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Abstract. This paper deals with knowledge extraction from experimen-
tal data in multifactorial evaluation using Sugeno integrals. They are
qualitative criteria aggregations where it is possible to assign weights
to groups of criteria. A method for deriving such weights from data is
recalled. We also present results in the logical representation of Sugeno
integrals. Then we show how to extract if-then rules expressing the selec-
tion of good situations on the basis of local evaluations, and rules to
detect bad situations. We illustrate such methods on a case-study in the
area of water ecosystem health.

1 Introduction

Sugeno integrals are aggregation functions that make sense on any completely
ordered scale, and can then be called qualitative aggregation operations. Like
many aggregation operations in multifactorial evaluation, they return a global
evaluation lying between the minimum and the maximum of the partial rat-
ings. In a Sugeno integral each group of criteria receives an importance weight,
whereby interactions between criteria can be modeled.

Sugeno integrals are used both in multiple criteria decision making and in
decision under uncertainty [2,6,8]. While many results exist proposing formal
characterizations of Sugeno integral [10,11], fewer papers address the identifi-
cation of Sugeno integrals from data, and the interpretation of this aggrega-
tion method in terms of decision rules. The former problem is addressed by
Prade et al. [12,13]: they calculate a family of capacities, if any, that determine
Sugeno integrals that account for a set of empirically rated objects both locally
with respect to criteria, and globally, each object receiving an overall evalu-
ation. The second issue was first addressed by Greco et al. [9]. Representing a
Sugeno integral by a set of rules make it more palatable in practical applications.



More recently, a possibilistic logic rendering of Sugeno integral has been pro-
posed, in the form of weighted formulas the satisfaction of which is sufficient
to ensure a minimal global evaluation [5].

Such a possibilistic logic base can be used to obtain some rules associated to
the given data modeled by a Sugeno integral. This paper combines both a tech-
nique for identifying a family of capacities at work in a Sugeno integral applied
to subjective multifactorial evaluation data, and a technique for extracting deci-
sion rules from the obtained family of Sugeno integrals. At the theoretical level
it completes the results obtained in [5] by considering the extraction of decision
rules that give conditions for an object to have a global evaluation less than a
given threshold. Overall, we then get rules that can accept good objects and
rules that can discard bad ones. As an illustration the paper presents an appli-
cation of these results on a case-study on the effects of rainwater pollution on
the development of algae. In a nutshell, this application focuses on the following
question: what do we learn about the given data on algae when representing the
global evaluation by an aggregation of local ones via a discrete Sugeno integral?
Papers using fuzzy set methods in ecology are not so numerous; let us how-
ever mention the use in classification of another family of aggregation functions,
named symmetric sums [15].

The paper is structured as follows: Sect. 2 begins with a brief reminder about
some theoretical results concerning Sugeno integral. Next it presents results on
the identification of Sugeno integral and its expression in the form of rules.
Section 3 presents the data of the case-study. Section 4 deals with the application
of the theoretical results to the given dataset.

2 Interpreting Evaluation Data Using Sugeno Integrals

We use the terminology of multiple criteria decision-making where some objects
are evaluated according to criteria. We denote by C = {1, · · · , n} the set of
criteria, 2C the power set and L a totally ordered scale with top 1, bottom 0,
and the order-reversing operation denoted by ν (ν is involutive and such that
ν(1) = 0 and ν(0) = 1). An object is represented by a vector x = (x1, · · · xn)
where xi is the evaluation of x according to the criterion i.

