alternatives involve four overlapping modes
for A with its successors as depicted in Fig. 3. The relative position of the milestones
associated with B and C depends on the selected mode.

In the model, the selection of a mode m for WP i will be performed by binary
variables eim . For eachmode, the position of themilestone associated to each successor
is given by parameter posi jm . We also define a binary parameter ovi jm to identify the
case of no overlap between i and j in mode m.

Tables 2 and 3 give the nomenclature for the new RCCP model with overlapping.
The extension of the RCCP model to overlapping between work packages is given by
constraints (19)–(50) described in the following subsections.

4.3 Continuous/binary variables constraints

Constraints (19), (20), and (21) are straight-forward results of the definition of zcip,
and generalize constraints (1)–(3).

tci ≥ D · p ·
(
1 − zcip

)
∀i ∈ I, c ∈ {0..Ci + 1}, p ∈ P (19)

tci ≤ D · p + H ·
(
1 − zcip

)
∀i ∈ I, c ∈ {0..Ci + 1}, p ∈ P (20)

zcip+1 ≥ zcip ∀i ∈ I, c ∈ {0..Ci + 1}, p ∈ {1 . . . |P| − 1} (21)

G. Baydoun et al.

Fig. 3 Four possible overlapping modes for a WP A with two successors B and C that can overlap

Table 2 Nomenclature: additional sets and parameters for the case with overlapping

Set/parameter Description

Predi Set of predecessors of WP i that can overlap on i

Succi Set of successors of WP i that can overlap on i

Ci Number of successor of WP i that can overlap on i

Mi Set of overlapping modes between i and its direct successors
(m ∈ Mi)

posi jm Position of j among the successors of i according to mode m ∈ Mi

ovi jm Binary parameter that equals 1 if WPs i and j overlap in mode
m ∈ Mi , 0 otherwise

Lcim Required workload of part c of WP i in mode m

L̄
pred
i jm Required rework on WP i in mode m ∈ Mi due to overlapping

between i and j

L̄succi jm Required rework on WP j in mode m ∈ Mi due to overlapping
between i and j

4.4 Durations over periods

Constraints (22)–(26) provide the link between durations per periods dcip and variables
tci and zcip, similar to Eqs. (4)–(8) of the original mixed-time model.

A rough-cut capacity planning model with overlapping

Table 3 Nomenclature: new variables for the case with overlapping

Variable Description

t0i , t
Ci+1
i Starting time and ending time of i

tci For c ∈ {1 . . .Ci } : ending time of part c of i

zcip For c ∈ {0 . . .Ci + 1} : binary variable that equals 1 if tci is in period p or
before

eim Binary variable that equals 1 if mode m is chosen for i , 0 otherwise

dcip Duration of part c of WP i within period p

lcip Workload of part c of WP i during period p

d̄i j p Duration of overlapping between WPs i and j within period p

l̄
pred
i j p Rework on WP i during p due to overlapping between WPs i and j

l̄ succi j p Rework on WP j during p due to overlapping between WPs i and j

dcip ≤ D ·
(
zc−1
i p − zcip−1

)
∀i ∈ I, c ∈ {1 . . .Ci + 1}, p ∈ P

(22)

dcip ≥ D ·
(
zc−1
i p−1 − zcip

)
∀i ∈ I, c ∈ {1 . . .Ci + 1}, p ∈ P

(23)

dcip ≥ tci − D · p + D · zc−1
i p−1 − H ·

(
1 − zcip

)
∀i ∈ I, c ∈ {1 . . .Ci + 1}, p ∈ P

(24)

dcip ≥ D · p ·
(
1 − zc−1

i p−1

)
− tc−1

i − D · zcip ∀i ∈ I, c ∈ {1 . . .Ci + 1}, p ∈ P

(25)
|P|∑

p=1

dcip = tci − tc−1
i ∀i ∈ I, c ∈ {1 . . .Ci + 1} (26)

Constraints (27)–(29) concern overlapping durations within periods by giving
upper-bounds for d̄i j p. Constraints (27) and (28) make sure that overlapping dura-
tions within periods never exceed durations within periods of both predecessor i and
successor j . Constraints (29) ensure that overlapping durations do not surpass the
span between the starting time of j and ending time of i . Note that inequalities (27)
consider the assumption that for a given WP, its overlapping predecessors can never
overlap on its overlapping successors (no cascade effect).

d̄i j p ≤d1j p ∀i ∈ I, j ∈ Succi , p ∈ P (27)

d̄i j p ≤
Ci+1∑

c=1

dcip ∀i ∈ I, j ∈ Succi , p ∈ P (28)

G. Baydoun et al.

d̄i j p ≤tCi+1
i − t0j + H · (1 − eim) ∀i ∈ I, j ∈ Succi ,m ∈ {Mi |ovi jm = 1}, p ∈ P

(29)

