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ABSTRACT

A new application of the parameterization method is pre-

sented to compute invariant manifolds about the equilib-

rium points of Periodically Perturbed Three-Body Problems

(PPTBP). These techniques are applied to obtain high-order

semi-numerical approximations of the center manifolds about

the points L1,2 of the Sun-perturbed Earth-Moon Quasi-

Bicicular Problem (QBCP), which is a particular case of

PPTBP. The quality of these approximations is compared

with results obtained using equivalents of previous normal

form procedures. Then, the parameterization is used to ini-

tialize the computation of Poincaré maps, which allow to

get a qualitative description of the periodically-perturbed

dynamics near the equilibrium points.

Index Terms— parameterization method, center mani-

fold, four-body model, quasi-bicircular problem, Sun-Earth-

Moon system

1. INTRODUCTION

The present paper is part of a project which aims to provide

a systematic or near-systematic analysis tool for the motion

of a spacecraft about and between the libration points of the

Sun-perturbed Earth-Moon system. The dynamics around the

Earth-Moon (EM) and Sun-(Earth+Moon) (SEM) collinear li-

bration points L1 and L2 are of notable interest. In that con-

text, the literature mainly addresses two four-body models:

A. The Bicircular problem (BCP). Widely used for the study

of the EM triangular libration points [1,2] and for trans-

fer optimization [3–5], it considers the Earth and the

Moon moving in circular orbits around their barycen-

ter which is moving in circular orbit around the Sun.

Such a model is not coherent since the motion of the

three primaries is not a solution of the corresponding

three-body problem.

B. The Quasi-Bicircular problem (QBCP). This is a bicir-

cular coherent periodic model that has been developed

in [6]. In this framework, the motion of the three

primaries is a planar self-consistent solution of the

three-body problem along quasi-circular orbits.

Both the BCP and the QBCP provide an all-in-one solution

for the study of the dynamics in the Sun-Earth-Moon system.

In the present paper, emphasis is made on the collinear libra-

tion points L1 and L2, in particular in the Earth-Moon sys-

tem. Consequently, the QBCP is selected given (i) its coherent

nature and (ii) the slightly broader literature available on the

subject. Comparisons with results in the BCP are envisaged in

the near future.

The description of the phase space around these collinear

libration points has been done in the past, either in the Sun-

Earth or the Earth-Moon case, and both through pure numer-

ical techniques [7] and semi-analytical procedures [2,6,8,11,

12].

As the reader may know, the span of the semi-numerical

approaches are naturally limited since the resulting expan-

sions are not convergent in any open set. However, there usu-

ally exists a domain of practical convergence within which

the series are seemingly convergent for numerical purposes.

In such a domain, they can provide a very compact tool to

describe the phase space.

In this paper, the parameterization method is extended to

the QBCP framework in order to compute the center manifold

of the libration points L1,2 of the Earth-Moon system.

In section 2, the QBCP is introduced along with the corre-

sponding equations of motion. Then, the extension of the pa-

rameterization method to the time-periodic domain requires

a suitable form for the linearized vector field, as detailed in

section 3.

Section 4 details the building blocks of the parameteri-

zation method, with the example of the center manifold of

EML1,2 as a guideline. It is shown that the normal form pro-

cedure can still be seen as a subclass (or style) of parameteri-

zation methods as in the autonomous case [12].

In section 5, the case of the center manifold of EML1,2 is

detailed along with numerical results. Two different styles of



parameterization are quantitatively compared : the graph and

normal form styles. In the EML2 case, the graph style proves

to be useful to partially handle resonances that act as natural

obstructions to the semi-analytical normal form. Finally, the

approximations of the center manifolds are used to initialize

the computation of Poincaré maps. The graph style proves

again to be convenient to quickly integrate the equations of

motion in the center manifold.

Note that a more complete description of the procedure at

hand will be made available in a work under progress [13].

2. THE QUASI-BICIRCULAR PROBLEM

The Quasi-Bicircular Problem (QBCP) is a restricted four-

body problem introduced by [6] to describe the motion of

a massless spacecraft subjected to the gravitational influ-

ence of the Earth, Moon, and Sun, whose own motion is a

quasi-bicircular solution of the Three-Body Problem. The

resulting system is an Hamiltonian with three degrees of free-

dom and depending periodically on time. This Hamiltonian

takes a simple form when derived in specific synodical sys-

tems of reference. As an example, the EM synodical frame

is a rotating-pulsating frame centered at the Earth-Moon

barycenter Bem in such a way that the Earth and the Moon

are located at fixed points, as in the usual CRTBP synodical

frame (see Figure 1).

