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The primary Bjerknes force is responsible for the quick translational motion of radially oscillating bubbles

in a sound field. The problem is classical in the case of small-amplitude oscillations, for which an analytical

expression of the force can be easily obtained, and predicts attraction of sub-resonant bubbles by pressure

antinodes. But for high-amplitude sound fields the bubbles undergo large-amplitude nonlinear oscillations, so

that no analytical expression for the force is available in this case. The bubble dynamics is approximated on

physical grounds, following the method of Hilgenfeldt et al. �J. Fluid Mech. 365, 171 �1998
�, but carefully

accounting for surface tension. The analytical expression of the maximum radius of the bubble is recovered,

the time of maximum expansion is noticeably refined, and an estimation of the collapse time is found. An

analytical expression for the time-varying bubble volume is deduced, and the Bjerknes force is obtained in

closed form. The result is valid for any shape of the sound field, including purely standing or purely traveling

waves, and is ready to use in a theoretical model of bubble cloud evolution. In addition, the well-known sign

inversion of the Bjerknes force for large standing waves is recovered and the inversion threshold in the

parameter space is obtained analytically. The results are in good agreement with numerical simulations and

allow a quantitative assessment of the effects of physical parameters. It is found that either reduction of the

surface tension or increase in the static pressure should produce a widening of the bubble-free region near

high-amplitude pressure antinodes.

DOI: 10.1103/PhysRevE.78.036322 PACS number�s
: 47.55.dd, 43.35.�d

I. INTRODUCTION

When excited by a sinusoidal sound field, gas bubbles

undergo radial oscillations. Most of the practical applications

of this phenomenon, known as acoustic cavitation, use high-

amplitude sound fields, of typical amplitude greater than the

static pressure, so that the liquid is under tension for some

part of the cycle. In such conditions, whatever the frequency,

two distinct dynamic bubble behaviors can be clearly divided

by the so-called Blake threshold �1–4�. In the tension phase,

very small bubbles are retained to grow by surface tension.

Conversely, larger ones suffer an explosive expansion fol-

lowed by a violent collapse, responsible for chemical �5� and

mechanical effects �6,7� and sonoluminescence �8–10�. The

latter oscillation regime is known as “inertial cavitation.”

Bubbles in liquids experience various hydrodynamic

forces. The buoyancy force is the most familiar one, and is

the pressure force that a sphere of liquid replacing the bubble

would experience. This remains true in an accelerating liquid

�11�, and the generalized buoyancy force experienced by the

bubble is− V�P where P�r , t
 is the pressure that would

exist at the center of the bubble if it were absent, and V�t
 is

the bubble volume. For a bubble oscillating radially in a

sound field, both P�r , t
 and V�t
 are oscillatory quantities so

that the time average of the product over one cycle is not

zero. The bubble experiences therefore a net force known as

the “primary Bjerknes force” �12,13�:

FB = − 
V � P� . �1


The Bjerknes force can be easily calculated from knowledge

of both the shape of the sound field and the bubble dynamics.

A classical result is that, for low-amplitude standing waves,
subresonant bubbles are attracted by pressure antinodes,
while bubbles larger than resonant size are repelled �14–16�.
For the case of strong driving pressures, subresonant inertial
bubbles can also be attracted by pressure antinodes, which
constitutes the basic principle of single bubble SonoLumi-
nescence levitation cells �8,17�. However, it has been shown
by numerical calculations that above a given threshold the
primary Bjerknes force on subresonant inertial bubbles un-
dergoes a sign change �18�. This behavior is due to the reso-
nancelike response curve �termed “giant resonance” by Lau-
terborn and co-workers �19�
 of the bubble just above the
Blake threshold, which is a physical consequence of the ef-
fect of surface tension. Experiments indeed demonstrate that,
above a certain driving level, no bubbles are visible in the
neighborhood of large pressure antinodes �20�.

Quantitative agreement between theory and experiment
has been found in the case of linear or quasilinear oscilla-
tions �15�. Particle simulations �20,21� were also found to be
in excellent agreement with recent experiments involving in-
ertial bubbles �22�. While the Bjerknes force can be calcu-
lated analytically for linear bubble oscillations, only numeri-
cal results can yet be found for inertial bubbles �18,23�. An

analytical expression for the latter would first be helpful in

particle or continuum models, describing the self-

organization of bubbles, in order to get more efficient calcu-

lations. Furthermore, analytical results allow a direct assess-

ment of the sensitivity of the force to the physical

parameters, and the establishment of scaling laws. These two

objectives motivated this study.

