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SUMMARY

Three-dimensional frequency-domain full waveform inversion

of fixed-spread data can be efficiently performed in the visco-

acoustic approximation when seismic modeling is based on a

sparse direct solver. We present a new algebraic Block Low-

Rank (BLR) multifrontal solver which provides an approxi-

mate solution of the time-harmonic wave equation with a re-

duced operation count, memory demand and volume of com-

munication relative to the full-rank solver. We show some pre-

liminary simulations in the 3D SEG/EAGE overthrust model,

that give some insights on the memory and time complexi-

ties of the low-rank solver for frequencies of interest in full-

waveform inversion (FWI) applications.

INTRODUCTION

Seismic modeling and FWI can be performed either in the time

domain or in the frequency domain (e.g., Virieux and Operto,

2009). One distinct advantage of the frequency domain is to

allow for a straightforward implementation of attenuation in

seismic modeling (e.g., Toksöz and Johnston, 1981). Second,

it provides a suitable framework to implement multi-scale FWI

by frequency hopping, that is useful to mitigate the nonlinear-

ity of the inversion (e.g., Pratt, 1999). Frequency domain seis-

mic modeling consists of solving an elliptic boundary-value

problem, which can be recast in matrix form where the solu-

tion (i.e., the monochromatic wavefield) is related to the right-

hand side (i.e., the seismic source) through a sparse impedance

matrix, whose coefficients depend on frequency and subsur-

face properties (e.g., Marfurt, 1984). The resulting linear sys-

tem can be solved with a sparse direct solver based on the

multifrontal method (Duff et al., 1986) to compute efficiently

solutions for multiple sources by forward/backward substitu-

tions, once the impedance matrix was LU factorized. However,

the LU factorization of the impedance matrix generates fill-in,

which makes the direct-solver approach memory demanding.

Dedicated finite-difference stencils of local support (Operto

et al., 2007) and fill-reducing matrix ordering based on nested

dissection (George and Liu, 1981) are commonly used to min-

imize this fill-in. A second limitation is that the volume of

communications limits the scalability of the LU factorization

on a large number of processors. Despite these two limita-

tions, Operto et al. (2007) and Brossier et al. (2010) showed

that few discrete frequencies in the low part of the seismic

bandwidth [2 - 7 Hz] can be efficiently modeled for a large

number of sources in 3D realistic visco-acoustic subsurface

models using small-scale computational platforms equipped

with large-memory nodes. This makes this technique attractive

for velocity model building from wide-azimuth data by FWI

(Ben-Hadj-Ali et al., 2008). A first application to real Ocean

Bottom Cable data including a comparison with time-domain

modeling was recently presented by Brossier et al. (2013). To

reduce the memory demand and the operation counts, Wang

et al. (2011) proposed to compute approximate solutions of the

linear system by exploiting the low-rank properties of elliptic

partial differential operators. Their approach exploits the regu-

lar pattern of the impedance matrix built with finite-difference

stencils on uniform grid. In this study, we present a new al-

gebraic Block Low-Rank (BLR) multifrontal solver (Duff and

Reid, 1983). The algebraic approach is amenable to matrices

with a non regular pattern such as those generated with finite

element methods on unstructured meshes. In the first part, we

review the main features of the BLR multifrontal solver and

highlight the main pros and cons relative to the approach of

Wang et al. (2011). Second, application to the 3D SEG/EAGE

overthrust model gives quantitative insights on the memory

and operation count savings provided by the BLR solver.

BLOCK LOW-RANK MULTIFRONTAL METHOD

Multifrontal method

The multifrontal method was first introduced by Duff and Reid

(1983). Being a direct method, it computes the solution of a

sparse system Ax = b by means of a factorization of A un-

der the form A = LU (in the unsymmetric case). This fac-

torization is achieved through a sequence of partial factoriza-

tions, performed on relatively small, dense matrices, called

fronts. With each front are associated two sets of variables:

the fully-summed (FS) variables, whose corresponding rows

and columns of L and U are computed within the current front,

and the non fully-summed (NFS) variables, which receive up-

dates resulting from the elimination of FS variables. At the

end of each partial factorization, the partial factors [L11L21]
and [U11U12] are stored apart and a Schur complement referred

to as a contribution block (CB) is held in a temporary memory

area called CB stack, whose maximal size depends on several

parameters. As the memory needed to store the factors is in-

compressible (in full-rank), the CB stack can be viewed as an

overcost whose peak has to be minimized. The structure of a

front before and after partial factorization is shown in Fig. 1.

