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a b s t r a c t

We address the problem of estimating the directions-of-arrival (DoAs) of multiple signals received in the
presence of a combination of a strong compound-Gaussian external noise and weak internal white
Gaussian noise. Since the exact distribution of the mixture is not known, we get an insight into optimum
procedure via a related model where we consider the texture of the compound-Gaussian component as
an unknown and deterministic quantity to be estimated together with DoAs or a basis of the signal
subspace. Alternate maximization of the likelihood function is conducted and it is shown that it operates
a separation between the snapshots with small/large texture values with respect to the additive noise
power. The modified Cramér–Rao bound is derived and a prediction of the actual mean-square error is
presented, based on separation between external/internal-noise dominated samples. Numerical simu-
lations indicate that the suggested iterative DoA estimation technique comes close to the introduced
bound and outperform a number of existing routines.
1. Problem statement

Localization of sources of interest using an array of spatially
distributed sensors is a primordial task in many applications, in-
cluding sonar and radar [1]. Historically, this problem has been
tackled under the assumption of additive white Gaussian noise
while the waveforms of interest were considered either drawn
from a Gaussian distribution (unconditional model) or determi-
nistic unknowns (conditional model). Whatever the case, the re-
ference approach is the maximum likelihood (ML) estimator,
which is known to possess optimal asymptotic (either in the
number of snapshots or signal to noise ratio depending on the
underlying assumptions) properties [2–5], including achieving the
Cramér–Rao bound (CRB). The main drawback of the ML approach
lies in its computational complexity as one needs to carry out a P-
dimensional search, where P stands for the number of signals
impinging on the array.

In an attempt to decrease computational cost, the low-rank
tion Générale de l'Armement
entifique (MRIS) under grant

. Besson),
structure of the array output in the absence of noise was strongly
employed in the so-called subspace methods, such as MUSIC [6],
MODE [7] or ESPRIT [8]. Most of these methods are based on the
eigenvalue decomposition of the sample covariance matrix and a
partitioning of the whole space into a signal subspace (spanned by
the P eigenvectors associated to the P largest eigenvalues) and its
orthogonal complement, often referred to as the noise subspace.
As for MUSIC, the directions-of-arrival are then estimated by
minimizing the norm of the projection of the array steering vector
onto the noise subspace. Hence, the method requires finding P
maxima of a scalar function, which is much less computationally
involved than the ML estimator. Despite this significant simplifi-
cation, in [3,4], it was proven that under a number of non-re-
strictive conditions on independent and identically distributed (i.i.
d.) Gaussian samples, MUSIC DoA estimates are asymptotically
efficient. The latter means that, for a fixed array size M and → ∞T
i.i.d. training samples, MUSIC DoA estimation accuracy tends to the
CRB. Yet, in [9] it was demonstrated that while MUSIC produces
consistent and asymptotically efficient DoA estimates in the clas-
sical asymptotic assumption where M is held constant and → ∞T ,
it is not even consistent under the so-called Kolmogorov's as-
sumption whereby → ∞ → ∞ →M T M T c, , / , with c a constant.
Most pronounced manifestation of this inconsistency is MUSIC
behavior in the so-called threshold area where, due to small
sample support T and/or signal to noise ratio (SNR), the mean-
square error of MUSIC (and various other subspace-based
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estimators) begins to depart significantly from the CRB. This de-
parture is caused by the onset of severely erroneous DoA estimates
(outliers) which occur under threshold conditions (T,SNR) where
the genuine ML estimator still provides CRB-consistent estimation
accuracy [10]. Considerable attention has focused on trying to
explain this phenomenon [11,12,10,13] as well as to counteract it
by improving subspace-based estimators threshold behavior. In
[9,14,15], an important advance was provided by Mestre with the
derivation of G-MUSIC, a variation of MUSIC based on random
matrix theory which provides consistent in Kolmogorov's sense
estimate of the pseudo-spectrum function. In [10] it was shown
that G-MUSIC somewhat reduces the gap between MUSIC-specific
and ML-intrinsic threshold conditions, without however com-
pletely closing this gap.

