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ABSTRACT

Hyperspectral unmixing aims at determining the reference

spectral signatures composing a hyperspectral image, their

abundance fractions and their number. In practice, the spec-

tral variability of the identified signatures induces significant

abundance estimation errors. To address this issue, this paper

introduces a new linear mixing model explicitly accounting

for this phenomenon. In this setting, the extracted endmem-

bers are interpreted as possibly corrupted versions of the true

endmembers. The parameters of this model can be estimated

using an optimization algorithm based on the alternating

direction method of multipliers. The performance of the pro-

posed unmixing method is evaluated on synthetic and real

data.

Index Terms— Hyperspectral imagery, linear unmixing,

endmember variability, Alternating Direction Method of Mul-

tipliers (ADMM).

1. INTRODUCTION

Hyperspectral unmixing consists of identifying the spectral

signatures from which the data are derived – referred to as

endmembers – their abundances and their number according

to a predefined mixing model. Assuming no microscopic in-

teraction between the materials of the imaged scene, a linear

mixing model (LMM) is known to be adapted to describe the

data structure [1]. However, the spectral signatures contained

in a reference pixel can vary spectrally from a pixel to another

due to the varying acquisition conditions. This can result in

significant estimation errors being propagated throughout the

unmixing process. Various models either derived from a sta-

tistical or a deterministic point of view have been designed to

address this issue [2].

Since the identified signatures can be considered as vari-

able instances of reference endmembers, we introduce an

extended version of the classical LMM to model the spectral

variability. In [3], the variability is assumed to only result

from scaling factors. Conversely, in this paper, inspired by a

model designed in [4], each endmember is represented by a

“pure” spectral signature corrupted by an additive perturba-

tion accounting for spectral variability. The perturbation is
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allowed to vary from a pixel to another to represent spatial-

spectral variability within the image. To the best of our

knowledge, it is the first time endmember variability has been

explicitly modeled as an additive perturbation. Finally, the

results obtained with the ADMM in hyperspectral imagery

[5] and in image deblurring [6, 7] have motivated the use of

a similar framework for spectral unmixing using a perturbed

LMM (PLMM).

The paper is organized as follows. The proposed PLMM

is introduced in Section 2. Section 3 describes an ADMM-

based algorithm to estimate the parameters of this model. Ex-

perimental results obtained on synthetic and real data are re-

ported in Section 4 and 5 respectively. Section 6 finally con-

cludes this work.

2. PROBLEM STATEMENT

2.1. Perturbed linear mixing model (PLMM)

Each pixel yn of a hyperspectral image is represented by a

linear combination of K endmembers – denoted by mk – af-

fected by a spatially varying perturbation vector dmn,k ac-

counting for endmember variability. The resulting PLMM

can be written

yn =

K∑

k=1

akn

(
mk + dmn,k

)
+ bn for n = 1, . . . , N (1)

where L is the number of spectral bands, N is the number of

pixels, yn denotes the nth image pixel, mk is the kth end-

member, akn is the proportion of the kth endmember in the

nth pixel, and dmn,k denotes the perturbation of the kth end-

member in the nth pixel. The term bn represents the noise

resulting from the data acquisition and the modeling errors.

In matrix form, the PLMM (1) can be written as follows

Y = MA+

[
dM1a1 . . . dMNaN

]

︸ ︷︷ ︸
∆

+B (2)

where Y = [y1, . . . ,yN ] is an L × N matrix containing the

image pixels, M is an L×K matrix containing the endmem-

bers mk, A is a K × N matrix composed of the abundance

vectors an, dMn is an L × K matrix whose columns are



the perturbation vectors dmn,k associated with the nth pixel,

and B is an L×N matrix accounting for the noise. The non-

negativity and sum-to-one constraints usually considered to

reflect physical considerations are

A ! OK,N , AT1K = 1N

M ! OL,K , M+ dMn ! OL,K , ∀n = 1, . . . , N.
(3)

where ! denotes term-wise inequality. When compared to

models found in the literature to mitigate the variability im-

pact [2], the model (1) presents the advantage to explicitly

address the variability phenomenon. Besides, the variability

is not assumed to only result from scaling factors as in [3].

2.2. Problem formulation

The PLMM (1) and constraints (3) can be combined to form

a constrained optimization problem. We propose to define

the data fitting term as the Frobenius distance between the

observations and the reconstructed data. Since the problem is

ill-posed, we introduce penalization functions Φ,Ψ and Υ to

reflect the a priori knowledge on M,A and dM respectively.

