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A simple model of ultrasound propagation in a cavitating liquid.
Part II: Primary Bjerknes force and bubble structures
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a b s t r a c t

In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation

bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a sin-

gle bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this

model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter

was much higher than predictions obtained from linear theory, and that this strong attenuation creates

a large traveling wave contribution, even for closed domain where standing waves are normally

expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes

force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-

dimensional axi-symmetric computations of the acoustic field created by a large area immersed sono-

trode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched.

Cone bubble structures are recovered and compare reasonably well to reported experimental results. The

underlying mechanisms yielding such structures is examined, and it is found that the conical structure is

generic and results from the appearance a sound velocity gradient along the transducer area. Finally, a

more complex system, similar to an ultrasonic bath, in which the sound field results from the flexural

vibrations of a thin plate, is also simulated. The calculated bubble paths reveal the appearance of other

commonly observed structures in such configurations, such as streamers and flare structures.

1. Introduction

A common observation in acoustic cavitation experiments is the

rapid translational motion of the bubbles relative to the liquid, and

their self-organization into various spectacular structures. These

structures have been systematically reviewed recently [1], and

some of them have been successfully explained by results derived

from single bubble physics [1–3].

The origin for bubble translational motion in an acoustic field is

the so-called Bjerknes force [4–6], which is the average over one

oscillation period of the generalized buoyancy force exerting on

any body in an accelerating liquid [7]. It is commonly expressed

in terms of the pressure gradient as:

FB ¼ ÿhV$pi; ð1Þ

where h�i denotes the average over one acoustic period, V is the bub-

ble volume and p the acoustic pressure which would exist in the li-

quid at the center of the bubble if the latter were not present. Since

V and p are oscillatory, the average of their product can be non-zero.

The most spectacular and known manifestation of the primary

Bjerknes force occurs in standing waves. It can be simply deduced

from linear theory that bubbles smaller than the resonant size are

attracted by pressure antinodes, whereas bubbles larger than res-

onant size are attracted by pressure nodes [8]. This was confirmed

by the early experiments of Crum and Eller [9], and is the basic

principle of levitation experiments used to study single bubble

sonoluminescence, where attraction by the central antinode of

the flask counteracts the buoyancy force [10,11].

However, nonlinear effects can produce repulsion of inertial

bubbles from pressure antinodes above a given threshold [6]. This

threshold can be estimated analytically for low frequency driving

and is found to be near 170 kPa, with a slight dependence on sur-

face tension [12]. This can be evidenced in multi-bubble experi-

ments by a void region near the pressure antinode surrounded

by bubbles accumulating near the threshold zone [2], or by bubbles

self-arrangement into parallel layers shifted relative to the anti-

nodal planes [1], correctly predicted by particle model simulations.

A more important issue concerns the Bjerknes force exerted on

bubbles by large amplitude traveling waves. While small ampli-

tude traveling waves exert a negligible Bjerknes force on bubbles,

this is no longer true for large traveling waves, and theory predicts

a large Bjerknes force, oriented in the direction of the wave prop-

agation [13,1,3]. This means that an ultrasonic source emitting a

traveling wave would strongly repel the bubbles nucleating on

its surface. This issue has been investigated theoretically by KochE-mail address: louisnar@enstimac.fr



and co-workers [14], who, assuming an arbitrary wave, traveling in

the sonotrode direction and standing in the perpendicular plane,

showed that the conical bubble structure observed under large

area transducers [15,16] could be partially reproduced by particle

models.

Other complex bubble structures can be observed in other con-

figurations, such as ultrasonic baths, and were conjectured to re-

sult from a combination of both traveling and standing waves

[1]. This raises the issue of the origin of such traveling waves,

which was one of the motivation of the present paper and the com-

panion one (which we will denote hereinafter by [OL I]). In the lat-

ter, we showed that traveling waves appear as a simple

consequence of the attenuation by inertial bubbles. The model pre-

sented in [OL I] constitutes therefore the missing link in the theory,

and allows to calculate the acoustic field without any a priori on its

structure, just from the knowledge of the vibrations of the ultra-

sonic emitter, whatever its complexity. From there, the Bjerknes

force field can be calculated, and the shape of the structures

formed by the bubble paths in the liquid can be examined.

Before going further, one should remind that Eq. (1) is an over-

simplification of the complex problem of bubbles translational

motion. A correct representation of the latter requires to write

Newton’s second law for the bubble, accounting not only for the

instantaneous driving force ÿVrp [of which (1) is the time-aver-

age], but also for viscous drag and added-mass forces [7]. All mem-

bers of such an equation are dependent of the bubble radial

dynamics, so that considering Eq. (1) as a mean force pushing

the bubbles is a reduced view of the reality, masking the periodic

translational motion superimposed to the (macroscopically visible)

average translational motion. This is historically justified, since the

first studies on Bjerknes forces aimed at localizing the stagnation

points of the bubbles where FB vanishes [17], as is the case in

the center of single-bubble levitation experiments [10,18]. Slightly

extrapolating this point of view, if one accepts that the average

bubble velocity can be obtained approximately by a balance be-

tween Eq. (1) and an average viscous drag force, a terminal mean

velocity of the bubble can be calculated, which allowed, for exam-

ple successful particle simulations of bubble structures [2]. This

raises the issue of nontrivial averaging procedure for moderate or

large drivings [19,20], which may be performed by elaborate mul-

tiple scales procedures [21]. However, some experimental situa-

tions exist where such a terminal velocity cannot be defined, and

a bubble may wander between the nodes and antinodes of a stand-

ing wave [22]. The description of such a phenomenon requires the

simultaneous resolution of the instantaneous radial and transla-

tional equations of the bubble, initially proposed in Ref. [23], and

improved recently by a Lagrangian formulation [24–26]. The main

result of the latter studies is that the radial and translational mo-

tions are strongly coupled, so that the bubble dynamics equation

is also affected by the translational motion. Direct simulation of

the two coupled equations in standing waves fields reveal that,

apart from the classical scheme of bubble migration toward stag-

nation points, some bubbles may have no spatial attractors and

can wander indefinitely between a node and an antinode, as ob-

served in [22]. Such a behavior, termed as ‘‘translationally unsta-

ble’’, has been found to result from an hysteretic response of the

radial bubble dynamics below the main resonance [27].

In spite of the latter remarks, we will keep in this paper the clas-

sical picture of the mean primary Bjerknes force defined by Eq. (1)

acting on the bubbles, and focus on the effects of traveling waves.

