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Abstract. We tackle the problem of perspective 3D-reconstruction of
Lambertian surfaces through photometric stereo, in the presence of out-
liers to Lambert’s law, depth discontinuities, and unknown spatially-
varying lightings. To this purpose, we introduce a robust L'-TV vari-
ational formulation of the recovery problem where the shape itself is
the main unknown, which naturally enforces integrability and permits
to avoid integrating the normal field.

Keywords: Uncalibrated photometric stereo; Spatially-varying light-
ings; Perspective projection; Total variation; Proximal methods.

1 Introduction

Photometric stereo refers to the problem of inferring the shape of an object,
given a set of m images of this object acquired under different known (calibrated
photometric stereo) or unknown (uncalibrated photometric stereo) illuminations
but from the same point of view, by inverting a generative image model account-
ing for the projection model (orthographic or perspective), the object reflectance
(Lambert, Phong, etc.) and the lighting model (directional, punctual, etc.). Early
photometric stereo considered orthographic projection, Lambertian reflectance
and directional lightings [17], which is the simplest case. Extending photomet-
ric stereo to more general models has become an important research direction,
along with the natural need for fast and robust solutions. For example, per-
spective projection can replace the orthographic projection in both calibrated
[11] and uncalibrated [14] cases, the Lambertian assumption can be relaxed so
as to take specular highlights into account [7] and robustness to outliers like
shadows can be obtained through numerous techniques such as sparse regression
[10]. However, extending photometric stereo to non-directional lightings remains
an open and challenging problem. We focus on this aspect of the problem and
propose a robust variational formulation of perspective photometric stereo with
spatially-varying lightings, considered as additional unknowns so as not to im-
pose a parametric lighting model. The different hypotheses our approach relies
on are described hereafter.



1.1 TImage Formation Model

Radiance Model. Lambert’s law assumes that the surface S reflects light dif-
fusively, the reflectance at x € S being characterised by the albedo p(x) € [0, 1].
Given a parallel uniform light beam sy, € R?, oriented towards the source, and
the unit outward normal n(x) € R? to the surface at x, the emitted Lambertian
radiance r.(x) at x is proportional to the irradiance max {0, so - n(x)}, where the
max operator aims at modeling the self-shadows. Forgetting this operator (shad-
ows will be dealt with by robust estimators), the Lambertian emitted radiance
reads:
p(x)

re(x) = 2 50 n(x) (1)

In this work, we do not suppose that the lightings consist in parallel uniform
beams. Even more, we do not use any explicit lighting model, allowing us to cope
with, for instance, near point light sources, large sources, self- and cast-shadows
and even secondary reflections. In the most general case, the irradiance at x is
equal to the sum of elementary contributions coming from all the unit directions
v(6, ¢) characterised by the spherical angles (0, ¢) defined with respect to n(x):

re(x) = 2 / / ri(x,0,0)v(0,6) - n(x)sin0dods  (2)
™ 0€[0,7/2], p€[0,27]

where 7;(x, 0, ¢) is the incident radiance at x in the direction v (0, ¢). Let s(x) =
JJy.7i(x,0,0)v(0,6)sin 0 df dp. We call the vector field s the light field. Eq. (2)

then provides a more general Lambertian emitted radiance model than (1):

ro() = 2% () - m(x) 3)

In the photometric stereo framework, m different light fields s%, i € [1,m],
successively illuminate the scene, providing m images I*, i € [1,m], assumed to
be graylevel images. The graylevel is assumed to be proportional to the emitted
radiance 7. (x) as expressed in (3). To our knowledge, this very general radiance
model has not been used in the context of photometric stereo so far. In most
applications, a single point light source at infinity is assumed, so that each
lighting is represented by a constant vector in R® [17,7,1,14,15]. Closer to this
general expression is the important work of Basri et al. in [2], where a distribution
of point light sources at infinity is assumed, allowing the authors to develop shape
recovery algorithms based on low order spherical harmonic decompositions.