4.5 Scheduling constraints

Constraints (30) and (32) forceWP i to be in its allowed timewindow,while constraints
(31) make sure that the different parts of WP i are in order. Moreover, the end of each
part gives the time tci when a successor in Succi can start. Constraints (33) ensure
that successor j begins after the correct milestone of WP i . For successors in Succi
that cannot overlap on i , a classical end-to-start constraint is defined in constraints
(34). For successors in Succi that can overlap on i , constraints (35) exclude the case
in which a predecessor of i and a successor of i overlap (no cascade effect).

t0i ≥ RDi ∀i ∈ I (30)

tc+1
i ≥ tci ∀i ∈ I, c ∈ {0 . . .Ci } (31)

tCi+1
i ≤ DDi ∀i ∈ I (32)

t0j ≥ tci − H · (1 − eim) ∀i ∈ I,m ∈ Mi , j ∈ Succi , c ∈ {1 . . .Ci + 1|c = posi jm}
(33)

t0j ≥ tCi+1
i ∀i ∈ I, j ∈ Succi (34)

t1j ≥ tCi+1
i ∀i ∈ I, j ∈ Succi (35)

4.6 Workload and intensity constraints

Constraints (36) and (37) ensure that the required workload is attained for each part
of WP i according to the selected mode.

∑

p∈P

lcip ≥ Lc
im · eim ∀i ∈ I, c ∈ {1 . . .Ci + 1},m ∈ Mi (36)

∑

p∈P,c∈{1..Ci+1}
lcip = Li ∀i ∈ I (37)

In addition to initial workloads, reworks are required on predecessors and successors
that overlap. The reworks should be executed during the overlapping time between pre-
decessors and successors. Constraints (38) and (39) make sure that the total executed
reworks match the required reworks in selected modes.

∑

p∈P

l̄ predi j p ≥ L̄pred
i jm · eim ∀i ∈ I,m ∈ Mi , j ∈ Succi (38)

∑

p∈P

l̄ succi j p ≥ L̄succ
i jm · eim ∀i ∈ I,m ∈ Mi , j ∈ Succi (39)

A rough-cut capacity planning model with overlapping

Workload variables lcip, l̄
pred
i j p and l̄ succi j p are linked to durations dcip and d̄i j p to ensure

the respect of minimum and maximum allowed intensities. Constraints (40) and (41)
guarantee that total assigned workload for WP i in period p stays in the allowed
workload window for the total duration dcip in period p.

Ci+1∑

c=1

lcip +
∑

j∈Succi
l̄ predi j p +

∑

k∈Predi
l̄ succkip ≤ Bmax

i ·

Ci+1∑

c=1
dcip

D
∀i ∈ I, p ∈ P (40)

Ci+1∑

c=1

lcip +
∑

j∈Succi
l̄ predi j p +

∑

k∈Predi
l̄ succkip ≥ Bmin

i ·

Ci+1∑

c=1
dcip

D
∀i ∈ I, p ∈ P (41)

Constraints (42) and (43) make sure that maximum and minimum intensities are
respected for initial workload for every part of a WP, while constraints (44) and (45)
ensure that maximum intensity is respected for reworks.

lcip ≤ Bmax
i · d

c
ip

D
∀i ∈ I, c ∈ {1 . . .Ci + 1}, p ∈ P (42)

lcip ≥ Bmin
i · d

c
ip

D
∀i ∈ I, c ∈ {1 . . .Ci + 1}, p ∈ P (43)

l̄ predi j p ≤ Bmax
i · d̄i j p

D
∀i ∈ I, j ∈ Succi , p ∈ P (44)

l̄ succi j p ≤ Bmax
j · d̄i j p

D
∀i ∈ I, j ∈ Succi , p ∈ P (45)

4.7 Definition-related constraints

The following constraints are straight-forward results of the definition of variables
eim , yintrp , y

ext
rp , makespan, and cost.

∑

m∈Mi

eim = 1 ∀i ∈ I (46)

makespan ≥ tCi+1
i ∀i ∈ I (47)

yrp + yextrp ≥
∑

i∈I
Air ·

⎛

⎝
Ci+1∑

c=1

lcip +
∑

j∈Succi
l̄ predi j p +

∑

k∈Predi
l̄ succkip

⎞

⎠ ∀r ∈ R, p ∈ P

(48)

G. Baydoun et al.

Table 4 New parameters for the modified instances generation

Parameter Description

ω Fraction of predecessor–successor
couples that can overlap.
0 ≤ ω ≤ 1

[Mmin, Mmax] Range of overlapping modes for
every predecessor–successor
couple that can overlap. Mmin ≥ 1

Ov% Percentage that characterizes the
amount of overlapping

αpred, αsucc Coefficients that characterize the
quantity of needed rework on
predecessors and successors.
0 ≤ α ≤ 1

yrp ≤ Krp ∀r ∈ R, p ∈ P (49)

cost =
∑

r∈R

∑

p∈P

Cext
r .yextrp (50)

Possible objective functions are project makespan, project cost, or a trade-off
between makespan and cost.