(a) (b)

Figure 1: A front before (a) and after (b) partial factorization.

The computational and memory requirements for the complete

factorization strongly depend on how the fronts are formed and

on the order in which they are processed. Reordering tech-

niques such as nested dissection are used to ensure the effi-



ciency of the process: a tree, called elimination tree (Schreiber,

1982) is created, with a front associated with each of its nodes.

Any post-order traversal of this tree gives equivalent properties

in terms of factors memory and computational cost.

Block Low-Rank (BLR) matrices

A flexible, efficient technique can be used to represent fronts

with low-rank subblocks based on a storage format called Block

Low-Rank (BLR, see Amestoy et al. (2012)). Unlike other for-

mats such as H -matrices (Hackbusch, 1999) and HSS matri-

ces (Xia et al., 2009), the BLR one is based on a flat, non-

hierarchical blocking of the matrix which is defined by con-

veniently clustering the associated unknowns. A BLR repre-

sentation of a dense matrix F is shown in equation (1) where

we assume that p subblocks have been defined. Subblocks B̃i j

of size mi j ×ni j and numerical rank kε

i j are approximated by a

low-rank product Xi jY
T
i j at accuracy ε , when kε

i j(mi j + ni j) ≤
mi jni j is satisfied.

F̃ =




B̃11 B̃12 · · · B̃1p

B̃21 · · · · · ·
...

... · · · · · ·
...

B̃p1 · · · · · · B̃pp




(1)

In order to achieve a satisfactory reduction in both the com-

plexity and the memory footprint, subblocks have to be chosen

to be as low-rank as possible (e.g., with exponentially decay-

ing singular values). This can be achieved by clustering the un-

knowns in such a way that an admissibility condition (Beben-

dorf, 2008) is satisfied. This condition states that a subblock

B̃i j, interconnecting variables of i with variables of j, will have

a low rank if variables of i and variables of j are far away in

the domain, intuitively, because the associated variables are

likely to have a weak interaction, as illustrated in Fig. 2(a).

Subblocks which represent self-interactions (typically the di-

agonal ones) are for this reason always full-rank. In practice,

the subgraphs induced by the FS variables and the NFS vari-

ables are algebraically partitioned with a suitable strategy.
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Figure 2: (a) Correlation between distance from variables of i

to variables of j and rank of block F̃i j . (b) Structure of a BLR

front. The darkness of a block is proportional to its storage

requirement (the lighter a block is, the smaller is its rank).

Block Low-Rank multifrontal solver

A BLR multifrontal solver consists in approximating the fronts

with BLR matrices, as shows Figure 2(b). BLR representations

of [L11U11], L21, U12 and CB are computed separately. Note

that in L21 and U12, there are no self-interactions. The partial

factorization is then adapted to benefit from the compressions

using low-rank products instead of full-rank standard ones. An

example of a BLR partial factorization algorithm is given in

Algorithm 1. For sake of clarity, an unblocked version is pre-

sented although this algorithm is, in practice, applied panel-

wise with numerical pivoting.

Algorithm 1 Unblocked FSCU incomplete factorization of a

front.

1: ◮ Input: a front F

2: ◮ Output: [L11L21], [U11U12] and a Schur comple-

ment CB

3:

4: Factor ’F’: F11 = L11[U11U12]
5: Solve ’S’: L21 = F21U−1

11
6: Compress ’C’: L21 ≃ X21Y T

21 ; U12 ≃ X12Y T
12

7: Update ’U’: CB = F22 −X21(Y
T
21Y12)X

T
12

Although compression rates may not be as good as those achie-

ved with hierarchical formats, BLR offers a good flexibility

thanks to its simple, flat structure. Many variants of Algo-

rithm 1 can be easily defined, depending on the position of the

’C’ phase. For instance, it can be moved to the last position

if one needs an accurate factorization and an approximated,

faster solution phase. This might be a strategy of choice for

FWI application, where a large number of right-hand sides

must be processed during the solution phase. In a parallel en-

vironment, the BLR format allows for an easier distribution

and handling of the frontal matrices. Pivoting in a BLR matrix

can be more easily done without perturbing much the structure.