Camera Model. We assume the camera is a calibrated pinhole camera, rep-
resented by its focal length f and its principal point, considered as the origin of
the image domain Q C R2. Each pixel Xp € {1 is then uniquely associated to a
3D point x(x,) = [2(x,), ¥(Xp), 2(x,)] T € R3, where z > 0 is called the depth,
so that the surface of the object to be reconstructed can be represented as the
set of 3D points S = {x(x,), x, € Q}, with:

l)(
x5 = exp(ulx)/ ) [ 737] . utx) = Flowst,) W



It follows from (4) that the unit outward normal n(x) to the surface at x can
be equivalently defined on the image domain 2, through (see e.g. [11]):

n, (xp) = . 2 [1 + l_xY,u (éz)(xp)
J IV o) P+ (1 + 33 V) -7

In the radiance model (3), the albedo p and the light field s are defined on
the surface S, which is a subset of R3. Yet, since they are independent from the
projection model, they can be equivalently defined onto the image domain €2
through the mapping (4). We will thus refer to their values as p(x,) and s(x,).
Forgetting the normalisation factor £, the image formation model finally reads:

T

()

Ii(Xp) = p(xp) Si(xp) 1y (%p), xp €, i € [1,m] (6)

knowing that this equality is in fact a relation of proportionality.

1.2 Overview of our Contributions

In most of literature on photometric stereo, the main unknown is the couple
(albedo, normal field) which is estimated from the set of linear equations (6)
without any prior on the camera model: knowledge of the camera parameters
only has importance when integrating this estimated normal field into a depth
map [6]. Yet, recent photometric approaches explicitely benefit from the per-
spective camera model: it is shown in [14] that the directional uncalibrated
photometric stereo problem is better constrained under perspective projection,
provided the normal field is considered integrable. Also, Mecca et al. show in [11]
that the system of nonlinear PDEs in z = exp(u/f) resulting from (5) and (6)
can be solved through a semi-Lagrangian scheme, avoiding the classical two-steps
approach. The path we follow here combines the benefits from both these recent
works, and improve their robustness through the introduction of a variational
formalism.

To emphasise the advantages of our approach over prior work, let us state
that: 1) it is the first variational approach to uncalibrated photometric stereo;
2) it enhances robustness through L'-TV optimisation (only least-squares ap-
proaches were considered in the uncalibrated case so far [7,14,15]); 3) depth
discontinuities can be recovered without the need for a posteriori robust nor-
mal field integration through e.g., techniques like those described in [6]; and 4)
unknown, spatially-varying, lightings and albedo are considered (the one-step
approach from [11] assumes calibrated directional lightings and known albedo).

The rest of this paper is organised as follows. Using a Bayesian rationale,
we use the hypotheses above to derive in Section 2 a generic maximum a poste-
riori formulation of the recovery problem, and a variational formulation where
regularisations use total variation semi-norms. Then, we propose in Section 3 a
proximal algorithm for minimising the associated energy, before demonstrating
in Section 4 the benefit of using spatially-varying lightings and the proposed
robust recovery.



2 From Bayesian Inference to Variational Formulation

We derive in this section a variational approach for inverting the image for-
mation model (6), via ideas from Bayesian inference for factoring the posterior
probability, in the spirit of Mumford’s work [12]. For the sake of compactness,
we will denote the set of images i = [I', ..., I"]T (vector field Q — R™) and
that of lightings S = [s', ... ,s™] (matrix field Q — R3*™).

2.1 MAP Estimation

We first propose to recover (u, p,S) as the maximum a posteriori (MAP) of the
distribution

Pifu, p, S) P(u, p,S) )

P(i)

where P(i) is the evidence, which can be discarded since it is constant and plays
no role in MAP, P(i|u, p,S) is the likelihood, and P(u, p,S) is the prior, which
is factored as P(u, p,S) = P(S|u, p)P(u, p). In all photometric stereo works, u
and p are expressed as independent functions on €2, which is also the point of
view used here, thus we factor P(u, p) = P(u)P(p).

For sake of simplicity, we assume that the lightings are independent from
the surface and the albedo as well, so that the conditional prior simplifies:
P(S|u, p) = P(S). Of course, this simplification is abusive in the presence of
secundary reflections. Yet, such reflections are in general sufficiently sparse to
be neglected almost everywhere, and their effect on depth recovery can be lim-
ited by an appropriate choice of regularisation, as the one proposed hereafter.
Studying the benefit of using a joint conditional prior is left as a future research
direction.

With these assumptions, we eventually obtain P(u,p,S) = P(u)P(p)P(S).
Maximisation of the probability (7) is then equivalent to minimisation of the
neg-log-posterior €(u, p, S) = —log P(u, p, S|i) — log P(i) which is given by:

P, p. Sfi) =

E(u, p,S) = —log P(ilu, p,S) — log P(u) — log P(p) — log P(S) (8)

where the first term is a data term, and the others are regularisation measures.

