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a b s t r a c t

The cavitation field in a cylindrical vessel bottom-insonified by a 19.7 kHz large area transducer is studied

experimentally. By adding controlled amounts of Poly-Ethylene Glycol (PEG) to water, the viscosity of the

liquid is varied between one- and nine-fold the viscosity of pure water. For each liquid, and for various

displacement amplitudes of the transducer, the liquid is imaged by a high-speed camera and the acoustic

field is measured along the symmetry axis. For low driving amplitudes, only a spherical cap bubble

structure appears on the transducer, growing with amplitude, and the axial acoustic pressure field dis-

plays a standing-wave shape. Above some threshold amplitude of the transducer, a flare-like structure

starts to build up, involving bubbles strongly expelled from the transducer surface, and the axial pressure

profile becomes almost monotonic. Increasing more the driving amplitude, the structure extends in

height, and the pressure profile remains monotonic but decreases its global amplitude. This behavior

is similar for all the water–PEG mixtures used, but the threshold for structure formation increases with

the viscosity of the liquid. The images of the bubble structures are interpreted and correlated to the

measured acoustic pressure profiles. The appearance of traveling waves near the transducer, produced

by the strong energy dissipated by inertial bubbles, is conjectured to be a key mechanism accompanying

the sudden appearance of the flare-like structure.

1. Introduction

Acoustic cavitation depicts the appearance of a large number of

radially oscillating micro-bubbles in a fluid irradiated with a high

intensity ultrasonic wave [1]. Such bubbles self-organize into strik-

ing structures, such as cones, filaments, rings, among others [2]. In

many cases, the cavitating bubbles appear preferentially in the

vicinity of the fluid container edges or near the transducer. Partic-

ularly, the formation of conical bubble structures has been

described by various authors [3–6].

The problem is further complicated by the existence of two dis-

tinct cavitating bubble populations, evidenced recently by spectro-

scopic studies [7,8]. Almost stationary hot bubbles whose collapse

is highly symmetric were found preferentially near the ultrasonic

horn, whereas far from the transducer, rapidly moving colder bub-

bles exhibit emission of non-volatile species. It is conjectured that

such emission originates from the heating of liquid nanodroplets

injected into the gas phase of the collapsing bubbles by non-sym-

metrical collapses, jetting, or coalescence events. Why the two

populations of bubbles are spatially separated remains to be eluci-

dated and constitutes an additional challenge for theorists.

Understanding the localization of the bubbles and the shape of

the acoustic field is fundamental to control and optimize sono-reac-

tors, and their scale-up for industrial applications. However, the

physics underlying the formation of bubble structures is complex,

because acoustic cavitation involves a large range of timescales

(from the nanosecond scale for the bubble collapse, to the second

for the typical motion of the bubble structures) and of spatial scales

(from the micron-size bubble, to a few centimeters for the wave-

length at low frequency). Self-organization of acoustic bubbles

occurs through the coupling between the acoustic field and the

bubble population. The acoustic field nucleates bubbles, promotes

their growth by rectified diffusion and their coalescence, and

induces their translational motion relative to the liquid under the

influence of Bjerknes forces [2,9]. Conversely, owing to their radial

motion, the bubblesmodify the sound velocity in the liquid [10–12]

and produce sound attenuation [13,14] and distortion [15,16].

The equations modeling this coupled interaction have been

derived long ago [17] but their full resolution in the general case

remains as a challenger. However, satisfactory results have been

obtain under restrictive assumptions [18,19]. On the other hand,

assuming a known shape of the sound field, particle models,
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simulating the paths of a large set of bubbles, have achieved

remarkable agreement between some experimentally observed

structures and theory [20–22,9]. Attempts to calculate the retroac-

tive effect of the bubbles on the sound field have also been per-

formed [23–25], but remains difficult in the range of acoustic

pressures involved in sonochemistry, because of the short time

scale involved in the bubble collapse. Conversely, linear theory

yields unrealistically low attenuations of the wave [5]. Building a

robust predictive model remains therefore a challenging task [26].

As for experimental results, very detailed descriptions of a large

collection of bubble structures can be found in the literature [2].

