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Résumé I

Modélisation numérique de la dissolution des cavités karstiques

Résumé

La dissolution de cavités karstiques appelle à une description multi-échelle.

A partir d’une discussion des hypothèses les plus fréquemment utilisées, un

modèle à l’échelle du pore (ou micro-échelle) est développé pour des schémas

réactifs géochimiques simples. L’impact du choix de conditions aux limites

réactives ou équilibre thermodynamique est discuté. Ce modèle à l’échelle

du pore est ensuite utilisé pour le développement de modèles aux échelles

supérieures.

Le premier problème traité considère le transport sur une surface chim-

iquement hétérogène et rugueuse, caractérisée par une condition mixte pour

le transfert de masse. Le modèle résultant est un modèle de surface effective

(ESCM). Dans ce modèle, la surface initiale est remplacée par une surface

localement lisse et homogène sur laquelle des conditions aux imites effectives

sont imposées. Un exemple typique correspond à un écoulement laminaire sur

une surface soluble contenant des particules de matière insoluble. Le concept

de surface effective est développé à l’aide d’une méthode de décomposition de

domaine. Dans ce contexte, vitesse, pression et concentration à la petite échelle

près de la surface sont estimées par une méthode de développement asympto-

tique par rapport aux champs loin de la surface. Des problèmes de fermeture

sont alors obtenus qui sont utilisés pour définir la position de la surface effec-

tive et les conditions aux limites effectives associées. L’effet sur les propriétés

effectives de la position de la surface, des nombres de Reynolds, Schmidt et

Damköhler est étudié. Une comparaison entre des résultats numériques à pe-

tite échelle avec ceux obtenus par le modèle effectif montre un bon accord.

Dans le cas du transport dans un milieu poreux, le deuxième problème

de changement d’échelle étudié, une méthode de changement d’échelle basée

sur la prise de moyenne spatiale est proposée (PMM) à partir du problème à

l’échelle du pore avec des conditions aux limites d’équilibre thermodynamique

ou réactives non-linéaires. Une expression générale du modèle macroscopique

est obtenue impliquant plusieurs propriétés effectives qui sont données par la

résolution de problèmes de fermeture à l’échelle du pore. Pour une cellule

unitaire représentative stratifiée, les paramètres effectifs sont obtenus analy-

tiquement ou numériquement, alors que les propriétés pour des cellules plus

complexes 2D/3D sont obtenus numériquement. L’impact sur les paramètres

effectifs des propriétés physiques à l’échelle du pore (en terme de nombre de

Péclet, Damköhler et ordre de la réaction) est étudié pour des cellules unitaires
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1D, 2D ou 3D. On montre que la tortuosité joue un rôle important dans les cas

2D et 3D, tandis qu’elle n’intervient pas classiquement pour le cas de cellules

stratifiées. Quand le nombre de Damköhler est très petit, le coefficient de réac-

tion effectif est identique à celui à l’échelle du pore, puis le modèle tend vers

une situation équivalente à la condition d’équilibre thermodynamique lorsque le

nombre de Damköhler devient très grand. En conséquence, le terme d’échange

dans le bilan de masse macroscopique prend des formes mathématiques dif-

férentes. Un exemple d’application du modèle macroscopique est présentée en

mettant l’accent sur l’apport potentiel des termes additionnels non-classiques

sur la précision des prédictions.

Le modèle macroscopique de dissolution de milieu poreux est aussi utilisé

comme un modèle à interface diffuse (DIM) pour décrire la dissolution d’une

cavité à grande échelle, une cavité de gypse dans l’illustration traitée dans

la thèse. Le modèle est basé sur l’approximation de pseudo-constituant, avec

une condition d’équilibre à l’échelle du pore sur l’interface fluide-solide. Une

méthodologie numérique est proposée pour choisir correctement les paramètres

effectifs du DIM de façon à reproduire avec suffisamment de précision les flux

et la vitesse de récession de l’interface. Une étude spécifique est effectuée

sur l’impact du choix du modèle de bilan de quantité de mouvement macro-

scopique. De manière intéressante, les résultats numériques ne suggèrent pas

un impact très important de ce choix dans le cas des problèmes aux limites

traités. Des calculs ont aussi été effectués, dans le cadre d’une approximation

de Boussinesq, pour évaluer l’impact éventuel de mouvements de convection

naturelle. Les résultats indiquent un impact faible dans le cas de dissolution de

cavités de gypse. Le potentiel de la méthode est illustré dans deux cas: un cor-

respondant à une lentille de gypse dans un aquifère, l’autre au cas d’un pilier

isolé dans une carrière souterraine. Les conséquences de la dissolution sur la

stabilité mécanique sont étudiées à l’aide d’un modèle géomécanique simplifié.

Enfin, un cas test est étudié montrant la possibilité d’utiliser le modèle dans

le cas de dissolution d’une cavité saline, matériau plus soluble que le gypse.
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Numerical modeling of the dissolution of karstic cavities

Abstract

The karstic cavity dissolution problems encountered worldwide are often

studied from a hierarchical point of view. Based on a discussion of the fre-

quently adopted assumptions, a pore-scale (or micro-scale) model is first devel-

oped for a simple geochemistry scheme. The impact of implementing reactive

or thermodynamic equilibrium boundary condition at the dissolving surface is

discussed. Such a pore-scale model is subsequently used as a basis for devel-

oping models at higher scale levels.

The first problem deals with transport from a heterogeneous and rough sur-

face characterized by a mixed boundary condition. The resulting macro-scale

model takes the form of an effective surface theory. In the homogenized model

developed with the effective surface concept (denote ESCM), the original rough

surface is replaced locally by a homogeneous and smooth surface, where effec-

tive boundary conditions are prescribed. A typical example corresponds to

a laminar flow over a soluble salt medium which contains insoluble material.

To develop the concept of effective surface, a multi-domain decomposition ap-

proach is applied. In this framework the velocity, pressure and concentration

are estimated at the micro-scale with an asymptotic expansion of deviation

terms with respect to macro-scale velocity and concentration fields. Closure

problems for the deviations are obtained and used to define the effective sur-

face position and the corresponding boundary conditions. The evolution of

some effective properties and the impact of surface geometry, Reynolds (Re),

Schmidt (Sc) and mean Damköhler (D̂a) numbers are investigated. A com-

parison between the numerical results obtained with this effective model and

those from direct numerical simulations with the original rough surface shows

good agreements.

In the case corresponding to mass transport in porous media, upscaling

is carried out with the method of volume averaging to develop a macro-scale

porous medium model (denote PMM), starting from a pore-scale transport

problem involving thermodynamic equilibrium or nonlinear reactive boundary

conditions. A general expression to describe the macro-scale mass transport

is obtained involving several effective parameters which are given by specific

closure problems. For a representative unit cell with a simple stratified ge-

ometry, the effective parameters are obtained analytically and numerically,

while for those with complicated geometries, the effective parameters are only

obtained numerically by solving the corresponding closure problems. The im-
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pact on the effective parameters of the fluid properties, in terms of pore-scale

Péclet number (Pe), and the process chemical properties, in terms of pore-

scale Damköhler number (Da) and reaction order (n), is studied for periodic

stratified, 2D and 3D unit cells. It is found that the tortuosity effects play

an important role on the longitudinal dispersion coefficient in the 2D and 3D

cases, while it is negligible for the stratified geometry. When Da is very small,

the effective reaction rate coefficient is nearly identical to the pore-scale one,

while when Da is very large, the reactive condition turns out to be equivalent

to pore-scale thermodynamic equilibrium, and the macro-scale mass exchange

term is consequently given in a different form from the reactive case. An exam-

ple of the application of the macro-scale model is presented with the emphasis

on the potential impact of additional, non-traditional effective parameters ap-

pearing in the theoretical development on the improvement of the accuracy of

the macro-scale model.

The above developed macro-scale porous medium model is also used as a

Diffuse Interface Model (DIM) to describe the evolution of a gypsum cavity for-

mation induced by dissolution. The method is based upon the assumption of

a pseudo-component dissolving with a thermodynamic equilibrium boundary

condition. A methodology is proposed based on numerical computations with

fixed boundaries in order to choose suitable parameters for the DIM model and

hence predict the correct dissolution fluxes and surface recession velocity. Ad-

ditional simulations are performed to check which type of momentum balance

equation should be used. The numerical results did not show a strong impact

of this choice for the typical initial boundary value problems under consid-

eration. Calculations with a variable density and Boussinesq approximation

were also performed to evaluate the potential for natural convection. The

results showed that the impact of density driven flows were negligible in the

cases under investigation. The potential of the methodology is illustrated on

two large-scale configurations: one corresponding to a gypsum lens contained

within a porous rock layer and the other to an isolated pillar in a flooded

gypsum quarry. Geomechanical consequences of the dissolution in terms of

mechanical stability is evaluated with the help of a simplified geomechanical

model. A final case is also studied in which gypsum is replaced by salt to show

the applicability of the proposed methodology to a rapidly dissolving material.
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c = ρlωl, mass concentration of the dissolved species
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ceq thermodynamic equilibrium concentration of the
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cs mass concentration of the dissolved species defined at
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m-3
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Rdiss surface reaction rate, mol m−2 s−1
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s closure variable for the pressure, Pa s
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wv
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layer and the velocity boundary layer, respectively

ε total volume fraction of the liquid phase and the
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Introduction en français