5 Instances generation

5.1 Original test instances

In order to test our model, we used a set of 450 instances that were generated by De
Boer (1998) and that are commonly used to test RCCP models. Each instance consists
of one project and was generated randomly by applying a procedure developed by
Kolisch et al. (1995).

Using three parameters, De Boer (1998) generated 45 classes of 10 instances
each. A class is characterized by the number of WP n, the total number of
resources r , and its average slack s. The latter parameter is defined as follows:

s =
∑

j∈J DD j−RD j−Dmin j +1

n , where Dmin j is the minimum duration of WP j .
De Boer’s 450 instances have been generated with three different values for para-

meter n (10, 20, or 50 activities), three for r (3, 10, or 20 resources) and five for s (2,
5, 10, 15 and 20). The following section explains how we modified these instances so
as to allow overlapping.

5.2 Modified test instances

In addition to the previous parameters n, r , and s, we introduce six more parameters
for our modified instances generation. These parameters are defined in Table 4.

A rough-cut capacity planning model with overlapping

Parameterω is based on the number of predecessor–successor couples in the original
instance, i.e. the couples of work packages linked by a direct precedence constraint.
By definition, ω represents the ratio between the number of couples that may overlap
and the total number of predecessor–successor couples (denoted Total Number Of
Couples) in the instance. If ω = 0, then there is no overlap: this corresponds to the
original instances. In order to generatemodified instances for a given value ofω greater
than 0, we randomly choose �ω · Total Number Of Couples� couples to overlap.

Suppose that a couple (i, j) can overlap. Then its number of overlapping modes,
denoted Mi j , is randomly chosen between Mmin and Mmax. The milestone that autho-
rizes the beginning of successor j is associated, for each mode, to a percentage of
Li , the total required workload of the predecessor. In our modified instances, this
percentage is given by

(100 % − (Mi j − m) · Ov%) ∀m ∈ {1 . . . Mi j }. (51)

Finally, for each mode, the needed rework is calculated as follows:

Predecessor:

(
(Mi j − m) · Ov%

100

)
αpred · Li ∀m ∈ {1 . . . Mi j } (52)

Successor:

(
(Mi j − m) · Ov%

100

)
αsucc · Li ∀m ∈ {1 . . . Mi j } (53)

For the remainder of this paper, we fixed Mmin = 2, Mmax = 3, Ov% = 20 %, and
αpred = αsucc = 0.4 for all generated instances, and only varied parameter ω.

In the last step we recalculated the release and due dates of the WPs. In fact, time
windows were tightened in the original instances, considering simple Finish-to-Start
precedence relations (De Boer 1998). This makes them inadequate for our instances
that allow overlapping. We explain in detail our calculations of the release and due
dates for our modified instances in Sect. 5.3.

5.3 Release and due dates

In the instances of De Boer (1998), time windows were first calculated using longest
path calculations. They were then tightened in order to respect a maximum slack and
an average slack. After eachmodification, all release and due dates were updated using
longest path calculations.

For our modified instances, we first spotted all release and due dates that were not
obtained via longest path calculations in the original instances, and we fixed them
in our modified instances. We then tightened all time windows using longest path
calculations adapted to overlapping. For a WP, these calculations give the earliest
start date (respectively latest finish date) knowing the earliest start dates (respectively
latest finish dates) of all its predecessors (respectively successors) and the maximum
possible overlappingwith each predecessor (respectively successor).With our adapted
calculations of release and due dates, we obtain the same time windows as the original

G. Baydoun et al.

instances when fixingω = 0 (no overlapping), and possibly larger timewindowswhen
ω > 0.

Note that modifying time windows increases the average slack s values of the
instances of De Boer (1998). We calculated the new average slack values for the high-
estω value of our new instances (worst case scenario), and found out that the difference
between the new and the original values is equal to 2.35 on average, with a 99 % con-
fidence interval of [2.18; 2.52]. This means that even in the worst case, new instances
coming from the same original s value are very likely to have new slack values between
s + 2.18 and s + 2.52. Therefore, the original instances with average slack values of
2, 5, 10, 15, and 20 are very likely to lead to new instances with buckets of slack
values in the intervals [4.18; 4.52], [7.18; 7.52], [12.18; 12.52], [17.18; 17.52], and
[22.18; 22.52] (respectively). Hence our new instances can still be grouped according
to the average slack value of their original instances. For the sake of clarity, we will
keep using the original slack values as parameters for our modified instances.