The above references mostly deal with an additive noise which
is assumed to be Gaussian distributed, and most often with known
(up to a scaling factor) covariance matrix, considered to be the
identity matrix in most studies. Non-Gaussian noise case has been
considered e.g., in [16–18]. For particular noise models, the tradi-
tional asymptotic properties of ML estimation and specific esti-
mation routines have been considered in these studies. Yet, in the
recent paper [19] we demonstrated that for a specific non-Gaus-
sian noise, namely a K-distributed noise, the traditional CRB may
not exist. More precisely, when the noise vector is modeled as the
product of a Gaussian vector by a positive random variable (the
texture) distributed according to a Gamma distribution with shape
parameter ν and scale parameter β, then the CRB is non-existent
for ν < 1. Moreover, the ML estimator exhibits a behavior sig-
nificantly different from the Gaussian case, since its convergence
rate was shown to be ν−T 1/ for ν < 1. Interestingly, DoA estimation
in compound-Gaussian and more generally elliptically distributed
noise models [20] was recently addressed. A first improvement,
referred to as R-MUSIC, consists in using eigenvalue decomposi-
tion of Maronna-type (robust) covariance matrix estimates and
subsequently applying conventional MUSIC [21,20,22]. In the same
way as G-MUSIC was obtained from MUSIC, random matrix theory
methodology is applied to Maronna covariance matrix estimates in
Refs. [23,24] in order to get a consistent (in Kolmogorov's sense)
robust MUSIC pseudo-spectrum estimate, yielding the RG-MUSIC
estimator. Some improvement compared to R-MUSIC is high-
lighted in [23,24], yet the actual merits of RG-MUSIC is hard to
evaluate without the ML benchmark known.

Furthermore, while ML DoA estimation properties in non-reg-
ular case observed in the presence of K-distributed noise is of
theoretical interest, practical scenarios are more complicated. In-
deed, in radar applications particularly, one has to take into ac-
count two types of noise, namely external noise and internal
(thermal) noise. The two of them are generated by different phy-
sical mechanisms and hence have different distributions. While
the white Gaussian assumption is natural for thermal noise, ex-
ternal noise is most often non-Gaussian. For instance, in HF DF
systems, external noise is dominated by atmospheric activity
(thunderstorms) and is white non-Gaussian, being typically 30 dB
above the internal noise [25]. When external noise corresponds to
clutter, a compound-Gaussian model or an elliptical distribution is
deemed relevant amongst the radar community [26,27]. While
inter-scan observation justifies independence of texture values,
the speckle component is usually assumed to be correlated, even
though pulse-to-pulse frequency agility can lead to independent
speckle snapshots. Usually, the external to thermal noise ratio is
high and hence thermal noise is generally neglected, on the basis
that external noise is the main source of disturbance. One of the
outcomes of [19] was that, with heavy-tailed distributions (small
ν), the DoA estimation performance is mostly dictated by the
snapshot corresponding to the minimal texture value. Indeed, if
one sets the power of the texture to 1 (β ν= −1), the average value
of the minimal over T¼8 texture values is �25 dB for ν¼0.2 and
�38 dB for ν¼0.1. Moreover, we demonstrated in [19] that this
specific sample with minimal texture sets the limit to DoA esti-
mation accuracy. As a corollary, even if the total power of K-dis-
tributed (external) noise significantly exceeds the power of inter-
nal white Gaussian noise, under large enough support of T training
samples, a certain number of them may have texture values well
below the internal noise power. Consequently, thermal noise
cannot be neglected and should be taken into account. Finally, the
above findings suggest that all snapshots are not equal, since some
of them will correspond to very small values of the texture while
others will be buried in strong noise (large texture values).
Therefore, not all of them should be treated equally in an esti-
mation procedure. This is the problem we tackle in the present
paper: DoA estimation in a mixture of K-distributed noise and
Gaussian noise.