La dissolution de cavités, et plus généralement de milieux poreux, est une

problématique qui se retrouve dans de nombreux domaines [10–13]. Dans cette

thèse, on s’intéresse plus précisément à la dissolution de milieux naturels, soit

causée par une action volontaire, comme dans le “solution mining”, soit comme

conséquence des écoulements souterrains (sur lesquels une action anthropique

n’est d’ailleurs pas à exclure). Sur ce dernier aspect on considérera princi-

palement la genèse et l’évolution des karsts. La dissolution des karsts peut

conduire à des sites touristiques remarquables (comme par exemple Tsingy de

Bemaraha Strict Nature Reserve, à Madagascar, Fig. 1.11). Les karsts inter-

viennent aussi de manière très importante dans la gestion des ressources en

eau. Enfin, la dissolution de cavités souterraines est aussi un danger poten-

tiel pouvant conduire à l’effondrement de structures de tailles très importantes

(“sinkhole” dans le texte en anglais) [14–16] (Figs. 1.3 et 1.4). Les structures

qui motivent ce travail sont marquées par l’existence de plusieurs échelles car-

actéristiques, comme cela est illustré par exemple sur la Fig. 1.1. Cette thèse

s’intéresse au développement de méthodes permettant de prendre en compte

cet aspect multi-échelle au cours de diverses étapes de modélisation. C’est

donc sur le transport dans un système multi-échelle complexe que l’accent est

mis, au détriment de la complexité géochimique, qui sera traitée de manière

beaucoup plus schématique dans ce manuscrit. Ces questions préalables sont

traitées dans le chapitre 2.

Les diverses situations multi-échelles envisagées sont schématisées Fig. 1.7.

La dissolution peut avoir lieu à la surface d’une roche soluble, qui peut être

imperméable. Elle peut avoir lieu à l’intérieur du domaine rocheux si celui-ci

est perméable (milieu poreux). On peut identifier les situations suivantes:

1. la dissolution d’une paroi imperméable pose souvent un problème de

changement d’échelle. Les parois naturelles sont en effet souvent affec-

tées par des rugosités et des hétérogénéités, à une échelle bien inférieure

1http://extra-velganza.blogspot.fr/2012/03/tsingy-de-bemaraha-strict-nature.html

1



2 Introduction en français

le plus souvent à celle de la cavité que l’on souhaite modéliser. Il est

donc intéressant de voir si on peut remplacer cette surface affectée de

variations à petite échelle par une surface localement lisse et homogène,

affectée de conditions aux limites effectives. Une telle problématique est

celle de la mise en place d’une surface effective, problème qui sera traité

au chapitre 3. La méthodologie utilisée pour atteindre ce but est celle

d’une méthode de décomposition de domaine, avec un raccordement en-

tre les équations de bilan dans le grand volume de la cavité et celles

dans un volume élémentaire contenant un motif de la surface rugueuse

et hétérogène. Deux points cruciaux sont en particulier examinés: (i) la

position de la surface effective, (ii) les valeurs de conditions aux limites

effectives à utiliser pour reproduire au mieux les champs à grande échelle.

2. la description macroscopique de la dissolution d’un milieu poreux. Il

s’agit d’un problème de dispersion active, c’est à dire en présence d’une

réaction chimique sur l’interface liquide/milieu soluble. Plusieurs cas

ont été déjà traités dans la littérature. La thèse (chapitre 4) propose

une extension de ces cas dans les directions suivantes: (i) la condition

à l’interface liquide/soluble est du type réactive non-linéaire, avec un

terme de réaction chimique, utilisé par exemple pour décrire la dissolu-

tion de gypse ou carbonate, (ii) sur le plan de la technique mathéma-

tique de changement d’échelle, qui est une théorie de prise de moyenne

des équations microscopiques, la prise en compte des termes vitesse de

l’interface de manière complète apporte des éclairages plus rigoureux sur

l’apparition de certains termes dans les équations macroscopiques, (iii) la

théorie produisant des termes complémentaires par rapport aux termes

“classiques” de dispersion et de réactivité effective, l’impact de ceux-ci

est étudié sur un cas macroscopiquement mono-dimensionnel et validé

par simulation numérique directe.

Dans un dernier chapitre, un “workflow” est proposé pour aborder sur un

cas de cavité réelle la mise en oeuvre de modèles de dissolution à interface

diffuse (c’est à dire ne réclamant pas un suivi explicite de l’interface de dis-

solution). Plusieurs difficultés sont en effet rencontrées: (i) l’interface diffuse

a une épaisseur qui peut venir interférer avec les couches limites massiques

et visqueuses, (ii) les temps de dissolution peuvent être très longs, la forme

des cavités très affectés par l’hydrodynamique, rendant une convergence aux

paramètres numériques dans les cas 3D réels difficile à maîtriser. Ces divers

aspects sont abordés à partir de plusieurs exemples:
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1. un cas 2D d’une structure aquifère avec une lentille de gypse pouvant

conduire à une situation de “sinkhole”,

2. le cas de la dissolution d’un pilier de gypse dans une carrière souterraine,

3. la dissolution par “solution mining” d’une cavité de sel à partir d’un

puits double.

Une première tentative, très simplifiée, est également proposée, en couplant le

modèle de dissolution à un modèle géomécanique, pour estimer de manière plus

quantitative le couplage entre la dissolution et les risques d’endommagement

mécanique.
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Chapter 1

Introduction

Dissolution of underground cavities and porous media can be found in many

fields, such as solution salt mining, the formation of karstic structures, acid

injection in petroleum engineering, CO2 storage, etc, [10–13]. Among these

different mentioned fields, karst, which results from the dissolution of soluble

rocks, is particularly important because it characterizes almost one fifth of the

continents and are particularly vulnerable to environmental problems such as

pollution. The dissolution of karst bedrocks may lead to various structures and

some become tourist attractions because of the fantastic views, for instance in

Tsingy de Bemaraha Strict Nature Reserve, Madagascar, as presented in Fig.

1.11. This is also a good example to illustrate the spatial heterogeneity and

the multi-scale features of karst. In this figure, one may observe the narrow

wavelength of the vertical patterns, as well as the horizontal distribution of

the conical depressions on top of the rocks. Both shapes seem periodic but

with different characteristic lengths. Despite of the pleasant features, the de-

velopment of karst may induce various problems, such as high mineralization

of groundwater, subsidence and collapse of land surface [1,17], etc. Therefore,

scientific management of karst is required and a good understanding of the

dissolution mechanisms is of great significance to provide support for safety

strategy making, engineering sites selections and so on, which is the motivation

of this study.

The investigation of karstic formations can start from the study of cav-

ities, the evolution of which is related to the development of nearly all the

important karstic features [18]. Among various karstic structures related to

caves as represented in Fig. 1.2 2, we are particularly interested in the context

1http://extra-velganza.blogspot.fr/2012/03/tsingy-de-bemaraha-strict-nature.html
2geologuesprospecteurs. fr
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Figure 1.1: Karst in Tsingy de Bemaraha Strict Nature Reserve, Madagascar.

of sinkhole development. Sinkhole hazards have drawn great attention from

the public, the researchers and the engineers because of their worldwide ex-

tent of occurrence [13, 19–31] and their great impact on society. The depths

and diameters of sinkholes may vary from a couple of meters up to several

hundred meters [2, 12, 14, 15, 28, 32], which may threaten the safety of human

beings, affect the stability of infrastructures and destroy farmland, etc. To

illustrate the sinkhole disasters, an example of collapse sinkhole is provided in

Fig. 1.33, which took place in northern Guatemala City in May 2010, leading

to a three-story building falling in. Another example is that the occurrence

of catastrophic subsidence induced a total damage worthy £1,000,000 in the

urban area of Ripon, North Yorkshire, England [29], within only ten years in

the late 20th century.

To better understand the sinkhole genesis, sinkhole classification was con-

ducted in some recent studies [14–16], according to the generation process. The

first group represents the solution sinkholes induced by the gradual solutional

lowering of the ground, which seldom leads to hazard due to the slow process.

The second group of sinkholes differ in that they are created by internal erosion

and deformational processes of subsurface karstification. This second group of

sinkholes can be further separated into different types, depending on the ma-

terial and mechanism involved. A schematic description of different patterns

3http://geogiams4.wikispaces.com/images
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Figure 1.2: Karst landscapes.

Figure 1.3: A sinkhole example.

of sinkholes is provided in Fig. 1.4.

The upward propagation of the underground cavities leads to the break-

down of the overlying formations, which can be bedrock (soluble), caprock

(insoluble) or unconsolidated cover, and creates collapse sinkholes. In terms of

bedrocks, karst structures develop the most widely in carbonate environment

such as limestone, marble and dolomite, etc [33,34], while salt (NaCl) and gyp-

sum (CaSO4 ·2H2O) are also important bedrocks with high solubilities, about

7500 and 150 times more soluble than limestone (CaCO3), respectively [25]. As

an illustration, the longest gypsum cave in the world, Optymistychna (Ukraine)

had a record of 230 km passageways in 2006: the longest cave (limestone caves

included) in Eurasia.