6 Illustrative example

In this section, only two simple instances (derived from rccp192) are presented for
illustration purposes. For each instance, the project consists of 10 WPs, 3 resources,
and a time horizon of 23 weeks. The first instance was generated while fixing ω = 0,
and the second one was created withω = 0.2. Figure 4 shows the precedence relations
between WPs for the two instances. Each vertex represents a WP, and each directed
edge represents a predecessor–successor relationship between two WPs. When a
predecessor–successor couple has two or more overlapping modes, a label appears
on the edge showing the number of overlapping modes between the two WPs.

In the case where ω = 0, no overlapping is allowed between any couple. Thus, all
of the 12 predecessor–successor couples have one overlappingmode (no overlapping).
When ω = 0.2, the instance generator chooses �0.2 · 12� = 3 couples and randomly
gives 2 or 3 overlappingmodes for each chosen couple. As illustrated in Fig. 4, couples
WPs 1–4 and WPs 6–10 have 2 overlapping modes each: WPs 4 and 10 can both start
after 80, or 100 % of WPs 1 and 6 (respectively) are completed. Couple WPs 2–5
have 3 overlapping modes: WP 5 can start after 60, 80, or 100 % of WP 2 is attained.
Thus WPs 1 and 6 have 2 overlapping modes with their successors, while WP 2 has
3 overlapping modes. Furthermore, each of WPs 1, 2 and 6 is divided into 2 parts, as
they only have one successor that can overlap.

We implemented our model using the Optimization Programming Language (OPL)
and ran our model on IBM ILOG CPLEX Optimization Studio 12.5.1.0 while mini-
mizing a tradeoff between project cost and makespan.

Figure 5 shows the charts that we obtained with both instances, as well as the
allocations for the three resources. WPs are shown in descending order in the Gantt
chart (WP 1 is the highest, and WP 10 is the lowest). For each WP, a white rectangle
delimits the allowed time window. Note that these rectangles are wider for ω = 0.2
because release and due dates were recalculated in order to take into account the
possibility of overlapping. Colored rectangles show starting and ending dates of WPs
(or possibly of parts of WPs). Resource allocations are shown per period with stacked

A rough-cut capacity planning model with overlapping

Fig. 4 Precedence relations between WPs for a project with and without overlapping

Fig. 5 Comparison of the plan obtained for a project with and without overlapping: Gantt charts (top
charts), and stacked bar charts (bottom three charts) showing the usage per period of the three resources

bar charts, where each color relates to a WP in the Gantt chart, and where hatched
bars refer to rework. Stepped curves represent regular resource availability for each
period.

Both instances were solved to optimality in less than 4 s. When allowing overlap-
ping, projectmakespanwas reduced at the price of increasing project cost. In Fig. 5, we

G. Baydoun et al.

see that WP 1 overlaps on WP 4 thus entailing rework workloads for both WPs. This
additional workload is allocated during period 6. Note that, because of overlapping,
WPs 8 and 9 finished earlier, thus reducing project duration by 2.3 periods (11 %).
Meanwhile, project cost is increased by 43.3 units (34 %) because of a greater use of
non regular resources.

However, minimizing tradeoff function does not always have the same effect on
project cost andmakespan as in this example. Other instances showed that overlapping
can reduce the use of non regular resources, thus diminishing the project cost, at the
expense of an increased duration.

7 Computational results

We performed all of our tests on a single thread, using a computational grid consisting
of 26 PCs with two 3.07 GHz Intel(R) Xeon(R) X5675 Processors running under
Linux. We encoded our model using the Optimization Programming Language (OPL)
and ran our model on IBM ILOG CPLEX Optimization Studio 12.5.1.0 using the
default values for all CPLEX parameters.

7.1 Tests on the original instances

A series of tests was conducted in order to evaluate the performance of our new
model. We denote with A the original model of Haït and Baydoun (2012) and B our
new model that handles overlapping. We ran the model A on the 450 instances of De
Boer (1998), and our model B on our modified instances of De Boer (1998) where
we fixed ω = 0. In this particular case where no overlapping couples are allowed, the
two sets of instances are equivalent. The objective is to minimize the cost. Having the
same optimal solutions, we only compared the performance of the twomodels in terms
of CPU times, the gaps between lower and upper bounds, and the number of times
the models were solved to optimality. Table 5 shows for each class the average CPU
time for the original model A and our new model B, with the objective of minimizing
project cost, while Table 6 compares the number of times both models A and B found
an optimal solution for each class.

Tables 5 and 6 show that the performance of the new model B is slightly degraded
compared to model A when tested on equivalent instances. This may be due to the
fact that model A is more compact and adapted to the case without overlapping.
Nevertheless, these instances are difficult to solve and our results can be compared to
those of Hans (2001) (branch and price for the RCCP) and Kis (2005) (branch and cut
for the RCPSVP), as presented in Haït and Baydoun (2012).

