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Abstract—Accurate timing prediction for software execution
is becoming a problem due to the increasing complexity of
computer architecture, and the presence of mixed-criticality
workloads. Probabilistic caches were proposed to set bounds
to Worst Case Execution Time (WCET) estimates and help
designers improve system resource usage. However, as technology
scales down, system fault rates increase and timing behavior is
affected. In this paper, we propose a Static Probabilistic Timing
Analysis (SPTA) approach for caches with evict-on-miss random
replacement policy using a state space modeling technique, with
consideration of fault impacts on both timing analysis and task
WCET. Different scenarios of transient and permanent faults are
investigated. Results show that our proposed approach provides
tight probabilistic WCET (pWCET) estimates and as fault rate
increases, the timing behavior of the system can be affected
significantly.

I. INTRODUCTION

A time-critical computing system, such as a satellite on-
board computer, requires accurate timing prediction of soft-
ware execution. If events are not managed within a certain time
frame, the result may be catastrophic. A conservative estima-
tion on execution time for traditional deterministic architecture
will place the Worst Case Execution Time (WCET) far away
from the actual maximum time used by the application [1].

To help predicting timing behavior, probabilistic real-time
systems were introduced and such systems have very few
pathological cases [2]. One method to realize probabilistic
system is to modify the behavior of the cache – a bridge
between processor and main memory – and make it random
[2], which provides overall tighter bounds due to the lack
of pathological cases. Two timing analysis techniques are
proposed for systems with random caches: the Measurement
Based Probabilistic Timing Analysis (MBPTA) and the Static
Probabilistic Timing Analysis (SPTA). While MBPTA is based
on repeated testing of an application for estimating its timing
probability distribution, the SPTA uses detailed knowledge of
software and hardware for obtaining a precise timing analysis
with safe timing bounds.

As transistor size decreases, circuits become more sensitive
to transient faults [3] which affect system timing behavior.
Transient faults might might be caused by high local temper-
atures or radiation effects, such as package alpha decay or
galactic cosmic rays impacts, even at the ground level [4].
Furthermore, wear-out effects can introduce permanent faults
throughout the lifetime of a device. Such effects are also
exacerbated by technology scaling [5]. As a result, reliability to

permanent and transient faults has to be considered for timing
analysis.

In this paper, we present an SPTA methodology for in-
struction caches with random replacement policy, that takes
both transient and permanent faults into consideration. Our
methodology takes single-path program memory traces as
inputs and computes probabilistic WCET (pWCET), i.e. ex-
ceedance probabilities with respect to execution time (the
number of processor cycles in our simulations). The calculation
is performed using state space techniques, and it is based
on a non-homogeneous Markov chain model [6]. At every
step, the current status of the system can be represented as
a vector containing the probability of each state. The status of
next step is computed using a transition matrix. To perform
timing analysis, timing distribution vectors – which are used
for timing representation and analysis – are assigned to each
state. Transient and permanent fault effects are addressed
as probabilistic models using fault injection. We employ an
online fault detection mechanism for both faults and modify
the system state at each step for accounting of faults. Our
results show that by our approach, we can obtain tight pWCET
estimates. In addition, different scenarios of faults are studied.
We can see that permanent faults have a significant impact on
performance degradation.

The rest of the paper is organized as follows: related work
is discussed in Section II; Section III introduces system model
based on Markov chain; the methodology using the model is
explained in Section IV; fault models and their impacts on the
system are demonstrated in Section V; real-world benchmarks
are evaluated in Section VI; and finally Section VII draws
come concluding remarks.

II. RELATED WORK

Several works on SPTA have been proposed for caches
with random replacement policy. Zhou [7] proposes a cache
hit formula using reuse distance – the number of memory
addresses accessed between two consecutive references to the
same memory address – which simplifies computational com-
plexity significantly. The probabilities for each cache access
are made independent, and the final result is the convolution
of all cache accesses. However, Cazorla et al. [8] and Altmeyer
et al. [9] have found his methodology unsound. Quinones et al.
[2] and Kosmidis et al. [10] give other formulae for random
caches, while Cucu-Grosjean et al. [11] and Cazorla et al.
[8] perform probabilistic timing analysis using these formulae.
However, the formulae in [10] may overestimate the cache hit
ratio [12].



Davis et al. [13] develop a formula using reuse distance
only for evict-on-miss caches, and Altmeyer et al. [9] prove
it to be optimal when only reuse distance is known. Multi-
path programs are also analyzed by assuming that they are
bounded. Besides, maximum preemption effects during pro-
gram execution are taken into account for timing analysis.
Altmeyer et al. [9] propose an exhaustive analysis approach. To
reduce its computational complexity, this exhaustive approach
can be combined with simplified formulae [14], resulting in
an improved algorithm for SPTA. Griffin et al. [15] pro-
pose a methodology from the field of Lossy Compression
and compare it with the method in [9]: by using May and
Must Analysis, the result is more accurate with appropriate
parameters. Lesage et al. [16] propose an SPTA for multi-
math programs by using a conservative approach: cache states
upper-bounds are calculated and paths are reduced according
to worst-case execution path expansion. To demonstrate the
impact of random caches, Abella et al. [17], Altmeyer et
al. [14] and Lesage et al. [16] have done comparisons between
caches using LRU and random replacement policy.