2.2 Continuous Variational Energy

Data Term. Lambert’s law (6) does generally not hold perfectly: noise in the
measurements will prevent the equality. We assume that Lambert’s law resid-
uals are iid Laplacian, with some outliers that will account for the shadows
(unexplained low graylevels), the highlights (unexplained high graylevels) and
the depth discontinuities (Vu not defined). We thus use a L!'-norm based data
term that accounts for the sparsity of such effects:

Ep(u,p,S)=) / |77 ()= (3)8'(%) 10 (3 ) |y =) [ 1= ps” - 1| 1 ) (9)
i=1/ 9 i=1



Regularisations. In the 3D-reconstruction framework, surfaces are usually as-
sumed to be differentiable, but this hypothesis is rarely realistic because of the
presence of edges and depth discontinuities. At a macroscopic scale, surfaces
should, more reasonably, be supposed to be smooth almost everywhere, with con-
tinuous, non-differentiable edges and some depth discontinuities. A regulariser
that naturally allows for the corresponding class of depth functions is the total
variation (TV) semi-norm:

J(u) = /Q V()| dx, = [ Vull 21 (10)

As suggested in literature [1,15], we restrict our study to the case of piecewise-
smooth (“Arlequin-like”) albedos, which can be enforced by a TV semi-norm as
well:

J(p) = /Q IV () % = [Vl (1)

In the directional orthographic case, the problem is inherently ill-posed, but
it is shown in [15] that TV-regularisation of both the depth and the albedo re-
duces the ambiguities to a simple translational ambiguity. The perspective case is
better constrained (u can be recovered up to a scale ambiguity on S without reg-
ularisation [14]), so these regularisations would essentially enforce smoothness.
Well-posedness is less clear in perspective case with spatially-varying lightings.
Yet, it seems rather intuitive that, by limiting the variations of the lightings,
the problem gets closer to the directional one, at least piecewise. This general
discussion is left as future work, but it invites us to introduce a regularisation
measure for the lightings as well. Since the depth discontinuities of both u and s
will, in general, coincide, it is reasonable to assume that s’ should have bounded
variations too, and to introduce its TV-regularisation:

J(s") :AIIJ(Si)(Xp)IIFpr: 1) ), i€ (lm] (12)

where J(s’) is the Jacobian matrix of s and || - || denotes the Frobenius norm.
For the sake of compactness, we will denote J(S) = > 1" | J(s"). As stated earlier,
the independence of S and u serves as a simplifying hypothesis, but it has no
physical motivation: in future work, a joint regularisation of both these fields

shall be introduced, using for instance a coupled L! semi-norm [8].

Energy. A continuous analogue of the MAP problem of minimising the neg-log
posterior (8) can thus be written as the minimisation of €(u, p, S)=Ep(u, p, S) +
aJ(u) + BJ(p) + vJ(S), with «, 8,7 some positive weights. This functional is
however not coercive in wu, because of the scale ambiguity on S inherent to
monocular perspective 3D-reconstruction. Coercivity can be forced by setting
arbitrarily the depth in one point, or by adding a quadratic prior ug:

Eu,p,8) =Y [|[I' = ps'mu| 45 lu = wol 2+ (w)+ 8T (p) +77(S) (13)
=1

with € > 0 (up can for instance be a prior on the mean camera-object distance).



3 Proximal Recovery Using Split-Bregman Iterations

We propose a proximal algorithm [5] for dealing with the TV semi-norms in
(13), and introduce Split-Bregman iterations for decoupling the L' data term.
Adopting the same notations as in [9] for the Bregman variables (d, b), whose
components will be denoted (d?,b%), the augmented energy is then defined as:

_ _ m ) 1 & .

g(u7ﬂvp7/_)7s7s7d7b):z||dZHL1+EZ||d’Li
i=1 i=1

+*||u ull 72 +ad (w)+ Hp pll7=+87(p)

for some small positive 6,4, Gu,Qp, fs. We minimise the
iteratively w.r.t. each variable, according to Algorithm

('—ps’

ng)=b| [} 5 i —uol 72

HS || +7J(8) (14)

augmented energy (14)
1.