In the definition of Sugeno integral the relative weights of the set of criteria
are represented by a capacity (or fuzzy measure) which is a set function µ :
2C → L that satisfies µ(∅) = 0, µ(C) = 1 and A ⊆ B implies µ(A) ≤ µ(B).
In order to translate a Sugeno integral into rules we shall also need the notion
of conjugate capacity. More precisely, the conjugate capacity of µ is defined by
µc(A) = ν(µ(Ac)) where Ac is the complementary of A. The Sugeno integral of
function x with respect to a capacity µ is originally defined by [16,17]: Sµ(x) =
maxα∈L min(α, µ(x ≥ α)), where µ(x ≥ α) = µ({i ∈ C|xi ≥ α}). It can be
equivalently written under various forms [3,10,11], especially:

Sµ(x) = max
A⊆C

min(µ(A),min
i∈A

xi) = min
A⊆C

max(µ(Ac),max
i∈A

xi) (1)
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2.1 Eliciting Sugeno Integrals

In this paper, our first aim is to elicit a family of Sugeno integrals that are compat-
ible with a given dataset. Let us recall how to calculate the bounds of this family.

The set of data is a collection of (xk, αk)k where xk are tuples of local evalua-
tions of objects k = 1, . . . , N and αk is the global evaluation of object k. This data
set is supposed to be provided by some expert, or the result of a data collection.
We want to know if there exists a capacity µ such that Sµ(xk) = αk for all k, and if
so, we want to calculate at least one solution. In [14], the following result is proved:

Proposition 1. For a given data item (x, α), {µ|Sµ(x) = α} = {µ|µ̌x,α ≤ µ ≤
µ̂x,α} where µ̌x,α and µ̂x,α are capacities defined by

µ̌x,α(A) =

{

α if {i|xi ≥ α} ⊆ A

0 otherwise
and µ̂x,α(A) =

{

α if A ⊆ {i|xi > α}
1 otherwise.

Remark: It is easy to see that µ̌x,α is a necessity measure with respect to the

possibility distribution π̌x,α(i) =

{

1 if xi ≥ α

ν(α) otherwise
, and µ̂x,α(A) is a possibility

measure with respect to the possibility distribution π̂x,α(i) =

{

1 if xi ≤ α

α otherwise
.

Hence we can calculate the bounds of the compatible Sugeno integrals:

Proposition 2. The set of compatible capacities with the given data (xk, αk)k

is {µ|maxk µ̌xk,αk
≤ µ ≤ mink µ̂xk,αk

}.

As a consequence, maxk µ̌xk,αk
and mink µ̂xk,αk

can be any kind of capacity, since
any capacity is the eventwise minimum of necessity measures and the eventwise
maximum of possibility measures [4]. Moreover, it is not always the case that
{µ|maxk µ̌xk,αk

≤ µ ≤ mink µ̂xk,αk
} �= ∅, that is, the set of solutions can be

empty.1

2.2 Extracting If-Then Rules Using Possibilistic Logic

Based on the above results and procedures described in [12], suppose we have a
family of Sugeno integrals compatible with the evaluation data. Now, we try to
express if-then rules associated to these integrals, thus facilitating the interpre-
tation of the data.

Selection Rules. First let us recall how Sugeno integral can be encoded by
means of a possibilistic logic base with positive clauses (see [5] for more details).

1 In order to compare maxk µ̌xk,αk
and mink µ̂xk,αk

it is not necessary to calculate
their values and to compare them on each subset of criteria. It is proved in [14] that
the set of compatible capacities is not empty if and only if for all αk < αl we have
{i|xl

i ≥ αl} �⊆ {i|xk
i > αk}.



We need to use the inner qualitative Moebius transform of a capacity µ which
is a mapping µ# : 2C → L defined by

µ#(E) = µ(E) if µ(E) > max
B⊂E

µ(B) and 0 otherwise.

A set E such that µ#(E) > 0 is called a focal set. The set of the focal sets
of µ is denoted by F(µ). Moreover we denote by F(µ)α the set of the focal sets
E such that µ(E) = α. Note that Sugeno integral can be expressed in terms of
µ# using Equation (1) as follows: Sµ(x) = max

E∈F(µ)
min(µ#(E),min

i∈E
xi).