Lastly, converting a matrix from the standard representation to

BLR and vice versa, is much cheaper with respect to the case

of hierarchical matrices (see Table 1 for the low global cost of

compressing fronts into BLR formats). This allows to switch

back and forth from one format to the other whenever needed

at a reasonable cost; this is, for example, done to simplify the

assembly operations that are extremely complicated to perform

in any low-rank format. As shown in Fig. 3, the O(N2) com-

plexity of a standard, full rank solution of a 3D problem (of N

unknowns) from the Laplacian operator discretized with a 3D

11-point stencil is reduced to O(N4/3) when using the BLR

format. All these points make BLR easy to adapt to any multi-

frontal solver without a complete rethinking of the code.

NUMERICAL EXAMPLE

We perform acoustic finite-difference frequency-domain seis-

mic modeling in the 3D SEG/EAGE overthrust model (Amin-

zadeh et al., 1997) of dimension 20km× 20km× 4.65km with

the 27-point mixed-grid finite-difference stencil (Operto et al.,

2007) for the 2-Hz, 4-Hz and 8-Hz frequencies (Figures 4 and

5). Since we use a sequential prototype BLR solver, we per-

form the simulation on a single 64-core AMD Opteron node

equipped with 384GB of shared memory. We use single pre-

cision arithmetic to perform the full-rank (FR) and the BLR

factorizations. The point source is located at x (dip) = 2 km, y
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Figure 3: Flop scalability of the BLR multifrontal factorization

of the Laplacian operator discretized with a 3D 11-point sten-

cil, revealing a O(N4/3) complexity for ε = 10−14, N = M3.

(cross) = 2 km and z = 0.5 km. A discretization rule of 4-grid

points per minimum wavelength leads to a grid interval of 250

m, 135 m and 68 m and a finite-difference grid of 0.3, 1.4 and

8 millions of nodes for the 2-Hz, 4-Hz and 8-Hz frequency, re-

spectively, considering 8 grid points in the perfectly-matched

layers surrounding the computational domain. The BLR solu-

tions are computed for 3 values of the threshold ε (10−3, 10−4

and 10−5) and are validated against the FR solutions (Fig. 5(a-

c)). The accuracy of the BLR solutions can be qualitatively as-

sessed in Fig. 5(d-l) and the reduction of the memory demand

and operation complexity resulting from the BLR approxima-

tion are outlined in Table 1. The metrics provided in Table 1

are: [1] the flop count performed during the LU factorization

and the overhead associated with the compression of the LU-

factor (compressing factors). [2] the memory for LU-factor

storage and the peak of CB stack used during the LU factor-

ization, [3] the average reduction in size of the contribution

blocks resulting from the BLR approximation. The metrics of

the FR solver are absolute, while those of the BLR solver are

given as a percentage of the metrics of the FR solver. In a first

attempt to assess the footprint of the BLR approximation on

seismic imaging, we show 2-Hz monochromatic reverse-time

migrated images (RTM) computed from the FR and the BLR

solutions in Figure 6. RTM is computed in the true velocity

model for an array of shots and receivers near the surface with

a shot and receiver spacings of 500 m and 250 m, respectively.

BLR solutions for ε = 10−3 are of insufficient quality for FWI

applications (Fig. 5(d-f) and 6d), while those obtained with

ε = 10−5 closely match the FR solutions (Fig. 5(j-l) and 6b).

BLR solutions for ε = 10−4 show some slight differences with

the FR solutions (Fig. 5(g-i)), but might be considered for FWI

applications (Fig. 6c). For the 8-Hz frequency, the flop count

performed during the BLR factorization represents 14.8% (ε =
10−4) and 21.3% (ε = 10−5) of the one performed during the

FR factorization. It is worth noting that the flop-count reduc-

tion increases with frequency (i.e., with the size of the com-

putational grid) as the maximum distance between variables

in the grid increases (Fig. 2), a key feature in view of larger-

scale simulations. For example, for ε = 10−4, the flop count

decreases from 24.8% to 14.8% when the frequency increases

from 2 Hz to 8 Hz. The overhead associated with the decom-

pression of the contribution block is negligible, a distinct ad-

vantage compared to the HSS approach of Wang et al. (2011),

and hence should not impact significantly the performance of

the BLR factorization. The memory saving achieved during

the BLR factorization follows the same trend than the flop

count, as it increases with frequency. For the 8-Hz frequency

and ε = 10−5, the memory for LU-factor storage and the peak

oF CB stack during BLR factorization represent 41.6% and

23.9% of those required by the FR factorization, respectively

(Table 1). The reduction of the storage of the contribution

blocks (CB) is even higher. Both (LU and CB compression)

will contribute to reducing the volume of communication by a

substantial factor and improving the parallel efficiency of the

solver.
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Figure 4: SEG/EAGE overthrust velocity model.