Algorithm 1 L'-TV Perspective Photometric Stereo

Input: Images I%, i € [1,m]; camera parameters; initial light fields sh0

;i € [1,m];

shape prior ug; model parameters «, 3, v, €; proximal parameters 04, 0,, 6, and 0s;

maximum number of iterations V.

Output: Point cloud x, albedo p and updated light fields s’, i € [1,m].
Initialisation: Compute the normals and initialise the albedo p® by per-pixel classical

photometric stereo; integrate the normals to initialise u°
b0 =0,8"0 =s" ie[l,m]

.0 _ 0 -0 _ 0, 7,0 _
yP—Pv'U«—u7d -

fork=1...N do
m . . 2
’lTLk+17 argmlnﬁ ’L’kf([Lﬁkgl’k‘nﬂ)*bz’k‘L Hu uO||L2+20 H HL2 (15)
1
—k+1 _ i,k i shk i,k
p argmln Z ‘ d- ([ —ps” k+1) b ‘ L2+ 20, (16)
. L 2 i L
s = argmlnwd’dm e bl’k) 17 205 _Z_Sl’ka [t,m] (17)
) 1 ; i
goRtL : _— L([L*’”1 gkl ) —b ’ 1 1
argdrinm + 50, D s Mgkt L2’ [1,m] (18)
piktl _ ik (Ii_ﬁk+1 s Hln . — dz‘,k-s-l) i€ [lm] (19)
2
kTt = arginini gttt - u’ L + Oé.](u) (20)
2
PPt = argmm Hpk"'l p‘ Lo +B8J(p) (21)
_ v 12 X
Sz,k+1 _ argsl;nin2es gz,k-&-l _ 51 L —|—’}/J(Sl), ic [Lm] (22)
end for

x = exp(u/f) [x, 7 /f,1]




3.1 Solutions of Convex Subproblems in Algorithm 1

The update (18) in d is a basis pursuit problem, which is solvable explicitely by
shrinkage:

dPFTY = shrink(I' — PSR nen + 097 1/6,), i € [1,m) (23)

with shrink(z, v) = sign(z) max{|z| -+, 0}. The update (19) in b is the Bregman
update. Justification for this update can be found in [9]. It is the equivalent of
“adding back the noise” in iterative image denoising methods [13].

Regarding the updates in u, p and S (Egs (20), (21), and (22)), they are in-
stances of the L2-TV problem which we solve using Chambolle’s dual projection
algorithm [4], with the natural vectorial extension presented in [3] in the case
of S. We experimentally noticed that the convergence rate is better when only
performing a few projection iterations (typically 5) at each global iteration k,
rather than solving these problems to full convergence (the same behaviour is
observed in [9]). As for the update (16) in p, writing the normal equations leads
to the explicit update:

S _ Baph 0, ST = 4 bR 6 g
04+ (9p ZZ1(§N€ s Ngk+1 )2

In a similar way, from the vectorial normal equations derived from (17), one
obtains the explicit solution in §*, 7 € [1,m]:

(24)

_ -1 o _
gik+H1_ (9d13+95 (ﬁk+1)2nﬁk+1n;k+1> (Gdsz,k+asﬁk+1(lz_dl,k+bz,k)nﬁk+l) (25)

which can be computed e.g., through Cholesky factorisation.

3.2 Solution in @

We now describe the minimisation in @ with greater care. Let us denote:

1 m . . . . 2 € 1 2
k()= E k k gk ok = 2 — .k
5a (u)— Eizl HdZ _(Iz_p s' 'nﬁ)_bZ HLZ—"_§ ||u_u0||L2+20u ||U—’LL HL2 (26)
Proposition 1. The necessary optimality condition for u reads as the vanishing

of the gradient of the energy (26) w.r.t. u, which is given by:

k
Va&k(u) =div ({;“ (Va+ (1+Vau- u)u)> + div <917r172(g5)>
d d
(7 (g8) 1Y L x
—div <0du> + (e + 9u) U — eug — Eu (27)

where T2 and w3 are the projections m 2(a,b,c) = (a,b), w3(a,b,c) = ¢, and

m fik (fi,keri,kiIiibi,k) L s (ji,keri,kiIi _ bi,k:)
— — y8u =

2V v w B T e

u=x,/f, Ik = pFsbk . ng (28)

gz,k

fﬁ:




Proof. The directional derivative of ng at @ in the direction w is given by:
_ Vuw: (Vu+(1+Vau- u)u) 1 { Vw ] (29)

dwnﬁ(’lj): — — ng
HVUHQ-F(H—un)Q \/HVTLH2+(1+VTL~U)2 —Vw-u

Let Di(u) = ﬁ Hdi’k—(li—ﬁk §i’k-nﬂ)—bi’k‘{i2. Using the chain rule, its first

variation L!(w) is given by:

Li<w>=—/fi”“Vw-<va+<1+W'U>“>‘elal/gi’k'{

u
Q Q

where fé’k and g%’k represent the terms inside the sums in (28). The first variation
of (26) is thus given by:

L(w):—eld/ﬂ<; fi’k>(Vﬂ+(1+Va~u)u)-Vw+/Q<(e+91u)a—euo—eluuk> w
1 m mo
Sl e () o (5e):

Using Dirichlet boundary conditions on «, application of the Green formula
eventually provides the result announced in (27). O

-Vw (31)

This ressembles the steady state of a reaction-diffusion equation. The data
term of (26) being nonlinear and non-convex in @, there is no guarantee for the
negativity of f¥. For this reason, we choose a descent solver with a quasi-Newton
step (BFGS) in the implementation. We now evaluate experimentally the benefit
of using the proposed approach.

4 Experiments

Robustness to Noise and Outliers. We first evaluate the ability of the
proposed proximal algorithm to enhance the results of classical photometric
stereo. We create 20 images, of size 128 x 128, of a “Canadian tent” shape
with a “pears” albedo, illuminated from m = 20 known lightings, and corrupt
them simultaneously by an additive zero-mean Gaussian noise with standard
deviation equal to ¢% of the maximum graylevel, and a salt-and-pepper noise
affecting p% of the pixels. We use the method from [10] to estimate the initial
albedo p° and the normals which minimise the L! data term (9). Up to this point,
in view of the piecewise smooth nature of the shape, robust integration should
be considered to obtain a depth map [6]. To emphasise the ability of our scheme
to recover such shapes as well, we integrate the normals using the DCT solver
from [16] instead, with homogeneous Dirichlet BC, before iteratively refining
the depth and the albedo through the proposed L!-TV scheme (Figure 1): this
allows recovering the depth discontinuities, while simultaneously denoising the
albedo. We used 64 = 0.1, 6, = 0.164, 6, = 0.0016,,, s = 6,, ¢ = 1075, uy = 0,
a=2/0,, 5 =>5xa, and v = .



Fig. 1. Robustness to noise and outliers. First and second columns: 4 of the m =
20 images, with ¢ = 20% and p = 10%; Third column: ground-truth depth map
and albedo; Fourth column: results from [10], using a least squares integrator with
homogeneous Dirichlet BC; Fifth column: results after L'-TV refinement. State-of-
the-art methods provide a rather noisy albedo, and the quality of the final depth map
is widely dependent from the choice of a specific integrator. Rather than choosing a
robust integrator, as advised e.g. in [6], we believe that it makes more sense to use the
proposed scheme to directly refine the depth map and the albedo from the images, so
as to avoid the propagation of any bias due to normal estimation. Indeed, rather than
seeking a piecewise-smooth shape explaining a possibly biased normal field, it makes
more sense to look for a piecewise-smooth shape explaining the images themselves.