The paper is organized as follows: in section 2, we will first briefly

recall the main results on the primary Bjerknes force, and indicate

how it can be calculated for an arbitrary bubble dynamics in a gi-

ven acoustic field. In Section 3, we will calculate the Bjerknes force

field in acoustic fields calculated with the model proposed in [OL I],

which we will briefly recall in Section 3.1. First, in Section 3.2, the

1D configuration examined in [OL I] will be considered. Then, in

Section 3.3, we will examine a 2D axi-symmetrical configuration,

constituted by a large area sonotrode emitting in a large bath, sim-

ilar to the experiments reported in Refs. [15,16,28]. Finally, Section

3.4 will address another 2D configuration, mimicking an ultrasonic

bath in which the acoustic field is produced by a plate undergoing

flexural vibrations. For both 2D configurations, the bubble paths

will be drawn from the knowledge of the acoustic and Bjerknes

force fields at every point in the liquid. The structures obtained will

be compared to experimental results of the literature and

discussed.

2. Primary Bjerknes forces

2.1. Intuitive analysis and linear case

The physical origin of the primary Bjerknes force can be recalled

simply by considering a mono-dimensional wave. The instanta-

neous pressure force exerted by the external liquid on a liquid

sphere that would replace the bubble is approximately the differ-

ence Dp between the instantaneous acoustic pressures on two

opposite sizes of the sphere, multiplied by the bubble area S. Be-

sides, the pressure difference Dp is roughly @p=@x� 2R, so that

the instantaneous force is roughly 2R� S� @p=@x ’ V@p=@x. Gen-

eralizing this result in 3D Eq. (1) is recovered.

Along an acoustic cycle, the bubble therefore wanders forward

and backward along the direction of the pressure gradient, under

the influence of this instantaneous force, but the two motions

may not exactly compensate, because the bubble may be for exam-

ple larger when the pressure gradient is directed forward than

when it is directed backward. The average force is therefore a mat-

ter of phase between the volume V and the pressure gradient

@p=@x, which can be better understood with the schematic repre-

sentation of Fig. 1: the phase shift between V and @p=@x can be

decomposed into two parts: the phase shift c between volume V

and pressure p, and the phase shift h between p and its gradient

@p=@x. The former depends on the way the bubble responds to

the local acoustic field, that is on the bubble dynamics, whereas

the latter depends on the structure of the acoustic field. All the re-

sults mentioned in the introduction can be interpreted from this

picture.

Let us take for example the case of sub-resonant bubble oscillat-

ing linearly. In this case, pressure and volume are in opposition

(c = p). In a pure 1D linear standing wave, away from pressure

nodes or antinodes, p and @p=@x are either in phase (h = 0), or in

phase opposition (h = p), depending on the location relative to

the pressure antinode. Thus, the phase shift between V and @p=@x

is either 0 or p. This yields therefore a large average value for the

product hV@p=@xi, except in the pressure antinodes and nodes

where it is zero. Conversely, for a traveling wave, pressure and

pressure gradient are in quadrature (h ¼ p=2), so that hV@p=@xi is

clearly zero in this case.

If the analysis is rather simple for linear oscillations, this is no

longer the case for strongly nonlinear inertial oscillations. In that

case, the bubble radial motion is mainly driven by the inertia of

Fig. 1. Schematic interpretation of Eq. (1). The phase shift between bubble volume

V and pressure gradient @p=@x can be decomposed into two parts: c depending on

the bubble dynamics, and h depending on the acoustic field.



the liquid, and the bubble radius contains a large out-of-phase

component with respect to the driving pressure p. This is the rea-

son why pressure antinodes may become repulsive even for a sub-

resonant bubble in a large amplitude standing wave [6], and why

the Bjerknes force may become very large in traveling waves

[13,14]. The next section quantifies this qualitative analysis.

2.2. General calculation of the Bjerknes force

The model described in [OL I] was shown to result from the

assumption that the bubbles mainly respond to the first harmonic

of the field, which we termed as ‘‘first harmonic approximation’’

(FHA). We therefore assume that the pressure field in the liquid

is mono-harmonic at angular frequency x, and defined in any

point r by

pðr; tÞ ¼ p0 þ
1

2
PðrÞeixt þ PðrÞeÿixt
ÿ �

; ð2Þ

which, writing P ¼ jPðrÞj exp i/ðrÞð Þ, can be recast as

pðr; tÞ ¼ p0 þ jPðrÞj cos xt þ /ðrÞ½ � ð3Þ

This expression may represent a traveling wave, a standing wave, or

any combination of both. We also define the pressure gradient in

general form as

@p

@xi
ðr; tÞ ¼ GiðrÞ cos xt þ wiðrÞ½ �; ð4Þ

where the fields Gi and wi can be expressed as functions of p and /

once the acoustic field is known.

The following two extreme cases deserve special consideration:

for a standing wave, /ðrÞ ¼ /0, so that GiðrÞ ¼ @P=@xi and wiðrÞ ¼

/0; for a traveling wave, PðrÞ ¼ P0 and /ðrÞ ¼ ÿk � r so that

GiðrÞ ¼ kiP0 and wiðrÞ ¼ /ðrÞ ÿ p=2.
The expression of the Bjerknes force on the bubble located at r

reads, from (1):

FB i ¼ ÿGiðrÞ
1

T

Z T

0

Vðr; tÞ cos xt þ wiðrÞ½ � dt; ð5Þ

where T is the acoustic period and V(r, t) is the instantaneous vol-

ume of a bubble located at r and can be calculated by solving a ra-

dial dynamics equation, for example:

ql R€Rþ
3

2
_R2

� �

¼ pg ÿ
2r
R

ÿ 4ll

_R

R
ÿ pðr; tÞ: ð6Þ

The bubble volume depends on r because two bubbles located at

different points may be excited by fields of different amplitudes

jPj but also different phases /. However, in order to be able to cal-

culate the volume V of any bubble over one acoustic period inde-

pendently of its spatial location, we must fix the phase of the

driving field in Eq. (6) by a convenient change of variables. We

therefore set, taking this opportunity to non-dimensionalize the

variables:

pðr; tÞ ¼ p0 1ÿ jP�j coss�ð Þ; ð7Þ

where the minus sign has been chosen to be consistent with earlier

studies [29,12], and, comparing this expression with Eq. (3), we get:

P� ¼ PðrÞ=p0; ð8Þ

s�ðr; tÞ ¼ xt þ /ðrÞ ÿ p: ð9Þ

We now note Vðs�Þ the volume of the bubble when it is driven by

the pressure field (7), and making the change of variables in (5),

we get:

