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Abstract. This work concerns the development of a virtual prototyping tool for large scale

electro-thermo-mechanical simulation of power converters used in railway transport includ-

ing multi-domain and multiple time-steps aspects. For this purpose, Domain Decomposition

Method (DDM) is used to give on one hand the ability to treat large scale problems and on

the other hand, for transient analysis, the ability to use different time-steps in different parts of

the numerical model. An Object-Oriented programming in C++ is used for the development

of the application, allowing integration in a single interface, high evolutivity and code mainte-

nance. Finally, parallelization is introduced to improve the performances of the code and obtain

computing times compatible with industrial developments.

In a first part, we present the formulation of DDM based on a dual approach in steady-state

analysis including the building of the interfacial problem. Then, as presented by Combescure et

al. we extend this formulation to multiple time-step transient analysis. The Euler semi-implicit

scheme used to integrate first-order systems and the Newmark scheme used to integrate second

order systems are detailed for both single time-step and multiple time-step computations. Then,

we present a discussion concerning the choice of the continuity at the interface for first-order

systems in single time-step and multiple time-step transient analysis.

In the second part, the numerical implementation of the proposed approach in the FEM code

DynELA is presented with a focus on the treatment of multi-physic aspects. Parallelization of

the code on a Shared Memory Processors (SMPs) computer is achieved using the OpenMP

programming standard.

The last part of this work concerns the study of an industrial benchmark concerning the

power converters: the electro-thermal simulation of a semi-conductor chip in transient analysis.

This example allows to compare different strategies of tearing into subdomains and to couple

different time-steps on the same structure.



1 INTRODUCTION

Industrial products are made of many parts, and are submitted to multi-physic and multi-

time phenomena. In particular, the prototypes that are built and designed in the field of Power

Electronics focus on power integration components, with the goal of weight, volume and cost

reductions. Due to their high integration level, these products are difficult to instrument whereas

the demand for reliability increases. Therefore there is a real need in more realistic models for

virtual prototyping.

One solution in order to build such models is to link together several semi-analytic models

using an integration platform such as VTB, Femlab, Matlab/Simulink... The main inconvenients

of this approach relies on the difficulties in building realistic analytic models for non-linear and

complex behaviours; therefore, numerical models are usually preferred.

A multi-physics approach needs the use of several numerical codes and data exchanges be-

tween them. Such a platform enhances some inconvenients:

• a relatively high cost due to the number of different softwares,

• the need of consulting many specialists,

• the need of developping specific data exchange softwares in order to establish the com-
munications,

• the problems encountered when new code versions occur.

Therefore, in this work, we choose to build an unique, three-dimensional code with the follow-

ing goals:

• ability to treat large scale problems, and for transient analysis, ability to use different
time-steps in different parts of the numerical model,

• integration in a single interface, high evolutivity and code maintenance,

• high performance in order to obtain computing times compatible with industrial develop-
ments.

Domain Decomposition Methods (DDM) have been retained in order to give an answer to the

first point; for the second point, the Object-Oriented Programming is used; finally, a procedure

of parallelization is introduced to improve the performances.

2 THEORETICAL APPROACH

2.1 Steady state multidomain computation

A dual DDM formulation is used, considering a structure subdivided into s subdomains. The
whole finite element problem related to the structure can be set as the sum of all the elementary



finite element problems on the s subdomains (equation (1-a)) , associated with an equation
enforcing the primal quantities continuity at the interface (equation(1-b)).

{

K(j)q(j) = g(j) + g
(j)
int for j ∈ {1, ..., s} (a)

∑s
j=1 B(j)q(j) = 0 (b)

(1)

where K(j) is the matrix relative to the physical behaviour of the subdomain (material and ge-

ometry), q(j) is the vector of the unknown primal quantities, g(j) is the vector of the external

actions applied on the subdomain j and g
(j)
int is the vector of the actions of the adjacent subdo-

mains on the subdomain j. The B(j) are localization matrices that select the degrees of freedom

of the subdomain j which are related to the interface. These matrices are also used to express
the interactions λ between the subdomains at the interface:

g
(j)
int = B(j) T

λ (2)

Then the steady state general problem can be written as:
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
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(3)

or in a condensed form: [

Ke − Be T

−Be 0

] [

qe

λ

]

=

[

ge

0

]

(4)