Influence of the parameters. Since the proposed proximal algorithm involves
numerous parameters, it is natural to question their influence. Let us first make
a distinction between the model parameters «, 3, v and €, and the optimisation
parameters 0,. Those latter will mainly affect the convergence rate (though,
since we consider nonconvex optimisation, they may also affect the results),
while the choice of the former corresponds to some a priori knowledge about
the regularity of the unknowns. If we choose high values for «, 3, v, we will get
oversmoothed results, while the 3D-reconstruction may not be robust to noise,
or not well-conditioned, if we choose low values. The parameter € only enforces
coercivity, thus any low value should be satisfactory (we set ¢ = 10~ in all the
experiments). As for the optimisation parameters, setting high 6, values will
result in slow convergence, while the optimisation may become unstable with
low values. In our tests, we experimented no major difficulty in finding a set of
these numerous parameters offering “reasonable” results. Tuning more precisely
one or the other parameter can be a little more tricky, as illustrated in Figure
2. We used the same data as in the previous test, with o = 0.1 and p = 0.05, for
studying the evolution of the RMSE in u (the scale ambiguity on S is a posteriori
solved to minimise this RMSE) with respect to a specific choice of «, 84 or 6,, (the
other parameters behave similarly). Finding heuristics for automatic selection of
the parameters, based on these observations, is left as future work.
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Fig. 2. Quantitative evaluation of the diffusion process. Left: RMSE in u as a function
of the number k of iterations, for several levels of noise (o,p), with the same refer-
ence values of the parameters as in the first test, denoted (ao, 04,0, 0u,0) in the case of
(a, 04, 0,). Right: influence of the model parameter v and of the optimisation param-
eters 04 and 6, on the diffusion process. Convergence is stable but slow if a or 04 is
too high (oversmoothed depth map), or if 6, is too high (small descent steps). On the
contrary, the descent is too fast to be stable if we set a too low value for a or 64 (no
regularisation, inducing numerical difficulties), or if 6, is too low (large descent steps).

Experimental Setup and Lighting Initialisation. For tests on real-world
data, we used a calibrated camera surrounded by twenty LEDs oriented towards
a white-painted two cents coin. The LEDs are only controllable by groups of 5,
providing 15 different lighting configurations with either 5, 10, 15 or 20 LEDs
turned on together. Thanks to the proposed spatially-varying lightings, we do
not need model-driven calibration of the lightings: to initialise the light fields,
we used a planar calibration grid composed of regularly located white truncated
pyramids, before interpolating them so as to obtain dense light fields.

We first evaluate the benefit of using spatially-varying lightings, by com-
paring the results of the classical two-steps approach, using either directional
lightings or the calibrated spatially-varying ones (least-squares estimations are
used). Results shown in Figure 3 prove that the widely-spread idea according
to which photometric stereo can recover high-frequency details, but not low-
frequency ones is wrong;: it is only a matter of correctly estimating the lightings.

L'-TV Refinement from Rough Initialisation. We now question the im-
portance of the initialisation for the full (shape, reflectance and lightings) prox-
imal recovery, regarding the non-convexity of the energy. Due to the compu-
tational cost required to perform one Cholesky factorisation per pixel at each
iteration in the lightings estimation, we consider a small close-up on the “E”
letter of the coin, with size 201 x 146 pixels. The evolution of the anisotropic
diffusion process, starting from a flat shape with uniform albedo and directional
lightings, is illustrated in Figure 4: it proves that the proposed proximal al-
gorithm converges towards a realistic solution even if a rough initialisation is
considered. We used 64 = 0.05, 6, = 10064, 6, = 03, s = 0.104, ¢ = 1078,
a=0.05/0,, 8=0.05/0,, up =0 and v = 0.0001/05.
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Fig. 3. Bias correction by using spatially-varying lightings. Left, from top to bottom:
two of the m = 15 input images; associated calibrated lighting intensities; estimated log
depth maps using least-squares photometric stereo with a directional model and with
the calibrated spatially-varying lightings. Right: relighted views of the estimated sets
of 3D-points, using directional (top) or spatially-varying lightings (bottom). Neglecting
the spatial variations of the lightings creates a global drift in the reconstruction, which
is drastically reduced by considering spatially-varying lightings. This 3D-reconstruction
could then be further improved using the proposed L'-TV scheme.
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Fig. 4. L'-TV optimisation with rough initialisation. We show the diffusion process of
u (top), p (middle) and ||s*|| (bottom), at k = 0, k = 10, k = 20 and k = 40. The sharp
features are first captured by the L' data term, and then the TV proximal operators
smooth out the residual noise. Realistic estimation can be provided, even with a very
rough initialisation.



5 Conclusion and Perspectives

We proposed a variational formulation for the joint recovery of shape, reflectance
and spatially-varying lightings from observed images, derived from a formal MAP
approach. Despite the apparent difficulty of tackling a non-convex problem, ro-
bust recovery of the depth can be obtained without integrating the normals. By
considering the lightings as unknown vector fields, situations usually considered
as “hard”, like nearby or extended sources, are easily handled. In future work,
we will explore joint regularisation of the lightings, the depth and the albedo and
study with more care the well-posedness of the inverse problem, the robustness
with respect to the numerous parameters, and more efficient numerics.
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