However, the corresponding pressure fields are generally not

known in detail, except for the cone bubble structure which has

drawn specific attention over the last decade [5]. Moreover, exper-

iments are generally performed in water, and the influence of the

liquid physical properties such as surface tension or viscosity have

been poorly explored.

In a recent work, a simple nonlinear model was proposed for

low-frequency, high-amplitude acoustic fields in presence of cavi-

tation, suggesting that the strong attenuation of the field observed

in bubble clouds [13,14] was due to the large energy dissipated by

individual inertial bubbles [27]. This attenuation was found to pro-

duce traveling waves near the transducer, strongly repelling the

bubble nucleated on its surface, as originally suggested in Ref.

[28]. The resulting bubble paths reproduced reasonably well the

observed shape of conical bubble structures [29] and the so-called

‘‘flare structures’’, observed in ultrasonic baths [2].

The model of Ref. [27] showed that for inertial bubble oscilla-

tions, viscous dissipation in the radial motion of the liquid around

the bubble was the dominant source of dissipation, contrarily to

the linear prediction for which thermal gradients in the bubble

were the prevailing dissipation mechanism at low frequency

[30]. The power dissipated by viscous friction in the radial motion

of the liquid around a single bubble, averaged on one acoustic per-

iod, can be estimated once the bubble dynamics is known, by [27]:

Pv ¼
1

T

Z T

0

16pllR
_R2 dt ð1Þ

where ll it is the viscosity of fluid and RðtÞ is the bubble instanta-

neous radius.

The liquid viscosity appears therefore as a potentially important

physical parameter, through its action on the energy dissipated by

the bubbles, and therefore on the wave attenuation and the shape

of the acoustic field. This raises the natural question of how bubble

structures observed in a given geometry would be modified by

variations of the liquid viscosity. Moreover, acoustic cavitation in

highly viscous liquids deserves specific interest for applications

in food industry [31], sludge treatment [32] and polymers degrada-

tion [33], among others. This issue is also relevant for the interpre-

tation of recent experiments on multi-bubble sonoluminescence in

highly concentrated sulphuric or phosphoric acid [34,7], which are

ten-folds more viscous than water at the concentrations used.

The motivation of the present paper is to examine experimen-

tally the shapes of the bubble structures and of the acoustic field

obtained in a given ultrasonic setup, for different liquid viscosities.

The viscosity of the liquid was changed by adding given amounts of

Poly-Ethylene Glycol (PEG-8000) to water and the amplitude of the

transducer tip is varied. The output variables are the bubble struc-

tures observed and the acoustic pressure profile in the insonified

vessel.

2. Materials and methods

The experimental set-up consists of a cylindrical vessel of

90 mm inner diameter and 150 mm height, built in 5 mm thick

borosilicate glass (Fig. 1). The vessel is filled with 500 ml of fluid,

resulting in a level of 80 mm. The fluid is insonified by an

19.7 kHz transducer located at the bottom of the vessel. The radi-

ant face of the transducer has a diameter d = 50 mm. Because the

studied phenomena is highly temperature-dependent, and cavita-

tion noticeably heats the liquid, a special excitation strategy was

developed to avoid excessive heating of the liquid: ultrasound is

turned on during about 2000 cycles, after which the system is left

still during 6 s. Preliminary trials have established that this strat-

egy allows the realization of cavitation experiments while keeping

the temperature constant within 1 °C.

The emitter amplitude was characterized by monitoring the

peak displacement U0 of the transducer during the experiments.

The latter can be obtained by monitoring the current I feeding

the transducer, and a calibration curve of U0 vs. I was drawn. The

current I was measured using a high frequency Hall-effect probe,

while the displacement of the transducer radiant face U0 was mea-

sured with a laser-Doppler system. The resulting calibration curve

is shown in Fig. 2. It can be seen that the relationship between U0

and I is quite linear, and we checked that this linear relationship

remained unchanged even if the impedance loading the transducer

was varied. This justifies our method to monitor the displacement

amplitude of the transducer face during the experiments.