Using the definition of the Sugeno integral it is easy to get the following
result [5]:

Proposition 3. The inequality Sµ(x) ≥ γ is equivalent to ∃T ∈ F(µ)γ such
that ∀i ∈ T, xi ≥ γ.

So each focal T of µ with level µ#(T ) corresponds to the selection rule:

Rs
T : If xi ≥ µ#(T ) for all i ∈ T then Sµ(x) ≥ µ#(T ).

This set of rules can be encoded in possibilistic logic as a set of weighted cubes.
Define for each criterion i a family of Boolean predicates xi(α), α > 0 ∈ L such
that xi(α) = 1 if xi ≥ α and 0 otherwise. Then we consider weighted Boolean
formulas of the form [φ, α] which are interpreted as lower possibility distribu-

tions on the set of objects: π−
[φ,α](x) =

{

α if x |= φ;

0 otherwise
. Then the lower possibil-

ity distribution associated to a weighted cube is [∧j∈T xj(α), α] interpreted as

π[T,α](x) =

{

α if xi ≥ α,∀i ∈ T ;

0 otherwise
. Each weighted cube [∧j∈T xj(µ(T )), µ#(T )]

for a focal set T corresponds to a rule Rs
T as stated above.

The lower possibility distributions associated to a set of such weighted formu-
las is interpreted as the maximum of the lower possibility distributions associated
to each weighted formula. Now consider the possibilistic base

B−
µ = {[∧j∈T xj(α), α] : µ(T ) ≥ α > 0, T ∈ F(µ)}

with lower possibility distribution π−
µ (x) = maxµ(T )≥α>0,T∈F(µ) π−

[φ,α](x).

Proposition 4 (Proposition 4 in [5]). Sµ(x) = π−
µ (x).

The proof takes advantage of the max-min form of Sugeno integral in Eq. (1).

Elimination Rules. The above rules and their logical encoding are tailored
for the selection of good objects. Symmetrically, we can obtain rules for the
rejection of bad objects associated to the Sugeno integral. In the following we
prove results similar to those in [5] for the inequality Sµ(x) ≤ γ.

The idea is to use the min-max form of Sugeno integral in Eq. (1), which is
the form of possibility distributions in standard possibilistic logic [1]. The focal
sets of the conjugate of µ are sufficient to calculate the Sugeno integral:



Proposition 5. Sµ(x) = minT∈F(µc) max(ν(µc
#(T )),maxi∈T xi).

Proof. Note that we can write Sµ(x) = minT⊆C max(ν(µc(T )),maxi∈T xi).
Hence, Sµ(x) is the minimum between minT �∈F(µc) max(ν(µc(T )),maxi∈T xi)
and minT∈F(µc) max(ν(µc

#(T )),maxi∈T xi)).

If we consider T �∈ F(µc) then there exists F ∈ F(µc) such that F ⊆ T and
µc(F ) = µc(T ) = µc

#(F c). Moreover maxi∈F xi ≤ maxi∈T xi which implies that
max(µc

#(F ),maxi∈F xi) ≤ max(µc
#(T ),maxi∈T xi). �

Note that Sµ(x) takes the form “min →” using Kleene implication, like weighted
minimum.

Proposition 6. Sµ(x) ≤ α if and only if ∃F ∈ F(µc) with µc(F ) ≥ ν(α) s.t.
∀xi ∈ F xi ≤ α.

Proof. Sµ(x) ≤ α implies ∃F ∈ F(µc) such that µ#(F c) ≤ α and maxi∈F xi ≤ α.
So we have ν(µc

#(F )) ≤ α, i.e., µc
#(F ) ≥ ν(α) and ∀xi ∈ F xi ≥ α. �

This proposition shows that for each focal set of the conjugate µc we have the
following elimination rule:

Re
F : If xi ≤ ν(µc

#(F )) for all i ∈ F then Sµ(x) ≤ ν(µc
#(F )).