FB i ¼ GiðrÞ
1

2p

Z 2p

0

Vðs�Þ cos s� ÿ /ðrÞ þ wiðrÞ½ � ds�; ð10Þ

which we recast as:

FBi
¼ GiðrÞ IC cos½/ðrÞ ÿ wiðrÞ� þ IS sin½/ðrÞ ÿ wiðrÞ�ð Þ ð11Þ

with

IC ¼
1

2p

Z 2p

0

Vðs�Þ cos s� ds�; ð12Þ

IS ¼
1

2p

Z 2p

0

Vðs�Þ sins� ds�: ð13Þ

This decomposition (which was suggested in a slightly different

form by Mettin [1]), has the advantage to clearly decompose the

respective influences of the bubble dynamics through integrals IC
and IS, and the one of the acoustic field, through the phase shift

/ðrÞ ÿ wiðrÞ. In the case of a 1D wave, the latter corresponds to

the angle h that we defined in Fig. 1. Integral IC measures the stand-

ing wave contribution to the Bjerknes force ð/ÿ w ¼ 0 or p), while

integral IS measures the traveling wave contribution ð/ÿw ¼ �p=2Þ.
The two integrals IC and IS can be easily calculated numerically

by solving a radial dynamics equation to obtain V and averaging

over one period. They can also be calculated analytically, trivially

for linear oscillations, and in a more complex manner for inertial

oscillations in a small size range above the Blake threshold [12].

The correct matching between the two extreme cases is however

difficult, so that we will use the numerical values hereinafter.

The results are displayed in Fig. 2 in the case of air bubbles in

water in ambient conditions for two ambient radii R0 ¼ 3 lm (solid

lines) and R0 ¼ 5 lm (dashed lines). The integral IC is represented

in signed logarithmic scale (note the different scales for the

Fig. 2. Average quantities IC and IS for an air bubble of ambient radius 3 lm (solid

line) and 5 lm (dashed line) in water, as a function of the dimensionless acoustic

pressure jP�j for frequency of 20 kHz. The vertical lines represent the Blake

thresholds for 3 lm (solid) and 5 lm bubbles (dashed).



positive and negative parts). It is seen that it is positive for low driv-

ings, and quickly increases near the Blake threshold by about 3 or-

ders of magnitude. In this range of acoustic pressures, antinodes

are attractive. Then, above jP�j ¼ 1:7 bar, Ic becomes largelynegative

and the antinodes become repulsive, as was found in Ref. [6].

The integral IS is always positive, is very weak below the Blake

threshold, and drastically increases above the Blake threshold (by

6–7 orders of magnitude). This predicts that, as reported in Ref.

[13], the Bjerknes force can become very large in traveling waves.

3. Results

3.1. Simulation method

The complex acoustic field p is obtained by solving a nonlinear

Helmholtz equation, which has been detailed in [OL I] and is briefly

recalled here for completeness:

r2P þ k
2
jPjð ÞP ¼ 0: ð14Þ

where the complex wave number is given by:

Rðk
2
Þ ¼

x2

c2l
þ
4pR0x2N

x2
0 ÿx2

; ð15Þ

I k
2

� �

¼ ÿ2qlxN
Pth þPv

jPj2
: ð16Þ

The bubble number N is defined as a step function: it is assumed

zero in the zones where the acoustic pressure is less than the Blake

threshold, and is assigned to a constant value in the opposite case.

N ¼
N0 if jPj > PB

0 if jPj < PB

�

ð17Þ

3.2. 1D results

Wefirst calculate theprimaryBjerknes force for the same1Dcon-

figuration as in [OL I]: the domain length is 10 cm, the right bound-

ary is assumed infinitely soft, air bubbles of ambient radius 5 lm in

water. For a low amplitude of the emitter (U0 ¼ 0:3 lmÞ, the

pressure amplitude profile is almost a perfect standing wave

(Fig. 3a), and Fig. 3b exhibits the classical picture of a somewhat

low primary Bjerknes force pushing the bubbles towards the antin-

odes (note that the distortion of the force profile in Fig. 3b is an arti-

fact of the signed logarithmic scale used in ordinate). In this case, the

value of the Bjerknes force mainly owes to the IC term in Eq. (11).

For larger emitter amplitude ðU0 ¼ 5 lmÞ, the pressure ampli-

tude profile is strongly damped near the emitter, as already com-

mented in [OL I] (Fig. 4a). This strong attenuation produces a

noticeable traveling part in the wave and thus a large IS term in

Eq. (11), which, as shown in Fig. 4b, results in a huge positive force

near the emitter almost 6 orders of magnitude higher than the

maximal force visible in Fig. 3b (note that the scales used in both

figures are identical). The bubbles would consequently be strongly

expelled from the emitter, and travel right to the first stagnation

point which is located somewhat far from the emitter (see the left-

most circle marker in Fig. 4a). The occurrence of such stagnation

points has been proposed to be the key mechanism for bubble con-

ical structure formation [14,1]. We will show in the next section

that this is partially true, but involves some additional subtleties.

3.3. Sonotrode

3.3.1. Experiments with a 12 cm diameter sonotrode

In this section we compare the results of our model to cone bub-

ble structures images presented in Ref. [15]. The latter work used a

100 cm � 60 cm rectangular water tank of 40 cm depth, where a

sonotrode of diameter 2a = 12 cm driven at 20.7 kHz is immersed

at 3 cm below the free liquid level (Fig. 5).

The geometry simulated follows the experimental configuration

used in Ref. [15] as closely as possible. However, in order to avoid

time-consuming 3D simulations, we replaced the rectangular tank

by a cylindrical one with the same depth and a diameter of 60 cm,

and simulate only a half-plane cut in axi-symmetrical mode. The

characteristic of the bottom of the tank is not specified in Ref.

[15] but following a similar work by the same authors in which

the same bubble structures were observed [16], we considered

an anechoic tank bottom. The lateral sides of the tank were taken

as infinitely rigid boundaries, and the free liquid surface as

(a)

(b)

Fig. 3. Simulation of the sound field and resulting primary Bjerknes force for 5 lm
air bubbles in water, with an emitter displacement amplitude is U0 ¼ 0:3 lm at

20 kHz. (a) Pressure amplitude profile. The horizontal dashed line represents the

Blake threshold for 5 lm bubbles. (b) Bjerknes force exerted on bubbles at each

point of the domain (with signed logarithmic scale in ordinate). The circles in (a)

represent the stable stagnation points for the bubble.