On the other hand, the acoustic pressure in the chamber was

measured with a home-made PVDF hydrophone [35], which was

calibrated by using a non-linear calibration system [36]. The

sensitivity of the probe at the fundamental frequency was found

Fig. 1. Schematic experimental set-up.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

I
RMS

 (A)

U
0
 (

µ
 m

)

Fig. 2. Displacement amplitude of the transducer as a function of the feed current.



to be 0:66� 0:02 lV=Pa. The probe can be displaced within

0.02 mm in the whole cavitation chamber along the radial and

axial directions, with a motorized translation stage controlled by

the general management system of the experiment.

The fluid was imaged by a high speed camera (Phantom M310)

allowing 2000 frames per second (FPS) at full resolution. The cam-

era was disposed in front of the vessel, as shown in Fig. 1.

The experimental setup was controlled by a LabView program

in such a way that once the excitation amplitude reached an estab-

lished level, a signal was generated, to trigger the acquisitions of

the image. The transducer feed current and the acoustic pressure

level was digitized by a National Instrument PCI-6133 acquisition

card of 2 MS/s sampling rate and 14 bit resolution.

3. Experiment

The viscosity of the liquid was varied by adding Polyethylene

Glycol of 8000 g/mol molar mass (PEG-8000) in distilled water.

This method allows a precise control of the mixture viscosity with-

out altering noticeably its density [37]. The viscosities of the mix-

tures used in our experiments were measured with a rheometer

(Physica MCR301) and are reported in Table 1.

Since cavitation is sensitive to surface tension and to the dis-

solved air content, we checked whether both properties were

affected by the presence of PEG in water. We found such properties

only for PEG 6000 in the literature. For the latter, at our largest

concentration (w ¼ 0:1) and at 20 °C, surface tension falls down

to 60 mNmÿ1 (compared to 73 mNmÿ1 for pure water) [39], and

the dissolved oxygen content falls decreases to 91% of its value

in pure water. Although the change this constitutes a noticeable

change for both physical properties, we expect that the effects of

the presence of PEG on the cavitation field are due essentially to

the viscosity increase.

The same experimental protocol was repeated for the four dif-

ferent liquids, and varying the displacement amplitudes of the

transducer tip U0 in the range of [1.78–6.49] lm.

The axial variationof the acoustic pressurewas recordedbymov-

ing thehydrophoneby1 mmsteps along the symmetry axis (Zdirec-

tion), and the RMS pressure level was extracted at each location. To

ensure that the RMS values reportedwere not biased,we use the fol-

lowing protocol. At each location, a sample of 250 ms duration was

recorded (Fig. 3a). The recordingwas started 100 ms before the trig-

ger signal was received from the transducer, in order to ensure that

the rising transient was correctly measured. Moreover, since the

transducer is switched on for only 100 ms, a recording duration of

250 ms also ensured that the transient decay of the acoustic field

was also recorded, as shown in Fig. 3. Both the rising and decay tran-

sients were found to last for about tens of periods (Fig. 3b and c),

except for some occasions, especially near the pressure antinodes,

where the ring-down of the signal could last for about 1 s. A specific

algorithm was designed to eliminate the transients in the calcula-

tion of the RMS value. Finally, the standard deviation on the RMS

pressure level was found to reach 110 kPa in the worst case.

In parallel, for each experiment, an image of the cavitation

chamber was recorded in order to visualize the bubble structures

obtained.

4. Results

4.1. Distilled water

Fig. 4 shown the acoustic pressure profile along the Z direction

for different displacement amplitudes.

For low emitter amplitudes (blue star and green diamond

curves), the acoustic pressure field shows a local minimum at

approximately 25 mm from the transducer face, and a local maxi-

mum at about 45 mm. For convenience, such pressure profiles will

be called hereinafter as a ‘‘standing wave’’ profile, as soon as it

exhibits a marked pressure minimum, which we will loosely term

as ‘‘pressure node’’.

For emitter amplitudes greater than or equal to 3.98 lm, the

pressure profile gradually becomes nearly monotonic, and the

standing wave character disappears, although small local maxima

are still visible. More interestingly, increasing the emitter ampli-

tude yields a decrease of the whole acoustic pressure profile. This

behavior is a sign of self-attenuation of the wave, which has

Table 1

Viscosity and density of a mixture as a function of the concentration of PEG-8000 in

water.