Let us give a possibilistic logic view of elimination rules associated to Sugeno
integral, now as set of weighted clauses. Define for each criterion i a family of
Boolean predicates xi(α), α > 0 ∈ L such that xi(α) = 1 if xi > α and 0
otherwise. It is slightly different from the previous case. It is easy to check that
xi = minα<1 max(xi(α), α).

Here we consider weighted Boolean formulas of the form (φ, β) which are
interpreted as upper possibility distributions on the set of objects:

π+
(φ,β)(x) =

{

1 if x |= φ;

ν(β) otherwise
.

The upper possibility distributions associated to a set of such weighted formu-
las is interpreted as the minimum of the upper possibility distributions associated
to each weighted formula. Then the set of weighted clauses {(

∨

j∈F xj(α), ν(α)) :
α < 1} induces an upper possibility distribution:

πF (x) = min
α<1

max(α,max
j∈F

xj(α)) = max
j∈F

xj .

Each weighted clause (
∨

j∈F xj(µ
c(F )), ν(µc(F ))) for a focal set F of µc corre-

sponds to the elimination rule Re
T stated above.

A logical rendering of the Sugeno integral in the min-max form is obtained as
follows. First consider the following base of clauses BF

µ = {(
∨

j∈F xj(α), ν(α)) :
ν(µc

#(F )) ≤ α < 1}. We claim it encodes the term max(ν(µc
#(F )),maxi∈F xi).



Proposition 7. π+
BF

µ
(x) = max(ν(µc

#(F )),maxi∈F xi).

Proof. π+
BF

µ
(x) = min1>α≥ν(µc

#
(F )) max(α,maxj∈F xj(α)) =

min1>α max(ν(µc
#(F )),max(α,maxj∈F xj(α))) = max(ν(µc

#(F )),maxi∈F xi).�

Now consider the possibilistic base

B+
µ = {(

∨

j∈F

xj(α), ν(α)) : ν(µc(F )) ≤ α < 1, F ∈ F(µc)}

with upper possibility distribution π+
µ (x) = minF∈F(µc) π+

BF
µ
(x).

Proposition 8. Sµ(x) = π+
µ (x).

3 Data for the Case Study

Samples were collected on retention basins in the Eastern suburbs of Lyon before
groundwater seepage (see [7] for more details). Some samples are obtained by
rainy weather and others are obtained by dry weather. We then speak about
“rain waters” and “dry waters” respectively. The waters contain many pollutants
(like heavy metals, pesticides, hydrocarbons, PCB, ...) and our aim is to assess
their impact on the water ecosystem health. This is why the unicellular algal
compartment is considered hereafter. Algae are chosen for their high ecological
representativeness at the first level of the food chain.

First, algal growth (C) was measured as a global indicator of algal health
with standardized bioassay (NF EN ISO 8692), then bioassays more specific
of different metabolic pathways were carried out: chlorophyll fluorescence (F)
as phosynthesis indicator and two enzymatic activities, Alkaline phosphatase
Activity (APA) and Esterase Activity (EA) as nutrients metabolism indicators.
Assays were performed after 24 h exposure to samples collected during 7 different
rainfall events and for different periods of the year for dry weather. Results,
presented in Table 1 in which each row represents a sample, are expressed as

Table 1. Original data

data under rainy weather data under dry weather

AE APA F C

83 36, 46 185, 45 45, 39
131, 64 25, 88 10, 69 0
35, 6 167, 06 0
16, 36 81, 25 194, 97 7, 17
107, 82 72, 64 167, 04 0
58, 18 116, 57 63, 39
698, 37 42, 15 90, 18 92, 70

AE APA F C

24, 65 104, 93 153, 51 67, 58
17, 6 466, 4 123, 62 15, 76
33, 22 47, 6 163, 58 55, 17
96, 78 35, 17 21, 51 9, 71
74, 06 92, 3 123, 43 26, 59
64, 55 73, 32 163, 08 0
5, 12 206, 87 111, 56 92, 17