(b)

(a)

Fig. 4. Simulation of the sound field and resulting primary Bjerknes force for 5 lm
air bubbles in water, with an emitter displacement amplitude is U0 ¼ 5 lm at

20 kHz. (a) Pressure amplitude profile. The horizontal dashed line represents the

Blake threshold for 5 lm bubbles. (b) Bjerknes force exerted on bubbles at each

point of the domain (with signed logarithmic scale in ordinate). The circles in (a)

represent the stable stagnation points for the bubble.



infinitely soft. The nonlinear Helmholtz equation with the latter

boundary conditions was solved in axi-symmetrical geometry,

using the commercial COMSOL software.

The transducer is also simulated in order to account for its lat-

eral deformation in the liquid, which, as will be seen below, is nec-

essary to catch some experimental features. However, since details

on the internal structure of the transducer are not given in Refs.

[15,16], we assumed the latter made of steel and following a

non-dissipative elastic behavior represented by Hooke’s law (with

Young modulus E ¼ 2� 1011 Pa, Poisson ratio m ¼ 0:3, density

qS ¼ 7900 kg=m3Þ. The vibration of the transducer is coupled to

the acoustic field in the liquid by using the convenient cinematic

and dynamic interface conditions, as detailed in Ref. [30]. We sim-

ulate only the bottom part of the transducer, containing the whole

part immersed in the liquid and an arbitrary small length (3 cm) of

the emerged part. A uniform sinusoidal displacement of amplitude

U0 is imposed on the upper boundary of the simulated transducer

rod. In order to match the conditions of the experiments, the

acoustic intensity I entering the medium through the lower bound-

ary of the sonotrode is calculated by: [30]

I ¼
1

pa2

Z Z

S

1

2
R PV�ð Þ dS ð18Þ

Both parameters U0 and N0 are varied in order to obtain the re-

quired value of I.

In order to tentatively exhibit the bubble structures formed in a

given configuration, the bubble paths, generally termed as

‘‘streamers’’, will be materialized by drawing the ’’streamlines’’ of

the Bjerknes force field in some parts of the liquid. The adequate

choice of the starting points of these streamlines is difficult, be-

cause it would require a clear knowledge of the bubble nucleation

process. Solid boundaries are known to act as sources of bubble nu-

clei, where the latter may be trapped by microscopic crevices [31].

Common observation of cavitation experiments indeed show that

bubbles often originate from the transducer area, which might sug-

gest that the release of crevice-trapped bubbles is more efficient on

vibrating surfaces. We will therefore launch systematically stream-

lines of the Bjerknes force field from equidistant points of vibrating

boundaries, and we will term them as ’’S-streamers’’.

Besides, many bubble structures appear far from solid bound-

aries as a more or less complex set of bubble filaments [1]. In that

case, bubble seem to originate from given points of the bulk liquid,

but the precise mechanism of nucleation of such bubbles is not

clear. Although it has long been thought that sub-micronic nuclei

could grow up to the Blake threshold by rectified diffusion

[32,33], this is ruled out by nonlinear theory, since a sub-Blake

bubble cannot grow by rectified diffusion [34]. Coalescence is an

alternative growth process, but this issue is yet unresolved. We

will therefore assume that a bubble is visible and contributes to

structures only if it is inertially oscillating, that is in zones above

the Blake threshold. This is anyway consistent with our assump-

tion on the bubble density (17) used to calculate the acoustic field.

We will therefore launch streamlines from arbitrary points located

on the calculated curves jPj ¼ PB, where PB is the Blake threshold

(PB ¼ 1:178 bar bar for 2 lm bubbles in ambient conditions, see

[OL I]). We will refer to such streamlines as ‘‘L-streamers’’ and

we will represent then with a color different from surface stream-

lines in order to distinguish them.

Fig. 6 displays one of the original images obtained in Ref. [15]

for an acoustic intensity I = 8.2 W. The cone is completely formed

and ends in a long tail undergoing lateral fluctuations, which ex-

plains the slightly non-symmetric shape of the structure. Besides,

it can be easily seen that a large region inside the cone is poorly

populated in bubbles, compared to the immediate vicinity of the

transducer and the lateral boundaries of the cone.

Wepresent inFig.7acomparisonbetweenthispictureandtheresult

of our model for U0 ¼ 1:4 lm and N0 = 360 bubbles mmÿ3. Because

the original picture is non-symmetric, and to ensure a maximal

objectivity in the comparison, we present our result compared

both to the left part of the cone (Fig. 7a) and to its mirrored right

part (Fig. 7b). Besides, the original picture has been video-reversed

in order to obtain black bubble paths on a white background. We

emphasize that this was the only image treatment performed.

The Blake threshold contour curve is displayed in thick solid red

line. The S-streamers, originating from the transducer, are dis-

played in black, while the L-streamers, originating from arbitrary

points on the Blake threshold contour line are displayed in blue.

First, it is seen that the global shape of the cone is correctly repro-

duced. The acoustic pressure on the axial point of the emitter is

2.16 bar. Cavitation occurring near the sonotrode dissipates a lot

of energy,which produces a strong attenuation and therefore a large

traveling wave contribution in the vertical direction. Bubbles origi-

nating from the transducer (black lines in Fig. 7) are therefore

strongly expelled from the sonotrode surface, the mechanism being

the same as the one explained above for 1D waves (see Fig. 4).

A more detailed analysis of the vertical component of the Bjerk-

nes force can be made by referring to the z-projection of Eq. (11).

The green line in Fig. 8 represents the standing wave contribution

Fig. 5. Axi-symmetrical geometry for large area sonotrode.

Fig. 6. Original image of cone bubble structure (reprinted from Ref. [15], with

permission from Elsevier). The transducer diameter is 12 cm.



IC cos /ðrÞ ÿ wzðrÞ½ � as a functionof thedistance to the sonotrode (the

latter being located on the right of the graph), the red lineis the trav-

eling wave contribution IS sin /ðrÞ ÿ wzðrÞ½ �, and the blue line is the

sum of the two latter. The sign of the blue line represents therefore

the sign of the z-component of FB, which, if negative, corresponds to

a downward oriented force. It can be seen that near the sonotrode,

the vertical Bjerknes force is dominatedby the strong repulsive trav-

eling wave contribution, as was the case for the 1D simulation,

which is clearly due to the strong attenuation of the wave near the

sonotrode. It can be noticed by the way that the standing wave con-

tribution is repulsive only in a small layer near the sonotrode be-

cause the acoustic pressure is larger than the threshold 1.7 bar in

this zone. Then, slightly before z = ÿ0.01 m, the positive standing

wave contribution cancels exactly the traveling wave one, and

becomes dominant, so that the Bjerknes force becomes positive.