Mass ratio w ¼ mPEG

mPEGþmH2O
Viscosity m (mPa s) Density q (kg/m3)

0.00 1.0a 998.2a

0.03 4.7 ± 0.1 960 ± 60

0.06 6.2 ± 0.1 980 ± 49

0.10 9.0 ± 0.1 978 ± 25

a Value from Ref. [38]
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Fig. 3. a: Typical sample of the acoustic pressure versus time. The transducer is

switched on near 90 ms. b: Zoom on the rising of the hydrophone signal. c: Zoom on

the decay of the hydrophone signal.



already been described for cone bubble structures [5] and was pre-

dicted theoretically in Ref. [27].

Simultaneously, pictures of the bubble structures in the cavita-

tion chamber were recorded for several values of the emitter

amplitude. Fig. 5 shows snapshots of the liquid for weak emitter

amplitudes (U0 ¼ 1:78 lm and 2:57 lm). It can be appreciated that

no large structure is formed yet, and only a small ‘‘spherical cap’’-

shaped structure forms on the transducer surface, centered on

the symmetry axis of the vessel. On Fig. 5A, a small filamentary

structure also appears at about 10 mm below the liquid free sur-

face, looking like a starfish-structure [2]. Moreover, on the image

of Fig. 5B, a small bubble cloud is visible as a large white dot at

about 25 mm above the transducer. This structure looks like a bub-

ble cluster, which is known to behave as a single large bubble [2].

Since the size of this cluster is clearly above the resonance radius at

19.7 kHz (Rres ¼ 140 lm), it must be attracted by the Bjerknes force

toward a pressure node, which is indeed present at this location

(see green diamond symbols curve on Fig. 4). Moreover, the star-

fish visible on Fig. 5A appears to have widened on Fig. 5B and is

located slightly deeper.

Fig. 6 shows the bubble distributions for larger emitter ampli-

tudes. For U0 ¼ 5:53lm, (Fig. 6A), a new ‘‘tree-like’’ structure

appears, formed by a thick vertical filament seeming to originate

from the center of the transducer, enriched laterally by densely

distributed bubble filaments, so that the whole appears as the

‘‘trunk’’ of a tree. As the emitter amplitude is further increased,

the structure gradually extends in height and for U0 P 6:23 lm,

attains a quasi stationary shape of approximately 20 mm diameter

and 60 mm height (Fig. 6B). It is reminiscent of the so-called ‘‘flare’’

structure described by Mettin [2] as originating from a conical

structure near the vibrating wall, from which bubbles stream far

away from the transducer forming a broad path, ending up as a

large filamentary structure.

Finally, comparison with the pressure profiles of Fig. 4 shows

that the appearance of this structure coincides with the transition

from a standing wave-like to a monotonically decreasing pressure

profile, and that the structure growth in height coincide with a glo-

bal decrease of the pressure profile (see curves from U0 ¼ 3:98 lm
to U0 ¼ 6:49 lm in Fig. 4). This will be discussed below.

4.2. Water–PEG mixtures

Figs. 7–9 display the axial pressure profiles obtained in experi-

ments with the different water–PEG mixtures, trying to keep con-

stant the emitter amplitude for the different liquids. The profiles

measured for pure water (ll ¼ 1:0 mPa s) are recalled for compar-

ison (blue star symbols curves).

For a low emitter amplitude, (U0 in the range [2.10–3.14] lm),

Fig. 7 shows that regardless of the viscosity value, the acoustic

pressure profile exhibits a standing wave-like shape, with a local

minimum located at a distance ranging between 20 and 30 mm

from the transducer tip.

In the range of medium emitter amplitudes (U0 in [5.13–

5.26] lm), two types of acoustic pressure profiles were found

(Fig. 8). For the lowest liquid viscosities (ll ¼ 1:0 and 4.7 mPa s),

the pressure profile has evolved into a monotonic shape (blue stars

and green diamonds curves). Conversely, for large fluid viscosities

(ll ¼ 6:2 and 9.0 mPa s), the acoustic pressure still displays a

standing wave behavior (red circles and light-blue squares symbols

in Fig. 8).