First, we try to get an insight into the nature of ML DoA esti-
mation. Since the closed-form multivariate probability density
function (p.d.f.) for the noise mixture does not exist, we introduce
a related model where we treat Gamma distributed texture values
as unknown deterministic parameters to be estimated with the
DoAs. This approach provides an insight into the nature of close to
ML optimum processing and leads to a particular iterative DoA
estimation routine.
2. Data model and DoA estimation

We begin this section with the assumed data model. We con-
sider a uniform linear array (ULA) of M elements spaced a half
wavelength apart and the received signal at time = …t T1, , can
be written as

θ τ σ= ( ) + + ( )x A s n w 1t t t t w t

where

� θ θ θ= ⋯⎡⎣ ⎤⎦P
T

1 is the vector of the DoA and θ θ θ( ) = ( ) ⋯ ( )⎡⎣ ⎤⎦A a a P1

is the array manifold matrix: for the considered ULA
θ( ) = ⋯π θ π θ( − )⎡⎣ ⎤⎦a e e1 i i M Tsin 1 sin . Note that the specific properties of

the ULA manifold are not exploited in any of the methods de-
rived below, only knowledge of the form of the steering vector
is required, and hence the methods can be extended to arbitrary
geometry.

� st stands for the emitted waveforms and we choose to consider
them as deterministic unknowns (conditional model).

� nt and wt are i.i.d. vectors drawn from ( )∼n I0CN ,t and
( )∼w I0CN ,t . σw

2 stands for the thermal noise power and is
assumed to be known here. We are mostly interested
in situations where σ ⪡1w

2 .
� τt is a positive random variable such that { }τ =E 1t , so that σ −

w
2

represents the ratio of the external compound-Gaussian noise
power to the internal white Gaussian noise power. We will refer
to it as nGGNR.

The immediate problem one is faced with when considering (1)
is that, if one assumes a given prior distribution (for instance a
Gamma distribution) for τt , then the distribution of xt cannot be
obtained analytically. In such a case, the ML algorithm cannot be
derived, nor the associated CRB. Consequently, any practical DoA
estimation technique, such as R-MUSIC or RG-MUSIC cannot be
evaluated neither by comparison to a bound nor with the results of
direct exhaustive P-dimensional search for the global maximum of
the likelihood function. In this paper, we choose the following
approach to address this problem. First, we consider a “clairvoyant”



model where the random textures τt are considered to be known a
priori. For this non-homogeneous but still purely Gaussian model,
the LF function can be derived and, subsequently, the ML estimator
and the corresponding CRB. Clearly, if any practical DoA estimation
technique approaches this clairvoyant estimator, the proximity of
such a technique to the ML-optimal performance would be es-
tablished. Secondly, and similarly to what has been done many
times, we consider τt as deterministic unknowns to be estimated.
Fig. 1. σ( )P T,w
2 for various values of nGGNR and T. ν¼0.2 and β ν= 1/ .
2.1. Clairvoyant estimation (known τ)

As said previously, we first consider that the textures τt are
known, which will provide us with a benchmark to which the
adaptive estimation scheme of the next section can be compared.
Under the stated assumptions, the p.d.f. of the data matrix

= ⋯⎡⎣ ⎤⎦X x xT1 is given by
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it follows that the maximum of (2) with respect to (w.r.t.) st is
obtained when

( )θ θ θ= ( ) ( ) ( ) ( )
−s A A A x 4t

H H
t

1

and hence
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where ( )θ θ θ θ= − ( ) ( ) ( ) ( )θ( )
⊥ −P I A A A AA