There are few studies on Probabilistic Timing Analysis
(PTA) in the presence of faults. Slijepcevic et al. [18] study
fault-tolerant systems, and combine it with PTA. Degraded
Test Mode is proposed for random caches, which specifies
requirements for hardware design and test. By using Degraded
Test Mode, real time systems can be analyzed with probabili-
ties, and the pWCET is performed using MBPTA. Slijepcevic
et al. extend the work in [19]. They propose an approach
taking account of timing impacts of error detection, correction,
diagnosis, and reconfiguration (DCDR) and degraded perfor-
mance due to faults. They verify the timing behavior with
different fault scenarios on critical real-time embedded systems
and their work is based on MBPTA. Hardy and Puaut [20]
present an SPTA-based methodology to calculate pWCET for
instruction caches that contains only manufacturing permanent
faults with LRU replacement policy. Permanent faults are
detected by tests and cache blocks with permanent faults are
disabled. A fault-free pWCET and miss probability distribution
due to faults are initially computed separately. Then they are
combined to form the pWCET with permanent faults. This
method does not consider permanent faults that occur during
program executions.

Our approach is the first method that calculates the timing
behavior of caches with random replacement policy in presence
of both transient and permanent faults. We consider permanent
faults that happen during execution and are caused by device
wear-out effects. This approach is based on SPTA and provides
safe and tight pWCET estimates.

III. SYSTEM MODEL

In this section, we present our SPTA model for random
caches based on Markov chains. Our model is applied to a
fully associative cache and it can be generalized to a set
associative cache in which the analysis of each cache set can be
performed separately as a fully associative cache. The model
uses a memory trace as the input, and obtains a pWCET as
the output. It is based on system states, which is similar to
other accurate SPTA approaches [9], [15] for random caches.
Different heuristics are applied for these approaches, and we
apply an adaptive heuristic in the proposed approach.

A Markov chain is a mathematical framework that de-
scribes how a system moves from one state to another. If
the future state of a system depends uniquely on the current
state, such a system forms a Markov chain. The current state
describes the status of the system, and the transition matrix
explains how the system transits into the next state.

For a cache with evict-on-miss random replacement policy,
every time a cache miss happens, a cache block is randomly
selected and replaced with the new data (the term data is used
to refer to the content of a memory address). As a result, there
may be different data in the cache at different times, i.e. the
memory layout of the cache changes with time. To describe
the status of the system, si is defined as the memory layout
of the cache and |si| is the number of elements in this state.
Example 3.1 shows how to construct states from a trace of
memory access by a task.

Example 3.1: Suppose there is a task τ and a 2-way cache.
The memory accesses from τ are a, b, c, a, b. Then we can
define the state space as s0 = ∅, s1 = {a}, s2 = {b}, s3 = {c},
s4 = {a, b}, s5 = {a, c}, s6 = {b, c}. We can see that all
memory layouts are included in the states, and |s0| = 0, |si| =
1 : i = 1, 2, 3, |si| = 2 : i = 4, 5, 6.

Each program step can be seen as an access to a new
memory address. Every time a memory address is accessed,
the system advances by 1 time step and the system state may
change. Each possible state of the system, i.e. memory layout,
at a given step is associated with a probability.

The state occurrence probability vector S is defined as:

S = [Pr(s0), P r(s1), · · · ], (1)

where Pr(si) is the probability of the state si. With m being
the number of different memory addresses in the program, and
l being minimal value between cache associativity and m, the
number of states can be calculated as:

l∑
k=0

(
m
k

)
. (2)

In addition to S, we introduce the transition matrix P , which
describes how one state varies from the current step to the
next. It is represented as:

P =

 p0→0, p0→1, · · ·
p1→0, p1→1, · · ·

...
...

. . .

 , (3)

where pi→j is the probability for the system to go from state
si to state sj . In our model, pi→j varies constantly, because it
depends on the current system state and the memory accesses.
At each step, the system may access different memory ad-
dresses and its state may change. Consequently, the transition
probability pi→j may change and this is a non-homogeneous
Markov chain model.

Assuming Sk and P k are the state probability vector and
the transition matrix at step k, respectively, then we have

Sk+1 = SkP k. (4)

We can see that the state of the system for next step only
depends on current state and the transition matrix.



IV. METHODOLOGY

In this section, we demonstrate how to perform SPTA using
the proposed system model based on Markov chains.

A. Transition Matrix Calculation

In our Markov chain model, Equation (4) is used to
describe the system behavior. Given an initial state, we can
calculate the transition matrix at each step and obtain the
system state.