AE APA F C

509 55, 02 111, 64 110, 69
209, 28 109, 1 73, 18 102, 30
1964, 58 95, 93 6, 96 0
122, 62 98, 61 137, 09 69, 30

5, 6 143, 12 38, 81
45, 35 78, 27 129, 45 56, 82
64, 88 331, 37 0
143, 63 65, 52

31, 92 44, 23 75, 78



percent of activity of control (control being algae before exposure to rain waters).
The effects are considered significant when the values are far from 100. The values
obtained are less than 100 in the case of inhibition and greater than 100 in the
case of activation. The expert translates the results to the totally ordered scale
L = {15, 25, 50, 85, 100}. Level 100, interpreted as a complete lack of effect of
the rainwater, is the best evaluation; and the farther an evaluation is from 100,
the worse it is. More precisely we have the following interpretation:

15 25 50 85 100

very strong effect strong effect effect weak effect no effect

With these rescaled data the expert can give a global evaluation (global eval.)
in the scale L. The results are presented in Table 2.

Table 2. Rescaled data

rehtaewyrdrednuatadrehtaewyniarrednuatad

AE APA F C global eval.

85 25 50 50 50
85 25 15 15 25
25 50 15 25
25 85 25 15 25
100 85 50 15 50
50 85 50 50
15 50 100 85 50

AE APA F C global eval.

15 100 50 50 50
15 15 85 25 25
25 50 50 50 50
100 25 25 15 25
85 100 85 25 85
50 85 50 15 50
15 15 100 100 50

AE APA F C global eval.

15 50 100 100 85
15 100 85 100 85
15 100 15 15 25
100 100 85 50 85
15 85 25 50
50 85 85 50 50
50 15 15 25
85 50 50

25 50 85 50

The evaluation scale is equipped with the reversing order map ν defined by:
ν(15) = 100, ν(25) = 85, ν(50) = 50.

These experiment results can be modeled by an aggregation operation: the
four criteria will be APA, AE, F and C, and we try to elicit Sugeno integrals
which represent the given global evaluation. Next the obtained Sugeno integrals
are translated into rules whose conditions use the criteria.

4 Experimental Results

In this section, we try to interpret the above data in terms of selection and
elimination rules built via a Sugeno integral.

Data Under Rainy Weather. We consider the data under rainy weather
and we compute the bounds of the set of compatible capacities µ̌, µ̂ and their
conjugate capacities (Table 3).

We have µ̌ ≤ µ̂ so it is possible to represent the data with a Sugeno integral.
Let us denote by µ a capacity with µ̌ ≤ µ ≤ µ̂.



Table 3. Weights for criteria groups for rainy weather

criteria µ̌ µ̂ µ̌
c

µ̂
c

criteria µ̌ µ̂ µ̌
c

µ̂
c

criteria µ̌ µ̂ µ̌
c

µ̂
c

{AE} 15 25 50 15 {APA} 15 25 50 15 {F} 15 25 85 15

{C} 15 50 25 15 {AE,APA} 25 50 50 50 {AE,F} 15 100 100 15

{AE,C} 15 100 100 15 {APA,F} 15 100 100 15 {APA,C} 15 100 100 15

{F,C} 50 50 85 50 {AE,APA,F} 85 100 100 50 {AE,APA,C} 25 100 100 85

{AE,F,C} 50 100 100 85 {APA,F,C} 50 100 100 85 {AE,APA,F,C} 100 100 100 100

Remark 1. As µ̌ ≤ µ ≤ µ̂, µ({F,C}) = 50. Since µ(F ) ≤ 25, either C is a focal
element with level 50 or {F,C} is a focal element with level 50.