H H1 .
The clairvoyant ML estimator of θ is thus obtained as
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The previous estimator, which uses knowledge of τt , will constitute
a reference to which any adaptive estimator can be compared.
However, implementing (6) requires solving a P-dimensional op-
timization problem. In order to simplify it, let us proceed in two
steps: first estimate the unstructured steering matrix A for a
known τ , then use a MUSIC-like procedure for DoA estimation.
Indeed, from (5) and ignoring the dependence of the steering
matrix towards θ, we have
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where ( ).P stands for the P principal subspace of the matrix
between parentheses. From τ|AML , the DoA can be estimated e.g., as

θ = ( )τ τ| |⎡⎣ ⎤⎦AMUSIC 9AML ML

where ⎡⎣ ⎤⎦MUSIC . stands for the conventional MUSIC algorithm
(either in spectral or root form) applied to a ×M P matrix whose
columns form a basis for the signal subspace. The comparison
between θ τ|ML and θ τ|AML will provide insight into the loss asso-
ciated with replacing the search for the global maximum of the P-
dimensional likelihood function by a MUSIC-like procedure.

Before closing this section, it is noteworthy that the above
clairvoyant approach calls for a lower bound for DoA estimation.
The true p.d.f. of the observations can in principle be obtained by
integrating (2) with respect to the p.d.f. of τ , but it does not seem
feasible to obtain a closed-form expression so that the true Cra-
mér–Rao bound for the problem at hand appears to be intractable.
In this case, since we have a mixture of deterministic ( θ S, ) and
random (τ) parameters, it is customary to resort to hybrid bounds,
such as the Miller–Chang bound [28] or the modified CRB [29]. Let

σ( )ICRB T ,G
2 denote the conditional CRB for DoA estimation ob-

tained with T samples and the white Gaussian noise with covar-
iance matrix σ I2 : note that, for the sake of simplicity, we omit the
dependence of this bound to the values of the DoA and signal
waveforms. This bound is obtained as the inverse of the Fisher
information matrix (FIM), which is given by [1]

σ
σ

( ) = ⊙ ^
( )

⎧⎨⎩
⎫⎬⎭I H RFIM T

T
,

2
Re

10
G s

T
2

2

where R̂s is the sample covariance matrix of the signal waveforms

and H depends on the array manifold. For any estimate θ̂ based on
X only (i.e., without the knowledge of τt), one can write



Fig. 2. Mean square error of estimators versus T. =SNR 15 dB.
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Note that (11) is the averaged-over- τ CRB conditioned on τ , i.e.,
{ }θ τ( | )CRBE and is referred to in the literature as the Miller–Chang

bound (MCB) [28]. Obviously, it constitutes a lower bound for any
adaptive estimator which does not have knowledge of τ . It appears
that a closed-form expression for the integral in (11) cannot be
obtained, mainly because one has to handle the inverse of a sum.
However, by using Jensen's inequality, one has

∫ ∑θ τ τ τ
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where, in the second line we assumed that τt follows a Gamma
distribution with shape parameter ν and scale parameter β and, to
obtain the penultimate equation, we made use of [30, 3.383.10]
with ∫Γ ( ) =

∞ − −a x t e dt,
x

a t1 . The expression in (12) corresponds to

the inverse of the average FIM i.e., { }θ τ( | ) −FIME 1, and is the
modified CRB (MCRB) [29]. Eq. (13) is the MCRB for the specific
case of Gamma distributed textures.
2.2. Adaptive estimation (unknown τ)

Since, in practical situations, τ is unknown, we now consider this
case and proceed to joint estimation of τ and the DoA. Prior to that,
let us make the following observations. Treating θ as unknowns, as in



Fig. 3. Mean square error of estimators versus SNR. ν¼0.1.
the conventional ML estimator, results in a P-dimensional optimi-
zation problem. MUSIC and its variants start from an estimated
covariance matrix on which eigenvalue decomposition is applied.
Then, a 1-dimensional search of P maxima is performed, which is
computationally simpler than P-dimensional search of one max-
imum. Hence, in order to come up with a practical estimation
scheme, we choose to set as unknown the array steering matrix A
which provides us with a basis for the signal subspace (actually this
is also what MUSIC does); then, DoA estimationwill be carried out by
minimizing the usual MUSIC-like criterion θ θ( ) ( )⊥a P aA

H or resorting
to the root version of MUSIC to exploit the ULA structure, if desired.
In summary, we will derive approximate ML estimates of st , τt and
(unstructured) A from observation of (1).