As a result, the optimization problem is expressed as

(M∗,dM∗,A∗) ∈ arg min
M,dM,A

{
J (M,dM,A) s.t. (3)

}
(4)

with

J (M,dM,A) =
1

2
‖Y −MA−∆‖

2
F + αΦ(A)+

βΨ(M) + γΥ(dM)
(5)

where the penalization parameters α, β, γ control the trade-

off between the data fitting term and the penalties Φ(A),
Ψ(M) and Υ(dM). In addition, we assume that the penal-

ization functions are separable, leading to

Φ(A) =

N∑

n=1

φ(an), Ψ(M) =

L∑

ℓ=1

ψ(m̃ℓ),

Υ(dM) =

N∑

n=1

υ(dMn)

(6)

where φ, ψ and υ are non-negative differentiable convex func-

tions, and m̃ℓ denotes the ℓth row of M. This assumption is

used to decompose (4) into a collection of sub-problems de-

scribed in Section 3. All these penalizations are described in

the next paragraphs.

2.2.1. Abundance penalization

The abundance penalization Φ has been chosen to promote

spatially smooth abundances as in [8]. More precisely, the

abundance spatial smoothness penalization is written in ma-

trix form as

Φ(A) =
1

2
‖AH‖

2
F (7)

where H ∈ R
N×4N is a matrix computing the differences

between the abundances of a given pixel and those of its 4
nearest neighbors [8]. The only terms depending on the nth

abundance vector an are

φ(an) =
1

2

( 3∑

k=0

h2
n,n+kN

)

︸ ︷︷ ︸
cAn

‖an‖
2
2

+

( N∑

i=1
i"=n

3∑

k=0

hn,n+kNhi,n+kNaTi

)

︸ ︷︷ ︸
cT
n

an.

(8)

2.2.2. Endmember penalization

As for Ψ, classical penalizations found in the literature con-

sist of constraining the size of the simplex whose vertices are

the endmember signatures. The mutual distance between each

endmember introduced in [9] approximates the volume occu-

pied by the (K − 1)-simplex and is expressed as

Ψ(M) =
1

2

∑

i"=j

‖mi −mj‖
2
2 =

1

2

K∑

k=1

‖MGk‖
2
F (9)

where

Gk = −IK + ek1
T
K (10)

for k = 1, . . . ,K and ek denotes the kth canonical basis vec-

tor of RK . Hence

ψ(m̃ℓ) =
1

2

K∑

k=1

‖m̃ℓGk‖
2
2 . (11)

2.2.3. Variability penalization

The function Υ has been designed to limit the norm of the

spectral variability in order to capture a reasonable endmem-

ber variability level. In this paper, we propose to consider

υ (dMn) =
1

2
‖dMn‖

2
F . (12)

3. AN ADMM-BASED ALGORITHM

Since the problem (4) is non-convex, the cost function J has

been successively minimized with respect to each variable

A,M and dM until a stopping criterion is satisfied [6]. The

assumptions made on Φ,Ψ,Υ in Section 2 allow the global

optimization problem to be further decomposed into a collec-

tion of convex sub-problems exclusively involving differen-

tiable functions. These sub-problems are finally solved using

ADMM steps. The resulting algorithmic scheme is summa-

rized in Algo 1. Some considerations about the convergence

of the proposed algorithm are provided in an extended version

of this paper [10].



Algorithm 1: PLMM-unmixing: global algorithm.

Data: Y,A(0),M(0),dM(0)

begin

k ← 1;

while stopping criterion not satisfied do

(a) A(k) ← arg min
A

J

(

M(k−1),dM(k−1),A
)

;

(b) M(k) ← arg min
M

J

(

M,dM(k−1),A(k)
)

;

(c) dM
(k) ← arg min

M

J

(

M(k),dM,A(k)
)

;

k ← k + 1;

A← A(k);

M←M(k);

dM← dM
(k);

Result: A,M,dM

3.1. Optimization with respect to A

With the assumptions made in paragraph 2.2, optimizing J
with respect to A under the constraints (3) is equivalent to

solving

a∗n = arg min
an

{
1
2 ‖yn − (M+ dMn)an‖

2
2 + αφ(an)

s.t. an ! 0K , aTn1K = 1

}
.