Finally, increasing more the driving amplitude, the standing

wave shape evolves into a monotonic wave profile, for all viscosi-

ties (Fig. 9). Interestingly, and counter-intuitively, the latter figure

also shows that once the pressure profile has switched to a

monotonic shape, the higher the viscosity, the higher the global

amplitude of the pressure profile.

By observing the images of the bubble structures for all exper-

iments, we found that the above-described transition from a stand-

ing wave to a monotonic pressure profile always matches the

appearance of the large flare-like bubble structure. There seems

therefore to be a universal correlation between the disappearance
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Fig. 4. Axial acoustic pressure profile for different excitation levels in pure water.

(For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)

Fig. 5. Bubble structures in the cavitation chamber for experiments with pure

water, for low emitter amplitudes (U0 < 3:98 lm). A: U0 ¼ 1:78 lm; B:

U0 ¼ 2:57 lm. A centimeter vertical scale has been added for readability.



of the standing waves and the appearance of the large structure.

This feature had already been recognized by Campos-Pozuelo and

co-workers for the cone bubble structure (see Fig. 6 in Ref. [5]).

The transition occurs above a threshold amplitude of the trans-

ducer, and the present results show that increasing the liquid vis-

cosity shifts this threshold toward large amplitudes.

5. Discussion

5.1. Bubble structures

The above experimental results are qualitatively consistent

with the interpretation suggested by the model and simulations

in Refs. [27,29]. It was proposed that the transition to a monotonic

pressure profile occurs because the appearance of a dense bubble

population near the transducer yields a large energy dissipation,

by the mechanism recalled in Section 1. The energy dissipated by

the bubbles damps the emitted wave and prohibits the formation

of longitudinal standing waves in absence of sufficiently large

reflected waves. This results in a damped traveling wave near the

transducer, which strongly expels the bubble from the transducer

by the primary Bjerknes force [2,28,29]. However, pressure antin-

odes can still appear far from the emitter, because a sufficient part

of the incident wave survives the damping near the emitter and

undergoes reflections on the vessel walls or on the free surface.

Moreover, the wave may be traveling in the axial direction and

standing in the radial direction [28]. This mixture of traveling

and standing waves has been conjectured to be responsible for

the formation of flare structures [2], and was satisfactorily caught

by the model of Ref. [29]. Such a structure is visible for example in

Fig. 6B: basically, the foot of such structures is composed of bub-

bles expelled from the transducer by a traveling wave, which ends

up in a filamentary structure around a pressure antinode.

In the present case, the detailed comparison between the

images of bubble structures and the pressure profiles allow to

refine the above interpretation. Comparing for example Fig. 6A

Fig. 6. Bubble structures in the cavitation chamber for experiments with pure

water, for high emitter amplitudes. A: U0 ¼ 5:53 lm, tree-like structure: between

z ¼ 2 cm and z ¼ 4 cm, the axis is free of bubbles; B: U0 ¼ 6:49 lm, flare-like

structure [2]: the major part of the axis is populated with bubbles. The structures

ends up as a large streamer. A centimeter vertical scale has been added for

readability.
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The emitter amplitude ranges between 2.10 and 3.14 lm.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3
x 10

5

Distance to transducer (mm)

P
re

s
s
u
re

 (
P

a
)

µ
l
 = 1.0 mPa ⋅ s

µ
l
 = 4.7 mPa ⋅ s

µ
l
 = 6.2 mPa ⋅ s

µ
l
 = 9.0 mPa ⋅ s

Fig. 8. Axial acoustic pressure profile in water–PEGmixtures of different viscosities.