Let us first proceed to the maximization w.r.t. τ . For a given A, we
need to maximize (7) with respect to τt , which amounts to max-
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Let us make some comments about the previous result. First, let us
note that, at the true steering matrix A0,

τ σ= + ( )⊥ ⊥ ⊥P x P n P w 16A A At t t w t0 0 0

which implies that

τ σ≃ + ( )⊥ ⊥ ⊥x P x n P n w P w 17A A At
H

t t t
H

t w t
H

t
2

0 0 0

where both ⊥n P nAt
H

t0
and ⊥w P wAt

H
t0
follow a complex chi-square

distribution with −M P degrees of freedom. In the previous equa-
tion, we neglected the cross-terms which are zero-mean while those
retained have mean −M P . Therefore, (14) suggests that, for those
snapshots with small value of τt , or at least values which fall under
white noise power, estimation of τt is meaningless, and the estimate
of τt is equal to zero. Correspondingly, these samples in (15) are
treated as if no compound Gaussian noise component is present. On
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Fig. 4. Mean square error of estimators versus SNR. ν¼0.2.
the contrary, training samples with τ σ⪢t w
2 are treated as if no white

Gaussian noise is present. Hence, there is a natural separation be-
tween snapshots corresponding to small τt and snapshots corre-
sponding to large τt . Indeed, taking the logarithm of (15) yields
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In (18), the first term coincides with the conditional ML function
derived in the K-distributed noise only [19], while the second term
coincides with the conditional ML function for internal Gaussian
noise only. Accordingly, the derived representation of the log like-
lihood function in (18) relies upon a natural separation between the
snapshots with small τ σ<t w

2 and large τ σ>t w
2 . Naturally, since A is

unknown, this separation is not feasible and one must achieve a si-
milar separation based upon a running estimate of A and τ .

Coming back to (15), it appears that the maximization of the
function there w.r.t. A is infeasible. In order to come up with a
practical method, we use the fact that if A is known, the maximum
of τ( | )X A Spmax , ,S w.r.t. τ is given by (14). On the other hand, if τ
is known, the ML estimate of A is τ|AML as per (8). This suggests the
approximate maximum likelihood estimator described by Algo-
rithm 1, which is referred to as τ( )AAMLE , in the sequel. The al-
gorithm alternatively estimates τ and a basis A for the signal
subspace. The iterations are run a fixed number of times or until
the distance between the subspaces spanned by ( − )A n 1 and ( )A n is
below some threshold. Note that the concentrated likelihood
function in (7) is increasing at each iteration. Indeed, if we let

( )τ⊥Pg ,A denote the right-hand side of (7), we necessarily have

( ) ( ) ( )τ τ τ≤ ≤ ( )
⊥ ( − ) ⊥ ( ) ⊥ ( )

( − ) ( − ) ( )P P Pg g g, , , . 19A A A
n n n1

n n n1 1

This guarantees convergence to, at least, a local maximum. Yet (7)
is not the true (concentrated) likelihood function since the latter is
parametrized by θ and is given by (5). We further discuss con-
vergence below.

Algorithm 1. Approximate maximum likelihood estimation of A
and τ .
ut: X , initial estimate

=( )
⎡
⎣⎢

⎤
⎦⎥A

I
0
P

0

)σ σ−,t w w
2 2



3: Estimate τ σ= ∑ +( ) ( )A n T n 2

Fig. 5. Mean square error of τ( )AAMLE , versus threshold. T¼32, =nGGNR 30 dB
and =SNR 15 dB.
( ( )=P t t w1
 )−
x xt t

H1
say nT
expect

nT sna
4: end for

Let AAML denote the value of ( )A n at the end of the iterations.
Then, the DoAs are simply estimated as ⎡⎣ ⎤⎦AMUSIC AML . Some ob-
servations about the above method are in order:

� As already said before, the algorithms, which use a threshold on
the estimated value of τt , result in a non-linear weighting of the
various snapshots, depending on the amount of non-Gaussian
noise power present.