Remark 2. Since Sµ̌ ≤ Sµ ≤ Sµ̂, then we are going to consider µ̌ (resp. µ̂c)
to obtain selection (resp. elimination) rules. Indeed, testing µ̌ is larger than a
threshold and µ̂c less than this threshold give sure decisions despite the limited
knowledge about µ.

– Let us consider µ̌. The focal sets are F(µ̌)100 = {{AE,APA,F,C}}, F(µ̌)85 =
{{AE,APA,F}}, F(µ̌)50 = {{F,C}}, F(µ̌)25 = {{AE,APA}}, and we
obtain the following selection rules
• If xAE ≥ 85, xAPA ≥ 85 and xF ≥ 85 then Sµ̌(x) ≥ 85.
• If xF ≥ 50 and xC ≥ 50 then Sµ̌(x) ≥ 50.
• If xAE ≥ 25 and xAPA ≥ 25 then Sµ̌(x) ≥ 25.

– Let us consider µ̂c. We have F(µ̂c)50 = {{APA,AE}, {F,C}}, F(µ̂c)85 =
{{AE,APA,C}, {AE,F,C}, {APA,F,C}}, F(µ̂c)100 = {{AE,APA,F,C}}
which produces the following elimination rules:

• if xAPA ≤ 50 and xAE ≤ 50 then Sµ̂(x) ≤ 50.
• if xF ≤ 50 and xC ≤ 50 then Sµ̂(x) ≤ 50.
• if xAPA ≤ 25 and xAE ≤ 25 and xC ≤ 25 then Sµ̂(x) ≤ 25.
• if xAE ≤ 25 and xF ≤ 25 and xC ≤ 25 then Sµ̂(x) ≤ 25.
• if xAPA ≤ 25 and xF ≤ 25 and xC ≤ 25 then Sµ̂(x) ≤ 25.

Sugeno integral Sµ(x) complies with all rules, hence the following comments:

– If criteria AE, APA and F are satisfied enough then the global evaluation is
good;

– When criterion C has a bad rating, two other criteria also need to have a bad
rating in order to obtain a bad global evaluation.

– However if criteria other than C get bad ratings it is not enough to get a bad
global evaluation.

Let us consider fictitious examples of data and predict the global evaluation given
with Sµ̌ and Sµ̂ obtained above. We get an interval-valued evaluation given by
the range of compatible capacities Sµ̌ ≤ Sµ ≤ Sµ̂. In the left-hand table we
consider that only one criterion is perfect and the others get the worst value. In
the right-hand table we consider that only one criterion has the worst value and
the other are satisfied.



Some comments concerning the global evaluation: Criterion C is not sufficient
to downgrade it under 85, and it is not sufficient to bring it above 50. No other
criterion is sufficient to alone bring it above 25. Criterion F is not sufficient to
downgrade it under 25, and criteria AE and APA are not sufficient to downgrade
it alone under 50. These remarks give a good idea of the relative importance of
criteria.

Data Under Dry Weather. This section is similar to the previous one. First
we compute the bounds of the capacities as per Table 4. Since µ̌ ≤ µ̂, it is possible
to represent the data with a Sugeno integral. We remark that the set of solutions
µ̌ ≤ µ ≤ µ̂ is not compatible with the previous one since they have an empty
intersection.

Remark 3. We have µ({F,C}) = 85 and since µ(F ) ≤ 50, either C is a focal
element with level 85 or {F,C} is a focal element with level 85.

– Let us consider µ̌. The focal sets form F(µ̌)100 = {{AE,APA,F,C}},
F(µ̌)85 = {{F,C}, {AE,APA,F}}, F(µ̌)25 = {{APA}}. It produces the fol-
lowing rules:

• If xAE ≥ 85, xAPA ≥ 85 and xF ≥ 85 then Sµ̌(x) ≥ 85;
• If xF ≥ 85 and xC ≥ 85 then Sµ̌(x) ≥ 85.
• If xAPA ≥ 25 then Sµ̌(x) ≥ 25.