Owing to the strong nonlinearity of the bubble dynamics

equations, inertial cavitation has long been thought intrac-

table analytically, up to the seminal papers of Löfstedt et al.

�24� and Hilgenfeldt et al. �1� who demonstrated that several

terms of the Rayleigh-Plesset �RP
 equation could be ne-*louisnar@enstimac.fr



glected during the explosive expansion of the bubble. This

theoretical breakthrough allowed scaling laws to be obtained

for the maximum radius of the bubble and the time of maxi-

mum expansion. In this paper, we closely follow the ap-

proach of Hilgenfeldt et al. �1� and refine their analytical

solutions in order to account more precisely for the effect of

surface tension. The approximate dynamics found are then

used to obtain an analytical expression of the bubble volume.

The latter are then conveniently recast in order to obtain the

Bjerknes force �1
 in closed form, in any acoustic field, in-

cluding the two extreme cases of traveling and standing

waves. Finally, in the latter case, we seek an approximate

expression of the Bjerknes force inversion threshold, evi-

dencing the role of surface tension.

II. PRIMARY BJERKNES FORCE

A. Acoustic field

We assume that the acoustic field in the liquid is mono-

harmonic at angular frequency �, and defined in any point r

by

P�r,t
 = P�r
cos��t + 	�r
� . �2


This expression may represent a traveling wave, a standing

wave, or any combination of both. We also define the pres-

sure gradient in general form as

�P

�xi

�r,t
 = Gi�r
cos��t + �i�r
� , �3


where the fields Gi and �i can be expressed as functions of P

and 	 once the acoustic field is known. The following two

extreme cases deserve special consideration: for a standing

wave, 	�r
=	0, so that Gi�r
=�P /�xi and �i�r
=	0; for a

traveling wave, P�r
= P0 and 	�r
=−k ·r so that Gi�r

=kiP0 and �i�r
=	�r
−� /2.

B. Bubble model

The radial oscillations of a gas bubble in a liquid under

the action of the sound field can be described by the

Rayleigh-Plesset equation �1,25–27�

RR̈ +
3

2
Ṙ2 =

1

�
	pg +

R

cl

dpg

dt
− 4


Ṙ

R
−

2


R
− �p0 + P�t
�� ,

�4


where p0 is the hydrostatic pressure, pg�t
 is the gas pressure,

�, 
, and cl are the density, viscosity, and sound speed of the

liquid, respectively, and 
 is the surface tension. The ambient

radius of the bubble R0 is the radius that the gas would have

in the absence of the sound field.

Time is nondimensionalized by the angular frequency �,

and in order to obtain a formulation consistent with Ref. �1�,
we set

p0 + P�r,t
 = p0�1 − p cos x
 , �5


so that

p = P�r
/p0, �6


x = �t + 	�r
 − � . �7


Using x as the time variable, and nondimensionalizing

pressure with p0, Eq. �4
 can be written as

RR� +
3

2
R�

2 =
Rres

2

3
	p

g
* +

R�

cl

dp
g
*

dx
−

4
�

p0

R�

R

− �S

R0

R
+ p cos x − 1� , �8


where the primed variables denote d /dx,

Rres = �−1�3p0/�
1/2 �9


is the resonance radius, and

�S = 2
/p0R0 �10


is the dimensionless Laplace tension.

Several models can be used for the bubble internal pres-

sure pg �10,28–32�. As will be seen below, we are mainly

interested here in the expansion phase of the bubble, during

which the density of the gas in the bubble remains weak, so

that the precise choice of the thermal bubble interior’s model

is unimportant. However, in order to assess the validity of

the approximate expressions developed hereafter, simula-

tions will be performed by using the Keller equation �33,34�.
The bubble interior is modeled by using a thermal diffusion

layer following Ref. �32�, neglecting water evaporation and

condensation through the bubble wall. In the remaining part

of the paper, we will consider air bubbles in water �

=0.072 N m−1, p0=101 300 Pa, �=1000 kg m−3, cl

=1498 m s−1, and 
=10−3 Pa s
.