In the case of floating subdomains (i.e without any boundary conditions of Dirichlet type)

and non-floating subdomains, the expressions of the primal unknows are respectively of the

form:






q(j) = K(j)−1
(

g(j) + B(j) T
λ

)

for non-floating subdomains (a)






q(j) = K(j) +
(

g(j) + B(j) T
λ

)

+ R(j)γ(j)

(R(j)γ(j))T (K(j)q(j)) = 0
for floating subdomains (b)

(5)

where K(j) +
is the generalised inverse matrix ofK (j),R(j) (kernel ofK(j)) includes the vectors

of the base of the null-space of K (j), γ(j) shows the unknown norms of R(j). For non floating

subdomains, K(j) +
will be used to represent the inverse of K (j) (with R(j)γ(j) = 0). C. Farhat

and F.-X. Roux4 have shown that it is not necessary to compute explicitly the generalised inverse

of K(j); they proposed an iterative algorithm based on the partition of K (j). By reintroducing

these expressions in the equation (1-b), we can define an interfacial problem of the form:

[

FI GI

GT
I 0

] [

λ
γ

]

=

[

gλ

gγ

]

(6)



where: 





FI =
∑s

j=1 B(j) K(j) +
B(j) T

GI =
[

B(1)R(1) · · · B(f)R(f)
]

γ =
[

γ(1)T · · · γ(f)T
]T

gλ = −∑s
j=1 B(j) K(j) +

g(j)

gγ =
[

− R(1) T
g(1) · · · − R(f) T

g(f)
]T

(7)

FI is commonly named “dual Schur matrix”.

The resolution of the interfacial problem gives λ and γ. These results are then introduced in
the equations (1-a) , leading to the resolution on the s subdomains.

2.2 Transient multidomain computation

As in section (2.1), we chose to use a dual DDM formulation; in transient analysis, we need

to consider separately first order and second order problems. The following formulations use

classical notations of thermics for first order problems and of structural dynamics for second

order problems.

2.2.1 First order transient problems

As in the steady state case, the finite element problem related to the whole structure is set as

the sum of the problems related to the s subdomains linked by a continuity equation:
{

C(j)Ṫ (j)
n + K(j)T (j)

n = f (j)
n + B(j) T

λn for j ∈ {1, ..., s} (a)
∑s

j=1 B(j)w(j) = 0 (b)
(8)

The transient resolution requires the introduction of an integration scheme, as the Euler’s

scheme:

T (j)
n = T

(j)
n−1 + (1 − α(j))∆t(j)Ṫ

(j)
n−1 + α(j)∆t(j)Ṫ (j)

n , α(j) ∈ [0, 1] (9)

which can be written as the sum of a predictor and a corrector:







T (j)
n = pT (j)

n + cT (j)
n

pT (j)
n = T

(j)
n−1 + (1 − α(j))∆t(j)Ṫ

(j)
n−1

cT (j)
n = α(j)∆t(j)Ṫ (j)

n

(10)

We can choose two types of continuity at the interface: T (j) or Ṫ (j). Regarding these two

possible types of continuity, w(j)
n can be written in a general form:

w(j)
n = pw(j)

n + µ(j)Ṫ (j)
n (11)

where: {

if w(j)
n = Ṫ (j)

n ,
pw(j)

n = 0 and µ(j) = 1
if w(j)

n = T (j)
n ,

pw(j)
n = pT (j)

n and µ(j) = α(j)∆t(j)
(12)



The general first order problem can be rewritten as:
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Ṫ (s)
n

λn









=










f̃ (1)
n
...

f̃ (s)
n

∑s
j=1 B(j)w(j)










(13)

where:

C̃(j)
n = C(j)

n + α(j)∆t(j)K(j)
n and f̃ (j)

n = µ(j)(f (j)
n − K(j)

n
pw(j)

n ) (14)

Then the general problem is decomposed in a “free” problem and in a “linked” problem3, 5:

Ṫ (j)
n is considered as the sum of a “free” vector Ṫ (j)

n free solution of the global problem with

no interfacial interactions between the subdomains and a “link” vector Ṫ (j)
n link solution of the

global problem just considering the interfacial interactions and excluding all the other actions.

These two problems are:
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

Ṫ (1)
n free
...