7.2 Tests on the modified instances

We ran our newmodel B on five sets, with five different values ofω (0, 0.1, 0.2, 0.3 and
0.4), of 450 instances each (total of 2250 instances), with a time limit of 10,000 s for
every test. We then divided the time limit into 20 intervals of 500 s each, and counted

A rough-cut capacity planning model with overlapping

Table 5 Average CPU time in seconds for models A and B when minimizing the project cost without
overlapping

n = 10 n = 20 n = 50

r = 3 10 20 3 10 20 3 10 20

s = 2

A 0.1 0.1 0.1 0.1 0.2 0.2 0.4 0.6 1

B 0.1 0.1 0.1 0.2 0.2 0.2 0.7 0.9 1.1

s = 5

A 0.3 0.4 0.4 1 2.1 3.8 14 289 280

B 0.3 0.4 0.5 1.6 2.5 4 30 406 346

s = 10

A 3.5 2.5 3 39 223 235 2694 4930 5000

B 4.9 2.7 3.1 56 383 187 3488 5000 5000

s = 15

A 6 10 22 450 2147 3115 5000 5000 5000

B 11 12 21 636 2217 2980 5000 5000 5000

s = 20

A 13 66 48 1036 4198 3818 5000 5000 5000

B 22 74 48 2071 4315 3771 5000 5000 5000

Table 6 Number of times models A and B were solved to optimality when minimizing the project cost
without overlapping

n = 10 n = 20 n = 50

r = 3 10 20 3 10 20 3 10 20

s = 2

A 10 10 10 10 10 10 10 10 10

B 10 10 10 10 10 10 10 10 10

s = 5

A 10 10 10 10 10 10 10 10 10

B 10 10 10 10 10 10 10 10 10

s = 10

A 10 10 10 10 10 10 6 1 0

B 10 10 10 10 10 10 4 0 0

s = 15

A 10 10 10 10 7 7 0 0 0

B 10 10 10 10 8 6 0 0 0

s = 20

A 10 10 10 10 4 3 0 0 0

B 10 10 10 8 2 4 0 0 0

G. Baydoun et al.

Fig. 6 Percentage of instances that were solved to optimality within the specified time interval

the number of times CPU time was inside each interval. Figure 6 shows that 56.9 %
of instances were solved to optimality during the first 500 s, and that time limit was
reached before optimality for 32.2 % of instances. For 0.2 % of instances, no feasible
(integer) solution was found after 10,000 s of computation. Figure 6 also shows that
only 2 % of instances were solved to optimality between 5000 and 10,000 s. Conse-
quently, in the remaining tests, we terminated the search after 5000 s for every test.

We define five criteria for evaluating the performance of the model for each value
of ω: the percentage of instances that were not solved to optimality, the average CPU
time divided by time limit, the percentage of instances that needed more than 50 % of
the time limit in order to be solved to optimality, the average gap, and the percentage
of instances that have more than a 5 % gap when reaching the time limit. Figure 7
presents the results for each value of ω in a radar chart, where better performing set of
instances are closer to the center. This chart contains five spokes representing the five
criteria. Each colored line represents the results for one value of ω. Continuous lines
give the values after 5000 s of calculation time, while dashed lines give the results
after 10,000 s of calculation time. Figure 7 shows that the performance of our model
is degraded on average, according to the five defined criteria, when the percentage
of predecessor–successor couples that can overlap augments. This is the result of an
increase in the number of binary and continuous variables, due to the separation of
someWPs into several parts, and also due to the different possible overlapping modes.

It is clear that the new parameter ω is not the only factor that has an impact on CPU
time; all four of the aforementioned parameters of instances can affect the performance

A rough-cut capacity planning model with overlapping

Fig. 7 Impact of changing ω on the performance of B, when minimizing project cost

of the model. Appendix 1 provides an extended statistical study of the influence on
CPU time of the parameters.

7.3 Comparison of objective functions

In order to conduct an analysis on the results that were obtained, we ran our model
on the 450 instances with ω = 0 (equivalent to the original instances of De Boer
1998) two times. We first fixed the objective of minimizing project cost, and then we
ran the model another time while minimizing project delivery time. Among 450, only
340 were solved to optimality when minimizing project cost. For these instances, we
obtained the optimal cost Cost0 and makespan Makespan0. We integrated these two
parameters in all of the corresponding data files (with the five different values of ω).
This means that for a given instance, we added two additional parameters, Cost0 and
Makespan0, which are the minimum possible cost and makespan for the instance if
no overlapping was allowed.

We used these two parameters in order to create a tradeoff objective function (54)
with normalized project cost and delivery time.

minimize βcost · cost

Cost0
+ βmakespan · makespan

Makespan0
(54)

G. Baydoun et al.

Table 7 Three combinations for
coefficients βcost and βmakespan

βcost βmakespan

Combination 1 25 75

Combination 2 50 50

Combination 3 75 25

Fig. 8 Percentage of instances where overlapping improved the objective

For each instance we tested three combinations for the coefficients βcost and
βmakespan as depicted in Table 7. For each combination, and each non-zero value of ω,
we compared the results to the case in which no overlappingwas allowed (ω = 0). Fig-
ure 8 shows for each combination and non-zero value ofω, the percentage of instances
where the objective was improved compared to the case where no overlapping was
allowed.