ALGORITHM 1: Transition matrix calculation
Data: State prob. vector S, memory address a
Result: Transition matrix P

1 n← |S|; //number of states in S;
2 for i← 0 to n-1 do
3 for j ← 0 to n-1 do
4 pi→j ← 0; //initialize transition matrix
5 end
6 if Pr(si) = 0 then
7 go to next i; //state si does not exist
8 end
9 if si = ∅ then

10 pi→m ← 1; //sm = {a}, cache miss for si
11 go to next i;
12 end
13 if a ∈ si then
14 pi→i ←1; //cache hit
15 go to next i;
16 end
17 ind0← ∅; //indexes of transitions by replacement
18 ind1← ∅; //indexes of transitions by new cache block
19 q ← |si|; //number of addresses for state si
20 for j ← 0 to n-1 do
21 p← |sj |; //number of addresses for state sj
22 if p-q=0 then
23 l← |si − sj |; //number of different addresses
24 if l=1 and a ∈ sj then
25 Add j to ind0; //replaces existing address
26 end
27 end
28 if p-q=1 then
29 if si ⊂ sj and a ∈ sj then
30 Add j to ind1; //add new address
31 end
32 end
33 end
34 N ← cache associativity;
35 for x ∈ ind0 do
36 pi→x = 1/N ; //replacement prob.
37 end
38 for x ∈ ind1 do
39 pi→x = (N − q)/N ; //new address prob.
40 end
41 end

Algorithm 1 takes two inputs: the state occurrence prob-
ability vector S and the incoming memory address, and
produces one output: the transition matrix P . The algorithm
checks all states and generates the transition matrix elements
accordingly:

Line 4: All transition probabilities for state si are first
initialized to 0. They may be modified later de-
pending on current state and incoming address.

Line 6: Pr(si) = 0 means that state si is an impossi-
ble state at the current step. Therefore we have
∀m, pi→m = 0, i.e. one cannot exit from an
impossible state.

Line 9: If si corresponds to an empty cache, a cache
miss is inevitable, and there is only one possible
transition from the empty cache state to the cache
state with the incoming memory address.

Line 13: If the requested memory address is in the cache,
there is a cache hit. In this case, the cache will not
change its state with probability 1, i.e. pi→i = 1.

Line 20: If the requested memory address is not in the
cache, there is a cache miss and the transition
matrix is computed. This is the most complex
case: the new memory address may replace an
existing cache block, or it may be put into a new
cache block and probabilities have to be computed
accordingly. In our target cache, the probability
of replacing an existing cache block is 1/N (see
Line 36), where N is the cache associativity. This
is because we consider an evict-on-miss random
cache, and a cache block is randomly selected for
replacement with probability 1/N . The probabil-
ity for a memory address to be placed in an empty
cache block is (N − q)/N (see Line 39), where q
is the number of blocks in use for the current state
si. This is due to the fact that if the new memory
address does not cause a replacement, it can only
be put into an empty cache block. The number
of empty cache blocks is N − q, and they are
chosen from N ways. Therefore the probability is
(N − q)/N .

Example 4.1 shows how to obtain the state at a given step
for Example 3.1 using the transition matrix using Equation (4)
and Algorithm 1 .

Example 4.1: Let pi→j = 0 at the beginning of each step,
and assuming the cache is initially empty at the beginning of
step 1, then we have S1 = [1, 0, 0, 0, 0, 0, 0].

At step 1: For P 1, all elements are 0 except p0→1 = 1.
S2 = S1 · P 1 = [0, 1, 0, 0, 0, 0, 0].
At step 2: p1→2 = 1/2, p1→4 = 1/2, S3 = S2 · P 2 =
[0, 0, 1/2, 0, 1/2, 0, 0].
At step 3: p2→3 = 1/2, p2→6 = 1/2, p4→5 = 1/2, p4→6 =
1/2, S4 = S3 · P 3 = [0, 0, 0, 1/4, 0, 1/4, 1/2].
At step 4: p3→1 = 1/2, p3→5 = 1/2, p5→5 = 1, p6→4 =
1/2, p6→5 = 1/2, S5 = S4 · P 4 = [0, 1/8, 0, 0, 1/4, 5/8, 0].
At step 5: p1→2 = 1/2, p1→4 = 1/2, p4→4 = 1, p5→4 =
1/2, p5→6 = 1/2, S6 = S5 · P 5 = [0, 0, 1/16, 0, 5/8, 0, 5/16].

B. Timing Analysis

With Algorithm 1, Equation (4) can be used to describe
the system state transitions. Nonetheless, the duration of a task
execution is different from the step used in the Markov chain.
At each step, one memory address is accessed and different
number of cycles may be applied to the timing analysis accord-
ing to the system state. Without loss of generality, we assume
1 cycle for a cache hit and 100 cycles for a cache miss (any
timing behavior would work). With different number of cycles



executing the program and their corresponding occurrence
probabilities, we have timing distributions for programs. The
resulting timing distributions are discrete-time distributions as
each memory access takes n ∈ N number of cycles.