Ṫ (s)
n free

0
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

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


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

f (1)
n − K(1)

n
pT (1)

n
...

f (s)
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n · · · 0 −µ(1) B(1) T
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...
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


(15)

When all the subdomains share the same time-step ∆t(j), the interfacial problem is built for
each time-step by using the same procedure as the one used for the steady state analysis. As

there is no floating subdomains in a transient computation, its expression can be simplified as:

Hnλn = fλn (16)

where:

Hn =
∑s

j=1 µ(j)B(j)C̃(j)
n B(j) T

and fλn = −∑s
j=1 B(j) w(j)

n free
(17)

The resolutions of the free problems allow to solve the interfacial problem; λn is then reintro-

duced in the expressions of the link problems related to each subdomain and permit to solve

them. The expressions of Ṫ (j)
n can be computed and using the integration scheme (10), we can

obtain the temperatures T (j)
n .

In the case of different time-steps used in different subdomains, the interfacial problem is

computed for each minimal time-step of the structure. So it requires the interpolation of the



quantities used in continuity and corresponding to the subdomains which have time-steps differ-

ent from the minimal time-step (in this work, it is supposed that all the time-steps are multiples

of the minimal one). The interfacial problem is modified:

Hiλi = fλi (18)

where:

Hi =
∑s

j=1 µ(j)B(j)C̃
(j)
i B(j) T

and fλn = −∑s
j=1 B(j) ŵ

(j)
i free

(19)

ŵ
(j)
i = (1 − i

k(j) )w
(j)
0 + i

k(j) w
(j)
k and ∆t(j) = k(j)min(∆t(j)) (20)

The resolution of the problem for each minimal time-step is done in the same way as for one

unique time-step on the structure.

2.2.2 Second order transient problems

As previously, the second order transient problem is formulated using a dual DDM:
{

M (j)
n ü(j)

n + C(j)
n u̇(j)

n + K(j)
n u(j)

n = f (j)
n for j ∈ {1, ..., s} (a)

∑s
j=1 B(j)w(j)

n = 0 (b)
(21)

Here we use a Newmark integration scheme:






u̇(j)
n = u̇

(j)
n−1 + (1 − γ(j))∆t(j)ü

(j)
n−1

︸ ︷︷ ︸
+γ(j)∆t(j)ü(j)

n

pu̇(j)
n

u(j)
n = u

(j)
n−1 + ∆t(j)u̇

(j)
n−1 + (

1

2
− β(j))(∆t(j))2ü

(j)
n−1

︸ ︷︷ ︸

+β(j)(∆t(j))2ü(j)
n

pu(j)
n

(22)

and, depending on the continuity set at the interface, we have:






if w(j)
n = ü(j)

n ,
pw(j)

n = 0 and µ(j) = 1
if w(j)

n = u̇(j)
n ,

pw(j)
n = pu̇(j)

n and µ(j) = γ(j)∆t(j)

if w(j)
n = u(j)

n ,
pw(j)

n = pu(j)
n and µ(j) = β(j)(∆t(j))2

(23)

The second order transient problem is then solved as for the first order transient problem, for

both mono and multi-time-steps in the structure.

2.2.3 Continuity at the interface

Stability of the integration schemes for amulti-domain andmono-time-step analysis Bas-

ing on the stability studies done for dynamics by Combescure and Gravouil3, 5 using the energy

methods developped by Hughes11, 10, we computed13 an interfacial energy term :

Einterface =
1

∆t
[λn]T

s∑

j=1

B(j)
[

Ṫ (j)
n

]

(24)



If Einterface < 0, the system can lead to numerical dissipations, if Einterface = 0, the scheme is
as stable as in a mono-domain analysis and if Einterface > 0, the system can lead to numerical
instabilities.

For a first order problem, we have the following results:

• for a continuity of the T (j)
n at the interface, Einterface = 0 if all the α(j) = 1/2 and if the

continuity of all the Ṫ
(j)
0 is supposed,

• for a continuity in Ṫ (j)
n the term Einterface vanishes unconditionnally null.

For second order problems, we recall here the results obtained by Combescure and Gravouil:

• for a continuity in ü(j)
n , Einterface = 0 if all the γ(j) are equal,

• for a continuity in u̇(j)
n , Einterface vanishes unconditionnally null,

• for a continuity in u(j)
n , Einterface = 0 if we choose γ(j) = 1

2
β(j) and if the continuity of

all the u̇
(j)
0 is supposed.

For these reasons, we consider in this work continuities in terms of Ṫ (j)
n and u̇(j)

n .