(13)

After introducing the splitting variables w
(A)
n ∈ R

K for

n = 1, . . . , N such that

(
IK
1T
K

)

︸ ︷︷ ︸
Q

an +

(
−IK
0T
K

)

︸ ︷︷ ︸
R

wn =

(
0K

1

)

︸ ︷︷ ︸
s

(14)

the resulting scaled augmented Lagrangian is expressed as

L
µ
(A)
n

(
an,w

(A)
n ,λ(A)

n

)
=

1

2
‖yn − (M+ dMn)an‖

2
2

+
µ
(A)
n

2

∥∥∥Qan +Rw(A)
n − s+ λ

(A)
n

∥∥∥
2

2

+ αφ(an) + I+
K,1

(
w(A)

n

)

(15)

where µ
(A)
n > 0 and I+

K,1 is the indicator function on (R+)
K

.

Thus, for n = 1, . . . , N

a∗n =
[
(M+ dMn)

T (M+ dMn) + µ(A)
n QTQ+ αcAnIK

]−1

[
(M+ dMn)

Tyn − αcn + µ(A)
n QT

(
s−Rw(A)

n − λ
(A)
n

)]

(16)

and

w(A)
n

∗
= max

(
an + λ

(A)
n,1:K ,0K

)
(17)

where λ
(A)
n,1:K is the vector composed of the K first elements

of λ
(A)
n and the max should be understood as a term-wise

operator. In the absence of any penalization, the solution is

obtained by making α = 0 in the previous equations.

3.2. Optimization with respect to M

Similarly, optimizing J with respect to M under the con-

straints (3) is equivalent to solving

m̃∗
ℓ = arg min

m̃ℓ





1
2

∥∥∥ỹℓ − m̃ℓA− δ̃ℓ

∥∥∥
2

2
+ βψ(m̃ℓ)

s.t. for n = 1, . . . , N

m̃ℓ ! 0T
K , m̃ℓ + d̃mn,ℓ ! 0T

K




(18)

where ỹℓ, δ̃ℓ and d̃mn,ℓ denote the ℓth row of Y, ∆ and

dMn respectively. Introducing the splitting variables W
(M)
ℓ

in R
(N+1)×K for ℓ = 1, . . . , L such that

(
1
1N

)

︸ ︷︷ ︸
e

m̃ℓ −W
(M)
ℓ = −

[
0K , d̃m

T

1,ℓ, . . . , d̃m
T

N,ℓ

]T

︸ ︷︷ ︸
Fℓ

(19)

the associated scaled augmented Lagrangian can be written

L
µ
(M)
ℓ

(
m̃ℓ,W

(M)
ℓ ,Λ

(M)
ℓ

)
=

1

2

∥∥∥ỹl − m̃ℓA− δ̃ℓ

∥∥∥
2

2

+
µ
(M)
ℓ

2

∥∥∥em̃ℓ −W
(M)
ℓ + Fℓ +Λ

(M)
ℓ

∥∥∥
2

F

+ βψ(m̃ℓ) + I+
N+1,K

(
W

(M)
ℓ

)
(20)

with µ
(M)
ℓ > 0 and I+

N+1,K the indicator function on

(R+)
N+1×K

. Thus

m̃∗
ℓ =

[(
ỹℓ − δ̃ℓ

)
AT + µ

(M)
ℓ eT

(
W

(M)
ℓ − Fℓ −Λ

(M)
ℓ

)]

[
AAT + β

K∑

k=1

GkG
T
k + µ

(M)
ℓ

(
eT e

)
IK

]−1

(21)

and

W
(M)∗
ℓ = max

(
em̃ℓ + Fℓ +Λ

(M)
ℓ ,O(N+1),K

)
. (22)

In the absence of any endmember penalization, the solution is

obtained by making β = 0 in the previous equation.

3.3. Optimization with respect to dM

Finally, optimizing J with respect to dM under the con-

straint (3) is equivalent to solving

dM∗
n = arg min

dMn





1
2 ‖yn − (M+ dMn)an‖

2
2

+γυ(dMn)

s.t. M+ dMn ! OL,K





(23)



for n = 1, . . . , N . Introducing the splitting variables

W
(dM)
n = M + dMn, the resulting scaled augmented

Lagrangian is given by

L
µ
(dM)
n

(
dMn,W

(dM)
n ,Λ(dM)

n

)
= I+

L,K

(
W(dM)

n

)

+
1

2
‖yn − (M+ dMn)an‖

2
2 + γυ(dMn)

+
µ
(dM)
n

2

∥∥∥dMn +M−W(dM)
n +Λ(dM)

n

∥∥∥
2

F

(24)

with µ
(dM)
n > 0 and I+

L,K the indicator function on (R+)
L×K

.