Two remarks can be made concerning the shape of the bar graph 8. First, note that,
for each combination of values for βcost and βmakespan, the percentage of instances
where the objective was improved when overlapping was allowed increases with ω.
This can be explained by the fact that the bigger ω is, the more flexible the problem
becomes. Thus, it is more likely to have a smaller objective value with a bigger ω.
Secondly, note that for a givenω, the percentage of instances that have a better objective
with overlapping is bigger when βcost = 25 and βmakespan = 75 (combination 1) than
the case in which βcost = 75 and βmakespan = 25 (combination 3). This can be
explained by the fact that overlapping is mainly beneficial when accelerating project
delivery time. Thus, its favorable effects are more pronounced when the tradeoff puts

A rough-cut capacity planning model with overlapping

more emphasis on makespan than on cost. However, even though overlapping entails
additional workload, it is still beneficial for having a smaller project cost, by adding a
flexibility in distributing the workload during regular resource capacities.

8 Conclusion

Motivated by the common use of concurrent engineering methods in construction
projects, we proposed an interesting extension of the RCCP that allows for WPs to
overlap. Five sets of 450 modified RCCP instances were created and let us conduct
two types of analysis on our model. The performance analysis showed that our model
is concurrent with the original model when our modified instances are equivalent to
the original ones, and becomes less efficient when the percentage of possible overlap-
ping couples increases. However, this slower performance is the price to pay in order
to have smaller project delivery time and cost, as it was shown by our results analy-
sis. In fact, our results showed that overlapping is beneficial for accelerating project
delivery times, and also for reducing project cost by allowing a better distribution of
workload.

Our model could be used as a tool of great interest to practitioners during tactical
planning of projects. Existing tools do not consider overlapping, forcing planners to
rely on their experience and intuition in order to decide how WPs should overlap in a
project. The proposed solution allows them to make decisions in a rigorous manner.
Moreover, the model allows planning with several possible targets. Thus, it is possible
to quickly generate multiple project plans with different objectives and let managers
choose the plan that best suits them. Finally, within a framework of hierarchical plan-
ning, the model allows planners to determine start and end dates of WPs and the
required amounts of resources per period. Information found at a tactical level would
then be used as constraints when scheduling the activities at an operational level (Kis
and Kovács 2012).

Future work could focus on improving the performance of the model by exploring
alternative modeling and solving techniques. Another avenue for research could be
the development of a model-based heuristic dedicated for the hard instances, in order
to provide acceptable solutions in a reasonable time.

Acknowledgments This work has been supported by the Natural Sciences and Engineering Research
Council of Canada and the Jarislowsky/SNC-Lavalin Research Chair in the Management of International
Projects. Their support is gratefully acknowledged.

Appendix

Statistical analysis of the influence of the parameters on CPU time

This section provides an analysis of the influence of parameters s, r , n, and ω on CPU
times for the tests with the modified instances presented Sect. 7.2. Figure 9 shows for
each parameter the average CPU time, with a 95 % confidence interval. It suggests
that parameters n and s have the biggest impact on the performance, followed by ω,

G. Baydoun et al.

Fig. 9 Average CPU time, with 95 % confidence level for different values of four instance parameters

and lastly r . The following sections explain our statistical analysis of the effect of the
four parameters s, r , n, and ω on CPU time.

Statistical modeling of CPU

The complete data set is composed of 2250 observations of CPU time (in seconds)
with 225 different combinations of s, n, ω, and r repeated 10 times each. The 2250
cases are split into 2 sets: 725 cases where CPU time reaches the time limit of 10,000
s (when the calculations were terminated), and 1525 cases where CPU time is below
10,000. The overall distribution of the 2250 cases is very bimodal as can be seen in
Fig. 6.

This highly bimodal distribution is a challenge when trying to model the statistical
behavior of CPU with respect to the 4 input parameters s, n, ω, and r . Our strategy is
to model the behavior of CPU against the input parameters for 3 sets:

Set 1: All 2250 observations, replacing CPU with 2 values (0 for CPU less than
10,000, and 1 for CPU equal to 10,000), and using a logistic regression model in
Sect. 1.

A rough-cut capacity planning model with overlapping

Fig. 10 Distribution of the new response variable log(1
CPU)

Set 2: Observations with CPU equal 10 000, analyzed with interaction graphical
plots in Sect. 1.
Set 3: The 1525 observations with CPU less than 10,000. CPU is transformed to
log(1

CPU) and a second degree polynomial regression model is used to analyze the
data in Sect. 1. This transformation was chosen after exploring several alterna-
tives, and it was deemed the best transformation giving a bell-shaped distribution.
Moreover, the chosen transformation gave the greatest explanatory model with a
multiple regression R2 equal to 0.85, greater than all other transformations. Figure
10 shows the distribution of the new response variable log(1

CPU).