Collapse sinkholes are the most hazardous type and have received much
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Figure 1.4: Sinkhole patterns [1].

attention because they may form within a relatively short time, only days,

weeks or years before catastrophic collapse happens, especially in evaporite

deposits (e.g. salt and gypsum) [25,32]. In addition to the shallow subsurface

environment, the lower mechanical strength and the greater heterogeneity of

gypsum caves make it easier to lead to sinkholes than the carbonate ones

[1, 15, 19, 25]. The evolution of the collapse sinkholes can be schematically

illustrated by Fig. 1.5 and can be summarized by several stages. First, the

preexisting fractures in rocks are enlarged by dissolution and gradually form

an underground cavity. When the cavity reaches a certain size, the bedrock

becomes overburdened and mechanical effects start to play a more important

role than earlier, resulting in small detachments of rock slabs from the walls

and ceilings of the cavity, especially around the faults. With the breakdown

area approaching to the land surface, the system becomes unstable and collapse

finally happens in a short time [2, 22].

In addition to natural processes, human activities such as mining and un-

derground quarries accentuate karst development to lead to subsidence and

collapse [13, 22, 23, 30, 35–37]. An example of the solution salt mining cavities

is illustrated in Fig. 1.6. As shown in Fig. 1.6a, a concentric leaching well is

drilled to the final depth of the salt layer, located at about 280 meters beneath

the ground. The tubing is constituted by concentric tubes. Then fresh water
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Figure 1.5: An example schematically illustrating the temporal evolution of a
collapse sinkhole [2].

is injected through the central annulus with an inlet flow of 3 m3 h−1 during 4

days followed by 1.5 m3 h−1 during 8 days [3]. The cavity created is illustrated

in Fig. 1.6b, with a radius about 1.4m after 12 days, showing a fast dissolution

rate.

Examples regarding studies of different types of sinkholes are available

in the literature, for instance, Salvati and Sasowsky [38] and Heidari et al.

[24] investigated the development of cover collapse sinkholes in groundwater

discharge areas. Gechter et al. [17] conducted an experiment and developed

a conceptual model to study the upward enlargement of a rock salt cavity.

Hiller et al. [39] carried out 3D modeling regarding the evolution of collapse

sinkholes. Kaufmann [2] performed simulations to both solution and collapse

sinkholes, involving different rock types.

A series of attempts, for instance field survey, laboratory experiments and

numerical modelings to mention a few, have been done to investigate the karst

morphologies and the geneses of underground cavities and sinkholes. However,

the main interest of this study is the numerical aspect, i.e., models used to

simulate the karst dissolution or similar reactive transport problems. In the

following, a literature review concerning the numerical models at different scale

levels is presented.

The research objectives for this thesis will be focused, on one hand, on

the interaction of dissolution and fluid and solid mechanics, with the emphasis

on modeling issues, and, on the other hand, on relatively rapidly dissolving

materials. Therefore, the geochemistry taken into account in the models will
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(a) (b)

Figure 1.6: (a) Schematic illustration of solution mining process; and (b) the
shape of the cavity after 12 days, with a radius about 1.4m [3].

be relatively simple and more adapted to salt and gypsum dissolution. Many

aspects of the findings, however, can be used to develop similar models for

more complex geochemistry, like, for instance, the case of carbonate rocks

dissolution.

1.1 Literature review on multi-scale models

Natural geological systems, such as underground cavities, must be generally

considered as heterogeneous and multiple-scale systems. This is illustrated in

Fig. 1.7, in which l is used to denote the liquid phase and s the solid phase,

with the subscripts 1 and 2 representing different types of solid materials. One

may consider, depending on the computational resources available, that met-

ric to decimetric rock heterogeneities may be discriminated by the cavity-scale

discretization. However, in most applications it is necessary to incorporate

smaller heterogeneities into the mathematical description of the problem it-

self, i.e., the partial differential equations (PDEs) representative of the physics
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involved. This is the case for the dissolving surface, which may be affected by

heterogeneities, roughnesses created either by the dissolving heterogeneities

or by a coupling between hydrodynamic instability in the vicinity of the dis-

solving surface and dissolution. The interface recession cannot be followed in

the cavity-scale simulation at the correct small-scale, and this problem can

be overcome by using hybrid models [40, 41] or the concept of effective sur-

face [42, 43]. This is also the case if the solid formation is a porous medium

or a small scale fractured system, which calls for the use of a porous medium

macro-scale theory. Therefore, the various numerical models can be classified

into different categories according to the scales involved.

Figure 1.7: Multi-scale features of a sinkhole formation problem.

1.1.1 Pore-scale models

Either the effective surface model or the porous medium model is developed

from a pore-scale (micro-scale) description of the dissolution problem. In the

pore-scale study, three mechanisms are important as illustrated in Fig. 1.8, i.e.,

reactants transport by diffusion and advection to the dissolving surface, ions

unbound from the solid and ions migrating through the diffusional boundary

layer to the bulk flow by diffusion and advection [10,44,45].

The whole dissolution process is limited by the slowest mechanism, for

instance if the mass transport to and away from the dissolving surface is slower

than the dissolution rate, the process is mass transport-limited, while when

the reaction kinetics is too slow to consume the reactants immediately after

they get in contact, the process is reaction-limited. The dissolution of rock

salt is the former case due to the fast chemical reaction kinetics, while the
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dissolution of carbonate and sulfate minerals are controlled with comparable

impact of chemical reaction and mass transport [10,45].

Figure 1.8: Schematic illustration of the dissolution of a crystal grain in a bulk
solution.

The dissociation of salt, gypsum and limestone, which are important karst

bedrocks, follow the reactions

NaCl ⇋ Na+ +Cl−, (1.1)

CaSO4·2H2O ⇋ Ca2++SO2−
4 +2H2O, (1.2)

and

CaCO3 +CO2 +H2O ⇋ Ca2+ +2HCO−
3 (1.3)

respectively.

Although there are different expressions of the surface reaction rates, the

following equation

Rdiss = ks

(
1− cs

ceq

)n

, (1.4)

or its equivalent form was used in some studies for limestone, calcite, gyp-

sum or salt [39, 45–56], where ks is the reaction rate coefficient, cs the total

concentration of the dissolved species at the surface, ceq the corresponding

thermodynamic equilibrium concentration and n the nonlinear reaction order.

When surface reaction is fast, thermodynamic equilibrium at the dissolving

surface is easily reached and the boundary condition becomes
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cs = ceq, (1.5)

which is the case of salt dissolution in water for instance [17].

When dealing with dissolution problems with a reactive boundary condition

like Eq. 1.4, the assumption of a linear reaction, n = 1, was often adopted in

the previous studies for the sake of simplicity [57,58]. However, it was claimed

about two decades ago in [53] that with linear surface reaction, karst channels

cannot form within geological realistic times, even if under the most favorable

conditions. Experimental studies of the karst genesis obtained valuable results

corresponding to the dissolution kinetics of various rock types and demon-

strated the nonlinear property of the dissolution rates [39,47–49,51,53,55,59].

Carbonate rocks

In addition to the mixed kinetics of surface reaction and mass transport, the

dissolution of CaCO3 in the H2O-CO2-CaCO3 system is also controlled by the

slow kinetics of the reaction CO2 + H2O = H+ +HCO−
3 [44]. The conversion

of CO2 into H+ and HCO−
3 is limited by two parallel processes

CO2 +H2O ⇋H2CO3 ⇋ H+ +HCO−
3 , (1.6)

and

CO2 +H2O ⇋CO2 +H+ +OH− ⇋ H+ +HCO−
3 . (1.7)

In the first investigation of the reaction nonlinearity carried out by Plum-

mer and Wigley for the Iceland spar (main component CaCO3 ) dissolution in

CO2-saturated solutions [54], it was found that under 25°C and 1 atm total

pressure the reaction orders follow

n ≈ 2 when cs ≤ 0.98ceq and pH ≤ 5.9, (1.8)

and

n ≈ 4 when cs > 0.98ceq and pH > 5.9. (1.9)

Similar results for Iceland spar dissolution were obtained by Palmer [18]

by analyzing the data in [60], while different values were observed for natural

limestone and marble dissolution rates by Svensson and Dreybrodt [48], whose

measurements showed that n approached to between 3 and 4 when cs > 0.8ceq.

Generally, the dissolution rate is dependent on various parameters, for in-
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stance the solute saturation state, flow rate, temperature, solvent salinity,

dissolving surface area and solute impurities, etc [2, 12, 32, 44, 47, 50, 61–63].

Therefore, the reaction order and reaction rate coefficient are also different

corresponding to the lithology, the flow type and the environment involved.

For example, in the case of a laminar flow of calcite aggressive water flowing

through a narrow fracture of limestone with an initial aperture between 0.005

and 0.1 cm, the chemical reaction follows a linear rate law when the process is

limited by the reaction illustrated in Eq. 1.6 and diffusional mass transport.

While for the dissolution kinetics of natural limestone under turbulent flow

conditions, in system open to CO2, the empirical higher-order rate laws gave

Rdiss = kn1
(1− cs/ceq)n1 for cs < ĉs, (1.10)

Rdiss = kn2
(1− cs/ceq)n2 for cs ≥ ĉs, (1.11)

according to [48, 53]. The obtained values are: n1 between 1.6 and 2.1, n2

between 2.8 and 4.1, ĉs between 0.65ceq and 0.8ceq, kn1
about 1.8×10−10 mol

cm -2 s-1 and kn2
= kn1 (1− cs/ceq)n1−n2 . The rate laws expressed in Eqs. 1.10

and 1.11 are also valid in system closed to CO2, but with different reaction

orders and reaction rate coefficients [53].