Two vectors are introduced for defining timing distributions
and modeling timing behaviors with respect to probabilities.
A cycle vector C can be used to denote the timing dis-
tribution in terms of number of cycles, and a probability
vector M can represent the probability of occurrence for C.
Then we have C = [c0, c1, · · · ] and M = [m0,m1, · · · ],
where ci ∈ N represents the program duration in cycles and
mi = Pr(ci),mi ∈ R denotes the occurrence probability for
ci. A scalar addition of C and a scalar multiplication of M
are defined as C + n = {c+ n|n ∈ N, c ∈ C},
M · p = {m× p|p ∈ R,m ∈M}.

With the cycle vector C and its probability vector M , we
define the timing distribution for state si as Ti =< Ci,M i >.
Ti collects the number of cycles to execute the program and
corresponding probabilities for each cycle. The timing distri-
bution changes during program execution; the initial values is
Ti =< [0], [1] >, and each memory access adds additional
cycles and probabilities to the timing distribution.

Timing distributions T need to be combined during state
transitions, since different states can transit to the same state
after the memory access. Therefore the merge operation be-
tween timing distributions

⊎
is defined such that the resulting

distribution Tk is

Tk = Ti
⊎
Tj =< Ck,Mk >, (5)

where Ck = Ci ∪Cj , and Mk = {mp +mq|mp ∈M i,mq ∈
M j , cp ∈ Ci, cq ∈ Cj , cp = cq}. The merge operation puts all
number of cycles into one vector, and the probabilities with
the same number of cycle are added together.

With the transition matrix P , the timing distribution for
state sj is:

Tj =
{

< ∅, ∅ > if ∀i, pi→j = 0⊎
i < Ci + na,M i · pi→j > otherwise,

(6)
where

na =

{
nh if j = i
nm if j 6= i,

(7)

nh is the number of cycles for a cache hit, and nm is the
number of cycles for a cache miss, e.g. the previously chosen
values of 1 and the 100.

By merging timing distribution vectors of all states, using
Equation (6), we could compute the timing distribution of the
whole program as T =< C,M >.

Having the timing distribution, for each state and for
the whole program, we can compute both the Cumulative
Distribution Function and the inverse Cumulative Distribu-
tion Function (1-CDF) [13]. The inverse cumulative is an
exceedance function showing the probability of exceeding a
certain program duration in cycles. The 1-CDF probabilities
are denoted as Q = [q0, q1, · · · ], with

qi =
∑

mj∈M,ci,cj∈C,cj>ci

mj . (8)

The inverse timing distribution is defined as I =< C,Q > and
can be related to the state si, i.e. Ii, or the whole program,
i.e. I.

Example 4.2: In this example we demonstrate how to do
timing analysis for the parameters listed in Example 3.1.

At each step, we use Equation (6) to compute Ti. Let nh =
1, nm = 100

At step 1: T1 =< [100], [1] >.
At step 2: T2 =< [200], [1/2] >, T4 =< [200], [1/2] >.
At step 3: T3 =< [300], [1/4] >, T5 =< [300], [1/4] >,
T6 =< [300], [1/2].
At step 4: T1 =< [400], [1/8] >, T4 =< [400], [1/4],
T5 =< [301, 400], [1/4, 3/8] >.
At step 5: T2 =< [500], [1/16] >, T4 =<
[401, 500], [3/8, 1/4], T5 =< [401, 500], [1/8, 3/16] >.

By Equation (6), we have T =< [401, 500], [1/2, 1/2] >.

From Equation (8), the inverse timing distribution is I =<
[401, 500], [1/2, 0] >, i.e. there is the probability of 1/2 to
exceed 401 cycles, and the probability to exceed 500 cycles is
0, since the maximum execution time is 500 cycles.

It is worth noting that for a set associative cache, the
Markov chain model applies to each cache set CSk. As
a result, there are both the timing distribution TCSk

and
the inverse timing distribution ICSk

specific of the cache
set. Assuming a deterministic placement policy (e.g. modulo
placement) is applied, let akm be an address assigned to cache
set CSk. This address can assigned to only one cache set.
The timing distribution TCSk

is a function of the addresses
assigned to it, i.e. TCSk

= f(ak0 , a
k
1 , ...). For another cache

set timing distribution, we have TCSl
= f(al0, a

l
1, ...) and

akm 6= aln : k 6= l. We can see that cache set timing distributions
are functions of different addresses and are thus statistically
independent of each other, i.e. TCSk

⊥ TCSl
: k 6= l.