The emitter amplitude ranges between 5.13 and 5.26 lm.
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and B, one could naively think that the structure growth for

increasing emitter amplitudes is due to a corresponding global

increase of the acoustic pressure field. Comparison of the pressure

profile for U0 ¼ 5:53 lm (light-blue squares curve on Fig. 4) with

the one for U0 ¼ 6:49 lm (yellow + signs curve on Fig. 4) shows

that the opposite holds. There are therefore more bubbles on the

symmetry axis in Fig. 6B than on 6A because acoustic pressures

are lower in B. This could be explained by recalling that in a stand-

ing wave, the Bjerknes force on inertial bubbles changes sign above

1.7 bar, and becomes directed towards low acoustic pressures

[40,20,41,42]. This is supported by Fig. 6A, which shows that the

trunk of the structure exhibits a void region between 20 mm and

40 mm from the transducer. The corresponding pressure profile

on Fig. 4 (light-blue squares curves) shows that in this region,

the acoustic pressure ranges between 1.5 and 2 bar, and we conjec-

ture that the Bjerknes force in this zone repels the bubbles out of

axis, up to the small filamentary structure visible at 40 mm above

the transducer where the Bjerknes force again attracts the bubbles

on the axis.

In the near-transducer zone, fresh bubbles are continuously

nucleated on the transducer and strongly expelled upwards by

the large Bjerknes force induced by the traveling wave in this

region. However, for U0 ¼ 5:53 lm (light-blue curve in Fig. 4, and

structure Fig. 6.A) the acoustic pressure on the axis in this region

is larger than 1.7 bar, so that these bubbles should also undergo

a radial force pushing them out-of-axis, if one assumes a standing

wave in the r-direction. One may therefore expect that the bubbles

born on the transducer would also bypass the axis and leave a void

region near the transducer. This is not the case probably because

the Z-directed expelling Bjerknes force, induced by the traveling

wave, is much larger than the R-directed repelling one, induced

by the radial standing wave. This simplistic interpretation might

however miss some non-stationary mechanisms, and the competi-

tion between the radial and axial forces may explain the observa-

ble chaotic bending of the structure on a time-scale of the order of

the second.

Conversely in Fig. 6B, the whole axis is a bubble attractor

because the acoustic pressure is everywhere lower than 1.7 bar

(yellow + signs curve on Fig. 4). The bubbles launched from the

emitter thus follow more or less the axis and the structure appears

straighter. It ends up at about 50–60 mm of the transducer, prob-

ably because the acoustic pressure becomes lower than the Blake

threshold above this point.

A video at 2000 FPS showing the details of the structure dynam-

ics for U0 ’ 6 lm in pure water is proposed as supplementary

material. The structure observed corresponds more or less to the

situation of Fig. 6A, and the motion of the bubbles tends to confirm

the main lines of the above interpretation.

To summarize, we therefore infer the following qualitative sce-

nario to explain the present results:

1. For very low amplitudes, acoustic pressures are high enough to

produce inertial bubbles only near the transducer, forming a

spherical cap structure, growing with amplitude. A standing

wave is present in the whole vessel.

2. Above some threshold, which increases with the liquid viscos-

ity, the bubbles near the transducer dissipate enough energy

to damp the wave noticeably and produce locally a traveling

wave. The resulting Bjerknes force expels the bubbles from

the transducer, yielding the trunk of the structure. The pressure

values on the axis are high enough to produce an out-of-axis

repelling Bjerknes force, which produces a void region on the

axis at a given distance from the transducer.

3. As the amplitude is still increased, a larger number of bubbles

near the transducer dissipate more energy, yielding a global

decrease of the pressure profile. The void regions progressively

disappear as the axis becomes attractive again, so that the

structure thus builds up over that part of the axis where the

acoustic pressure is higher than the Blake threshold.

5.2. Effect of viscosity

Our experiments show that increasing the liquid viscosity shifts

the transitions 1 ! 2 and 2 ! 3 towards higher driving amplitudes

in the above scenario. This is consistent with the observed ordering

of the curves in Fig. 9. At a given driving amplitude, the largest vis-

cosity pressure profile is still in phase 2 (light-blue squares curve),

whereas the low-viscosity ones are already in phase 3. This results

in somewhat counter-intuitive situations where, as exemplified in

Fig. 9, an increase of viscosity results in a globally higher acoustic

pressure field.

This suggests a yet unknown mechanism increasing the acous-

tic transparency of the cavitating liquid for increasing liquid vis-

cosities. Such an effect can be found in fact within the frame of

the single bubble physics. Indeed, for large viscosities, the bubble

oscillations become so damped that the radial velocity strongly

decreases [43], thus reducing the power dissipated by the bubble

[Eq. (1)]. We have examined quantitatively this hypothesis in A

and conclude that for the moderate viscosities considered here, it

can be discarded.