Logistic modeling of CPU with all the observations

In order to understand the impact of the 4 input parameters s, n, ω, and r on reaching
the time limit, we used a logistic regression model by replacing the CPU response
variable with a new variable called CPUover. This variable takes the value 0 when
CPU is less than 10,000 and 1 when CPU is equal to 10,000. Our aim is to identify the
input parameters that are mostly responsible for not being able to solve an instance
within the time limit of 10,000. The results of the logistic regression model are given
in Table 8.

The importance of a factor is directly proportional to the model coefficient and to
the Odd Ratio (defined as the exponential of the regression coefficients). According
to Table 8, the two most important factors are s and n, meaning that they have the
biggest impact on the response CPU. The other two factors ω and r have comparable
importance, and are very much less important than s and n. One way of measuring
the performance of the logistic model is with the Receiver Operating Characteristic
(ROC) curve. This curve plots the sensitivity and the specificity of the model (see

G. Baydoun et al.

Table 8 Coefficients of the logistic first order model

Independent
variable

Regression
coefficient
b(i)

Standard
error Sb(i)

Lower
95 % con-
fidence
limit

Upper
95 % con-
fidence
limit

Odds ratio
exp(b(i))

B0: Intercept −15.27113 0.77801 −16.79601 −13.74626 0.00000

B1: n 0.20407 0.01079 0.18294 0.22521 1.22639

B2: ω 0.07244 0.00650 0.05969 0.08518 1.07513

B3: r 0.07661 0.01194 0.05321 0.10002 1.07962

B4: s 0.49817 0.02720 0.44485 0.55149 1.64571

Fig. 11 Receiver operating characteristic (ROC) curve

Fig. 11). The area under the ROC Curve is equal to 0.96, which indicates a very good
prediction model for discriminating between the two sets of complementary values of
CPUover.

A graphical representation of observations with CPU equal to 10,000 s

The dataset is composed of 725 instances where the CPU reached the time limit of
10,000 s. None of these cases involved n = 10, irrespective of the values of s, ω, and
r . The best way to understand the influence of the factors to reach the time limit is
with an interaction graph of the different combinations of s, ω, r , and n. Two graphs
are given: Fig. 12 for n = 20 and Fig. 13 for n = 50.

The plots show that the factors n and s are the major contributing factors for CPU
to reach the time limit, while factors r and ω are playing a less important role.

A rough-cut capacity planning model with overlapping

Fig. 12 Interaction plot of r × s × ω with n = 20

A regression model for cases with CPU less than 10,000 s

As mentioned before, our approach is to use a second degree polynomial regression
model to analyze the transformed variable log(1

CPU). The regression model is com-
posed of 4main effects (s,ω, r , n) 4 quadratic effects (ss,ωω, rr , nn), and 6 interaction
effects (ωr ,ωs,ωn, rs, rn, sn). Table 9 gives the results of their parameter estimates in
coded forms (Effect) and in their natural units (Regressn Coeff.). The relative impor-
tance of the effects is given in the Pareto Graph (Fig. 14) and is based on the absolute
values of the t statistics given in Table 9.

The interpretation of the relative importance of the factors is very clear: s and n
are the driving factors, and ω comes in third place. This is followed by the quadratic
effects of s and n and the interaction of s and n. The remaining factor r is significant
but the analysis of variance table (not shown here) indicates that r is responsible for
only 2 % of the explained variation of CPU.

In summary, all three analysis have identified that the main factors in driving the
CPU time are s, n andω in that order, and that factor r is not very important. Of course
are conclusions apply to the chosen experimental space.

G. Baydoun et al.

Fig. 13 Interaction plot of r × s × ω with n = 50

Table 9 Estimation of the model parameters

Factor name Effect Std. err. t (1510) p Regressn coeff.

Mean/interc. −3.86 0.052 −74.41 0.0000 3.1178

ω −0.78 0.028 −27.65 0.0000 −0.0264

ωω 0.01 0.016 0.81 0.4174 0.0001

s −3.00 0.067 −44.94 0.0000 −0.2752

ss 0.46 0.023 20.04 0.0000 0.0092

n −4.00 0.104 −38.57 0.0000 −0.1013

nn 1.20 0.088 13.66 0.0000 0.0015

r −0.53 0.046 −11.44 0.0000 −0.0438

rr 0.32 0.060 5.38 0.0000 0.0022

ωs 0.02 0.017 1.26 0.2086 0.0002

ωn −0.22 0.031 −7.20 0.0000 −0.0006

ωr −0.01 0.023 −0.40 0.6898 −0.0001

sn −1.34 0.077 −17.34 0.0000 −0.0067

sr −0.08 0.028 −2.80 0.0051 −0.0009

nr −0.32 0.052 −6.05 0.0000 −0.0009

Effect estimates var.: log(1
CPU) R-sq = 0.84764 Adj: 0.84622 CPU less 10,000 − 1525 cases 4 factors, 1

blocks, 1525 runs MS Residual = 0.2715

A rough-cut capacity planning model with overlapping

Fig. 14 Pareto plot of the effect importance ranking: significant effects at the red line level or above