Gypsum

Parameters of Eq. 1.4 obtained by Jeschke et al. [49] for gypsum (through

the interpretation of batch or disk experiments with the help of a transport

model4) are:

n = 1.2±0.2 and ks = 1.3×10−4 mmolcm−2s−1 ±15%, (1.12)

for conditions far enough from equilibrium ( cs
ceq

≤ 0.94) and

n ≈ 5 and ks = 20mmolcm−2s−1, (1.13)

for conditions close to equilibrium5. These values are consistent with values

found in the literature, provided the part played by transport is accurately

4This is a difficult problem to separate surface kinetics from the global kinetics involving
also the transport through the boundary layer and we shall not comment on the accuracy
of such determination in the case when transport limitation is not negligible.

5These data are taken from Fig. 6 in [49].
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determined [45, 64]. At this point of the literature review, we see that deter-

mining a local, in the sense of a Gibbs description of the interface, boundary

condition for the dissolution reaction rate which is independent of the flow

conditions in the neighborhood of the surface is very difficult. Going from the

observed macro-scale kinetics to this point-wise boundary conditions, requires

a very fine CFD (Computer Fluid Dynamics) modeling of the experimental

setup, which is not always carried out to a great accuracy. This point has

to be kept in mind when writing the pore-scale dissolution boundary-value

problem.

In addition to the above experimental study of the dissolution kinetics,

numerical modelings are also implemented with different methods at pore-

scale in order to understand the physics of dissolution. For simulating the

cavity evolution problem, as well as similar reactive transport problems with

evolving solid structures, direct numerical simulation of the pore-scale problem

is the most secure way because it makes a minimum of approximations, with

the advantage of considering the porous structures.

The early work of Schechter and Gidley [65] investigated the effects of sur-

face reaction on pore size evolution in porous medium and concluded that it

is the large pores that determine the response of the system to acid. In [66],

two numerical methods, random walks and finite difference, were used to in-

vestigate different configurations of porous media, with different regimes of the

dissolution process distinguished, i.e., uniform dissolution over the solid phase

under reaction-limited case and unstable dissolution under transport-limited

case. Moreover, in the latter case, when diffusion is predominant, dissolution

favors the wider parts of the pore space or larger pores, while when convection

is predominant, dissolution localizes along the flow path. Similar results were

obtained in [6] with pore network models. In [67], the authors investigated

the evolution of fractures by dissolution and by the cycles of dissolution and

deposition, and revealed the great impact of flow property on the geometry

evolution of the fracture. In [56], the time evolution of fracture aperture over

the length of the fractures was investigated using a finite difference method

based numerical model, affected by the initial fracture geometry and the so-

lute saturation content of the inflowing flow. Dimensionless numbers were also

used as in [66, 67] to indicate the flow and reactive features, which have great

impact on the the fracture geometry and solute transport.

Recently, the lattice Boltzmann method (LBM) [68, 69] and the smoothed

particle hydrodynamics (SPH) approach [70–72] were widely used. LBM is
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a grid-based method which is able to handle complex flows, not solving the

Navier-Stokes or the Diffusion-Convection equations directly. Pan et al. [73]

used Shan-Chen lattice Boltzmann approach for modeling immiscible two-

fluid-phase flow in porous medium systems. Szymczak and Ladd [74,75] stud-

ied the unstable nature of the dissolution front by simulating the dissolution

of fracture, with an implicit LBM for the calculation of velocity field and a

random walk method for the species transport. A resistor network model

was constructed in [75] for the interaction between flow channels with the re-

sults comparable with the pore-scale ones, i.e., longer channels growing fast

and shorter channels disappearing. SPH is a mesh-free Lagrangian particle

method which has the advantage of not tracking the phase interfaces explicitly

in the case involving moving interfaces [76]. A comprehensive theory regarding

the SPH approach is available in [70]. The SPH method was used in [71] to

study the impact of Damköhler number, Péclet number and pore-scale hetero-

geneity on the reactive transport in porous media and in [72] to simulate the

diffusion and advection of species in macro-pores. Holmes et al. [76] extended

the method to three dimensional for modeling porous flow, and indicated that

the accuracy of SPH for flow with low Reynolds numbers is dependent on the

implementation of no-slip boundary conditions.

While valuable information is obtained from these pore-scale simulations,

the computational cost when dealing with large-scale problems, such as cavity

evolution, is too expensive. Moreover, the explicit tracking of the moving in-

terfaces in some circumstances induces numerical difficulties due to the large

deformation of the configuration. In the engineering practice, one would be

more interested in a macro-scale description of the dissolution problem which

would filter the pore-scale details. Therefore, some sort of macro-scale model-

ing is necessary. In the case involving the dissolution of a solid formation with

heterogeneous, rough surface, the macro-scale model often makes use of the

effective surface theory, which is discussed in the next subsection.

1.1.2 Effective surface theory

For mass, heat and momentum transport phenomena taking place over

heterogeneous and rough surfaces in the dissolution process, the surface char-

acteristic length-scale (linked to the heterogeneities) is generally much smaller

than the scale of the global mechanism, for instance in the cavity with stratified

rough surface presented in Fig. 1.9. In such circumstances, direct numerical

simulations (DNSs) become difficult to achieve in practical applications. To
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overcome this difficulty, a traditional way of solving such problems is to in-

corporate the micro-scale behaviors into a boundary condition over a smooth,

“homogenized” or effective surface.

Figure 1.9: An example of the karst underground cavity with stratified rough
surface, taken from ladepeche.fr.

The concept of homogenization was first proposed in [77] for the appli-

cation of multiscale asymptotic developments in periodic domains in nuclear

reactors [78]. Since then, homogenization technique via asymptotic analysis

has been applied in various fields. Recent studies include, for instance in [79],

the authors studied the influence of the heterogeneities located at a surface in

a three-dimensional elastic medium by using a homogenized interface model,

which describes the heterogeneous zone as an interface with ad hoc transmis-

sion conditions. Explicit homogenized equations were derived in [80, 81] for

the linear theory of electricity with very rough surfaces which oscillate be-

tween two parallel lines, separating two solids. In [82], homogenization was

conducted in a nonlinear reaction-diffusion problem, considering both Dirichlet

and Neumann boundary conditions, and was applied in extended predator-prey

ecological models. Haouala and Doghri [83] proposed a two-scale time homog-

enization formulation for coupled viscoelastic-viscoplastic materials subject to

large numbers of cycles, which is able to predict long time response. Zhao [84]

studied the convergence rates for the homogenization of rapidly oscillating
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Neumann boundary.

In a few studies, geometry changes were taken into consideration. For ex-

ample, the interface recession of a heterogeneous surface due to ablation was

taken into account through direct simulations in [85]. A recent study by Kumar

et al. [86] also considered geometry changes explicitly when upscaling the re-

active flow in a domain with oscillating boundaries, using matched asymptotic

expansions.

Regarding a fluid flowing over a rough solid surface, domain decomposi-

tion and multi-scale asymptotic analysis were first introduced in the pioneer

works of [87, 88] to develop an effective surface and the associated boundary

conditions for laminar flow over rough surfaces. Later on, the effective surface

concept was used to describe ablation processes in the aerospace or nuclear

safety context (e.g. in [43] on mass and momentum transfer problem and

in [42] on heat transfer problem). In the work of [89], an asymptotic approx-

imate solution was constructed in the horizontal periodic domains bounded

by a smooth wall on the bottom and a very rough wall on the top, filled by

a viscous incompressible flow. Asymptotic approximations were constructed

for the velocity and pressure in the H1-norm and L2-norm respectively, and a

Navier type effective boundary condition was derived.

While there are some similarities (the very idea of an effective surface),

one should not mix the solid-liquid problem with the problem of fluid flow-

ing over a porous medium domain. For this latter case, one seeks to link a

macro-scale description of the flow in the porous medium (e.g. Darcy’s law)

to a free fluid flow description in the channel (e.g., Navier-Stokes or Stokes

equations, depending on the importance of inertia effects). Different, more

or less heuristic, effective boundary conditions have been proposed [90–92] for

the momentum balance equations. Formal developments using homogenization

techniques can be found in [91–95] or using variants of averaging techniques and

matching techniques in [87, 96–102]. Different upscaling methods such as vol-

ume averaging approach and asymptotic expansions have been implemented

in order to obtain effective boundary conditions for various other transport

problems [87,96–100,102].

In this work, the domain-decomposition technique developed in [42,43] will

be applied to a problem of a rough heterogeneous reactive surface typical of a

medium with an insoluble material.
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1.1.3 Porous medium macro-scale models

The second multi-scale problem of interest is the development of macro-

scale models for flow in porous media by applying some sort of upscaling

method to the pore-scale models. As a result, several effective parameters are

introduced in the macro-scale models to relate the average behavior to the

pore-scale features. Such attempts to develop macro-scale dissolution models

can be found in the literature. Macro-scale models were developed for passive

dispersion, i.e., with no exchange at the liquid-solid interface, starting with the

well-known work of Taylor [103,104] and Aris [105] for dispersion in tubes. In

the general case, the macro-scale theory is proposed following various upscaling

techniques: Brenner [106] using a method of moment, Eidsath et al. [107]

using the method of volume averaging and Mauri [108] using the method of

homogenization. All methods bring some theoretical support for the classical

dispersion equation and also provide closure problems which can be used to

directly calculate the dispersion tensor components for various representative

unit cells. These theoretical methods have been used also to investigate the

case of active dispersion, i.e., with thermodynamic equilibrium or reactive

conditions at the fluid-solid interface.