Precision of the integration schemes in multi-time-step analysis Taking account the op-

tions previously retained, we interested in the error introduced by the multi-time-stepping. For

this reason, we adapted the expression (24) to the multi-time-steps case, according to Combes-

cure and Gravouil work, and we finally determined that:

Einterface ≤ 0 (25)

So, it confirms what has ever been shown for dynamics, i.e that for continuities in Ṫ (j)
n and in

u̇(j)
n , integration schemes keep stable even if they dissipate energy at the interface. Moreover, if

the variations of the continuity quantities are linear, there is no dissipation in the interface.

3 IMPLEMENTATION

3.1 Structure of the code

We implemented the multi-domain solver by adding new classes librairies in the home de-

velopped FEM large deformation code DynELA15. The whole model is an instance of the class

Structure composed of several instances of the class Physic. Each physic has one or several

subdomains (class Domain) which are made of one or several meshes (class Grid). Finally, one

or more solvers (class Solver) are related to each subdomain: it allows to couple iterative and

direct, linear and non-linear (in transient) and explicit and implicit (in transient) computations

on a same structure (see figure 1). Currently, this solver, named MulPhyDo (for Multi-Physic

and Multi-Domain) is composed of an electrical solver, a thermal one and a mechanical one.



Structure

Physicphysics

Domaindomains

Solversolvers

Gridgrids

Elementelements

Nodenodes

SolverElec SolverTherm SolverMeca

Material

Figure 1: UML diagram of the solver

3.2 Parallelization

3.2.1 The DDM step by step

Starting from a calculation domain which has been partitionned into several subdomains and

one interface, the computation steps are the following ones:

1. building the Finite Elements problems related to the several subdomains,

2. building the interfacial problem,

3. solving the interfacial problem,

4. solving the problems on each subdomain.

These four steps may be parallelized, but the steps (1 and 4) concerning the several subdomains

are more time-consuming than the two other ones (2 and 3); thus, we parallelized only those

two steps.

3.2.2 The OpenMP standard

OpenMp is a recently developped programming standard (1997) offering a standard interface

for softwares developped in FORTRAN and C/C++1, 9, 16. It can only be integrated on SMP

computers.

OpenMP is an API (Application Program Interface) which allows the development of appli-

cations where several threads are executed in parallel: it is composed of compilation instructions

to include directly in the existing code (C/C++ or FORTRAN) and librairies of functions. The

existing code must be modified to include the instructions of task sharing. The datas handled

by the program are common to all the processors in the shared memory. OpenMP works using

the Fork/Join principle: a task is decomposed in several elementary threads that can be done

simultaneously by several processors. So it is a parallelism of control: several operations done

simultaneously by several processors (see figure 2). Moreover, the program is independent of

the number of processors: the number of processors necessary to compute a task is determined



during the execution. The first elementary thread to be launched is arbitrary defined as the

“master” , the other ones being created from it.

zone
Parallel execution

zone
Parallel execution

n threads

Master thread

Slave thread

Figure 2: Parallel computing with OpenMP

All the tests and validation of parallelized code have been done on a Compaq ProLiant 8000

with 8 processors Intel Xeon PIII 550/2Mb and 5 Gb of shared memory. This computer works

under Linux Redhat 8.0 and uses an Intel C++ 7.1 compiler (for the parallel version of the code)

or a g++ compiler (for the non-parallel one).

4 VALIDATION BENCHMARKS

4.1 Steady state validation

In this example, a clamped beam, subjected to plan flexion, is divided into 8 subdomains.

The dimensions of the beam are 10m × 1m × 1m , the applied force is 49000 N, the Young
modulus of the material is E = 109Pa and the Poisson’s ratio is ν = 0.25 (figure 3).

Mono−domain model

8−domain model

Figure 3: Clamped beam with the several subdomains

The analytic solution12 is compared to the mono-domain 3D computations (MulPhyDo and

Abaqus) and to the 8-domain 3D analysis. The same mesh is used for the three FE models. As

one can see on (table 1), Abaqus gives a close response (0,3 %).

4.2 Influence of the number of subdomains

In this benchmark, we study a beam (with the same geometrical characteristics as in section

4.1) (figure 4) submitted to thermal sollicitations: the first quarter of the beam is submitted to



MulPhyDo 1 and 8

subdomains
Abaqus 6.3

Analytic beam

solution

0.1844 m 0.1838 m 0.196 m

Table 1: Maximal end beam displacements for different computations

heat generation (a volumic flux Φv = 9000 W.m−3), whereas the opposite wall is submitted to

a convection condition (heat coefficient hc = 500 W.m−2.K−1, fluid temperature Tinf = 0◦C).
The other walls are adiabatic (so, the flux going through the bar is Φ = Φv × (L

4
) = 22500 W ).