References

Alfieri A, Tolio T, Urgo M (2011) A project scheduling approach to production planning with feeding
precedence relations. Int J Prod Res 49(4):995–1020

Berthaut F, Robert P, Nathalie P, Adnène H (2014) Time-cost trade-offs in resource-constraint project
scheduling problems with overlapping modes. Int J Proj Organ Manag 6(3):215–236

Bianco L, CaramiaM (2013) A new formulation for the project scheduling problem under limited resources.
Flex Serv Manuf J 25(1–2):6–24. doi:10.1007/s10696-011-9127-y

Cherkaoui K, Pellerin R, Baptiste P, Perrier N (2013) Planification hiérarchique de projets EPCM. In: 10ème
Conférence Internationale de Génie Industriel 2013, La Rochelle, France

De Boer R (1998) Resource-constrained multi-project management: a hierarchical decision support system.
PhD thesis, University of Twente, Enschede, The Netherlands

Gademann N, Schutten M (2005) Linear-programming-based heuristics for project capacity planning. IIE
Trans 37(2):153–165

Gerk JEV, Qassim RY (2008) Project acceleration via activity crashing, overlapping, and substitution. IEEE
Trans Eng Manag 55(4):590–601

Grèze L, Pellerin R, Leclaire P, Perrier N (2012) A heuristic method for resource-constraint project schedul-
ing with activity overlapping. J Intell Manuf (forthcoming)

Hans E (2001) Resource loading by branch-and-price techniques. PhD thesis, University of Twente,
Enschede, The Netherlands

Haït A, Baydoun G (2012) A new event-based MILP model for the resource-constrained project schedul-
ing problem with variable intensity activities. In: The IEEE international conference on industrial
engineering and engineering management 2012, Honk Kong

Kis T (2005) A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Math
Program 103(3):515–539

Kis T (2006) RCPS with variable intensity activities and feeding precedence constraints. In: Józefowska J,
Weglarz J (eds) Perspectives in modern project scheduling, chap 5. Springer, Berlin, pp 105–129

Kis T, Kovács A (2012) A cutting plane approach for integrated planning and scheduling. Comput-
ers Oper Res 39(2):320–327. doi:10.1016/j.cor.2011.04.006. http://www.sciencedirect.com/science/
article/pii/S0305054811001079

Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-
constrained project scheduling problems. Manag Sci 41(10):1693–1703

Naber A, Kolisch R (2014) MIP models for resource-constrained project scheduling with flexible resource
profiles. Eur J Oper Res 239(2):335–348. doi:10.1016/j.ejor.2014.05.036

http://dx.doi.org/10.1007/s10696-011-9127-y
http://dx.doi.org/10.1016/j.cor.2011.04.006
http://www.sciencedirect.com/science/article/pii/S0305054811001079
http://www.sciencedirect.com/science/article/pii/S0305054811001079
http://dx.doi.org/10.1016/j.ejor.2014.05.036

G. Baydoun et al.

Pritsker A, Watters L (1968) A zero-one programming approach to scheduling with limited resources.
Memorandum (Rand Corporation) RM-5561-PR. Rand Corporation

Wullink G (2005) Resource loading under uncertainty. PhD thesis, University of Twente, Enschede, The
Netherlands

	A rough-cut capacity planning model with overlapping
	Abstract
	1 Introduction
	2 Related work
	3 Mixed-time RCCP model
	3.1 Continuous/binary variables constraints
	3.2 Durations over periods
	3.3 Scheduling constraints
	3.4 Workload and intensity constraints
	3.5 Definition-related constraints

	4 Mixed-time RCCP model with overlapping
	4.1 Overlapping work packages
	4.2 Overlapping modes
	4.3 Continuous/binary variables constraints
	4.4 Durations over periods
	4.5 Scheduling constraints
	4.6 Workload and intensity constraints
	4.7 Definition-related constraints

	5 Instances generation
	5.1 Original test instances
	5.2 Modified test instances
	5.3 Release and due dates

	6 Illustrative example
	7 Computational results
	7.1 Tests on the original instances
	7.2 Tests on the modified instances
	7.3 Comparison of objective functions

	8 Conclusion
	Acknowledgments
	Appendix
	Statistical analysis of the influence of the parameters on CPU time
	Statistical modeling of CPU
	Logistic modeling of CPU with all the observations
	A graphical representation of observations with CPU equal to 10,000 s
	A regression model for cases with CPU less than 10,000 s

	References