The motivation of [109] is the determination of the effective properties in

the macro-scale equations describing the dissolution of NAPL (non-aqueous-

phase liquid) contaminants in porous media. In addition to the traditional

effective parameters, for instance the dispersion tensor6 and the effective mass

transfer coefficient, some non-classical parameters were introduced and their

importance were demonstrated in this work. Later, the active dispersion case

was studied in [110] with the closure problems solved with finite volume meth-

ods in the first case and with network modeling in the second case. The influ-

ence of the NAPL volume fraction and the orientation of the average velocity

field were also studied. Golfier et al. [10] developed a Darcy-scale local non-

equilibrium model using the method of volume averaging [102], which allowed

to capture all the observed features in terms of dissolution regimes and the op-

timum acid injection rate in the application of enhanced oil recovery. However,

the Darcy-scale model could not be used directly in a large-scale reservoir de-

scription due to the requirement of a very fine grid imposed by the small-scale

dissolution instabilities [111]. Consequently, it was further upscaled, leading

to two different sets of models at core-scale, with one being the one-medium

6The theory provides an “active” dispersion tensor in this case, different from the classical
passive dispersion case due to a different boundary condition at the liquid-solid interface.
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(or one-equation) model and another being the two-medium (or two-equation)

model [112]. Interestingly, the one-equation core-scale equations follow a form

similar to those previously developed at Darcy-scale. Simulations show that

the effective parameters are dependent on the dissolution process in a histori-

cal manner, at both Darcy and core-scale. In the first case, the assumption of

a direct relationship between the different macroscopic properties and porosity

was adopted, as classically made in geochemistry. Yet the case is more com-

plicated at the core-scale, as studied in detail in [113]. The study of Golfier et

al. [114] revealed that the mass transfer coefficient can be represented in terms

of the eigenvalue expansion of a Green’s function rather than a constant. The

influence of steady state closure problems on the effective mass transfer coef-

ficient was also investigated in this work and it was claimed that the results

can be improved by taking into account the transient closures, at the expense

of computational complexity. In [115], the author investigated the macro-scale

coefficients that characterize the propagation and interaction of CO2 molecules

with the porous medium, using the macrotransport theory developed in [116].

A 3D porous medium model was built in [117] which consists of thousands of

spherical particles and was divided into cells using Voronoi diagrams. The lon-

gitudinal and the transversal dispersion components were obtained by fitting

with the effluent curves and the tortuosity effect was discussed.

Porous media macro-scale models can be used of course to solve for porous

formation dissolution problems [118]. However, it has been recognized that

non-equilibrium porous media models can approach results with sharp dis-

solution interfaces, see for instance [10], and this can be used to replace the

original dissolution problem for solid-liquid systems by a diffuse interface model

(DIM) [119, 120]. Properties of the DIM model used in this perspective were

analyzed by Luo et al. [120], taking into account density variation effects. Such

a DIM approach was also implemented for a three-phase (i.e., solid-liquid-gas)

system, in the circumstances of cavity evolution [121]. These studies illustrate

the possibility of using DIM methods to solve dissolution problems without

an explicit treatment of the dissolving interface, allowing for the handling of

highly complex dissolution behaviors with multi-moving interfaces. However,

their implementation for solving very large cavity dissolution problems leads

to a series of difficulties which will be examined in this study.

In addition to the investigations on the development of macro-scale models

and the discussions on the generated effective parameters, another interesting

topic which has drawn great attention from the researchers is the instability
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problem. Two types of instabilities can be distinguished, with one being dis-

solution instabilities due to unstable dissolution process, i.e., dissolution front

in large pores propagating faster than in the small ones [65, 66]. The work

of Golfier et al. [10] mentioned above demonstrated the very important role

in the stability diagram of local equilibrium and local non-equilibrium fea-

tures. This allowed to predict wormhole propagation induced by dissolution

instabilities quantitatively and to characterize the impact of flow properties.

Later, [111] extended this analysis to domain of large extension. Two dif-

ferent regimes, namely “inlet” instability (instability in the dissolution of an

entirely homogeneous porous matrix) and “front” instability (instability in a

steadily propagating reaction front), were studied in [122]. The former ap-

proaches the maximum growth rate at a specific wavelength of perturbations

depending on the flow conditions, while the latter keeps growing within a large

range of wavelengths and is largely affected by diffusion. It was also revealed

in [59] that the dissolution of a fracture is inherently two dimensional and the

wavelengths are also dependent on reaction kinetics and flow rate but insen-

sitive to the initial roughness of the fracture. In various studies of Zhao and

coauthors [119,123,124], the impact of various factors on the morphology and

propagating speed of the unstable front between a fluid and a porous medium

was investigated, such as the domain shapes, Zhao number (representation of

advection, diffusion/dispersion and chemical dissolution mechanism), the per-

meability ratio between the artificial permeability in the fluid domain and the

real permeability in the porous medium domain, etc.

The second type of instability involves the coupling with hydrodynamic

instabilities, which remains to be an open complex problem, with an impor-

tant point being natural convection induced by density variation in dissolution

processes. Many attempts have been made to gain better understandings of

buoyancy-driven flow, for instance in [125–128]. The studies of [120, 121] are

examples related to the use of macro-scale transport models in such a prob-

lem, showing the presence of convective plumes and impact of buoyancy effects

on the evolution of dissolving surfaces, which developed under large Rayleigh

numbers and may be enhanced in the condition with large Péclet numbers.

1.1.4 Other models

In addition to the pore-scale and macro-scale models introduced above,

there are some models coupling descriptions at different scales, for instance,

the pore network model and the hybrid model. Moreover, different from the
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transport models, there are enormous studies investigating the karst genesis,

especially in the context of conduit development, by analyzing the related

hydraulic parameters. Although such methods are not used in this study,

they provide valuable knowledge of the cavity dissolution problems and brief

introductions are also given below.

Pore network models

Pore network models (PNM) are meso-scale representation of the porous

medium. The pore-scale geometry is transformed in a network of pore bodies

connected by pore throats. Flow dynamics in the system is resolved by using

approximations such as Poiseuille flows for the momentum balance. Such a

conceptual representation of the porous medium considers the topological ef-

fects, such as the connectivity, the aspect ratio and tortuosity, etc [129]. In

some studies, for instance [130] and [68], PNM was classified as a pore-scale

model, somehow improperly since the problem solved is not exactly the original

pore-scale problem. However, it is able to approximately reproduce the pore-

scale dissolution process to a certain accuracy and thus solve for much larger

volumes, i.e., including a larger number of pores, than pore-scale models [41].

As illustrated in Fig. 1.10a, the simple network uses idealized pore geom-

etry and topology. While the geometry illustrated in Fig. 1.10b can better

represent the real pore medium structures since it is extracted from real porous

materials. It is indicated in [130] that the accuracy of PNM relies on the accu-

rate characterization of the 3D pore structure, pore-throat geometry and ac-

curate modeling of flow behavior in the medium. Therefore, using physically

representative networks will improve the ability of PNM as a quantitative,

predictive model.

PNM has been used in many works to study dissolution problems. Algive et

al. [131], Varloteaux et al. [132] and Nogues et al. [133] used PNM to study the

impact of dissolution on permeability and porosity modification in the context

of diagenetic cycle or geological carbon sequestration. It was revealed that a

nearer-to-equilibrium solution and convective flow may lead to larger perme-

ability change than their counterparts, i.e., a far-from-equilibrium solution and

diffusive flow. PNM was used in [41] to study various reaction regimes and

the effect of concentration distribution on the macroscopic properties. The

authors indicated the requirements of special treatment when using PNM at

high Péclet numbers due to the large discrepancy observed when compared to

the pore-scale model results in such circumstances. Békri et al. [6] conducted

a study with PNM on mass transfer with mineral reaction in a single phase
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Figure 1.10: Pore network models: (a) model reconstructed with a regular
lattice in order to reproduce petrophysical properties of a real porous media
( [4]); (b) model extracted from the micro tomography images in order to get
the same structure as the real rock sample ( [5]). Taken from [6].

porous media as well as the impact of some dimensionless numbers. Core-scale

parameters were calculated with geometry evolutions due to mineral reaction

taken into account.

Hybrid models

In hybrid models, a small-scale model with high resolutions is used in part

of the overall domain and is linked to a large-scale model with coarser reso-

lutions used in the rest of the domain [134]. Hybrid models are imperative

in the conditions that pore-scale modeling is too expensive while macro-scale

modeling fails to describe the phenomena in a small portion of the studied

domain [40]. In [135], the authors illustrated a macro-scale model breakdown

example in the case of mixing-induced precipitation on (and/or dissolution of)

a porous matrix. Hybrid models have been studied by many authors in the

past few years, however the applications of hybrid models to subsurface wa-

ter flow and reactive transport remain limited [134]. In [136], the coupling of

a network model describing the pore-scale water flow and a continuum-scale

model describing the flow in a porous medium was used to obtain boundary

conditions for the network model that are representative of the larger-scale flow

patterns. Such a coupling reflects both the heterogeneity in the pore-scale re-

gion and the resistance in the continuum region as the flow responds to the

adjacent heterogeneity. The hybrid models that link the pore- and Darcy-scale

descriptions are also able to handle the highly localized heterogeneities [137].