To obtain the timing distribution T of different cache sets,
we apply the convolution operator ⊗ between different cache
set timing distributions:

TCS = TCSk
⊗ TCSl

=< C,M >,

where C = {cp+cq|cp ∈ CCSk
, cq ∈ CCSl

}, and mi ∈M
calculated as mi =

∑
mp∈MCSk

,mq∈MCSl
,cp+cq=ci

mpmq .

C. Adaptive Method

The result of our Markov model is an accurate timing
analysis, because it takes all states into account and computes
how they change over time. The Markov model overcomes
the pessimism introduced by formulae in [13]. The resulting
timing distribution T is the pWCET obtained accounting for
all the cache configurations while the program executes.

However, from Equation (2) we can see that the number
of states increases polynomially with a high exponent value as
more memory addresses are accessed. The method proposed
could become intractable. We use then an adaptive method
to limit the number of states and to produce a result with
reasonable accuracy, which scales with the size of memory
accesses.



Suppose there are n different memory addresses, in order
to reduce computational complexity, we would like to use only
m (m < n) memory addresses for the states so that the number
of states is limited and we can enumerate all states. This is
realized with two parts: the i) state modification and the ii)
state and timing distribution merge.

i) State modification: for the first m different addresses
a0, a1, ...am−1, where ai 6= aj for i 6= j. We construct the state
space {s0, s1, ...} using the proposed Markov chain method.
We have ∀A ⊆ {a0, a1, ...am−1}, ∃i : A ⊆ si. The number
of states is from Equation (2). When another new memory
address am comes, we modify states in the state space, instead
of increasing the number of states.

In order to modify states, we find a memory address
a ∈ {a0, a1, ...am−1}. The state si containing a is changed to
state sj in which am replaces a. There are different heuristics
to select a. We assume that a least recently used address
a has a low probability to be used again in recent memory
accesses, and a is to be replaced as follows: ∀i : a ∈ si, sj =
si \ {a} ∪ {am}. The probability and the timing distribution
for sj are respectively Pr(sj) = 0 and Tj =< ∅, ∅ >. This
way, the number of states remains the same, but different
addresses can be used in the state space. The method works in
an adaptive way by modifying the states with the least recently
used addresses. Note that the least recently used address is used
to change states, and it is not a cache replacement policy.

ii) State and timing distribution fusion: When states are
changed, we need to take timing analysis into account as well,
because each state is assigned different timing distributions. To
obtain the safe bound to the pWCET, we use a conservative
method dealing with the S and T variables for the timing
analysis. S is the state occurrence vector and T is the timing
distribution.

Suppose si : a ∈ si is the state before state modification,
and sp is the state containing all memory addresses in si except
the address a that is to be replaced, i.e. sp = si \ {a}. In
state modification, we have seen that whenever a new address
is accessed, we may change the state si. Therefore the state
vector which represents its occurrence probability must be
modified accordingly. In the new state vector S, we use

Pr(sp) = Pr(si) + Pr(sp) (9)

The occurrence probability Pr(sp) can be accumulated to
account for the occurrence probability Pr(si), because if
sp ⊆ si, for any new memory address, state si has the same or
a higher cache hit probability compared to that from state sp.
Equation (9) adds pessimism to timing analysis, but it provides
a safety bound. In addition to state modification, we need to
merge the timing distribution Ti to Tp using Equation (5).

After the state modification and state and timing distribu-
tion fusion, the Markov chain model uses the same method-
ology developed in Section IV for new memory accesses. By
using the state space constructed by m addresses, the adaptive
method is tractable. To trade off for tractability, the accuracy
is compromised, because only some of addresses are used to
build the state space. Therefore timing behaviors from the
addresses that are discarded are not considered. Nevertheless,
the pWCET estimate from this method is safe and it becomes
tighter as more addresses are applied.

V. FAULT IMPACTS

In this section, both transient and permanent fault models
are introduced to the system that is equipped with an online
fault detection mechanism. We consider faults that only occur
in the storage elements of the cache and apply probabilistic
models for faults. Faults in combinational circuits are not con-
sidered in this paper. We use the fault occurrence probability
of each memory access step for analysis. Since a cache miss
takes longer than a hit, to simplify the analysis and obtain
a safe bound, we assume that each memory access step is a
cache miss, i.e. it takes nm cycles and this value is used for
fault rate calculation in following sections.

For set associative caches, different cache sets may be
accessed. Let ni and ni+1 be consecutive steps to access the
same cache set, and ns be the step difference. We have

ns = ni+1 − ni. (10)

For fully associative caches, ns = 1. We assume a constant
fault rate f is applied to both transient and permanent faults.
The probability to have a fault for one cache block is

1− (1− f)ns , (11)

and the probability without a fault is (1− f)ns .

A. Transient Fault Impact

A Single Event Upset (SEU) is a change of state caused
by a high-energy particle. We regard an SEU as a transient
fault, since it does not cause permanent damage and the system
can be recovered. SEUs are known to be independent, and
we assume they are uniformly distributed in space and time,
i.e. each cache block has the same fault rate throughout the
program execution. After the fault occurs, the cache block
remains faulty unless this fault is detected. This is because
the transient fault happens to the storage element. Once the
storage state changes, it can not recover automatically. As a
result, transient fault effect lasts. After the fault is detected,
this block is seen as invalid, but it does not affect following
data storage in it.