Denoting the state by z = (x y z px py pz)
T in such a

frame, the Hamiltonian of the QBCP takes the form:

H(z, θ) =
1

2
α1(p

2
x + p2y + p2z) + α2(pxx+ pyy + pzz)

+ α3(pxy − pyx) + α4x+ α5y

− α6

(

1− µ

qpe
+

µ

qpm
+

ms

qps

)

(1)

where:

q2pe = (x− µ)2 + y2 + z2

q2pm = (x− µ+ 1)2 + y2 + z2

q2ps = (x− α7)
2 + (y − α8)

2 + z2

with µ the Earth-Moon mass ratio, and ms the mass of the

Sun. Moreover, the αk are trigonometric functions in the

variable θ = ωst where ωs is the pulsation of the Sun. The

first coefficients of these functions are available in [6]. This

Hamiltonian is T -periodic with respect to the time t, with

T = 2π/ωs.

In the QBCP, due to the effect of the Sun, the libration

points are no longer equilibrium points. They are replaced by

periodic orbits with the same frequency as the perturbation

(see [9] for the theoretical justification in the L4,5 BCP case).

The so-called dynamical equivalents of EML1,2 are given on

Figure 2, along with the position of their CRTBP counterparts.

x

y
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B
S
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Fig. 1: The QBCP in the synodical EM synodical reference

frame. B is the barycenter of the system (adapted from [14]).
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Fig. 2: T -periodic orbits that act as dynamical equivalents

of the Earth-Moon libration points L1,2, in EM coordinates.

The central ◦ symbol is the CRTBP geometric position of the

libration point. The starting point at t = 0 is plotted on each

orbit as well as the direction of motion for t > 0 (red arrow).

3. A SUITABLE FORM FOR THE LINEARIZED

VECTOR FIELD

The so-called parameterization method (PM) has been pre-

viously used to compute high-order power series expansions

of parameterizations of invariant manifolds of vector fields at

fixed points [15]. An iconic example is the computation of

the center manifold of the Earth-Moon libration point L1 in

the CRTBP [12]. This paper extends such approach to invari-

ant manifolds of periodically-perturbed vector fields about a

periodic orbit with the same frequency.

The first step of such extension is to put the linearized

vector field into a form equivalent to the autonomous case.

Namely, this requires the origin to be a fixed point and the

linearized vector field to be both diagonal and autonomous

at this origin. These features can be obtained by applying a

suitable change of coordinates, as explained below.



3.1. Corresponding change of coordinates

For a system described by a periodically-perturbed Hamilto-

nian, a change of coordinates that leaves the linearized vector

field in proper form can be obtained by implementing the fol-

lowing steps:

1. Autonomize the Hamiltonian by introducing the canon-

ical couple of variables (θ, yθ) so that the time is man-

aged as a new variable. This is done by simply adding

the term ωsyθ to the initial Hamiltonian, forming an ex-

tended autonomous Hamiltonian system of degree four.

2. Cancel the terms of order one or, equivalently, trans-

late the origin of coordinates to the periodic orbit which

substitutes L1,2 so that the origin becomes a fixed point.

3. Compute a normal form for the terms of order two, us-

ing Floquet theorem. In particular, the differential of

the vector field evaluated at the origin will be time-

independent.

4. Use a complexification of the state to get a true diagonal

form for the order two.

Such procedure is thoroughly described in [6] in the QBCP

Earth-Moon L2 case, and in [2] in the BCP L3,4,5 case. In

brief, the composition of these operations defines a change of

coordinates, denoted COC, of the form:











z = Pc(θ)ẑ + V (θ)

θ = θ̂

yθ = ŷθ + p0(θ) + p1(ẑ, θ) + p2(ẑ, θ)

(2)

where p0 is a 2π-periodic function, p1,2 are linear func-

tions in ẑ, p is a complex 6 × 6 matrix, and V is a real

6 × 1, all with 2π-periodic coefficients. The final coordi-

nates ẑ = ( x̂T ŷT )T = ( x̂1 x̂2 x̂3 ŷ1 ŷ2 ŷ3 )
T

are denoted

Translated-Floquet-Complexified (TFC). In these coordi-

nates, the Hamiltonian Ĥ takes the form:

Ĥ(ẑ, θ̂, ŷθ) = ωsŷθ + ω1ix̂1ŷ1 + ω2x̂2ŷ2 + ω3ix̂3ŷ3

+
∑

k≥3

Ĥk(ẑ, θ̂)

(3)

where ωi, i ∈ [[1, 3]] are real coefficients given in Table 1 for

the EML1,2 case. Moreover, the terms Hk(ẑ, θ̂) for k ≥ 3
are homogeneous Fourier-Taylor polynomials of degree k in

the complex variable ẑ that are not explicitly available at this

step.