� Convergence of Algorithm 1 is clearly an important issue and,
admittedly, we are not in a position to provide a formal proof of
global convergence, at most of local convergence. We can only
surmise such a property from results obtained with similar
algorithms. Indeed, the algorithm presented is reminiscent of
iterative covariance estimation schemes, such as those found in
the framework of elliptical distributions or for RG-MUSIC but
the difference here is that one estimates only the signal sub-
space along the iterations, from an estimate of the covariance
matrix. The difference is also in the fact that ⊥x P xAt

H
t is used

instead of the usual −x R xt
H

t
1 , and that some thresholding is

introduced. In fact, AMLE τ( )A, also bears resemblance with the
recently proposed regularized iterative reweighted least-
squares algorithm of [31] which is introduced for the so-called
robust subspace recovery problem. This algorithm is closely
related to M-estimators and Tyler's estimator. More precisely,
[31] assumes that, within the provided data set, some of these
points are sampled in a fixed subspace (inliers) and the rest of
them (outliers) are spread in the whole ambient space. The aim
of [31] is to recover the underlying subspace, and is based on an
iterative algorithm. The scheme differs from ours in that the
weights in IRLS suggested in [31] are calculated differently and a
non-negative definite matrix is estimated at each iteration, the
subspace being estimated after convergence. In our framework,
inliers might be viewed as the samples corresponding to very
small values of τt while outliers correspond to large values of
the textures. Interestingly enough, the robustness of M-estima-
tors to the presence of outliers has recently been shown in [32]
and can be attributed to their ability to properly weight the
samples. Finally, we mention that our τ( )AAMLE , coincides with
the fast median subspace algorithm of [33] for a specific choice
of the latter algorithm parameters, and some convergence
properties of this algorithm have also been demonstrated in
[33]. Accordingly, it is not that surprising that our method
shares some common features with iterative covariance matrix
estimation schemes for elliptical distributed data.

Before closing this section, we come back to the true ML so-
lution which would consist of maximizing, with respect to θ, the
likelihood function in (18) with A substituted for θ( )A . As in-
dicated above, the function in (18) operates a selection of training
samples: for those such that τt is above σw

2 one maximizes the
conditional ML function derived in the K-distributed noise only
(first term of Eq. (18)) while, for τt below σw

2 , the second term
coincides with the conditional ML function for internal Gaussian
noise only. In other words, one can distinguish a situation (mostly
for very small σw

2) where all texture values τt are larger than the
internal Gaussian noise level. In this regime, the K-distributed
noise dominates and the performance of ML estimator will be
driven by the snapshot corresponding to minimum τt , as proved in
[19] where we provided an expression for the MSE of the ML es-
timator. On the other hand, for moderate nGGNR, some snapshots,

of them, will correspond to τ σ<t w
2 . In this case, we might

the performance of the ML estimator to be driven by these
pshots in internal Gaussian noise only. Of course, these

comments are qualitative but they can provide a prediction of the
actual value of the mean-square error (MSE) of the ML estimator.
More precisely, let

( )σ τ σ τ σ

γ ν β σ

( ) = > = − <

= − ( ) ( )−

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

P T, Pr min 1 Pr

1 , 20

w t w t w
T

w
T

2 2 2

1 2

where ∫γ ( ) =
Γ ( )

− −a x t e dt,
a

x a t1
0

1 . With probability σ( )P T,w
2 , all

textures will be above white the Gaussian noise level. As illu-
strated in Fig. 1, this probability is not negligible at least for very
large values of the non-Gaussian to Gaussian noise ratio { }τ σE /t w

2 .