In [40, 72, 134, 137], the applicability of the hybrid models was tested by com-
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paring the results of pore-scale simulations, obtained with the finite-volume

method or the SPH method, and (or) the analytical solutions, and they showed

good accuracy in the condition that the solute transport by advection is negli-

gible. In the study of Tomin and Lunati [138], the authors proposed a general

framework for a pore- and Darcy-scale hybrid algorithm extended from the

multi-scale finite volume method, and applied it to a two-phase flow problem.

The results demonstrated the ability of such hybrid methods to model the

transition from stable to unstable flow regimes. A particular feature obtained

in [139] is that the parameters in PNM may be dependent on the macro-scale

properties that take place at a larger characteristic length, which enables to

incorporate a dynamic fracture model in the proposed hybrid models.

Conduit evolution models

Among various studies concerning the genesis of karst cavities, a large pro-

portion of them involve the investigation of the early stage of karst aquifer

development. Originally, underground cavities intend to develop along preex-

isting fractures, with about 60% of the cave conduits following bedding planes

and the rest following joints [18, 140]. The density, penetrability and linkage

of fractures and bedding planes, as well as the hydraulic parameters involved

have strong impact on the cave morphology [12]. Numerically speaking, some

models have been developed to simulate the early stage of conduit evolution,

i.e., the dissolution enlargement of the preexisting fractures in rock matrix,

especially from a hydraulic perspective. Such studies usually focused on pre-

dicting the so-called “breakthrough time”, which terminates the early stage

of the evolution of karst aquifer, defined as the time to reach dramatic en-

largement of conduit and turbulent flow [53, 57, 140]. Early studies about the

karstification process used 1D pipe models to analyze the single conduit devel-

opment in limestone, [18, 52, 53, 141]. A main conclusion of these studies was

that the positive feedback of mutual enhancement of conduit enlargement and

flow rate governed the early stage of karst genesis. An approximation of the

breakthrough time was obtained in [53] , with

T = const(lf /ih)4/3a−3
0 k1/3

n2
c−4/3

eq years (1.14)

in which lf is the length of flow path; ih is the hydraulic gradient; a0 is the

initial fracture width.

Since 1D models were not able to capture the geometric features of the con-

duit development, 2D pipe network models representing interconnected con-

duits were developed in [142–144] for more complex limestone structures, and
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flow types were extended from laminar to turbulent. It was reported in these

works that both flow patterns and hydraulic boundary conditions have signif-

icant impact on cave patterns, with laminar flow and fixed hydraulic recharge

boundary conditions favoring the development of single passages while turbu-

lent flow and fixed hydraulic head boundary conditions intending to develop

maze caves. However, such models still did not take into account the important

impact of the fissure systems, which was improved by later models, consider-

ing the dual nature of karst formation and distinguishing correspondingly the

two flow types, i.e., flow in the fissure systems and flow in the conduits. The

coupling of the two different types of structures and flows was realized by

the so-called continuum-pipe flow models, which considered the fissure system

as a continuum and regarded the fractures as pipes as before [140, 145–147].

Due to the long residual time of water in the fissure systems, it was assumed

that the flowing water in the continuum is nearly saturated with respect to

the studied dissolving species. Such continuum-pipe models were employed in

the mentioned works to investigate the impacting factors of conduit develop-

ment in limestone or calcite. The assumptions of fixed hydraulic heads or the

combined fixed hydraulic heads/fixed discharge boundary conditions were also

often adopted in the continuum-pipe models and it was revealed in these pa-

pers that the initial diameter of the conduit, the initial hydraulic gradient and

the flow exchange between the prominent fracture and surrounding fissures are

the most important factors that affect the conduit enlargement and conduit

patterns. Birk and Rehrl, et al. [55,57,148] improved the continuum-pipe mod-

els by using time-variant hydraulic boundary conditions, and investigated the

gypsum caves other than the frequently studied carbonate formations. Gyp-

sum dissolution process was assumed to be limited by the diffusion of calcium

and sulfate from the dissolving surface to the bulk flow, due to the high solu-

bility of gypsum. The simulation results demonstrated that the development

of maze caves in the artesian areas is subject to the presence of the structural

preference, or else vertical shafts develop without structural preference. One

improvement of [149] is the consideration of the dissolution nonlinearity, when

modeling the cave evolution in a limestone aquifer. More recently, Schwarz

and Enzmann [150] conducted sensitive analysis of the geometrical properties

of the fractures on the fluid flow properties in reactive transport problems, and

it was reported that the average fracture permeability is most sensitive to the

average aperture and fracture roughness. While many interesting qualitative or

semi-quantitative results have been obtained for more or less schematic mod-
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els, the question of the accuracy of the simulations has not been thoroughly

analyzed, and this was one objective of the thesis work.

1.2 Motivation and objectives of this thesis

The motivation of this thesis is to better understand the dissolution mech-

anism of (karstic) cavities from multi-scale perspectives, especially in the con-

text of sinkhole formations. The objective of this present work are indicated

as follows:

1. a comprehensive discussion of the dissolution problem at the pore-scale

from a transport perspective, with gypsum dissolution as an example;

2. the development of a macro-scale effective surface model, in which a ho-

mogeneous, smooth surface is used to replace the original heterogeneous,

rough surface, where the mass transport takes place;

3. the development of a macro-scale porous medium model with the method

of volume averaging, which also behaves as a diffuse interface model to

describe the dissolution of a solid formation;

4. application of the proposed macro-scale models.

1.3 Outline of this thesis

This thesis consists of six chapters. In Chap. 1, a general introduction is

given, including a literature review about the multi-scale numerical models of

the dissolution problem, as well as the objectives of this thesis.

In Chap. 2, the general assumptions in modeling the dissolution problems

are presented, followed by the mathematical pore-scale dissolution model and

a comparison of using different boundary conditions at the dissolving surface.

In Chap. 3, the effective surface theory is implemented to a problem involv-

ing mass transport over a heterogeneous, rough surface within the boundary

layer of a laminar flow. An effective homogeneous, smooth surface is sought

to replace the original surface with the corresponding effective boundary con-

ditions. The impact of the roughness geometry and the flow and chemical

properties on the effective surface position and the effective behaviors of the

flow is investigated.
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In Chap. 4, a macro-scale model is developed with the method of volume

averaging, starting from the pore-scale model developed in Chap. 2. The

effective parameters in the macro-scale model are obtained by the resolution

of the closure problems, which represent the averaged behaviors of the pore-

scale features. The impact of the flow and chemical features on the effective

parameters, as well as the influence of some non-classical effective parameters

on the accuracy of the macro-scale model are discussed.

In Chap. 5, the above developed macro-scale model is applied in the mod-

eling of a large-scale cavity evolution problem. The macro-scale model is used

either in a porous medium dissolution problem, or as a diffuse interface model

(DIM) in the solid formation dissolution problem. A workflow is proposed to

choose the Darcy-scale momentum equations and the proper mass exchange

coefficient, in order to reproduce an accurate dissolving interface recession rate

with the DIM. In addition, the potential of the approach is shown on the 3D

modeling of gypsum lenses and pillars in a gypsum quarry which may lead to

the formation collapse.

In Chap. 6, the conclusions of this present study and the perspectives of

future works are presented.
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Chapter 2

Pore-scale dissolution

mechanism

In this chapter, the pore-scale model is developed, taking the gypsum

dissolution as an example. Several objectives are considered, including: (i)

the clarification of the assumptions adopted in the modeling; (ii) the gen-

eral mathematical formulation for the mass fraction field, fluid-solid interface

movement, etc.; and (iii) the impact of the different forms of boundary condi-

tions for describing the mass transport at the interface, i.e., kinetic boundary

condition versus thermodynamic equilibrium condition. In so doing, a general

multicomponent formulation is discussed to assess the accuracy of a gypsum

pseudo-component formulation, which is often used for mechanistic model-

ing1, followed by the mathematical description of the dissolution physics and

the comparison of results obtained with different boundary conditions at the

dissolving surface.

2.1 Modeling assumptions

In this section, the focus is on the mass transport problem, leaving aside

the momentum and energy equations. While most models [57, 148] assume

that the solid dissolution is controlled by transport, the assumption is not

made at this point. As a matter of fact, this question cannot be resolved

without an explicit description of the problem under consideration since the

contribution of transport will depend strongly on the initial boundary value

1A complex geochemical model may lead to very cumbersome computations at the ex-
pense of an accurate description of the flow dynamics. Since the objective of the thesis is
a thorough investigation of this latter point, especially for very large cavities, subsequent
chapters make use of the simplified geochemistry models discussed in this chapter.

29
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problem (IBVP) to be solved, in particular the geometry and flow parameters

which will determine the possible development of a boundary layer of thickness

sufficient to make surface reaction negligible.

A hierarchical, multi-scale system is considered as schematically depicted

in Fig. 2.1. The porous medium under consideration consists of three phases

at the pore-scale: two solid phases, one being soluble, denoted s, the other

insoluble, denoted i, and a liquid phase (in general water + dissolved species),

denoted l. The pore-scale characteristic length are corresponding to li, ls and

ll and the cavity scale is related to L.

Figure 2.1: An example of the multiple scales associated with dissolution in a
porous medium.

In the case of s-phase being gypsum, several assumptions have been adopted.

First, it is assumed that the activity of the solute in the liquid phase is not

modified near the solid surface of the insoluble material, so no solute deposi-

tion occurs since the bulk concentration is below the equilibrium concentration.