Thismeans that, as far as only the z-component of the Bjerknes force

is concerned, there is a stagnation point for bubbles near

z = ÿ0.01 m. In fact aswill be seen below, this point is a saddle-point

since the axis is repulsive in the radial direction at this point, so that

the bubbles expelled from the sonotrode brake here in the z-direc-

tion and follow their motion radially, which explains the formation

of the void region in the core of the cone. Near z = ÿ0.02 m, the

standingwave contribution changes sign again, so that the force be-

comes downwards and dominated by the traveling wave again.

Drawing the same curves for larger distances from the sonotrode

would show that this is the case up to another sign-change of the

standing wave contribution, near z = ÿ0.155 m, which constitutes

a real stagnation point since there, the radial force is oriented to-

wards the axis. Contrarily to earlier interpretations [14,1], the pres-

ent results suggest that the tip of the cone (near z = ÿ0.07 m) is not a

stagnation point, and that the real one is located well below, so that

the bubbles follow closely the axis up to the latter on an appreciable

distance. This is consistent, at least qualitatively, with the original

picture of the cone Fig. (6) which shows that the cone ends into a

long fluctuating tail.

We now look at the behavior in the radial direction. Fig. 9 dis-

plays sin
2
hr , where hr ¼ /ðrÞ ÿ wrðrÞ is the phase shift between p

and @p=@r. It can be seen that a large region of traveling wave in

the r-direction ðsin
2
hr ’ 1Þ surrounds approximately the cone

boundary, but that sin2
hr decreases back to zero when either

entering the core of the cone, or moving outward perpendicular

to the cone boundary. In the latter two regions, the wave has there-

fore a larger standing part, so that the classical picture of attraction

Fig. 7. Comparison between the experimental picture of Fig. 6 (the image of Ref.

[15] has been video reversed in order to make the comparison easier) and

the numerical results obtained for 2 lm air bubbles, with U0 ¼ 1:4 lm;N0 ¼

360 bubbles mm
ÿ3
. The input intensity is 8.2 W cm-2. The black lines are the S-

streamers, the blue lines are the L-streamers, and the thick solid red line is the Blake

threshold contour curve (jP�j ¼ 1:178 for 2 lmbubbles). (a) comparisonwith the left

part of Fig. 6; (b) comparisonwith themirrored right part of Fig. 6. The horizontal and

vertical lines in the liquid just mark the separation between various subdomains and

do not have any physical meaning. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Blue line: magnitude of the parenthesis of FBz in Eq. (11) along the symmetry

axis. The emitter is on the right of the graph. Green line: cos term in the parenthesis

of FBz in Eq. (11) (standing wave contribution). Red line: sin term in the parenthesis

of FBz in Eq. (11) (traveling wave contribution). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 9. Color plot of sin
2
hr , where hr represents the phase between p and @p=@r. The

S-streamers are recalled in black lines.



by pressure antinodes and repulsion by pressure nodes applies.

Thus, when the pressure is maximal on the axis, bubbles converge

toward the latter, and this explains the formation of the narrowcone

tip. This is the case for z = ÿ0.04 m (thin solid line in Fig. 10). The

opposite holds in the core of the cone, where the variations of the

acoustic pressure in the radial direction presents a local minimum

on the axis, for example at z = ÿ0.01 m (dashed line in Fig. 10) or

z = ÿ0.02 m (dash-dotted line). The radial component of the Bjerk-

nes force in this zone is therefore oriented outwards. This is why,

as mentioned above, the point on the axis (near z = ÿ0.01 m) where

the z-component of the Bjerknes force change sign is in fact a saddle-

point, which locally pushes the bubbles far from the axis, and pro-

duces a void region in the heart of the cone, clearly visible on the

experimental picture. This feature has been commented in Ref.

[15] and was attributed to the nonlinear reversal of the Bjerknes

force in standing waves near 1.7 bar. Our results suggest that this

is not the case, and that the void region results from a combination

of a canceling z-component of the Bjerknes force and a local inver-

sion of the radial standing wave pressure profile.

The shape of our predicted void region shows reasonable agree-

ment with the experiments. Furthermore, the experimental cone

tip seems to be more dense than its core. This may be due to nucle-

ation of bubbles at the Blake threshold in this part, as suggested by

the L-streamers starting from the Blake contour loop just above the

cone tip in Fig. 7 (blue lines).

Another common observation on such sonotrodes is the presence

of small streamers on their lateral side, visible near the upper left cor-

nerofFig. 7b.Asseen inthe rightpartof the latterfigure, thisphenom-

enon is reasonably caught by the simulation, and this is the reason

why the deformation of the transducer was accounted for. Indeed,

our result suggests that such small structures result from the lateral

vibration of the sonotrode, which emits a radial wave, and produces

a small zone of large acoustic pressure. The bubbles in this zone

strongly attenuate the wave, and produces a traveling part in the ra-

dial wave. The physical mechanism is therefore similar to the cone

formation, but here the stagnationpoint is very close to the sonotrode

surface, so that only a small flat filamentary structure is formed.

Fig. 11 shows the same result as Fig. 7b where we sketched addi-

tional streamers originating from arbitrary points in the liquid

(green lines),whichmakes the comparisonof the lateral filamentary

structure with experiments more striking. Furthermore, this repre-

sentation allows to evidence streamers starting near the cone lateral

boundary and quickly merging with the latter, as indeed visible on

the experimental picture. Fig. 11 also shows that the corner of the

sonotrode acts as a separatrix between the streamers attracted by

the cone and the ones attracted by the lateral filamentary structure,

as can be also speculated from the experimental picture. We note

however that streamers starting at a larger distance from the cone

(seemagenta lines in Fig. 11) start upwards,whereas such streamers

on the experimental picture seems to start downwards. The experi-

mental image also suggests that some streamers starting from

points far from the cone (say, near r = 0.06 m, z = ÿ0.07 m) seem to

be attracted by points located outside the picture, and this feature

is not caught by our simulation.

The interpretation of the cone structure as the result of the com-

binationof a longitudinal travelingwave anda lateral standingwave

proposed in Ref. [14] is therefore confirmed by the present model.

However, the above analysis does not tell much about how such

an acoustic field appears. Since cone bubble structure are very ro-

bust against amplitude, sonotrode size (see discussion in Ref.