In practice, only the first line of equation (2) is incorpo-

rated into the numerical implementation.

3.2. Corresponding vector field

The change of variables (2) provides an Hamiltonian Ĥ in

autonomous diagonal form at order 2. From this form, the

Table 1: The coefficients ωi that appear in equation (3), in

the Earth-Moon L1,2 case. All values are given with the same

precision as in [6].

ωi L1 L2

ω1 −4.38968496e−01 +1.34709423e−02
ω2 +2.93720564e+00 +2.16306748e+00
ω3 +4.22768254e−01 −6.02217885e−02

corresponding vector field can be derived and plugged into

the parameterization method:

˙̂z = F̂ (ẑ, θ) =

(

Ω 0
0 −Ω

)(

x̂

ŷ

)

+

∞
∑

k=3

J∇Ĥk(ẑ, θ)

(4)

with

Ω =





iω1 0 0
0 ω2 0
0 0 iω3



 , J =

(

0 I3
−I3 0

)

The linearized part of (4) has the desired autonomous

diagonal form for the initialization of the parameterization

method. Moreover, the TFC origin is naturally a fixed point

and all the conditions defined at the beginning of this section

are satisfied.

3.3. Precision of the COC

At this point, one can see that the overall accuracy of the

change of coordinates (2) directly depends on the precision

with which the periodic coefficients in Pc and V are com-

puted. In practice, these coefficients are obtained by a Fourier

analysis of 2π-periodic functions integrated along the dy-

namical equivalent of the libration point (see [2, 13]). As in

the three-body case, the linear dynamics about the collinear

points is a cross product of two centers, and one saddle −
associated with a pair of real positive eigenvalues. Naturally,

the precision of the integration of the periodic coefficients is

limited by the magnitude of the hyperbolic unstable direction

associated to the orbit.

To estimate this constraint, let λu be the eigenvalue asso-

ciated with the unstable direction. Then an initial error ǫ(0)
made along the unstable direction leads, after a time t, to an

error:

ǫ(t) ∼ ǫ(0)e
t

T
ln(λu) = ǫ(0)(λu)

t

T (5)

where T is the period of the QBCP. This error is doomed to

grow fast: in the case of EML2, the initial error is multiplied

by a factor roughly equal to 1500 after half a period, and 2 ×
106 after a full period. The EML1 case is even worse: the

error takes a factor about 21000 (resp. 5 × 108) after half a

period (resp. a full period). On the contrary, in the SEM case,

the unstable eigenvalues are quite small: the error is roughly



multiplied by 2 after half a period and by 4 after a full period,

both in the L1 and L2 cases.

Such a precision shortfall is of paramount importance for

the accuracy of the COC and eventually for the parameteriza-

tions of the invariant manifolds about EML1,2. In practice, the

EML1 case exhibits an overall poor precision compared to the

EML2 case.

4. THE PARAMETERIZATION METHOD IN THE

QBCP

In this section, the extension of the parameterization method

(PM) is introduced, with the example of the center manifold

of EML1,2 as a guideline.

Note that, if not stated otherwise, the so-called order of

the parameterization method corresponds to the order of the

four-variable Taylor expansions that describe the center man-

ifold.

4.1. Initialization of the process

In the case of EML1,2, it comes from equation (4) that

DF̂ (0) = diag(iω1, ω2, iω3,−iω1,−ω2,−iω3) (6)

Let define the three matrices H , L and N by:

H =

















iω1 0 0 0 0 0
0 0 0 0 ω2 0
0 iω3 0 0 0 0
0 0 −iω1 0 0 0
0 0 0 0 0 −ω2

0 0 0 −iω3 0 0

















L N

In other words, L spans the 4-dimensional subspace

V L ⊂ C6 tangent to the center manifold Wc at the ori-

gin. The goal of the PM is here to compute a high order

approximation of Wc, starting with L as its order one ap-

proximation. Let denote ẑ = Ŵ (s, θ) the parameterization

of Wc where s ∈ R4 are the coordinates of the manifold, and

Ŵ (0, θ) = 0, ∀θ.