Hence

dM∗
n =

[
(yn −Man)a

T
n + µ(dM)

n

(
W(dM)

n

−M−Λ(dM)
n

)][
ana

T
n + (µ(dM)

n + γ)IK

]−1
(25)

and

W(dM)∗
n = max

(
dMn +M+Λ(dM)

n ,OL,K

)
. (26)

4. EXPERIMENTS WITH SYNTHETIC DATA

The method is first evaluated on a 128 × 64-pixel image re-

sulting from linear mixtures of 3 endmembers with L = 160
spectral bands, without any pure pixel to evaluate the method

in a challenging situation. Any mixture has been corrupted

by an additive white Gaussian noise to ensure a signal-to-

noise ratio of 30dB. The corrupted endmembers involved in

the mixture have been generated using the product of refer-

ence endmembers with randomly generated piecewise-affine

functions. Different affine functions have been considered for

each endmember in each pixel, which provides realistic end-

members with controlled variability 1.

4.1. State-of-the-art methods

The proposed method is compared to the VCA [11] / FCLS

[12] algorithms and to the automated endmember bundles

(AEB, [13]). For the proposed method, the endmembers and

abundances have been initialized with VCA/FCLS and the

variability matrices have been initialized with all their entries

equal to eps2. The algorithm is stopped when the relative

difference between two successive values of the objective

function is less than 10−3. The regularization parameters

associated with the augmented Lagrangians have been initial-

ized with the following values: µ
(A)(0)
n = µ

(dM)(0)
n = 10−4,

µ
(M)(0)
ℓ = 10−8, and adjusted using the rule described in

[14, p. 20] with τ incr = τ decr = 1.1, µ = 10, εabs = 10−1 and

εrel = 10−4.

1More simulations results are available in [10].
2MATLAB constant eps = 2.22× 10−16.

Table 1. Simulation results for synthetic data

(GMSE(A)×10−2, GMSE(dM)×10−4, RE ×10−4).

VCA/FCLS AEB Proposed method

aSAM(M) 5.0639 5.1104 4.1543

GMSE(A) 2.07 2.11 1.44

GMSE(dM) / / 4.36

RE 2.66 2.66 0.38

time (s) 1 33 1990

The performance of the algorithm has been assessed in

terms of endmember estimation using the average spectral an-

gle mapper (aSAM). In terms of abundance and perturbation

estimations, global mean square errors (GMSEs) have been

computed. Finally, the reconstruction error (RE) detailed in

the following lines has been considered as a measure of fit.

aSAM(M) =
1

K

K∑

k=1

〈mk|m̂k〉

‖mk‖2‖m̂k‖2

GMSE(dM) =
1

NLK

N∑

n=1

‖dMn − d̂Mn‖
2
F

GMSE(A) =
1

KN
‖A− Â‖2F

RE =
1

LN

∥∥∥Y − Ŷ

∥∥∥
2

F

where Ŷ is the matrix formed by the pixels reconstructed with

the estimated parameters Â, M̂ and d̂Mn.

4.2. Results

The performance measures returned by the unmixing meth-

ods are provided in Table 1. The proposed method provides

competitive results when compared to other methods and ex-

hibits lower REs, at the price of a higher computational cost.

Table 2. Experiments conducted on real data (Madonna) (RE

×10−6).

VCA/FCLS AEB ADMM

RE 8.64 5.25 0.43

time (s) 0.41 1.77 1.88

5. EXPERIMENTS WITH REAL DATA

Keeping the same parameters as in Section 4, the proposed

algorithm has been applied to a data-set (31 × 30) composed

of 160 spectral bands extracted from an image acquired in

2010 by the Hyspex hyperspectral scanner over Villelongue,

France. The image is composed of forested and urban areas.
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Fig. 1. Abundance and variability distribution (real data).

Since there is no ground truth for this data set, we present

the unmixing performance in terms of reconstruction error

(see Table 2). The results depicted in Figs. 1 and 2 are con-

sitent with those of VCA/FCLS. Moreover, regular vertical

patterns almost surely due to a sensor defect or miscalibration

during the data post-processing appear on the energy map of

the variability terms. This observation is consistent with the

remark made in [15].

6. CONCLUSION AND FUTURE WORK

This paper introduced a new linear mixing model including

an additive spatially varying perturbation matrix to capture

endmember variability. Hyperspectral unmixing was per-

formed by alternating minimization of an appropriately reg-

ularized cost function, each minimization being performed

by ADMM. Simulations conducted on synthetic and real data

enabled the interest of the proposed solution to be appre-

ciated. The choice of the penalization parameters α, β and

γ was performed by cross validation. The development of

automatic strategies to estimate these parameters remains an

open problem.
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