Hence, with probability σ( )P T,w
2 , the MSE will be more or less

that obtained in K-distributed noise only. In [19] we derived an
upper bound of this MSE in K distributed noise only, which was
seen to predict quite well the actual MSE, at least for T large en-
ough. An important observation made in [19] is that this MSE is of
the order ν−T 1/ for small ν. On the other hand, with probability

σ− ( )P T1 ,w
2 , nT snapshots will correspond to texture τt below σw

2 ,
and the MSE is roughly σ( )ICRB n ,G T w

2 . Summing up these ob-
servations, we propose the following “prediction” of the MSE of the



ML estimator:
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The first term in (21) is an upper bound for the MSE of the ML
estimator in K-distributed noise only (and ν < 1) while the second
term accounts for randomness of nT which follow a binomial dis-
tribution with parameters T and τ σ<⎡⎣ ⎤⎦Pr t w

2 . In the next section,
we will assess numerically (21) and compare it with the averaged
CRB (11).

Eq. (21) suggests that for ν < 1, there are two regimes specified
by σ( )T,w

2 . For very small σw
2 and T, where σ( ) →P T, 1w

2 , DoA es-
timation accuracy is dominated by external noise with fast con-
vergence rate ν−T 1/ in this regime. As discussed in the introduction,
for T¼8 and ν¼0.1, { }τ = −E min 38 dBt : it is therefore clear that
nGGNR must be higher than 40 dB for internal white Gaussian
noise (WGN) to be ignored for T¼8 training samples. Therefore,
for any practically reasonable nGGNR (say 50 dB) and small ν
(ν ≤ 0.2), one could expect a rather short transition from K-noise
dominated to internal WGN-dominated ML estimation regime.
The latter is specified by WGN power σw

2 and nT training samples.
3. Numerical simulations

In this section, we aim at evaluating the performance of the
estimators derived in the previous section. We consider an array
with M¼20 elements and two sources, with the same power,
impinging from DoA θ = °161 and θ = °182 . The waveforms are
generated from a Gaussian distribution with covariance matrix

IPs 2. The non-Gaussian noise follows a Gamma distribution with
shape parameter ν and scale parameter ν−1 so that { }τ =E 1t . Two
values of ν are considered in what follows, namely ν¼0.1 and
ν¼0.2. The total noise power is thus σ+1 w

2 and the non-Gaussian
to Gaussian noise ratio is defined as σ= −nGGNR 10 log w10

2. The
signal to noise ratio is defined as νβ σ= ( ( + ) )−SNR P10 log s w10

2 1 .
The criterion used to assess performance is the sum of the

mean-square errors of DoA estimates, i.e., { }θ θ∑ ( ^ − )= Ei i i1
2 2 . 2000

Monte-Carlo simulations are run to evaluate the MSE. We compare
the θ τ( | )MLE , the θ τ( | )AMLE , the τ( )AAMLE , and the RG-MUSIC
estimators. The θ τ( | )MLE was initialized at the true DoA and search
for the global maximum of the likelihood function was restricted
to the main beam width, so as to obtain a local behavior. The

τ( )AAMLE , was initialized with
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I
0 .
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RG-MUSIC [24] is obtained from the eigenvalue decomposition of
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In the simulations α α( ) = ( + ) ( + )u x x1 / with α¼0.2 [24]. For
τ( )AAMLE , as well as for RG-MUSIC, the number of iterations was

set to 50 and the spectral form of MUSIC was used. Finally, we
display the MCRB { }θ τ( | )CRBE as well as the predicted MSE in (21).