C. The Bjerknes force

The primary Bjerknes force acting on a bubble is defined

as

FB = − 
V�t
 � P� , �11


where V�t
 is the instantaneous bubble volume. The average

is taken over one acoustic period, so that, using Eq. �3
,

FBi
= − Gi�r


1

T
�

0

T

V�t
cos��t + �i�r
�dt . �12


Using the dimensionless time x defined by �7
 and the peri-

odicity of V, the latter expression becomes

FBi
= Gi�r


1

2�
�

0

2�

V�x
cos�x − 	�r
 + �i�r
�dx . �13


The generic problem is therefore to obtain an approximate

analytical expression for the integral

I =
1

2�
�

0

2�

V�x
cos�x − x0
dx , �14


valid for any bubble dynamics, and for any value of x0. The

problem can be easily solved for small-amplitude linear os-



cillations �16�. Here, we focus on the case of inertial oscil-

lations, that is, for any combination of parameters �p ,R0

above the Blake threshold. The special cases of standing and

traveling waves can be simply recovered by setting, respec-

tively, x0=0 and � /2.

III. APPROXIMATE EXPRESSIONS

A. Bubble radius

The method used to obtain analytical formula for the

bubble radius is mainly inspired from the approach of

Hilgenfeldt et al. �1�. For self-consistency, we will recall in

this section the main lines of the method, and, where conve-

nient, specify the refinements obtained by our approach.

Figure 1 displays the dimensionless bubble radius �Fig.

1�a
�, bubble volume �Fig. 1�b
�, and driving pressure �Fig.

1�c
� in a typical case of inertial cavitation of �f =20 kHz,

R0=3 
m, and p=1.4
. With the choice of the dimensionless

time variable Eq. �5
, x=0 represents the time of maximum

tension of the liquid. We set

x+ = arccos
1

p
, �15


and we denote by xm the time of maximum expansion of the

bubble, and by xc the time of its maximum compression �see

Fig. 1
.
It is shown in Ref. �1� that, during the expansion phase

and most of the collapse phase, the dominant terms in the

right-hand side of Rayleigh equation are the driving term

p cos x−1 and also the surface tension term �SR0 /R for am-

bient radii just above the Blake threshold. Following Ref.

�1�, we neglect the dependence of the surface tension term on

R, and replace �SR0 /R by �S /K�p
, where K�p
 will be de-

termined later. The approximate Rayleigh equation becomes

RR� +
3

2
R�

2 =
Rres

2

3
�p cos x − 	1 +

�S

K�p

�� . �16


We set, for further use,

A = 1 +
�S

K�p

. �17


In addition, noting that

RR� + R�
2 = 1/2

d2�R2

dx2

, �18


the right-hand side of the Rayleigh equation can be written in

two different forms:

RR� +
3

2
R�

2 =
1

2

d2�R2

dx2

+
1

2
R�

2 =
3

4

d2�R2

dx2

−

1

2
RR�.

Numerical simulations show that R�
2�RR�on the interval

�−x+ ,x+�, while R�
2�RR� holds on the interval �x+ ,xm� �1�.

Additionally, we found that the latter property still holds in

fact during almost all the collapse, except in its ultimate

phase, where the gas and acoustic terms become significant

again. This could be expected since the main part of the

collapse is inertially driven and R� becomes significant only

when the liquid has acquired enough kinetic energy. We

therefore obtain the following equations for the bubble ra-

dius, over the interval �−x+ ,xc�:

d2�R2

dx2

= �
4

9
Rres

2 �p cos x − A
 on �− x+,x+� , �19


2

3
Rres

2 �p cos x − A
 on �x+,xc� . �20


These equations are the same as those of Hilgenfeldt et al.

�1�, except that the validity of the second is extended up to

xc. The first equation can be solved with the initial condition

R�−x+
=�R0, where ��1.6 and R��−x+
�R�−x+
 �1�. The

second equation is solved by requiring continuity of R�x
 and

R��x
 at x=x+. Integrating both equations twice, we obtain

R
−

2�x
 =
4

9
Rres

2 	1 − p cos x + p�x + x+
sin x+ −

A

2
�x + x+
2�

+ �2R0
2�1 + 2�x + x+
� �21


and

R+
2�x
 =

2

3
Rres

2 �1 − p cos x + p	 x

3
+ x+�sin x+

−

A

2
	x2 + x+

2 +
2

3
x+x�� + �2R0

2�1 + 2�x + x+
� .

�22


The point �xm ,Rmax
 of maximum expansion is obtained

by setting d�R+
2
 /dx=0, so that xm is given in implicit form

by
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FIG. 1. �a
 Dimensionless bubble radius R /R0; �b
 dimension-

less bubble volume �R /R0
3; �c
 dimensionless driving pressure 1

− p cos x. The case considered is a 3 
m air bubble in water and

p=1.4. The times− x+ and x+ are the two instants of zero crossing of

the driving pressure, xm is the time of maximum expansion of the

bubble, and xc the time of maximum compression. The dashed

curve in �a
 represents the approximate dynamics given by Eqs.