The invariant manifold is sought in the form of a Fourier-

Taylor (FT) expansion, i.e. a power series in the variable s

whose coefficients are 2π-periodic Fourier series in the vari-

able θ:

Ŵ (s, θ) =
∑

k≥1

Ŵk(s, θ) (7)

with

Ŵk(s, θ) =

















Ŵ 1
k (s, θ)

...

Ŵ p
k (s, θ)

...

Ŵ 6
k (s, θ)

















=

























∑

r∈Rk

w1
r(θ)s

r

...
∑

r∈Rk

wp
r (θ)s

r

...
∑

r∈Rk

w6
r(θ)s

r

























(8)

where Rk =
{

r ∈ N4, |r| = r1 + · · ·+ r4 = k
}

, sr =
sr11 . . . sr44 , and the coefficients wp

r (θ) are trigonometric func-

tions of the form:

wp
r (θ) =

∑

j

wp
r,je

ijθ (9)

In practice the sum (7) is truncated so that j satisfies |j| ≤ J ,

with J ∈ N fixed.

The dynamics on the manifold is described by a reduced

vector field ṡ = f(s, θ) for which f(0) = 0. The vector field

f is also sought in the form of a FT series.

The couple (Ŵ , f) must satisfy the invariance equation:

F̂
(

Ŵ (s, θ), θ
)

= DŴ
(

s, θ
)

f
(

s, θ
)

+
∂Ŵ

∂t

(

s, θ
)

(10)

With these ingredients, the order one (Ŵ1, f1) is given by:

{

Ŵ1(s, θ) = Ls

f1(s, θ) = ΛLs
(11)

where ΛL is the upper left 4 × 4 submatrix of the diagonal

matrix Λ = H−1DF̂ (0)H .

From there, the standard procedure is to formally solve the

invariance equation (10), starting from (11), by substituting

the expansions of Ŵ and f in (10) and find homogeneous

terms in increasing order.

4.2. The homological equations

Isolating the k-order terms in the invariance equation (10),

k > 1, allows to get the k-order homological equation for

Ŵk(s, θ) and fk(s, θ):

DF̂ (0)Ŵk −DŴkΛLs− Lfk −
∂Ŵk

∂t
=

[

DŴ<k f<k

]

k

−
[

F
(

Ŵ<k

)]

k

(12)

where the dependency in (s, θ) has been omitted for the sake

of clarity. The goal is to compute Ŵk and fk in order to satisfy

equation (12). The terms Ŵ<k, f<k, and
[

F
(

Ŵ<k

)]

<k
are

assumed to have been obtained in previous steps.



First, the right-hand side of (12) is computed, which in-

volves the differentiation, sum and product of Fourier-Taylor

series, as well as the composition of Fourier-Taylor series

with algebraic functions (in particular, the raising to a frac-

tional power). Such operations require a complete Fourier-

Taylor algebra that has been implemented from scratch in

C++. For more details, see [13].

Then, following the example of [12], the normal part

of (12) is separated from its tangent part. The following

functions are introduced:






υk = H−1Ŵk

ηk = H−1
([

DŴ<kf<k

]

k
−
[

f
(

Ŵ<k)
)]

k

)

Multiplying equation (12) byH−1, the homological equa-

tion then take the form:

Λυk −DυkΛLs −
(

I4
0

)

fk −
∂υk
∂t

= ηk (13)

The diagonal form of Λ allows to solve the homologi-

cal equations separately on the tangent and normal spaces,

spanned by υL
k and υN

k , respectively. In both cases, the adap-

tation to the non-autonomous case is fairly straightforward as

will be detailed in [13]. In brief, the autonomous diagonal

form of the linearized vector field ensures that each Fourier

coefficient in the Fourier-Taylor series υp
k, p ∈ [[1, 6]] satisfies

a simple linear differential equation in the variable θ, with the

following solutions:

Normal equations. For p = 5, 6 and for all r ∈ Rk, let

Cr,p = {j ∈ Z, jωsi− (λp − λLr) = 0} be the set of cross

resonances associated to (r, p), where λLr = λ1r1 + · · · +
λ4r4. It can be shown that Cr,p = ∅, and that a solution of

the homological equation is:

υp
r (θ) =

∑

j∈Z

−ηpr,j
jωsi− (λp − λLr)

eijθ (14)

Tangent equations. For p = 1, . . . , 4 and for all r ∈ Rk,

let Ir,p = {j ∈ Z, jωsi− (λp − λLr) = 0} be the set of in-

ternal resonances associated to (r, p). Providing that Ir,p =
∅, a solution of this equation is:

υp
r (θ) =

∑

j∈Z

−ηpr,j − fp
r,j

jωsi− (λp − λLr)
eijθ (15)

However, the set of internal resonances is usually not empty.