[15]), and even appear near the walls of ultrasonic baths (see Ref.

[1], and next section), there must be some generic mechanism

responsible of its formation. Since traveling waves constitute the

key phenomenon of the problem, it is interesting to sketch the con-

tour lines of the acoustic field phase (/ in Eq. (3)). For a traveling

wave these lines are orthogonal to the direction of propagation

and constitute therefore a powerful visual tool to assess the latter.

The result is displayed in Fig. 12 (white lines). It can be seen that,

while the wave mainly propagates along the z-direction inside the

cone, it bends into an oblique direction near the cone boundary, tar-

geting at a point located on the symmetry axis (S-streamers are re-

called in black). We emphasize that the emission of an oblique

wave from the sonotrode corner was found to occur in all our

simulations, whatever the sizes of the sonotrode and the liquid do-

main, and the typeof thebottomliquidboundary.More importantly,

we found that the same phenomenon occurs whenever the

Fig. 11. Same as Fig. 7b, sketching additional streamers originating from arbitrary

points below the Blake threshold (green and magenta lines). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 12. Color plot of the acoustic pressure field in the liquid. The white lines are the

contour lines of the phase / of the acoustic pressure field (see Eq. (3)). The S-

streamers are recalled by the black lines.

Fig. 10. Radial pressure profiles at z = 0 m (thick solid line), z = ÿ0.01 m (dashed

line), z = ÿ0.02 m (dash-dotted line), z = ÿ0.04 m (thin solid line).



deformation of the sonotrode was accounted for or not, which rules

out any effect of a non uniform displacement of the sonotrode tip.

We therefore infer that the slanting of the wave propagation

direction is definitely linked to the presence of strongly driven bub-

bles near the vibrating area. These bubbles dissipate a lot of energy,

rendering the square of the local wave number almost purely imag-

inary. But the acoustic field near the outer points of the sonotrode is

weaker, because this region is less constrained laterally (see pres-

sure profile in thick solid line in Fig. 10). Therefore, as evidenced in

[OL I] (see Fig. 4 in the latter reference), the real part of k is higher

in the central part of the sonotrode than in its outer part, and the

opposite holds for the sound velocity x=RðkÞ, which is confirmed

by Fig. 13. There appears therefore an outward gradient of sound

speed along the sonotrode area,which, followingHuygensprinciple,

bends the wave number towards the axis, and produces the conical

traveling wave visible in Fig. 12. This traveling wave produces in

turna strongBjerknes forcedirected along thepropagationdirection

of thewave (a large IS term in Eq. (11)), which structures the bubbles

into a conical shape. The latter scenariowasqualitatively checkedby

simple linear acoustics simulations: setting the sound field to cl uni-

formly in the liquid except in a thin cylinder-shaped region below

the transducer, the bending of the iso-/ lines was indeed observed.

A remarkable feature of cone bubble structures is the invariance

of their shape when intensity is increased above a given level [15].

Following the suggestion of an anonymous reviewer, we performed

an additional simulation of the above configuration, increasing the

sonotrode displacementU0 up to 4.2 lm(instead of 1.4 lm). The re-

sults are presented as supplementary material. The cone shape ob-

tained is indiscernible from the one presented in Fig. 11. However,

a close examination of the axial pressure profiles in the two cases re-

veals that the acoustic fields differ mainly in a thin layer of about

5 mm near the sonotrode (see supplementary material). This is a

clearmanifestation of the self-saturation effect inherent to the pres-

ent model through the field-dependence of the attenuation coeffi-

cient (see [OL I]): increasing the sonotrode displacement produces

a large increase of acoustic pressure only locally, but the bubbles

in this zone being excited more strongly, they dissipate the excess

acoustic energy very rapidly. It should be noted that experimental

manifestations of this phenomenon have been reported in the early

work of Rozenberg [35].

Other studies demonstrates that conversely, for low excitations,

the shape of the cone bubble structure does depend on the driving.

Although some of our simulations could partially catch such a

dependence, convergence problems in this range prohibited any

firmconclusion.We observedhowever that the cone shapewas very

sensitive to the choice of the bubble densitywhen the latterwas low

enough. Thismight suggest that the experimentally observed shape

dependence for low drivings would be rather due to the variation of

the bubble density with acoustic pressure, than to the pressure

dependence of a single bubble dissipation. This is a missing brick

in our model since we consider constant bubble densities above

the Blake threshold.We thus infer that themodel in its present form

is not able to catch the latter experimental feature.

One should finally mention, as underlined in Ref. [28], another

explanation for the cone structure robustness against driving level

above a certain threshold, borrowed to phase transitions theory.

Skokov and co-workers measured laser intensity transmission

through a cavitation zone and obtained time-series presenting fluc-

tuations whose power spectrum were found to be inversely propor-

tional to frequency [36,37]. This feature, also termed as ‘‘flicker

noise’’ has been shown to occur in various physical processes [38],

andhasbeen interpreted asa consequenceof the interactionbetween

twophase transitions, one subcritical, theother supercritical [39]. The

result is that the system self-organizes into a critical state, whatever

the precise value of the controlling parameter, contrarily to classical

critical states which require a fine tuning of the latter to be reached.

This phenomenon has been termed as ‘‘self-criticality’’ and produces

organized self-similar spatial structures, reminiscent of bubble web-

like organization. Self-criticality can bemodeled generically by a sto-

chastic dynamical system of two equations, generalizing the Ginz-

burg-Landau equation. One of the two order parameters exhibits

fluctuations between two attractors, with a power spectrum varying

in 1/f, as observed in experiments. This original theory has the advan-

tage to explain some generally overlooked features of cavitation

clouds by a universal physical mechanism. However it still remains

very far from the precise cavitation physics, and the proposed equa-

tions are phenomenological. In particular the precise physical sense

of the order parameters remains to be explicited, maybe on the light

of the coupled evolutions of the bubble field and the acoustic wave.

For now, the model is still far from a predictive tool for acoustic cav-

itation, but this promising approach remains opened.

3.3.2. Experiments with a 7 cm diameter sonotrode

Ref. [15] also presents results for thinner sonotrodes, but the

latter produce acoustic currents which deform the cone structure,

so that a direct comparison of the experimental images and simu-

lated cone structures is not possible in this case. In spite of the lat-

ter restriction, we performed additional simulations for a 8 mm

diameter sonotrode (referred as ‘‘type B’’ in Ref. [15]), in an other-

wise identical geometry, for 2 lm bubble radii and a bubble den-

sity N0 ¼ 90 bubbles=mm3, in order to match at best the

experimental shape of the cone structure. The result of the visual

comparison between the simulated cone structure and Fig. 2 in

[15] is deferred to Supplementary material, and shows that, in

spite of the blurring of the structure by acoustic currents, some

similarities in the cone shape can be observed.