To deal with transient fault, many techniques have been
proposed. For example, Reed-Solomon codes have been used
extensively for space applications to detect and correct tran-
sient fault errors. In this paper, we employ a simple parity
check fault detection mechanism – where parity bits are are
added to the data – to first level (L1) cache, which has less
area and speed penalties for L1 caches compared to commonly
used single error correction-double error detection (SEC-DED)
techniques [21].

When a cache block is accessed, the parity bits stored are
examined to see if any transient fault has occurred. Due to low
probability of fault, we assume that all faults can be detected.
If any fault is detected, the corresponding data is regarded as
invalid and will be fetched from the main memory again.

We note that with parity check mechanism, the impact of
a transient fault is equivalent to a cache eviction, i.e. once the
transient fault occurs, the data is not valid any more and it is
a cache miss. Let ft be the transient fault probability at each
step and si be the state before transient fault detection. After



fault detection, si becomes sp. With Equation (10) and (11),
we have sp ⊆ si and

Pr(sp) = Pr(si)((1−ft)ns)|sp|(1−(1−ft)ns)|si|−|sp|. (12)

Transient fault detection produces new states, which may
be the same as existing ones. If ∃sm : sm = sp, we
change timing distributions by multiplying the state change
probability, and then merge state probabilities and timing
distributions using Equation (9) and Equation (5). Example
5.1 demonstrates how a state changes because of transient fault
after one step.

Example 5.1: Suppose we have a state s = {a, b},
Pr(s) = 0.5 and the transient fault probability is ft = 0.1
at each step. After one step, from Equation (12) we know that
new states are produced and we have

Pr(s = {a, b}) = 0.5× (1− 0.1)2 = 0.405

Pr(s = {a}) = 0.5× 0.1× (1− 0.1) = 0.045

Pr(s = {b}) = 0.5× 0.1× (1− 0.1) = 0.045

Pr(s = ∅) = 0.5× 0.12 = 0.005

B. Permanent Fault Impact

1) Permanent Fault Model: Permanent faults are faults
whose effects are assumed to last from the moment they appear
to the end of the program execution. When a permanent fault
occurs to a cache block, it cannot be used any more.

To model permanent faults we start by defining the proba-
bility fp(t, T ) of a permanent fault occurring. It is the proba-
bility of fault in a system component by time t, failure ≤ t,
given that the component was still functional at the end of the
previous interval t− T , failure > t− T . T is the scrubbing
period, i.e. the time interval between two consecutive fault
detection to avoid error accumulation. In this paper it is the
time for one memory access. This probability can be computed
using the Kolmogorov definition from the formula in [22], as:

fp(t, T ) = Pr(failure ≤ t|failure > t− T )

=
Pr(failure ≤ t ∧ failure > t− T )

Pr(failure > t− T )

=
cdffailure(t)− cdffailure(t− T )

1− cdffailure(t− T )
, (13)

with cdffailure the cumulative density function of the random
variable failure describing the time at which the failure hap-
pens.

In literature, several probability distributions are used to
model failure times [22]. One of the most frequently used is the
exponential distribution; however, the exponential distribution
representation is somewhat imprecise because it lacks the
ability to capture the increasing failure probability due to ac-
cumulated wear in the component. A common alternative used
to overcome this limitation is a log-normal failure distribution:

fp(t, T ) =
cdfnorm

ln(t)−µ
σ − cdfnorm( ln(t−T )−µ

σ )

1− cdfnorm( ln(t−T )−µ
σ )

,(14)

where cdfnorm the cumulative density function of the normal
distribution. The mean and standard deviation parameters of

such distribution can be computed from the Mean Time To
Failure (MTTF) such that

µ = ln(
MTTF 2

√
varMTTF +MTTF 2

)

σ =

√
ln(1 +

varMTTF

MTTF 2
). (15)

Note that in Equation 14, fp(t, T ) depends on the actual time t
and the scrubbing period T . The non-memoryless distribution
function describe the occurrence of a recent failure with larger
probability than a memory-less distribution like the exponential
one.

Figure 1a summarizes the comparison of the log-normally
distributed failure times with different MTTFs. The plot is
discretized in years. We can see that as MTTF increases, the
permanent fault rate fp for each memory access decreases,
because a smaller fault rate can lead to a longer lifetime. In
addition, fp is an increasing function of time. As system oper-
ation time increases, fp increases continuously. In this paper,
however, we assume that fp is constant, because execution
times of our benchmarks are short and fp rises extremely
slowly.