The precise mechanism by which these transitions occur

remains to be explained, especially why, once the flare-like

structure is formed, an increase in the emitter amplitudes pro-

duces a global decrease of the pressure profile, and why this

phenomenon is delayed when increasing the liquid viscosity.

One might conjecture an effect of the bubble number and/or size

distribution, which is clearly not caught by Louisnard’s model

[27]. By the way, we have tried to apply the latter to the present

geometry, carefully accounting for the vibrations of the vessel

walls, and adjusting the bubble number (constant above the

Blake threshold [27,29]) in order to fit the observations). Some

similarities were found, and for example the spherical cap struc-

ture could be easily obtained. Nevertheless, the experimentally

observed shape of the flare-like structure could not be reason-

ably reproduced, and more important, the orders of magnitude

of the calculated acoustic pressures were lower than the ones

measured here, except in the immediate vicinity of the trans-

ducer. This suggest that Louisnard’s model overestimates in

some way the attenuation of the field, and we conjecture that

this is due to the constant bubble density hypothesis, which

must therefore be refined. The present results thus show that

a fully predictive model of acoustic cavitation is not yet

achieved. Measuring acoustic pressure fields in simple experi-

mental geometries, like the present one, constitutes a good

benchmark for model enhancements. Moreover, our results show

that the liquid viscosity has a noticeable influence on the fields

observed, and new or existing models should demonstrate their

ability to catch this effect reasonably well.
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Appendix A. Power dissipated by a single bubble as a function of

viscosity

We estimate the period-average power dissipated by the radial

motion of a bubble, because of viscous friction in the liquid [27]:

Pv ¼
1

T

Z T

0

16pllR
_R2 dt ðA:1Þ

for a given bubble in liquids of different viscosities. The model used

to calculate bubble dynamics is the same as in Ref. [27] and is based

on a Keller equation complemented by equations accounting for

heat and water transfer inside the bubble with approximate diffu-

sion layers [44,45]. We consider an air bubble of ambient radius

R0 ¼ 5 lm excited by a sinusoidal forcing p ¼ p0 ÿ pa sinð2pftÞ, at

f ¼ 20 kHz. The liquid is considered at ambient pressure

(p0 ¼ 101;300 Pa), ambient temperature (T0 ¼ 20 �C), and its phys-

ical properties are the one of water (ql ¼ 1000 kg/m3,

r = 0.0725 N mÿ1), except that the viscosity is varied between one

and hundred-fold the viscosity of pure water (lw = 10ÿ3 Pa s).

Fig. A.10 displays the results obtained for Pv given by Eq. (A.1).

For the three lowest viscosities lw (blue solid line), 5lw (green

dashed line) and 10lw (red dash-dotted line), the behavior is the

same as depicted in Ref. [27]: the dissipated power undergoes a

huge jump at the Blake threshold, to reach values orders of magni-

tude above the linear prediction. The respective locations of the

three curves is intuitive for all values of the driving field: increas-

ing viscosity increases viscous dissipation.

For liquid viscosities of 50lw (purple square symbols) and

100lw (black circle symbols), the transition near the Blake thresh-

old is smoother. More interesting, there exists a range of acoustic

pressures above the Blake threshold where an increase of liquid

viscosity yields a decrease of the power dissipated by the bubble.

Although this result may sound counter-intuitive, this occurs

because a large increase of viscosity strongly damps the bubble

dynamics and therefore the velocity gradients in the liquid. Thus,

even if ll is higher, the integral (A.1) decreases because _R2 is much

smaller over the whole acoustic cycle. This would suggest that very

viscous liquids subject to cavitation might be more transparent to

acoustic waves in some occasion, because the bubbles they pro-

duce undergo less violent oscillations. However, for the viscosities

used in the present experiments (less than ten-fold the viscosity of

pure water), Fig. A.10 shows that the dissipated power always

increases with viscosity (see solid, dashed and dash-dotted lines),

and that such a mechanism can be discarded.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.ultsonch.2014.

07.007.
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