Apart from imaging cone structures, Dubus and co-workers

have collected valuable quantitative experimental informations

in additional studies, using 7 cm diameter sonotrodes excited in

pulsed mode in order to avoid acoustic currents [16,28]. In order

to put our model to the test, we performed additional simulations

of a 7 cm sonotrode, again with for 2 lm bubble radii and

N0 ¼ 90 bubbles=mm3. The transducer displacement was set in

order to match the velocity of the sonotrode area measured in

Ref. [16] (1.31 m/s). It is interesting to compare the calculated

and experimental axial acoustic pressure profiles (Fig 6 in Ref.

[16], star signs). The result is displayed in Fig. 14. It can be seen

that the agreement is somewhat poor: even if the order of magni-

tude of the predicted pressure field is reasonable, it vanishes much

more slowly than the experimental one. We increased the bubble

density up to N0 ¼ 360 bubbles mmÿ3 without appreciable change

in the pressure profile, except near the sonotrode. This underlines

the limit of the present model, and may result of the rough

assumption of a constant bubble density. Besides, the pressure

field calculated in the immediate vicinity of the transducer (z = 0)

is found to be much larger than the experimental one. It should

however be noted that hydrophones have a finite size, which does

not allow to measure the acoustic pressure exactly near z = 0,

where the present theory predicts a large pressure gradient.

Fig. 13. Radial profile of sound velocity on the transducer area. The sound velocity

is non-dimensionalized by the sound velocity in the pure liquid cl .



Finally, Dubus and co-workers [28] proposed an alternative

explanation of the bubble cone structure. Their analysis relies on

the formation of a nonlinear resonant layer of bubbly liquid

attached on the transducer, the focusing being qualitatively attrib-

uted to the curvatureof thebubble layer. This layer produces a phase

shift of the wave emitted by the sonotrode, dependent on its local

width. The argumentation is supported by phase measurements of

the pressure field in a horizontal plane below the layer. We have

therefore reported the corresponding experimental values, along

with the prediction of our simulation in Fig. 15 (the simulation

parameters are the same as for Fig. 14). It can be seen that the agree-

ment is very good, and the resultwas found almost unsensitive to an

increase of the bubble density up to N0 ¼ 360 bubbles=mm3.

The present calculation shows therefore that the existence of a

curved resonant layer of bubble is not necessary to explain the

experimental results, although nonlinear resonant effects cannot

be discarded. The wave focuses anyway just because the outermost

bubbles in the bubble layer are more smoothly driven than the

central ones, and therefore have a lower influence on the local

sound speed. This a purely nonlinear effect, and is correctly

summarized by Fig. 4 in [OL I]. Besides, our simulations indeed ex-

hibit a bubbly layer near the transducer, but rather than being res-

onant, this layer is in fact found to be very dissipative. Such a large

dissipation cannot be predicted by using a reduced bubble dy-

namic equation, and is strongly correlated to the inertial character

of the bubble oscillations, as shown in our companion paper [OL I].

3.4. Cleaning bath

The systemconsidered is axi-symmetrical and is represented in a

half-plane cut in Fig. 16. Thebottomof thebath is a thin circular steel

plate of 4 mm thickness and 20 cm diameter, which upper side is in

contact with the liquid, while its lower side is free, except its central

part (red line in Fig. 16, r 2 ½0;3 cm�Þ which is assumed to vibrate

withauniformamplitudeU0 ¼ 2 lmanda frequencyof 20 kHz. This

boundary condition is a simplification of a system where a piezo-

ceramic ring would be clamped to the bottom side of the plate and

impose an oscillatory displacement. The liquid fills the space above

the plate, and is limited laterally by a cylindrical boundary, which is

assumed infinitely rigid, while the free surface is considered as infi-

nitely soft. The plate is assumed elastic and its deformation follows

the Hooke’s law, its vibrations being coupled to the acoustic field in

the liquid by adequate interface conditions [30].

Fig. 17 displays the result obtained with 5 lm air bubbles and a

water height of 0.14 m. The green line represents the deformed

shape of the bottom plate, and shows that a flexural standing wave

is excited in the latter. This flexural wave produces a spatially inho-

mogeneous acoustic pressure field on the plate area, ranging in this

case between 0.5 and 2.8 bar (the red lines represent the Blake

threshold contour curves). In the zones on the plate where the

acoustic pressure is larger than the Blake threshold, bubbles are pro-

duced, dissipating locally a large energy and modifying the sound

speed. The remaining mechanisms are similar to the cone bubble

structure described above. Dissipation produces traveling waves,

and can even result into the production of a small cone bubble struc-

ture (near r = 0.04 m) attached on the plate, while other structures

on the plate are more similar to the above-mentioned streamers

attached on the lateral side of sonotrodes. A few streamers are also

Fig. 15. Radial variation of the phase of the pressure field, at 1.5 cm from the

transducer. The quantity represented is ð/ð0;1:5 cmÞ ÿ /ðr;1:5 cmÞÞ=ð2pÞ, where

/ðr; zÞ ¼ argðpðr; zÞÞ. The solid line represents the theoretical prediction, and the

stars are experimental results redrawn from Fig. 10 in Ref. [28]. The simulations

parameter are the same as for Fig. 14.

Fig. 16. Geometry and meshing of the cleaning bath configuration. The geometry

has axial symmetry and only a half-plane cut is represented. The blue line is the

symmetry axis. A uniform displacement U0 is imposed on the red line. (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

Fig. 14. Pressure profile on the symmetry axis for a 7 cm diameter sonotrode, with

R0 ¼ 2 lm; N0 ¼ 90 bubbles=mm3 . The velocity of the sonotrode tip is 1.31 m/s.

Solid line: prediction by the present model. Stars: experimental measurements

redrawn from Fig. 6 in Ref. [16].



visible in the middle of the liquid, located on the antinodes of the

wave, which again takes a standing character in this region.