�21
 and �22
. The dashed line in �b
 is the final approximation of

the bubble volume �36
–�42
.



p sin xm − xm +
1

3
�p sin x+ − x+
 −

�S

K�p

	xm +

1

3
x+�

+ 3�2	 R0

Rres

�2

= 0, �23


and Rmax reads

Rmax
2 = R0

2f�p,xm
 + Rres
2 	g�p,xm
 −

2

3

�S

K�p

h�p,xm
� ,

�24


where

f�p,xm
 = �2�1 + 2�xm + x+
� , �25


g�p,xm
 =
2

3
�1 − p cos xm + p	 xm

3
+ x+�sin x+

−

1

2
	xm

2 + x+
2 +

2

3
x+xm�� , �26


h�p,xm
 =
1

2
	xm

2 + x+
2 +

2

3
x+xm� . �27


In order to obtain xm, the implicit equation �23
 should be

solved. To avoid this, Hilgenfeldt and co-workers �1� devel-

oped this equation near � /2 at first order, neglecting, on the

one hand, �S /K�p
, and also �R0 /Rres
2, which is appropriate

for driving the bubble at low frequencies. They obtain

xm0
= p +

1

3
�p sin x+ − x+
 , �28


which can be further simplified to xm= p, if p is small

enough. Plugging the latter into Eqs. �24
–�27
, they obtain

an expression for Rmax that depends on R0 only through the

�S term in �24
. The expression of K�p
 is then determined

by using the fact, confirmed numerically, that the maximum

of the response curve �Rmax /R0
�R0
 is obtained for an am-

bient radius R0
C very close to the Blake threshold,

�

�R0

	Rmax�p,R0

R0

� = 0

for R0 = R0
c =

4�3

9




p0

1

p − 1
. �29


This scheme yields a good approximation for Rmax, which

was the main objective of Hilgenfeldt and co-workers �1�,
but the approximation �28
 of xm yields a rather large error

�see dotted line in Fig. 2
.1 Since the value of the integral

�14
 is found to be very sensitive to the precise location of

xm, we seek a better approximation.

We therefore revert to the original equations �23
–�27
.
The main difficulty lies in the presence of the �S term in

�23
, which makes xm rigorously a function of both p and R0.

Thus Rmax depends on R0 not only through �S but also

through xm in the expressions for f , g, and h. The condition

�29
 therefore becomes more complex, and should be solved

simultaneously with �23
. We initially followed this complex

process, but finally found that a better approximation of xm

could be obtained by using a simple trick. First, as was done

in Ref. �35�, we neglect the �S term in �23
 and develop the

latter near � /2, but up to second order:

xm1
=

�

2
−

1

p
+

1

p
�1 + 2p�xm0

−

�

2
+ 3�2	 R0

Rres

�2��1/2

.

�30


For low-frequency driving, R0�Rres, and xm1
depends only

slightly on R0. We then plug �30
 into Eqs. �24
–�27
 and

express the condition �29
, neglecting �xm /�R0, to obtain

K1�p
 =

xm1

2 + x+
2 +

2

3
x+xm1

g�p,xm1



9

4�3
�p − 1
 . �31


We now expand �23
 again near � /2, but keeping the �S

term, in which we set K=K1�p
, to obtain

xm2
=

�

2
−

A1

p
+

1

p
�A1

2 + 2p�xm0
− A1

�

2
+ �1 − A1


x+

3

+ 3�2	 R0

Rres

�2��1/2

, �32


where

A1 = 1 +
�S

K1�p

. �33


Setting A1=1 in xm2
, that is, neglecting the effect of surface

tension, the result of Ref. �35�, Eq. �30
, is recovered.

Figure 2 represents the variations of xm for a bubble of

ambient radius R0=1 
m �Fig. 2�a
� and R0=3 
m �Fig.

1
Curiously, it can be checked that, although xm= p is a simplifica-

tion of �28
, it still yields better results in the whole range consid-

ered in Fig. 2. This is why we did not represent �28
 on the latter.
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3
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4
ba

p

xc

xm

p

FIG. 2. Variation of xm and xc with p. Thick solid line, xm

calculated from numerical solutions of Eq. �4
; thin solid line, xm2

from Eq. �32
; dash-dotted line, xm1
from Eq. �30
 �Ref. �35�
; dot-

ted line, xm= p �Ref. �1�
; thick dashed line, xc calculated from

numerical solutions of Eq. �4
; thin dashed line, xc from Eq. �43
.
The results are calculated for a bubble of ambient radius �a
 R0=1

and �b
 3 
m.