There are many experiments with various salts and passive solid surfaces, for

instance, that are compatible with this assumption (a common situation in-

deed in laboratory experiments aimed at measuring dissolution rates). Even

if initially a layer of salt covers the insoluble material, a case which is covered

by the model, the thin layer is likely to dissolve more rapidly than the salt

grains and leads to a situation in which both soluble and insoluble surfaces

are present. Second, solid dissolution can be described by the dissolution of
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a single pseudo component. In practice, most soluble materials have a com-

plex chemistry, which implies that dissolution brings several chemical species

in the liquid. The water composition will be affected by geochemistry and

by segregation due to different transport properties. For instance, gypsum

(CaSO4·2H2O) dissolution will produce several water components, which will

require in principle to follow at least [151]: H+, OH−, SO2−
4 , HSO−

4 , HSO−
4 ,

H2SO4, Ca2+, CaSO4 and finally H2O! An example of water composition at

thermodynamic equilibrium computed from PHREEQC [152] is given in Table

2.1, under T=12°C and pH = 7.061. This example shows that gypsum primary

cation and anion, i.e., Ca2+ and SO2−
4 , have a concentration significantly larger

than the other compounds. The composition of the water may not all the time

reflect the one associated with the gypsum-water thermodynamic equilibrium.

The presence of other dissolving species, calcium carbonates for instance, may

affect the water composition. Indeed, calcite dissolution, for instance, has

been observed to hinder gypsum dissolution under some circumstances [61],

the reverse being true, i.e., modification of calcite dissolution through gyp-

sum precipitation [153]. A notation is adopted below which corresponds to a

mass balance equation for one ion, let us say Ca2+ in our gypsum illustration,

which is denoted Ca. Third, the fluid density ρl and viscosity µl are assumed

constant. Similarly, the diffusion coefficient is supposed constant. One may

consult [154] for an example of introduction of nonlinear diffusion coefficients

within the averaging scheme.

Table 2.1: An example of water composition after gypsum dissolution.

Species Molality Species Molality
H+ 1.044e-07 O2 0.000e+00
OH- 4.847e-08 S(2-) 3.097e-20
H2O 5.551e+01 HS- 1.574e-20
Ca 1.464e-02 H2S 1.523e-20
Ca2+ 1.014e-02 S2- 1.435e-26
CaSO4 4.497e-03 S(6) 1.464e-02
CaOH+ 1.172e-08 SO4

2- 1.014e-02
CaHSO4

+ 2.398e-09 CaSO4 4.497e-03
H(0) 4.117e-15 HSO4

- 3.887e-08
H2 2.059e-15 CaHSO4

+ 2.398e-09
O(0) 0.000e+00

The question of the spatial differentiation of the various component con-

centrations due to different diffusion coefficients is more complicated. Indeed,

the diffusion coefficients of some of the components obtained after gypsum
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dissolution are slightly different, as shown in Table 2.2 [155]. If one look at

the major ions (see above discussions and Table 2.1), i.e., Ca2+ and SO2−
4 ,

there is a small difference between the two diffusion coefficients. An important

question is how much this difference has to be taken into account in modeling

underground water flow? This can be evaluated by considering the following

1D transport problem: a 1D flow over an infinite domain, at a constant velocity

u, with initial condition

cCa2+ = 1 ; c
SO2−

4

= 1 for x < 0, (2.1)

cCa2+ = 0 ; c
SO2−

4

= 0 for x > 0, (2.2)

where cCa2+ and c
SO2−

4

represent respectively the concentration of Ca2+ and

SO2−
4 , and the value 1 refers to the thermodynamic equilibrium concentration.

The concentration field at any time is given by

ci =
1

2

(
1− erf

(
x−ut

2
√

Dit

))
, i = Ca2+, SO2−

4 , (2.3)

where Di denotes the diffusion coefficient of species i, i.e., Ca2+ or SO2−
4 . The

location of the maximum difference between the two concentrations can be

calculated as

xmax = ut+
√

2

√√√√√√√
tD

SO2−

4

DCa2+ log

(
D

Ca2+

D
SO

2−

4

)

DCa2+ −D
SO2−

4

, (2.4)

and the resulting maximum concentration difference is a constant equal to

max(c
SO2−

4

− cCa2+) =

erfc


 y√

2
√

D
SO

2−

4




2
−

erfc
(

y√
2
√

D
Ca2+

)

2
, (2.5)

with

y =

√√√√√√√
D

SO2−

4

DCa2+ log

(
D

Ca2+

D
SO

2−

4

)

DCa2+ −D
SO2−

4

. (2.6)

Given the diffusion coefficients presented in Table 2.2, it was obtained that

max(c
SO2−

4

− cCa2+) equal to 0.0331, 0.0335 and 0.0364 at 0°C, 18°C and 25°C
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respectively with u = 10−6 ms−1. The maximum values obtained under various

temperatures are relatively small and suggest that the spatial differentiation

of the two concentrations can be neglected. Of course, other IBVPs may lead

to slightly different estimates, but the trend should not be much different. In

addition, this estimate is based on a pure fluid transport, in the absence of

geochemistry. In the case of a porous medium, DCa2+ and D
SO2−

4

must be re-

placed by the effective diffusion/dispersion coefficients. If the pore-scale Péclet

number is sufficiently large, which is often the case in classical groundwater

flow problems, then the dispersion part overcomes the diffusive part and the

resulting effective diffusion coefficients are equal and the difference becomes

nil in that case.

Table 2.2: Diffusion coefficients in water at infinite dilution for some ions
(10−9 m2 s−1).

Compound 0°C 18°C 25°C
H+ 5.61 8.17 9.31

OH− 2.56 4.49 5.27
HSO−

4 - - 1.33
Ca2+ 0.373 0.673 0.793
SO2−

4 0.5 0.89 1.07

As a conclusion, with all the above assumptions, while more complex geo-

chemistry should not be discarded in cases where the water and solid involve

several other components than those of gypsum dissolution, the assumption

that gypsum dissolution can be described by the dissolution of a pseudo-

gypsum water component is adopted in this study. For convenience, and for

the purpose of future introduction in more complex geochemistry models, the

ion Ca2+ is followed. Based on this assumption, pore-scale numerical simu-

lations are presented below to evaluate the impact of the dissolving surface

boundary condition.

2.2 Mathematical model

The momentum balance equations in the fluid phase are written as

∂ρlvl

∂t
+ρlvl ·∇vl = −∇pl +ρlg +µl∇2vl in the l-phase, (2.7)

B.C. I vl −nlsnls ·vl = 0 at Als, (2.8)
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where ρl is the liquid density, vl the pore-scale liquid velocity, g the gravity,

µl the dynamic viscosity and Als the interfacial area between the solid and

the liquid phase. According to [45], the gypsum solubility in water is about

2.63 kg m−3. Assuming gypsum is the pseudo component in water as discussed

above, the water density variation is less than 0.3%, which is negligible. There-

fore, with the assumption of constant liquid density, mass balance equations

for the liquid phase and the dissolved species can be written as follows

∇·vl = 0 in the l-phase, (2.9)

∂ωl

∂t
+vl ·∇ωl = ∇· (Dl∇ωl) in the l-phase, (2.10)

with ωl the mass fraction of Ca in the liquid phase and Dl the molecular

diffusion coefficient.

The boundary conditions for Ca2+ mass balance at the solid-liquid interface

may be written as a kinetic condition as follows

nls · (ρlωl (vl −wsl)−ρlDl∇ωl) = −MCaks

(
1− ωl

ωeq

)n

= nls · (ρsωs (vs −wsl)) at Als,(2.11)

In this equation, ρs is the solid (gypsum) density, ωs is the mass fraction of

Ca in the solid phase, vs is the solid velocity, wsl is the interface velocity,

MCa is the molar weight of Ca, ks is the reaction rate coefficient and n is the

nonlinear reaction order. The thermodynamic equilibrium mass fraction ωeq

is estimated as

ωeq = MCa

(
1.32×10−2 +1.31×10−4T −1.47×10−6T 2

)
, (2.12)

with T denoting temperature with the unit of °C. Mass balance for the solid

phase gives the following boundary condition

nls · (ρs (vs −wsl)) = νsnls · (ρlωl (vl −wsl)−ρlDl∇ωl)

= −νsMCaks

(
1− ωl

ωeq

)n

at Als, (2.13)
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where νs = Mg/MCa and Mg is the molar weight of gypsum. The total mass

balance boundary condition may be written formally as

nls · (ρl (vl −wsl)) = nls · (ρs (vs −wsl)) at Als, (2.14)

In this thesis, it is assumed that the solid phase is immobile, i.e., vs = 0,

therefore vs will not appear anymore in the expressions for the boundary

conditions. With this assumption, Eqs. 2.13 and 2.14 can be rewritten as the

following two equations

nls ·wsl = ρ−1
s Mgks

(
1− ωl

ωeq

)n

at Als, (2.15)

nls ·ρlvl = nls · (ρl −ρs)wsl = −
(

1− ρl

ρs

)
Mgks

(
1− ωl

ωeq

)n

at Als, (2.16)

which can be used to calculate the interface velocity and liquid velocity respec-

tively. Eqs. 2.13 and 2.14 can be combined to provide a different expression

for the calculation of the interface velocity, which is more convenient in the

case of an equilibrium condition. This leads to

nls ·wsl =
νs

ρs (1−νsωl)
nls · (ρlDl∇ωl) at Als. (2.17)