The thermal conductivity of the material is λ = 400 W.m−1.K−1.

VOLUMIC HEAT

FLUX

VOLUMIC HEAT

FLUX

Figure 4: Beam submitted to a volumic heat generation and cooled by convection and one example of division into

4 subdomains

We focus here on the influence of the number of subdomains in the model (when it is divided

into 1, 2, 3, 4, 6 and 8 subdomains) on the computation time. Figure 5 shows an important

reduction of the computation time (85 % when the structure is divided in 8 subdomains). In

the same time, we remark an increase of the time needed for the resolution of the interfacial

problem (note that the time scales are different).

4.3 Transient first order problem (mono-time-step)

The validation of the transient first order mono-time-step analysis is done with the same

beam. In this example, the whole beam presents an initial temperature of 20◦C and one of its
ends is suddendly set at 100◦C. A temperature gradient occurs in the beam. The calculations
are done for a thermal conductivity λ = 40000 W.m−1◦C−1, a specific heat c = 5 J.kg−1.◦C−1

and a volumic mass ρ = 1000 kg.m−3. The analytic model best-matching this benchmark is the

semi-infinite solid model12 submitted to a temperature of 100◦C suddenly applied on its surface
(figure 6). The temperature dependance with the distance x to the surface and the time t is given
by the equation:

T (x, t) = Ts + (Ti − Ts)erf(
x

2
√

at
) (26)

where erf is the Gaussian error function, and a is the thermal diffusivity coefficient (a = λ
ρc
).

The beam is divided into 8 equal subdomains. On figure 7 , we compare the evolution of the

temperature with time at the node P (situated on the neutral fiber at 40 cm of the face subjected
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Figure 6: Semi-infinite solid model

to the thermal load), for different time-steps and two different values for the parameter α in the
numerical Euler’s integration scheme (α = 1 on the left side and α = 0.5 on the right side). We
remark an increase of the precision while we decrease the time-step value.

4.4 Transient second order test (mono-time-step)

The validation of the transient second order benchmark computation is based on the dynamic

analysis of the beam previously defined. Here, this beam is clamped at one of its ends and

submitted to a uniform traction force on the opposite end (45000N/node and 49 nodes, i.e
2.205 106N globally) ( see figure 8). This load is applied via the time-dependent function given

on the figure 9. The Young’s modulus is E = 109 Pa and the Poisson’s coefficient is υ = 0.25.

Simulations have been conducted with MulPhyDo for 8 subdomains and Abaqus 6.4 (figure
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Figure 7: Evolution of the temperature at node P forα = 1 (left) et α = 0, 5 (right)
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Figure 8: Beam submitted to an uniaxial and transient traction effort

10). The integration parameters retained for the simulation with MulPhyDo are β = 0.5 and
γ = 0.25, which satisfy the stability condition γ = 1

2
β. We used a time-step ∆t = 0.5 ms. The

general aspect of the two curves is the same: the period and the displacement levels are similar.

The small differences in the oscillations are due to the integration parameters β et γ which
are different in Abaqus where they are coupled via a third parameter α (named collocation
parameter); this parameter is fixed to −0.05 by default6, 7 (which corresponds to β = 0.276 and
γ = 0.55) and ensures an optimal precision of the integration schemes (periods, displacement
levels).

4.5 Mono-time-stepping versus multi-time-stepping

The decomposition strategies allow optimization of the transient computations as in steady

state analysis. But in the case of the multi-time-step transient analysis, it is necessary to adapt

these strategies to the caracteristic times of the different zones. Typically, the zones submitted

to fast phenomena and highly non-linear have smallest time-steps than those which are further.

Tests have been performed to define the best time-steps. We use the same example as in the

subsection 4.3. The ratios between the time-steps of the subdomains are shown on figure 11 for

the two analysis. In figure 12, the temperature of the node P is picked for the two cases and
compared to the mono-steptime evolution. In the table 2, we compare the solutions obtained in
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multi and mono-time analysis. Theses results show the interest of the development of the multi-

time computation: small error (less than 1%) and significative computational time reducing (up

to 24%).