Fortunately, a solution can be built even in the presence of

resonances by adjusting the coefficients fp
r,j . Several strate-

gies available in the autonomous case (denoted as styles [12])

are still relevant in the current context. Both styles used in

this paper are detailed below: the graph style and the normal

form style.

The graph style: It consists in simplifying at most the para-

meterization of the manifold, by taking υL
k = 0 at each step.

That is, for p = 1, . . . , 4 and r ∈ Rk: fp
r = −ηpr , υp

r = 0.
Such a parameterization is suitable for all manifolds and

is particularly adequate for center manifolds for which there

exists an infinite number of internal resonances.

The normal form style: This style consists in simplifying

the equations of the dynamics on the manifold, finding a nor-

mal form for f . That is, for p = 1, . . . , 4, r ∈ Rk, and j ∈ Z:

• if jωsi− (λp − λLr) 6= 0 :

fp
r,j = 0, υp

r,j =
−ηpr,j

jωsi− (λp − λLr)
(16a)

• if jωsi− (λp − λLr) = 0 :

fp
r,j = −ηpr,j, υp

r,j = 0 (16b)

Implementing the normal form style implies to look not only

for the zeros but also for the near-zero values of the divisors

jωsi− (λp − λLr). Indeed, numerically speaking, small val-

ues for those divisors must be avoided to ensure a certain size

for the domain of practical convergence. For this reason, a

threshold ε can be implemented in order to select (16a) only

when the norm of the corresponding divisor is greater than ε.

With such choices, the normal form style is equivalent to the

Hamiltonian normal form approach developed in [6,14], with

ε = 0.05.

4.3. Final form

4.3.1. Graph and normal form styles

Using the graph style, the center manifold in TFC coordinates

takes the form:

ẑ(s, θ) = Ŵ (s, θ) = Ŵ1(s) +

N
∑

k≥2

















0

Ŵ 2
k (s, θ)
0
0

Ŵ 4
k (s, θ)
0

















One can see that four components of the TFC parameteriza-

tion are equivalent − within a scalar factor − to the CCM co-

ordinates, and entirely map the center manifold of dimension

four. The two remaining components are given as functions

of these four central components, therefore defining a graph

of the form (x̂2, ŷ2) = G(x̂1, x̂3, ŷ1, ŷ3). With such a form,

it is straightforward to project the current state on the center

manifold by using the definition (11) of Ŵ1(s).
On the contrary, using the normal form style, the equiva-

lent parameterization is a full 6× 1 Fourier-Taylor vector that

does not allow simple projections on the manifold.



4.3.2. Realification of the center manifold

Given the complexification performed in the COC, the vector

s is complex, which does not guarantee that W (s, θ) is real. It

is then necessary to perform a realification, i.e. a new change

of coordinates to ensure that the final result, in physical co-

ordinates, is real. This realification is given by the following

equality:

s̃ = C s (17)

with

C =
1√
2









1 0 i 0
0 1 0 i

i 0 1 0
0 i 0 1









where s = ( s1 s2 s3 s4 )
T

are the complex reduced coordi-

nates of the center manifold (CCM), and s̃ = ( s̃1 s̃2 s̃3 s̃4 )
T

are the real ones (RCM).

Injecting (17) in the parameterization, the following real

function is obtained:

W : R4 × R → R6

(s̃, θ) 7→ W (s̃, θ)
in EM coordinates

Notations. For the sake of simplicity, and since there is no

use of the complex parameterization (CCM coordinates) any-

more, the tilde notation is skipped from now on when refer-

ring to the RCM coordinates.

4.3.3. Comments on the energy

In the QBCP, the huge potential well of the Sun leads to a se-

vere drop of the order of magnitude of the energy with which

the reader might be used to in the CRTBP case. As an exam-

ple, the energy HLi
(t) of the libration orbit around EML1,2 is

always close to −847.5, in normalized EM units. To tackle

this issue, the energy of any object is given with respect to

the initial energy HLi
(0) of its associated libration periodic

orbit: it is measured by the variable δHt so that the true en-

ergy H(t) satisfies H(t) = HLi
(0) + δHt. Such a relative

estimate is adapted to the use of semi-analytical expansions

which are inherently local.

5. DESCRIPTION OF THE NEIGHBORHOOD OF

EML1,2

5.1. Accuracy of the center manifold

The necessary tests of the precision of the parameterization

of the center manifold have been focused on the estimation of

the orbital error, defined hereafter.