CONCLUSION

We have presented applications of a new Block Low-Rank

(BLR) algebraic sparse direct solver for frequency-domain seis-

mic modeling. The computational time and memory savings

achieved during BLR factorization increase with the size of

the computational grid (i.e., frequency), suggesting than one

order of magnitude of saving for these two metrics can be

viewed for large-scale factorization involving several tens of

millions of unknowns. Future work involves implementation

of MPI parallelism in the BLR solver and a sensitivity analysis

of FWI to the BLR approximation before application of visco-

acoustic FWI on wide-azimuth data recorded with fixed-spread

acquisition geometries (Brossier et al., 2013). The computa-

tional efficiency of the BLR solver might still be improved

by iterative refinement of the solutions (although this refine-

ment needs to be performed for each right-hand side) and/or

by performing the BLR factorization in double precision. The

computational savings provided by the BLR solver might al-

low to view frequency-domain seismic modeling in realistic

3D visco-elastic anisotropic media (Wang et al., 2012).
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F Flop count LU Mem LU Peak memory Flop count (%) (BLR) Compressing factors (BLR)

(FR) (FR) (FR) ε = 10−3
ε = 10−4

ε = 10−5
ε = 10−3

ε = 10−4
ε = 10−5

2 8.957E+11 3 GB 6 GB 21.1 24.8 36.6 3.5 4.5 5.2

4 1.639E+13 22 GB 25 GB 12.7 18.6 25.6 1.1 1.4 1.8

8 5.769E+14 247 GB 445 GB 9.5 14.8 21.3 0.3 0.4 0.5

F Mem LU (%) (BLR) Peak of CB stack (%) (BLR) Average storage CB (%) (BLR)

ε = 10−3
ε = 10−4

ε = 10−5
ε = 10−3

ε = 10−4
ε = 10−5

ε = 10−3
ε = 10−4

ε = 10−5

2 44.7 53.4 61.8 16.8 23.9 32.3 30.9 41.1 51.1

4 34.5 42.2 50.0 19.0 21.7 24.4 20.7 29.3 38.1

8 21.3 28.9 41.6 15.9 19.4 23.9 15.0 22.5 30.3

Table 1: Statistics of the Full-Rank (FR) and Block Low-Rank (BLR) simulations. F(Hz): modeled frequency. Flop count: number

of flops during LU factorization. Mem LU: Memory for LU factors in GigaBytes. Peak of CB stack: Maximum size of CB stack

during LU factorization in Gigabytes. The metrics (flops and memory) for the low-rank factorization are provided as percentage of

those required by the full-rank factorization (first 3 columns - top row).
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Figure 5: (a-c) Full-rank solution (real part). (a) 2 Hz, (b) 4 Hz, (c) 8 Hz. (d-f) Difference between full-rank and low-rank solutions

for ε = 10−3. (d) 2 Hz, (e) 4 Hz, (f) 8 Hz. (g-i) Same as (d-f) for ε = 10−4. (j-l) Same as (d-f) for ε = 10−5. Amplitudes are

clipped to half the mean amplitude of the full-rank wavefield on each panel.

0

1

2

3

4D
e
p
th

 (
k
m

)

0
Dip (km)

5

10

15

20

C
ro

ss
 (k

m
)

5 10 15 20

0

1

2

3

4D
e
p
th

 (
k
m

)

0
Dip (km)

5

10

15

20

C
ro

ss
 (k

m
)

5 10 15 20

0

1

2

3

4D
e
p
th

 (
k
m

)

0
Dip (km)

5

10

15

20

C
ro

ss
 (k

m
)

5 10 15 20

0

1

2

3

4D
e
p
th

 (
k
m

)

0
Dip (km)

5

10

15

20

C
ro

ss
 (k

m
)

5 10 15 20a)                                b)                                 c)                                d)

Figure 6: 2-Hz RTM image from full-rank (a) and low-rank (b-d) solutions. (b) ε = 10−5, (c) ε = 10−4, (d) ε = 10−3.
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