Mono-time

11111111

Multi-time

11112222

Multi-time

11222444

Error at first

increment (0.05 s)
reference -0.2% -0.3%

Error at last

increment (0.35 s)
reference +0.2% -0.8%

Time gain reference -17% -24%

Table 2: Comparison of mono-time versus multi-time computations

5 INDUSTRIAL BENCHMARK

5.1 Definition of the benchmark

The benchmark is an assembly used in power converters: a chip is brazed on a first DBC

(Direct Bonded Copper) substrate and connected to a second one by the use of 12 bumps con-

nectics (one lying copper cylinder with top and bottom brazes). Here, the bumps are replaced

by parallelepipeds defined using a material with equivalent properties (figure 13). The current

circulates in the inner copper layers of the DBC substrates, while the heat generated by the chip

commutations goes through the bumps and DBC substrates (figure 14).

As the repartition of the heat between the top and the bottom of the chip is not known, it

is assumed that half of heat escapes by the top and half by the bottom. Moreover, the bump

behaviour is the most significative. So we only modelize the top of the assembly (figure 15).
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Figure 11: Mapping of the differents time-step ratios for the 2 test-cases

5.2 Electro-thermal model

The volumic calorific power (inW m−3) dissipated by the chip at each time-step is given by

the following formula:

P = −4.41 108 − 2.04 108α − 0.533I + 5.606Iα + 9.92 10−10I2 + 2.28 107T (27)

where T (en degrés Celsius) is the temperature of the chip, I (in A m−3) is the volumic current

density and α (adimensionned, between 0 and 1) is the cyclic ratio of the power converter. This
expression has been extracted from the study defined with the electro-thermal chip model, and

developped by L. Mussard 14.

For each time-step, we perform an electric calculation followed by a thermal one. At the

initial time, the whole structure is set at a potential of 0 V and a temperature of 50◦C.

5.3 Decomposition strategies

We retained two kinds of decompositions with a specific idea for each one:
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Figure 13: The differents parts of the assembly

• a “slice” tearing: each part or each group of parts is a subdomain. In this case, the
interfacial problem has a long size because the interface involves large contact surfaces.

We show two possible slice-tearing strategies in figure 16.

• a “block” tearing: the assembly is torn through the parts. This option limits the size of
the interface because it uses only the part thicknesses (see figure 16).

For a transient multi-time-step analysis, the slice-tearings are more adapted, since they allow

different time-steps on the different parts.

5.4 Material datas

The properties of the material used in the model are resumed in the table 3: coefficients of

dilatation α, initial temperatures Tini, thermal conductivities λ, Young’s modulus E, Poisson’s
ratio ν, densities ρ and electrical resistivities ρelec .



Figure 14: Current circulation (left) and heat circulation with convective cooling (right)

Figure 15: Model

5.5 Mono and multi-time-steps computation

5.5.1 Time-steps definition

Going back to the slice-tearing 1, we chose to set time-steps in subdomains 1 and 2 that are

twice the time-step in the subdomain 3. In fact, this one includes the chip and is submitted to

the fastest electro-thermal phenomenon (figure 17).

5.5.2 Results in mono and multi-time-steps analysis

We compare the evolution of the temperature for a node situated on the bottom surface of the

chip for mono and multi-time-step analysis. We note very small differences between the two

methods: less than 2% for the whole computation (see figure 18).
The time computations are reported in tables 4 for two different computers.

6 CONCLUSION

This work shows the interest of developping transient multi-time-stepping Finite Element

codes, leading to important computation time reductions. Moreover, MulPhyDo includes now

three physics (resistive electrics, thermics and structural dynamics), which permit multi-time-

stepping analysis for both of them. This tool can be currently used in industry for power con-

verters modeling and explores an other way, compared to other ones8, 2.

This first application leads to a plan for further developments:

• introduction of non-linearities by using the collaboration of explicit (for zones with fine
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Figure 16: Slice-tearings 1 (left) and 2 (middle) and blocks-tearing

α Tini

(◦C )

λ
(W/m.◦C)

E
(Pa)

ν
ρ

(kg/m3)

ρelec

(Ω/m)
Copper 1.64 10−5 20 385 1.17 1011 0.343 8700 1 10−8

Silicon 3.24 10−6 20 150 1.5 1011 0.278 2330 3.8 10−8

AlN 4.5 10−6 20 173 3.3 1011 0.25 3260 1 103

Bump 2.19 10−5 20 30 5.27 1010 0.3 7360 1 10−6

Table 3: Table of the material properties

time-steps) and implicit (for zones with larger time-steps) schemes,

• finest taking into account of the silicon chips heat generation in the power converters. In
fact, the use of multi-time-stepping allows the use of time-steps very close to the commu-

tation frequency of the chips
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