2�b
� in water. The thick solid lines are the exact values

obtained numerically, and the thin solid lines represent xm2
.

The agreement is seen to be excellent, although a noticeable

difference can be seen for R0=1 
m, which originates from

the oversimplification of accounting for surface tension by

the simple term �S /K�p
 in Eq. �16
. Also shown is the ap-

proximation xm1
�dash-dotted line
, which does not take sur-

face tension into account. This clearly introduces a notice-

able error on xm, reasonably corrected by Eq. �32
. Finally,

the approximation xm= p proposed in Ref. �1� is displayed

�dotted line
.
The approximation of Rmax can then easily be made by

plugging an approximation of xm into Eq. �24
. This was

done in Ref. �35� using xm1
, and an excellent agreement was

found. The gain brought by using xm2
instead of xm1

in �24

remains unimportant, and for brevity, we do not present the

comparison between the analytical and numerical expres-

sions of Rmax here.

B. Bubble volume

Approximations of the bubble volume could readily be

obtained from the approximations �21
 and �22
, of the

bubble radius. However, such expressions do not yield ana-

lytical expressions of the integral �14
 in closed form, and

further approximations are therefore required. First, we con-

sider frequencies low enough to have Rres�R0, so that the �
term can be safely neglected in Eqs. �21
 and �22
.

1. Approximate expression on [−x+ ,x+]

Numerical simulations demonstrate that R
−

is almost lin-

ear between 0 and x+ �Fig. 1�a
�, which suggests that Eq. �21

is almost a perfect square in this interval. We then develop

the cosine term in �21
 near x=0 up to second order, and

write the result as

R
−

2�x
 =
4

9
Rres

2 � p − A

2
	x +

p sin x+ − Ax+

p − A
�2

+ px+ sin x+

−

A

2
x+

2 + 1 − p −

�p sin x+ − Ax+
2

2�p − A

� . �34


For R
−

to be linear in x, the part of the expression in the

square bracket out of the large parentheses must be negli-

gible, so that R
−

can be simplified as

R
−
�x
 =

2

3
Rres�p − A

2
	x −

Ax+ − p sin x+

p − A
� . �35


The expression for the bubble volume on �−x+ ,x+� therefore

reads

V
−
�x
 = 	2

3
Rres�p − A

2
�3

�x − x1
3, �36


where

x1 =
Ax+ − p sin x+

p − A
, �37


which allows us to calculate integral �14
 in closed form.

2. Approximate expression on [x+ ,xc]

Using Eqs. �23
 and �24
, it can be easily checked that,

setting y=x−xm, the expression �22
 for R+ can be recast as

R+
2 = Rmax

2 +
2

3
Rres

2 L�y
 , �38


where

L�y
 = 2p cos xm sin2
y

2
− A

y2

2
+ p sin xm�sin y − y
 .

�39


The bubble volume on �x+ ,xc� becomes therefore

V+ = Rmax
3 �1 +

2

3
	 Rres

Rmax

�2

L�y
�3/2

, �40


which unfortunately does not yield an explicit integration of

�14
. Further progress can be made by noting that, from Eq.

�24
, Rres and Rmax are of the same order of magnitude, and

that, from �39
, L�y
=O�y2
 near y=0. Equation �40
 can

therefore be approximated by

V+ = Rmax
3 �1 + 	 Rres

Rmax

�2

L�y
 + O�y4
� . �41


Thus, to the same order of approximation, L�y
 can be re-

placed by any equivalent expression up to order 4 in y, and

the choice must be directed by the ability of V+ cos�x−x0
 to

be integrable in closed form. We therefore choose to set

y2
/2=2sin2�y /2
+O�y4
 and sin y−y=−�1 /6
 sin3 y+O�y5


in Eq. �39
 to finally obtain

V+�x
 = Rmax
3 + RmaxRres

2 	2�p cos xm − A
sin2
y

2

−

1

6
p sin xm sin3 y� + O�y4
 , �42


which can now yield an explicit expression for integral �14
.
It can further be noted that if the sin3 y term in the large

parentheses is neglected and we set sin2�y /2
�y2
/4, V+ is

found to be zero for

yc = xc − xm =
Rmax

Rres

	 2

A − p cos xm

�1/2

, �43


which constitutes a simple approximation for the collapse

time. The comparison between this expression and the exact

instant of minimum radius is visible in Fig. 2 �dashed lines
.
Here again, an excellent agreement is found, but it deterio-

rates toward small bubble radii.