Let z(t) and s(t) be the solutions of the Cauchy problem

ż = F (z), z(0) = z0 = W (s0, 0) and ṡ = f(s), s(0) = s0,

respectively. Then, the orbital error eO at time t is defined as:

eO(t, s0) = |W (s(t))− z(t)|∞

The orbital error has to be measured on small time spans,

since the hyperbolic directions produce exponential errors

(see subsection 3.3). In the present paper, the orbital error has

been computed up to t = 1, as in [14]. Let e1O := eO(t = 1),
for the sake of brevity. For such a time span, any numerical

error on the initial conditions is amplified by a factor of 10

(resp. 20) in the EML2 (resp. EML1) case.

Since we are working in manifolds of order four or higher,

the systematic testing of any kind of error in the complete

phase space is a tremendous computational task. Thus, as

a first step, one may arbitrarily decrease the number of di-

mensions along which the error is evaluated. Such “cuts”

in the phase space are common for these types of tests (see

e.g. [14]). After an extensive test campaign involving various

cuts, it has been found that the following set of initial condi-

tions acts as a bordeline case for the accuracy of the center

manifold, both in the L1 and L2 cases:

S−1 = {(s0, t0 = 0) with s0 = (s1 0 − s1 0)
T , s1 ∈ R}

Given that s2 = s4 = 0, the motion is restricted to the xy-

plane in EM coordinates. Moreover, the condition s1 = −s3
imposes the initial state z0 = W (s0, 0) to be on the x-axis.

5.1.1. EML2 case

Figure 3 gives the orbital error e1O for the set S−1 of initial

conditions, as a function of the x coordinate. The position of

EML2 is given by the point of minimum error, around x =
−1.165. The following comments can be made:

• Within the domain of practical convergence, the preci-

sion appears to tend to a limit as the order increases.

In particular, there is not much improvement for orders

higher than 20 or 22, which is the reason why higher

orders have not been displayed.

• More importantly, the radius of practical convergence

is undoubtedly better in the graph case. Looking at Fi-

gure 3a, one can clearly see the limits of the domain

of practical convergence at x1 = −1.175 and x2 =
−1.13. Those values correspond exactly to the four

T/2-periodic resonant orbits highlighted in [14], and

denoted PO2a-d (see Figure 2b therein). As usual, such

low order resonances tend to introduce small divisors

in the semi-analytical algorithms and therefore act as a

natural obstruction to the existence of a good parame-

terization. However, the use of the graph style allows

to limit to the bare minimum the number of small di-

visors involved in the solving of the homological equa-

tions (see 4.2). Consequently, the domain of practical

convergence is increased, as can be seen on Figure 3b.

These remarks remain true for all tested sets of initial condi-

tions.
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Fig. 3: The orbital error e1O for the set S−1 of initial condi-

tions, as a function of the x coordinate, for various orders of

the parameterization of the center manifold of EML2.

5.1.2. EML1 case

In the EML1, the differences between both styles tend to van-

ish, mainly because there is no known resonant orbit in the

close vicinity of the libration point that would have played

a role similar to PO2a-d. Moreover, the overall precision is

worse than in the EML2 case because the EML1, as anticipated

in subsection 3.3. In particular, numerical simulations in the

worst case show that there is not much improvement for or-

ders higher than 16. On the bright side, there is room for

improvement since the source of the imprecision has already

been identified as the COC instability, which may be partially

handled numerically.

5.2. Projection method

All the subsequent solutions within the center manifold have

been computed using the projection method, described in de-

tails in [12]. In brief: for any initial conditions s0 in the center

manifold, the initial conditions z0 in EM coordinates are ob-

tained at time t0 applying z0 = W (s0, ωst0). Then, the state

is integrated using the 6-dimensional physical vector field, un-

til time t = t1. Due to numerical instabilities produced by the

hyperbolic directions, the overall error tends to grow. Hence,

the current state z(t1) can be projected on the parameterized

center manifold, which provides a new vector sp. The state

zp = W (sp, ωst1) is then used to start the next integration

phase.

In the context of integration by projection, one can get a

rough idea of the precision of each solutions by computing the

magnitude eP (t1) of the correction performed at each projec-

tion, defined as:

eP (t1) = |z(t1)− zp(t1)|∞ (18)

Note that the change of variables involved in the projec-

tion process is particularly easy to perform using the graph

style, as it has been shown in paragraph 4.3.1.