We first study in Fig. 2 the transition between K-dominated
and Gaussian dominated regimes in the asymptotic case, i.e.,
where SNR is high enough to prevent any threshold behavior.
From this figure, one can observe the steep decrease of MSE for
small values of T, and then a conventional behavior where the MSE
varies as T�1. This is especially pronounced when ν¼0.1 and
=nGGNR 60 dB, as could be expected from analysis of σ( )P T,w
2 . In

this respect, the predicted MSE of Eq. (21) provides an accurate
approximation of the actual MSE: it fits very well the MSE of

θ τ( | )MLE and { }θ τ( | )CRBE , and the latter are nearly equal. This
figure also reveals that θ τ( | )AMLE comes very close to θ τ( | )MLE , at
least for large enough T: this parallels the classical result that
MUSIC-based estimates do as well as MLE asymptotically. How-
ever, the value of T for which θ τ( | )AMLE is equivalent to θ τ( | )MLE
decreases as ν decreases. Moreover, the τ( )AAMLE , is seen to come
very close to θ τ( | )AMLE despite the fact that it does not know τ.
Finally, we notice that RG-MUSIC is asymptotically as good as

τ( )AAMLE , for =nGGNR 30 dB. However, for =nGGNR 60 dB, even
for large number of snapshots, there is a considerable difference
between RG-MUSIC and all other algorithms, and this difference is
more important when ν¼0.2 than when ν¼0.1.

Next, we investigate the threshold behavior of all algorithms in
Figs. 3–4 where we plot MSE versus SNR, for different values of T.
The curves are seen to be very different from =nGGNR 30 dB to

=nGGNR 60 dB. In the latter case, all methods except RG-MUSIC
achieve the bound even for low SNR, while for =nGGNR 30 dB, one
recovers the usual transition between a MSE far from the bound to
a MSE close to the bound. It is observed that, for =nGGNR 30 dB,
RG-MUSIC has a better MSE than τ( )AAMLE , for low SNR, while
the two are equivalent for large SNR. For =nGGNR 60 dB there is a
significant improvement of τ( )AAMLE , compared to RG-MUSIC.
Another very interesting property is that τ( )AAMLE , remains very
close to θ τ( | )AMLE , even in the threshold area, which means that

τ( )AAMLE , is an interesting solution.
Finally, we investigate robustness of τ( )AAMLE , to a non-perfect

knowledge of white noise power. Indeed, τ( )AAMLE , requires
knowledge of σw

2 and uses it mainly as a threshold to set to zero
those estimated τt that fall below the threshold, see Algorithm 1. In
order to figure out if a precise knowledge of σw

2 is required, we
implemented τ( )AAMLE , using a possibly wrong guess of σw

2 : more
precisely, the first step of Algorithm 1 is replaced by

( )τ = −( ) − ⊥
( − )x P xMmax , T T

At
n

t
H

t
1

n 1 where the threshold σ≠T w
2 . In

Fig. 5, we plot the MSE obtained when T varies around σw
2 . Clearly,

from this figure it can be seen that τ( )AAMLE , is rather robust up
to a 6 dB difference between T and σw

2 . Usually, the internal noise
level is known with a better accuracy and hence τ( )AAMLE , is
applicable even if one does not known perfectly σw

2 .
4. Conclusions

In this paper, we addressed the direction finding problemwhen
the additive noise consists of a mixture of K-distributed noise and
Gaussian noise. The modified Cramér–Rao bound was derived.
Assuming that the texture values τare known, we presented the
maximum likelihood estimator. When τ is unknown an iterative
procedure for joint estimation of τand a basis of the signal sub-
space was proposed. This τ( )AAMLE , method was shown to pro-
vide quasi optimal performance in the asymptotic regime and a
very good threshold behavior, especially for large ratio between
the K-distributed noise power and the Gaussian noise power. It
was also shown to achieve a better performance than RG-MUSIC,
at least for high K-distributed noise power to Gaussian noise
power ratio. Finally, a formula for predicting MSE, based upon
differentiation between a K-dominated and a Gaussian-dominated
regime, was presented which was shown to accurately fit the ac-
tual MSE values.
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