IV. BJERKNES FORCE

A. Analytical expression

With the expressions for the bubble volume �36
 and �42

at hand, the integral �14
 can be calculated in analytical

form, keeping the contribution of the integrand only in the

intervals �0,x+� and �x+ ,xc�, since V can be neglected in the



other regions �see Fig. 1�b
�. The integral is thus the sum of

the two contributions

I = I
−

+ I+, �44


where

I
−

= �
0

x+

V
−
�x
cos�x − x0
dx ,

I+ = �
x+

xc

V+�x
cos�x − x0
dx .

Using the approximate expressions �36
 and �42
 of the

bubble volume, integration yields

I
−

=
8

27
Rres

3 	 p − A

2
�3/2

��x��x2
− 6
sin�x+ − x0


+ 3��x2
− 2
cos�x+ − x0


+ x1�6 − x1
2
sin x0 + 3�2 − x1

2
cos x0� , �45


with

�x = x+ − x1.

The contribution I+ reads

I+ = Rmax
3 �sin�xc − x0
 −sin �x+ − x0
�

+ RmaxRres
2 	1

4
�p cos xm − A
�f2�yc
 − f2�y+
�

−

1

192
p sin xm�f3�yc
 − f3�y+
�� , �46


where

f2�y
 = 4 sin�y − y0
 −sin �2y − y0
 − 2y cos y0,

f3�y
 = 2 cos�2y + y0
 + cos�4y − y0


+ 12y sin y0 − 6 cos�2y − y0


and

y0 = x0 − xm, y+ = x+ − xm.

The value of I from �44
–�46
 is displayed in Fig. 3 �thick

lines
 for R0=1 
m �Fig. 3�a
�, 3 
m �Fig. 3�b
�, and 6 
m

�Fig. 3�c
�, in the case of a standing wave �x0=0
, for driv-

ings ranging from the Blake threshold to p=2.5. In order to

get a clear picture, I is drawn in logarithmic scale, the solid

part of the curves representing a positive sign and the dashed

part a negative sign. The thin lines are the results obtained by

solving �4
 and calculating �14
 numerically, for f =20 kHz.

It is seen that excellent agreement is obtained, except for

R0=1 
m �Fig. 3�a
�. In particular, the point of inversion of

the Bjerknes force is shifted toward large drivings. This fea-

ture originates from the errors induced in the values of xm, xc

�see Fig. 2
, and Rmax for small ambient radii, by replacing

the surface tension in the RP equation by �S /K�p
 in �16
. It

should be noticed that even the small errors visible on the

curves of Fig. 2�a
 yield large differences in the estimation of

I. This is to be expected since the phase between V and

cos�x−x0
 crucially influences the value of integral I.

B. Bjerknes force inversion threshold in standing waves

We consider the case of a standing wave x0=0, and look

for an approximate locus in the parameter space where the

Bjerknes force changes sign. Summing Eqs. �45
 and �46
, it

is seen that integral �14
 is zero for

a3X3 + a1X + a0 = 0, �47


where

X =
Rmax

Rres

,

and the coefficients ai depend on x+, which is just

arccos�1 / p
; x1, which from �37
 depends on p and �S; xc,

which from �43
 depends on p, xm, X, and �S; and xm, which

from �32
 depends only on p and �S, for R0 /Rres�1. Fur-

thermore, looking at Eq. �24
, for R0�Rres, X=Rmax /Rres can

be written as

X = 	g�p,xm
 −

2

3

�S

K�p

h�p,xm
�1/2

, �48


and from Eqs. �25
–�27
 and �30
–�33
, still under the as-

sumption R0�Rres, the terms g and h in the above equation

depend on R0 only through �S. We conclude that, provided

that R0�Rres, Eq. �47
 becomes frequency independent, and

can in fact be written in implicit form as

I��S,p
 = 0. �49


This equation can easily be solved for �S�p
, in order to find

the approximate frequency-independent threshold for inver-
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sion of the Bjerknes force. The solution is presented in the

inset of Fig. 4. Below the curve, I�0, so that the Bjerknes

force attracts the bubble toward pressure antinodes, while it

becomes repulsive above.