An interesting feature can also be seen in Fig. 17 and is magni-

fied in Fig. 18b. It is seen that the S-streamers (black lines) merging

at the vertex of the cone then follow a unique path up to a stagna-

tion point located on the symmetry axis. If we also launch bubbles

from the Bjerknes contour curves, the corresponding L-streamers

(blue lines) join the main S-streamers up to the stagnation point

where numerous secondary streamers end up, forming a star-like

structure. The experimental occurrence of this behavior has been

reported in a detailed presentation by Mettin [1], who termed this

bubbles arrangement as ‘‘flare structure’’, and is represented in

Fig. 18a). It is seen that, apart from the curvature of the structure

observed in our simulation, the latter reproduces reasonably well

the main features of the phenomenon, especially the cone struc-

ture attached to the vibrating plate merging into a jet, fed laterally

by bubbles originating in the bulk liquid. Mettin reported that this

structure was universally found in cleaning bath setups and pro-

posed a qualitative explanation involving a ‘‘complicated near field

structure with shares of both traveling and standing waves’’. The

present results seem to enforce this interpretation: a traveling

wave takes birth near the vibrating area, because of the strong

attenuation by the bubbles located there, and launches the bubbles

far from the plate. It ends up at a pressure antinode which attracts

all the bubbles, either coming from the plate, or taking birth in

neighboring zones. The lateral enrichment of the main bubble path

originates from a standing wave in the direction perpendicular to

the traveling wave.

4. Summary and discussion

The model proposed in the companion paper [OL I] has been ap-

plied to classical 2D configurations, namely large area transducer

emitting in a liquid, and cleaning baths. The density of bubbles

was assumed constant in zones where the acoustic pressure is

above the Blake threshold, and null everywhere else. The possible

paths of the bubbles were assumed to originate either from the

vibrating parts of the solid, or from the Blake threshold contour

curves, and calculated by computing the primary Bjerknes force

field directly from nonlinear bubble dynamics simulations.

In the case of large area transducer, cone bubble structures ob-

served experimentally can be easily reproduced, with reasonable

agreement in the cone shape. A strongly dissipative bubble layer

was found to appear near the transducer, and the cone boundaries

were shown to be made of bubbles following a focused traveling

wave. The focusing was found to result from a radial acoustic pres-

sure gradient on the transducer area, which, following the result of

the companion paper [OL I] produces a radial gradient of sound

velocity. The streamers located on the lateral boundary of the

transducer, observed experimentally, were correctly reproduced

by our simulations, provided that the elastic deformations of the

emitting transducer were accounted for. Besides, the calculated

stagnation point on the symmetry axis was found to be much far-

ther than the cone tip, which would explain the long bubble tail

visible in experimental picture.

In the cleaning bath configurations, the flexural vibrations of

the bottom plate were found to produce several zones of large

acoustic pressures, located near the plate displacement antinodes.

These high acoustic pressures produce locally a thin layer of

strongly oscillating bubbles dissipating a lot of acoustic energy,

which yields damped traveling waves and cone-like structures. In

some cases, the bubbles reaching the cone tip carry on their motion

along a unique line, ending into a distant pressure antinode, and

laterally enriched by bubbles originating from liquid zones excited

above the Blake threshold. The obtained structure is reminiscent of

a flare-like structure described in the literature, and known to oc-

cur frequently in cleaning baths configurations.

The reasonable success of our model in predicting ab initio such

structures is encouraging, and seem to show that strong energy

dissipation by inertial bubbles is a key mechanism ruling the struc-

ture of the acoustic field in a cavitating medium. It is interesting to

note that the self-action of the acoustic field evidenced in the

Fig. 18. Comparison between: (a) a flare structure observed on the lateral side of a

cleaning bath (reprinted from Ref. [1] with permission of Research Signpost; the

original image has been 90° rotated for comparison purposes) (b) the structure

predicted in the simulated configuration (zoom of Fig. 17 with more L-streamers

sketched).

Fig. 17. Simulation of the cleaning bath configuration. The thick red lines

materialize the Blake-threshold. The black lines are the S-streamers, paths of

bubbles originating from the vibrating plate, and the blue lines are the L-streamers,

path of bubbles originating from the Blake threshold. The green thick line

represents the deformed shape of the plate at xt ¼ 2np. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)



present paper differs from the mechanisms presented in the work

of Kobelev and Ostrovski [40]. In the latter work, the self-action of

the acoustic field is mediated by its slow influence on the bubble

population, while here, the mechanism is only due to the bubbles

radial motion, even for constant bubble density. The latter assump-

tion constitutes however a weak point of our model, and requires

the arbitrary choice of two free parameters: the ambient radius

of the bubbles R0, and the bubble density, both being assumed spa-

tially homogeneous in regions above the Blake threshold. A more

realistic model would require at least the spatial redistribution of

the bubbles. This may be done for example by coupling the nonlin-

ear Helmholtz equation used in this paper with a convection-like

equation for the bubble number density, as done in the linear case

in Ref. [40], which requires the correct estimation of the average

translational velocity of inertial bubbles. As already mentioned in

introduction, this translational motion is described by a somewhat

elaborate physics [26,27], and the estimation of an average velocity

raises the complicated issue of properly averaging the translation

equation [19–21]. Along the same line of investigation, an exten-

sion of the present work could consist in launching some bubbles

in the acoustic fields presented here, and to calculate their paths

within the latter by integrating in time the coupled equations of ra-

dial and translational motion described in Refs. [25,27]. Apart from

testing the validity of the current approximation, this would also

provide a clear picture of the dynamics of bubble drift in the stud-

ied structures. This may reveal some unexpected features, such as

bubble precession around some points in the liquid, as evidenced

in simple standing waves in Ref. [27]. Such refinements may be

the subject of future work, keeping however as a main objective

a model simple enough to be used in real engineering applications.

Finally, many other bubble structures can be observed experi-

mentally [1]. Among the latter, the grouping of bubbles into the

so-called ‘‘clusters’’ classically appear in numerous experimental

configuration either in the bulk liquid, or as hemi-spherical struc-

tures near solid boundaries, especially in the case of focused ultra-

sound [41–43]. In some aspects, they behave as a single large

bubble and may collapse as a whole, emitting a complex set of pri-

mary and secondary shock-waves (see Ref. [43] for high-speed

photographs), and yield strongly erosive effects [44]. A complete

theoretical description of such structures is not yet available, the

difficulty lying in the strong interaction between the bubbles con-

stituting the cloud. Clearly, this interaction cannot be accounted

for by our simple model which includes only primary Bjerknes

forces. Moreover, these structures often present a transitory

behavior, moving as a whole entity in the liquid, appearing and dis-

appearing near other structures [44,1], and have even been ob-

served as early precursors of conical structures [45]. As a

conclusion, we feel therefore that our model in the present form

cannot account for such structures.
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