Figure 1b depicts the comparison of the log-normally dis-
tributed failure times with different operating frequencies. The
desired MTTF is arbitrarily set at 5 years. At the beginning,
the fault rate is extremely low, e.g. with KHz frequency, the
permanent rate is 4.4 × 10−18 at year 2. The MHz and GHz
fault rates are 10−3 and 10−6 smaller respectively.

2) Permanent Fault Detection: To deal with permanent
fault in the SPTA, we establish different Markov chain models
with different numbers of faults. For N -way set associative
caches, we implement N + 1 Markov chain models, where
the ith model contains i − 1 permanent faults and there are
N − (i− 1) available cache blocks. The model with N faults
is the worst case where all cache blocks are faulty. Its timing
analysis is easy to calculate since there are always cache
misses.

When the memory is accessed, fault detection is applied
using parity check. To identify if the fault is permanent, we
adopt the method proposed by [23]. It is simple to implement
and tracks the number of fault occurrences. If a threshold value
is exceeded, the fault is classified as permanent. To improve
following timing behaviors, we assume that each cache block
can be controlled separately. Once a cache block is classified
to have a permanent fault, it will be disabled and will not be
used any more.

Figure 2 shows how to apply different Markov chain mod-
els to N -way caches, with each node representing a Markov
chain model state space. There are N + 1 rows for N -way
caches, i.e. N + 1 Markov chain models. Memory addresses
are accessed at step 1, 2, 3, .... The analysis is completed in
two phases to account for fault events.

Phase 1: Fault detection. This is denoted by dotted lines.
Node S

m

n denotes the state occurrence probability vector of
the system with m faults at step n. Let fp be the probability
of permanent fault at each step. With Equation (10) and (11),
for each node, the state smi ∈ S

m

n is changed as follows.
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• No permanent faults occur.

Pr(smi ) = Pr(smi )((1− fp)ns)N−m. (16)

The probability of this state changes due to potential
permanent fault occurrences, and timing distribution
are changed by multiplying the state change probabil-
ity.

• Permanent faults occur. Let l be the number of added
permanent faults on current model and sm+l

p ∈ Sm+l

n
be the state after permanent fault detection. We assume
that permanent faults can be detected immediately
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Fig. 2: Different Markov chain models taking account of
permanent faults for N -way caches. Dotted lines indicate state
changes due to fault detection, and solid lines denote state
transitions due to memory accesses.

after they appear. Then we have sm+l
p ⊆ smi and

Pr(sm+l
p ) = Pr(smi )((1−fp)ns)N−m−l(1−(1−fp)ns)l.

(17)
For state sm+l

m : sm+l
m = sm+l

p , we change timing
distributions by multiplying the state change proba-
bility, and then merge state probabilities and timing
distributions using Equation (9) and Equation (5).

Phase 2: State transition. This is denoted by solid lines. Af-
ter the fault detection, states in different Markov chain models
are updated, since new addresses are accessed. Together with
the transition matrix P

m

n (the transition matrix with m faults
at step n), the timing analysis methodology from Section IV
is applied to each model.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

In our experiments, we used the SoCLib open platform1

to generate memory traces for benchmarks. The platform is
equipped with one MIPS 32-bit processor with L1 instruction
cache. In order to evaluate our approach, we adopt Mälardalen
benchmarks [24], a popular benchmark suite used for WCET
evaluation and analysis. Due to limited space, we only present
results of two benchmarks (fdct and crc). By injecting faults
into instruction cache with different fault rates, we investigate
their impacts on the system. The cache size is 512 bytes, with
2-way associativity and 4-byte cache block. We assume that
for each cache miss, the duration is 100 cycles; for each cache
hit, the duration is 1 cycle. To account for fault detection
delays, we add additional 10 cycles. A cache with bigger
size can also be adopted, in which more cache sets are used
and thus there are fewer addresses for each set. The timing
distribution calculations for each set perform faster due to
address reductions.

1http://www.soclib.fr



In our adaptive Markov chain model, we adopt 4 memory
addresses for adaptive state modification. Since execution
times of benchmarks are short, we create synthetic benchmarks
which repeat the same benchmark 10 times. This way, we
can study as execution time increases, how the system is
affected by the faults and we can see if repeated benchmarks
produce similar pWCET estimates to the original benchmarks.
We perform 1,000 simulations for each benchmark as the
base line and this can be used to verify the accuracy of the
method at around exceedance probability of 10−3. A brief
comparison can be done using such an exceedance probability
between simulations and our approach. If a lower exceedance
probability is required, more simulations can be performed. 2

Figure 3 – Figure 6 show timing analyses of benchmarks
fdct and crc respectively. fdct is fast discrete cosine trans-
form using a lot of calculations based on integer arrays and crc
is cyclic redundancy check computation using complex loops
with lots of decision. On each figure, the x-axis shows the
number of cycles and y-axis represents the exceedance prob-
ability (i.e. 1-CDF) for corresponding cycles. The exceedance
probability is set as 10−15, for the failure rate requirement
at the highest level for commercial airborne is translated into
the region of around 10−13. To show simulation results in
detail, a zoomed figure of each benchmark which limits the
exceedance probability to 10−3 is displayed. Different fault
scenarios are applied. The transient fault rate that we applied
is at each step, there is a probability of 10−20 for fault
occurrence. Different permanent fault rates are applied to show
account for wear-out effects at different times. Since for a
MHz with 5-year MTTF, the permanent fault probability is
around 10−20, we applied permanent fault probabilities of
10−20, 10−15, 10−10, 10−7, 10−6, 10−5 respectively to study
how the system is affected when permanent fault rate increases.