From �S=2
 / �p0R0
, the inversion threshold can also be

plotted in the �R0 , p
 plane in the case of water at ambient

pressure �
=0.072 N m−1, p0=101 300 Pa
. The result is

displayed in Fig. 4 �thick solid line
 and compared to the

exact inversion thresholds calculated from numerical simula-

tion for three driving frequencies 20 �dash-dotted line
, 40

�dashed line
, and 80 kHz �thin solid line
. The labels on the

two latter curves represent the value of R0 /Rres. It is seen that

the above procedure yields a good estimation of the inver-

sion threshold, up to R0 /Rres=0.1, above which it starts to

diverge from the exact value. The reason for this disagree-

ment comes from the neglected R0 /Rres term in all expres-

sions, and also from the fact that, for increasing frequency,

the bubble rebounds become more important, so that the

bubble dynamics for x�xc also contributes to expression

�14
. In addition, a cascade of period-doubling bifurcations

and chaos �19,36,37� appear in some cases �and are respon-

sible for the noisy oscillations on the 80 kHz curve
, so that

the correct averaging of the Bjerknes force in such cases

should be carried out over more than a single acoustic pe-

riod. We did not pursue this issue further, since analytical

predictions for these bifurcations are beyond the scope of the

present paper.

Marginally, it can be seen that the inversion threshold in

the ��S , p
 plane is almost linear, so that the following linear

fit �represented by a dashed line in the inset of Fig. 4
 can be

proposed for practical applications:

p = 0.269�S + 1.62. �50


These results suggest that the inversion threshold is indepen-

dent of frequency, and of the properties of the gas and liquid

other than surface tension, as long as R0 /Rres�1. This aston-

ishing result originates from the fact that the Bjerknes force

mainly depends on the expansion phase of the bubble, which,

within the approximations leading to Eq. �16
, is merely gov-

erned by the driving pressure amplitude and surface tension.

The reasonably good agreement found in Figs. 2–4 partially

supports this analysis.

In order to further investigate this issue, we first recalcu-

lated the three inversion thresholds of Fig. 4 �f =20, 40,

80 kHz
, replacing the thermal model of Ref. �32� by an

isothermal behavior for the bubble interior. Figure 5 displays

the results obtained �thick solid lines
 and recalls the thresh-

olds calculated in Fig. 4 �thin solid lines
. It can be seen that

the thresholds slightly diverge for increasing R0, but remain

almost indistinguishable for R0 /Rres�0.15. We also repeated

the calculations with the thermal model of Ref. �32�, but for

argon bubbles �not shown
, and found a negligible deviation

from the air curves. We therefore conclude that the detailed

bubble interior has a very weak influence on the expansion

phase, at least for low enough values of R0 /Rres, so that Eq.

�50
 indeed constitutes a gas-independent law, within its

range of validity.

Another issue is the sensitivity of the results to the liquid

viscosity. The latter has been neglected in the analytical ap-

proach, when approximating the RP equation �8
 by Eq. �16
.
The good agreement found in Fig. 4 between analytical and

numerical results, calculated for water at ambient tempera-

ture �
=10−3 Pa s
, suggests that, for such low values, vis-

cosity indeed plays a minor role during the bubble expan-

sion. One should, however, check whether this is still the

case for larger viscosities. We therefore repeated the numeri-

cal calculation of the inversion threshold for viscosities 10

and 20 times larger than that of water �Fig. 6, thick dashed

line and thick dash-dotted line
. It is clearly seen that the

threshold increases noticeably with viscosity. Conversely, we
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FIG. 4. Threshold of Bjerknes force inversion in the �R0 , p

plane, for a bubble in water in ambient conditions �

=0.072 N m−1, p0=101 300 Pa, 
=10−3 Pa s
. The region I�0

corresponds to attraction by the pressure antinode, and I�0 to re-

pulsion. The thin lines are calculated from numerical simulations of

the RP equation. Thin solid line, f =80 kHz; dashed line, f

=40 kHz; dash-dotted line, f =20 kHz. The labels on the curves

indicate the ratio R0 /Rres �triangles, f =80 kHz; filled circles, f

=40 kHz
. Thick solid line, universal threshold calculated from ap-

proximate dynamics by solving �49
. Thick dashed line, Blake

threshold. The inset represents the solution of �49
 in the ��S , p

plane.
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FIG. 5. Same as Fig. 4 calculated with an isothermal model. The

thin solid lines are the numerical curves of Fig. 4 �f =20, 40,

80 kHz
. The thick solid lines are calculated in the same conditions,

except that the gas behavior is considered isothermal. The thin

dashed line is the analytical threshold calculated from Eq. �49
.



also checked that the result was unaffected by decreasing the

viscosity below that of water, by computing the threshold for


=0.1
water �thick solid line
. This indicates that viscous

friction plays a non-negligible role in the bubble expansion

for viscosities above some critical value. As already men-

tioned in Ref. �1�, increasing viscosity decreases Rmax, and

we also checked that it decreases xm too, so that, strictly

speaking, the Bjerknes force and its inversion threshold are

viscosity dependent. Following our results, this influence is

negligible for viscosities near to or lower than that of water,

but for slightly larger values, the viscous term should be kept

in the RP equation.