– Let us consider µ̂c. We have F(µ̂c)25 = {{AE,APA}, {AE,F}, {F,C}},
F(µ̂c)50= {{AE,C}}, F(µ̂c)85 = {{AE,F,C}}, F(µ̂c)100 = {{AE,

APA,F,C}}, which produces the following rules:

• if xAE < 100 and xAPA < 100 then Sµ̂(x) < 100;
• if xAE < 100 and xF < 100 then Sµ̂(x) < 100;
• if xF < 100 and xC < 100 then Sµ̂(x) < 100;
• if xAE ≤ 50 and xC ≤ 50 then Sµ̂(x) ≤ 50;
• if xAE ≤ 25 and xF ≤ 25 and xC ≤ 25 then Sµ̂(x) ≤ 25.

Table 4. Weights for criteria groups for dry weather

Criteria µ̌ µ̂ µ̌c µ̂c Criteria µ̌ µ̂ µ̌c µ̂c Criteria µ̌ µ̂ µ̌c µ̂c

{AE} 15 85 25 15 {APA} 25 25 25 15 {F} 15 50 85 15

{C} 15 85 25 15 {AE,APA} 25 85 25 25 {AE,F} 15 100 85 25

{AE,C} 15 100 85 50 {APA,F} 25 50 100 15 {APA,C} 25 85 100 15

{F,C} 85 85 85 25 {AE,APA,F} 85 100 100 25 {AE,APA,C} 25 100 100 50

{AE,F,C} 85 100 85 85 {APA,F,C} 85 100 100 25 {AE,APA,F,C} 100 100 100 100



A Sugeno integral Sµ(x), where µ̌ ≤ µ ≤ µ̂, complies with all rules, hence, if C, F

and AE have a bad evaluation then the global evaluation is bad. As previously,
we consider fictitious examples and derive the bounds of the global evaluation
given by Sµ.

AE APA F C Sµ̌ Sµ̂

15 15 15 100 15 85

100 15 15 15 15 85

15 15 100 15 15 50

15 100 15 15 25 25

AE APA F C Sµ̌ Sµ̂

100 100 100 15 85 100

100 100 15 100 25 100

100 15 100 100 15 100

15 100 100 100 85 100

Some comments concerning the global evaluation: Each of C and AE is not
sufficient to alone bring it above 85 or to downgrade it under 85. F is not suffi-
cient to alone bring it above 50 or to downgrade it under 25. APA is not sufficient
to bring it above 25 but it can downgrade it to 15. If C and NF have a good
evaluation the global evaluation will be good. It is the same if C is replaced by
AE and APA.

Discussion. The rules presented in this section include pieces of knowledge
familiar to experts in the application area. For example, parameters C and F are
used to evaluate the global health of algae, unlike APA and AE which refer to
specific pathways metabolism. So, when C and F show no effect or weak effect,
the global evaluation is good, while a significant effect on the APA and EA only,
is known not to allow degradation of the overall score. Moreover, rules extracted
from the obtained Sugeno integrals show stronger effects with rain samples than
those obtained after dry weather samples exposure. These results are in perfect
agreement with those obtained directly with bioassays.

5 Conclusion

This paper shows the usefulness of qualitative aggregation operations such as
Sugeno integrals to extract knowledge from data. The key asset of the approach
is the capability of Sugeno integral to lend itself to a complete logical rendering of
its informative content, which is typical of qualitative approaches, while a direct
handling of the numerical data would make this step more difficult to process.
A comparison between the results obtained by this approach and results obtained
by standard machine learning methods would be worthwhile in a future work.
Of course one objection is that only special kinds of rules can be expressed by
Sugeno integral: a single threshold is used in all conditions of each rule [9]. This
limited expressive power may be a cause of failure of the approach if no capacity
can be identified from the data. Extracting more expressive rules would need
qualitative aggregation operations beyond Sugeno integrals.
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