5.3. Variations of the energy

Contrary to the CRTBP case, the energy is not constant along

a solution inside the center manifold. In order to get an es-

timation of the variations of the energy, the xy-planar stro-

boscopic maps of the center manifold of EML1,2 have been

computed. Namely, for each initial condition of the form

s0 = ( s1 0 s3 0 )
T

, t0 = 0, the EM equations of motion are

numerically integrated and a point is stored each time the tra-

jectory crosses the section t = 0 [T ], with T the period of the

QBCP. Selecting only the points for which t = 0 [T ] erase all

variations ought to the T -periodic behavior of the coefficients

that appear in the Hamiltonian (1).

For each individual orbit, the mean energy µ(δH) has

been computed along with the associated standard deviation

σ(δH). The corresponding results are presented on Figure 4.

On this figure, the greater the mean energy, the bigger the or-

bit. For instance, a mean energy around 0.005 corresponds to

a mean distance from the libration point of about 17000 km

(resp. 13000 km) in the EML2 (resp. EML1) case. The stro-

boscopic maps have been computed in the mean mean energy

range [0, 0.011], which encloses the Halo orbit bifurcation for

both libration points (see section 5.4).

EML1 case. The standard deviation is a smooth increasing

function of the mean energy value. Moreover, σ(δH) is never

greater than 10% of the mean energy, except for very small

values of the energy. As an example, σ(0.01) is about 3% of

µ(0.01).



EML2 case. For values of the energy smaller than 0.006, and

as the mean energy increases, the standard deviation is more

or less converging to 10% of the mean energy.

Around µ(δH) ≃ 0.006, the standard deviation breaks

down, which corresponds to the solutions that cross the 2ωs

resonance. After this resonance, starting from σ(δH) = 0,

the standard deviation regains its smoothness with respect to

the mean energy.
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Fig. 4: Standard deviation σ of the energy δH(t) as a function

of the mean value µ of the energy for some solutions of the

planar stroboscopic maps.

5.4. Poincaré maps

Poincaré maps provide a qualitative insight into the dynamics

inside a center manifold. In this paper, Poincaré maps with a

Poincaré section of the form z = 0, pz > 0 have been com-

puted in the EML1,2 case. Such sections are also usually used

in the CRTBP autonomous case [8, 12]. In the latter context,

an additional condition on the energy of the form δH0 = h
allows to produce two-dimensional Poincaré maps.

In the QBCP case, the energy is no longer constant but

its variations remains bounded for any solution in the cen-

ter manifold, in proportions similar to the results of Figure 4.

Hence a relaxed version of the energy condition may be de-

fined: |δH0 − h| ≤ σc(h), with σc(h), a given “energy thick-

ness”, representative of the energy variations associated with

an initial energy around h. The underlying idea is to define an

energy layer such that all solutions that have an initial energy

within this layer maintain their energy in it.

In this paper, the “super” constraint σc(h) = 0 has been

imposed in order to limit the number of solutions displayed

on the maps. Consequently, looking at a given map, one has

to recall that (i) the energy is not constant but bounded along

the trajectories (with a maximum deviation around 10%), and

(ii) the range of displayed solutions is a representative but

non-exhaustive set of solutions inside this energy layer.

In practice, the following process is used to compute the

maps: the initial time is set equal to zero. Then, an initial

energy value h and a point (s1, s3) are selected. Moreover,

the condition s2 = s4 is imposed, which, with the graph style

and the current choice of COC, guarantees that z(t = 0) = 0

in EM coordinates. Imposing δH0 = h, the corresponding

s2 = s4 value is computed. Then, this point is used as ini-

tial condition for a numerical integration of the equations of

motion, plotting a point each time that the trajectory crosses

the plane z = 0, pz > 0. For each of these points, the pro-

jection method is used to reinitialize the state on the center

manifold, and the projection error eP (t) is estimated. The

precision eP (t) = 10−6 is taken as an arbitrary reference ac-

curacy. In practice, it corresponds to a maximum error of

about 50 meters in position and 10−4 meters per second in

velocity.

5.4.1. EML2 case

The results can be seen on Figure 5, for small values of the en-

ergy. All solutions comply with the condition eP (t) < 10−6.

Contrary to the autonomous case, some solutions overlap. In

particular, the overlapping seems to increase with the initial

energy, which is consistent with the fact that the standard de-

viation of the energy tends to grow with its mean value.

On each plot, several solutions exhibits specific variation

patterns (see for example the innermost green solution of Fi-

gure 5c). These patterns are present also when the integration

of the equations of motion is performed directly with the re-

duced vector field. Therefore the discontinuities introduced

by the projection method cannot be held responsible for such

variations, which are truly characteristic of the periodically-

perturbed system.