V. DISCUSSION

Important conclusions can be drawn from these results.

Figure 4 shows that the inversion thresholds for all frequen-

cies �thin lines
 asymptotically merge with the Blake thresh-

old �thick dashed line
 for small bubble radii, in reasonable

agreement with the analytical approximation �thick solid

line
. Thus, as the driving pressure reaches, say 1.8 bar, the

range of ambient radii of inertial bubbles attracted toward the

antinode is suddenly reduced, with an upper limit lower than

2 
m. This explains why a well-defined bubble-free region

can be observed around the pressure antinode for high-

amplitude standing waves �21�. The range of attracted

bubbles is, however, not void, which suggests that the zone

around the antinode could still be filled with inertial bubbles,

of ambient radii very close to the Blake threshold, but too

small to be visible. As noticed in Ref. �18�, in a high-

amplitude standing wave, the Bjerknes force acts as a sorter

of inertial bubbles, leaving the smallest ones approaching or

even reaching the pressure antinodes. The advantage of the

present analysis is that it yields, through Eq. �49
, or its

simpler form �50
, an explicit classification of the bubble

size as a function of the local acoustic pressure, parametrized

by the ratio 
 / p0.

As the increasingly small bubbles approach the pressure

antinode, they may coalesce or quickly grow by rectified

diffusion �35�. As their size increases, they may again enter

the repulsion zone in the �R0 , p
 plane and move back again.

This picture is still complicated by the potential appearance

of surface instabilities. Thus, the apparently void region ob-

served around large pressure antinodes may be in fact the

locus of the complex evolution of very small bubbles, of

sizes close to the Blake threshold.

Finally, it is seen from the inset of Fig. 4 that decreasing

�S lowers the driving at which the pressure antinode be-

comes repulsive. The dimensionless parameter �S can be var-

ied experimentally by modifying the surface tension 
 �for

example, by adding ionic salts or surfactants
, or by chang-

ing the static pressure p0. The present results suggest that, for

identical bubble ambient radii, the Bjerknes force would be-

come repulsive for lower drivings, when either 
 is de-

creased or p0 is increased. This should have an observable

effect on the size of the bubble-free region around the pres-

sure antinode. However, it should be noted that surface ten-

sion also plays a crucial role for bubble surface instabilities

�10,38,39�, and also for rectified diffusion �35�, through the

same dimensionless parameter �S. Thus, a change in �S may

also directly influence these two processes, with probable

consequences on the bubble cloud behavior. The present re-

sult just demonstrates that surface tension can influence the

shape of the bubble cloud through its direct effect on the

bubble dynamics, and on the primary Bjerknes force.

Figure 6 also indicates that the size of the bubble-free

region around the pressure antinode will decrease noticeably

when the viscosity is increased slightly above that of water.

As mentioned in Ref. �1�, this may be easily achieved ex-

perimentally by adding glycerin to water. Here again, such a

macroscopic effect is mediated by the sensitivity of the

bubble dynamics to the physical properties. To account ana-

lytically for this dependence on viscosity, the viscous term

should be kept in the Rayleigh equation, which renders the

approximation scheme more involved. A generalization of

our analytical results to this case may be addressed in a fu-

ture study.

Finally, it is highly probable that the same effect of sur-

face tension could be observed on the secondary Bjerknes

force, as suggested by numerical simulations �40�. The ex-

tension of the present analytical method to the latter effect is

difficult, first because the expression of the secondary

Bjerknes force also involves the bubble velocities, which are

much more sensitive to approximations than the bubble ra-

dius itself, and second because the dynamic equations of the

two bubbles must be coupled by a radiation term.
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FIG. 6. Same as Fig. 4, but for f =20 kHz, and for different

liquid viscosities. Thin solid line, water �same as dash-dotted line of

Fig. 4
; thick solid line, 
=0.1
water; thick dashed line, 


=10
water; thick dash-dotted line, 
=20
water. The thin dashed line

is the analytical threshold calculated from Eq. �49
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