B. Discussion

To verify the accuracy of our SPTA approach, simula-
tions are performed with transient fault rate at 10−20 per
memory access, and two permanent fault rates at 10−20 and
10−5 per memory access are applied. From zoomed figures
(Figure 3b, 5b, 6b), we can see that for all fault scenarios,
at any exceedance probability the simulation execution time
matches our result, which means that our approach provides
tight pWCET estimates. Note that simulations results may
show an error at low probabilities as the number of datapoints
are insufficient to accurately estimate the exceedance function.

In Figure 4, we can see that there is a slight difference
between simulations and the result from our approach, because
our adaptive method uses only some of states for analysis. As a
consequence, the accuracy may be compromised. Although the
synthetic benchmark is a repetition of an original benchmark,
its timing behavior may be different. At an exceedance prob-
ability, the number of cycles for the synthetic benchmark is
not the original value multiplied by the number of repetitions,
because after the first completion of the benchmark, some code
may exist in the cache, which can help reduce execution time
for following executions.

For transient fault, its fault rate is extremely low. In
addition, when the cache block with transient fault is accessed,

2The replication package of our method script is available on demand.
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Fig. 3: fdct and the zoomed figure

the transient fault will be detected if it has occurred. The new
data to be put into this cache block will not be affected, since
transient fault does not accumulate. As a result, the impact of
transient fault is not significant.

The fact that permanent faults can accumulate has a sig-
nificant impact on the behavior of the system, especially since
device aging can increase their rate. In our experiments, we
have applied different permanent fault rates to the system. We
can see that when the permanent fault rate is extremely low, the
system is not affected during benchmark execution. However,
as fault rate increases, the system takes more time to finish the
benchmark.

The size of benchmarks has different impacts on transient
and permanent faults. For transient faults, since they can be
recovered, the benchmark size does not have a big influence.
However, since permanent faults accumulate, as benchmark
size increases, the execution times may become longer. For
example, at the exceedance probability of 10−15, for original
fdct with permanent fault rate of 10−5, it takes around 80,000
cycles. Its synthetic benchmark takes around 1000,000 cycles.
Even if it may contain some existing code for repetitions, the
synthetic benchmark takes more than 10 times in terms of
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Fig. 4: synthetic fdct and the zoomed figure

cycles due to permanent fault effects.

We note that for some permanent fault rates, there may be a
sudden drop in exceedance probability, especially in Figure 5,
where the exceedance decrease drops at similar execution time.
This is because permanent faults may have significant impacts
on some cache sets depending on benchmark characteristics. In
Figure 7, two cache set exceedance probabilities are convolved,
where x-axis is execution time and y-axis indicates exceedance
probability. It shows that one cache set exceedance probability
changes gradually while the other one is affected badly by
permanent faults. As a result, the convolution result may have
drastic drop around some execution time.

From the experiments, we can see that our approach can
work with different fault rates. Depending on characteristics of
benchmarks, their pWCET estimates are affected in different
ways. For example, the fdct benchmark pWCET varies grad-
ually as higher-level permanent fault rates are applied, while
crc benchmark exhibits pWCET by a dramatic change at some
exceedance probabilities. One potential use of our approach is
to estimate fault impacts on program timing behaviors with
random replacement caches, so that we can make sure that
safety requirement is met under different fault scenarios.
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VII. CONCLUSION

In this paper, we have demonstrated an adaptive Markov
chain based Static Probabilistic Timing Analysis (SPTA)
methodology in presence of faults; our methodology is based
on a non-homogeneous Markov chain model. Both transient
and permanent faults are then introduced into the system. The
states are modified accordingly for including fault impacts and
the pWCET obtained embeds faults effects. The experimental
results show how faults affect execution time.

In order to reduce computational complexity, the state
space can be limited to the specified level. The state space
is modified in an adaptive way, such that existing addresses
can be replaced by new incoming addresses in the state space.
This guarantees good accuracy and scalability of our SPTA
analysis.

As future work, we intend to address aspects such as
benchmark and platform fault tolerance. Furthermore, we
will enhance our SPTA Markov chain methodology to apply
preemptions and multi-processor embedded system platforms.
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Fig. 7: Convolution of two different exceedance probabilities.
One exceedance probability decreases gradually, and the other
decreases dramatically due to fault impacts.
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