In order to test the limit of the description provided by

the parameterization method, equivalent Poincaré maps have

been computed for higher initial energies. The corresponding

results are given on Figure 6. For these two plots, the condi-

tion eP (t) < 10−6 have been relaxed (see caption), but the

points that indeed comply with this constraint are displayed

in green. As one would expect, it is clear that the precision

worsens as the energy increase. Such precision shortage is

expected, in particular in the EML2 neighborhood which cor-

responds to higher energies than the EML1 case, in absolute.

In particular, it seems difficult to achieve a very good accu-

racy during the computation of quasi-halo orbits. Even if their

influence is reduced by the graph style implementation, it is

probable that the orbits resonant with the Sun still participate

in the numerical error. A remaining challenge is to dissoci-

ate the contribution of the latter to the error from the natural

precision decay inherent to the three-body EML2 case.

5.4.2. EML1 case

The results for the EML1 case are given on Figure 7. The same

remarks apply. In particular, high energies require the condi-

tion eP (t) < 10−6 to be slightly relaxed. However, the halo

orbit bifurcation is more easily obtained. Such a difference

may be ought to two factors. First, the Halo bifurcation hap-

pens for an energy smaller than in the EML2 case, both with
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Fig. 5: Low-energy Poincaré maps in the EML2 case, in EM

coordinates. All solutions comply with the condition eP (t) <
10−6. The color scale is just here to visually distinguish the

solutions.

respect to the libration point and in absolute. Then, there is

no known resonances with the Sun in the close vicinity of the
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Fig. 6: High-energy Poincaré maps in the EML2 case. In

green: all points that satisfy eP (t) < 10−6. (a) All displayed

solutions comply with eP (t) < 10−4. (b) All solutions satisfy

eP (t) < 10−3.

EML1 which could act as a natural obstruction to the semi-

analytical description of this neighborhood. Additional simu-

lations show that, at higher energy, a precision decay very

similar to the one displayed on Figure 6 occurs in the EML1

case, which tends to back up the first hypothesis.
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Fig. 7: Low-energy Poincaré maps in the EML1 case, in EM

coordinates. On (a), (b): all solutions comply with the con-

dition eP (t) < 10−6. On (c), (d): all solutions comply with

the condition eP (t) < 10−5. The color scale is just here to

visually distinguish the solutions.

6. CONCLUSION

In this paper, the parameterization method (PM) has been ap-

plied to obtain high-order semi-analytical approximations of

invariant manifolds about the dynamical equivalents of the

collinear libration points in the Sun-perturbed Earth-Moon

system, viewed as a Quasi-Bicircular Problem. The overall

process can be seen as an extension of previous works in the

CRTBP [12, 15]. Both the method and its applications have

been focused on the comparison with normal form computa-

tions in the Sun-Earth-Moon QBCP, more specifically in the

EML2 case [6, 14]. It has been shown that the advantages of

the parameterization methods are particularly relevant in this

context. More specifically:

• The different styles available in the PM bring more fle-

xibility to the user, compared to the normal form com-

putations over the Hamiltonian. In particular, the graph



style allows to keep to a minimum the number of poten-

tial small divisors during the computation of the semi-

analytical approximations. The visible consequence is

that some specific resonances with the Sun are better

handled, although they most likely still act as a obstruc-

tion for the domain of practical convergence.

• The graph form of the parameterization provides a very

simple change of coordinates between the physical

variables and the reduced coordinates. This allows to

easily project the current state on the center manifold

which in turns speeds up the numerical integrations.

• Finally, from a pure numerical perspective, the parame-

terization method allows to manipulate 4-dimensional

Taylor series. On the contrary, the normal form pro-

cedure is performed on the 6-dimensional complete

state. Working with the parameterization method al-

lows to reduce the dimension of the Fourier-Taylor

series, which can be critical at high order, when mil-

lions of scalar coefficients are involved.

In spite of these advantages, results on Poincaré maps

show that the EML2 quasi-Halo orbits are still difficult to ob-

tain semi-analytically. On the contrary, they have been more

easily computed in the EML1 case, despite the limited accu-

racy of the associated change of coordinates (2) that limits the

highest available order for the parameterization.

Indeed, the precision of the T -periodic functions that are

used throughout the procedure act as a bottleneck for the over-

all accuracy of the parameterization. Improving these func-

tions would benefit the whole process and help understand

how well the resonances are actually handled by this new im-

plementation.
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