When assuming a negligible mass fraction of the dissolved species, the inter-

face velocity can be approximated as |nls ·wsl| ≈ 9.69 × 10−8 ms−1, which is

negligible compared to the liquid velocity used in the following. Consider also

Eq. 2.8, Eq. 2.11 can be simplified into

B.C. III nls · (−ρlDl∇ωl) ≈ −MCaks

(
1− ωl

ωeq

)n

at Als. (2.18)

Together with the mass balance of the solid phase in Vs, and boundary

conditions at the interface between the liquid phase and the insoluble material,

Ali, the pore-scale problem can be finally written as

∂ρl

∂t
+∇· (ρlvl) = 0 in Vl, (2.19)

∂ρlωl

∂t
+∇· (ρlωlvl) = ∇· (ρlDl∇ωl) in Vl, (2.20)
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B.C. I nls · (ρlωl (vl −wsl)−ρlDl∇ωl) = −MCaks

(
1− ωl

ωeq

)n

at Als, (2.21)

B.C. II nls · (−ρswsl) = nls · (ρl (vl −wsl))

= νsnls · (ρlωl (vl −wsl)−ρlDl∇ωl)

= − Mgks

(
1− ωl

ωeq

)n

at Als, (2.22)

∂ρs

∂t
= 0 in Vs, (2.23)

B.C. III nli · (ρlωlvl −ρlDl∇ωl) = 0 at Ali, (2.24)

B.C. IV nli ·vl = 0 at Ali. (2.25)

The problem has to be completed with momentum balance equations, for

instance, Eqs. 2.7 and 2.8. When the velocity of dissolution is small compared

to the relaxation time of the viscous flow2, and considering constant ρl and

µl, the problem for the momentum balance equations is independent of the

concentration field and therefore can be treated independently. Consequently,

the focus below is on the transport problem assuming that vl and its average

value are known fields.

Finally, the dissolution problem with a thermodynamic equilibrium de-

scription is simply the above problem in which the boundary condition at the

dissolving interface, Eq. 2.21, is simply replaced by

B.C. I ωl = ωeq at Als, (2.26)

2.3 Numerical modeling

The work presented in this thesis involves a lot of numerical computations:

the pore-scale problem described above, resolution of closure problems and

macro-scale equations as will be described later. All Partial Derivative Equa-

2About ρll
2
l /µl, which is on the order of 1 s for water and a pore-scale of 1 mm, indeed

rather small compared to dissolution characteristic times.
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tions (PDE) have been solved in this work with the help of the Finite Element

software COMSOLr. This code offers various possibilities in terms of:

• meshing routines,

• finite element discretization,

• linear and non-linear solvers,

• time integration,

• direct solution of moving boundary problems through ALE (Arbitrary

Lagrangian-Eulerian Method).

The implementation work consisted mainly in (i) introducing the proper phys-

ical properties, source terms, etc., in the software PDE templates for various

types of equations, (ii) numerical tests in order to choose numerical parameters

leading to an acceptable convergence. All numerical choices corresponded to

well-known solutions for the classical PDEs to be solved: Navier-Stokes equa-

tions, advection-diffusion equations, etc.... Therefore, the details will not be

given in this manuscript, unless some specific problems were encountered and

required special attention.

2.4 Surface reaction versus transport limita-

tion

In this section, the impact of a reactive boundary condition versus ther-

modynamic equilibrium is evaluated by solving the pore-scale problem for a

typical small-scale situation, in order to assess the possible introduction of a

further simplification of the model, i.e., the use of a thermodynamic equilib-

rium interfacial boundary condition. A half of the 2 D axisymmetric geometry

under consideration is represented in Fig. 2.2. The interface evolution was cal-

culated using the ALE method. Several simulations were performed with the

data given in Table 2.3 (other parameters were given by the above proposed

correlations). The boundary conditions were: uniform velocity U0 and ωl = 0

at the entrance, convective flux conditions at the exit boundary, symmetry

conditions over the axis and wall conditions elsewhere.
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Figure 2.2: 2D Geometry of the solid (gypsum)-liquid (water) system at pore-
scale.

Table 2.3: Parameters used in the simulations.

parameter value
ρl 1000 kgm−3

ρs 2310 kgm−3

T 12°C
Dl 10−9 m2 s−1

d 2×10−3 m
dg 3×10−3 m
L 6×10−3 m

2.4.1 Impact of reaction rate correlation

In this subsection, the impact of the choice of parameters in the surface

kinetic reaction rate is tested. A first set of computations were made with the

parameters in the reaction rate Eq. 1.4 given by ks = 1.3×10−4 mmolcm−2 s−1

and n = 1.2, i.e., a one-rate reactive boundary condition. Results for the

normalized mass fraction ωl/ωeq are given in Fig. 2.3 for a velocity U0 =

10−4 ms−1, i.e., a large Péclet number (Pe = U0d
Dl

= 200). Fig. 2.3a is obtained

after a short transient regime corresponding to the establishment of a quasi-

steady mass fraction fields, only slightly perturbed by the slow dissolution of

the interface and Fig. 2.3b is obtained after a significant dissolution. The

reactive condition at the dissolving surface does not impose that the mass

fraction is equal to ωeq, i.e., thermodynamic equilibrium. The maximum value

of the ratio ωl/ωeq is given in the figure legends. The following comments can

be drawn from these results: (i) there is a relatively thin boundary layer near

the dissolving interface, due to a relatively large Péclet number, and (ii) the

ratio ωl/ωeq is not equal to 1, but very close.

The second set of computations has the following boundary condition
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(a) t = 103 s, max(ωl/ωeq) = 0.979. (b) t = 2×105 s, max(ωl/ωeq) = 0.984.

(c) legend

Figure 2.3: Field ωl/ωeq for U0 = 10−4 ms−1, i.e., Pe = 200 for the one-rate
reactive case.





n = 5; ks = 20mmolcm−2 s−1 if ωl/ωeq ≥ 0.95685,

n = 1.2; ks = 1.3×10−4 mmolcm−2 s−1 else if,
(2.27)

which is named a two-rate reactive case. Corresponding fields are plotted in

Fig. 2.4. General comments on the field structure are the same as for Fig.

2.3. Looking at the max(ωl/ωeq) values, one sees indeed an impact of the

slowing down of the reaction rate. This impact seems to be relatively small,

as emphasized by the results plotted in Fig. 2.5, which represent the outlet

fluxes

m̄ =

ˆ

d
nls · (ρlωlvl −ρlDl∇ωl)dA, (2.28)

for both boundary conditions versus time. While the relative difference is

smaller than 1%, the boundary condition expressed by Eqs. 2.27 is kept in the

following subsection.

(a) t = 103 s, max(ωl/ωeq) = 0.978. (b) t = 2×105 s, max(ωl/ωeq) = 0.966.

(c) legend

Figure 2.4: Field ωl/ωeq for U0 = 10−4 ms−1, i.e., Pe = 200 for the two-rate
reactive case.
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Figure 2.5: Mass flux over the outlet section versus time for the one-rate and
two-rate reactive boundary condition cases.

2.4.2 Diffusive case

In this subsection, results are presented for a more diffusive case, with a Pé-

clet number equal to 2, obtained by taking a velocity U0 = 10−6 ms−1. Results

are plotted in Fig. 2.6 for the normalized mass fraction field versus time. In

this case the boundary layer becomes thicker and the surface maximum mass

fraction becomes closer to the thermodynamic equilibrium value but still short

of it. It should be noted that the field at t = 1000 s is not completely relaxed

to the “quasi-steady” solution as can be seen from the outflow mass fraction

value which is not close to the thermodynamic equilibrium value, while this is

the case at t = 2×105 s. This is coherent with the characteristic time based on

the diffusion over the cross section which may be estimated as d2
g/4Dl ≈ 2250s.

Once again, the maximum value of ωl/ωeq observed over the interface is not

equal to 1 but relatively close. The possibility of approximating the boundary

condition by the thermodynamic equilibrium value is further investigated in

the next subsection.

2.4.3 Reaction kinetics versus thermodynamic equilib-

rium boundary conditions

Results obtained with the full reaction rate boundary conditions are com-

pared with results obtained from the thermodynamic equilibrium condition,

i.e.,

B.C. I ωl = ωeq at Als, (2.29)
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(a) t = 103 s, max(ωl/ωeq) = 0.978. (b) t = 2×105 s, max(ωl/ωeq) = 0.983.

(c) legend

Figure 2.6: Field ωl/ωeq for U0 = 10−6 ms−1, i.e., Pe = 2 for the diffusive case.

which is the limit of the reactive condition for large Damköhler numbers. In

that case, the interface velocity is calculated using

nls ·wsl =
νs

ρs (1−νsωl)
nls · (ρlDl∇ωl) . (2.30)

There are small differences between the mass fraction fields obtained with

two-rate reactive or thermodynamic equilibrium boundary conditions. In or-

der to analyze quantitatively the impact, the time evolutions of the total mass

flux, m̄, passing through a cross section, is presented in Fig. 2.7. The com-

parisons are performed in the cases of Pe = 2 and Pe = 200 respectively. The

differences are about 2% in the diffusive case, i.e., Pe = 2, and about 3% in

the convective case, i.e., Pe = 200, in favor of thermodynamic equilibrium dis-

solution as expected. Such differences can probably be neglected for most

practical dissolution estimates, given the other uncertainties in characterizing

a real natural system, but may be necessary for more accurate analyses.

Figure 2.7: Mass flux over the outlet section versus time for two-rate reactive
and thermodynamic equilibrium boundary conditions.
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2.5 Conclusion

In this chapter, the pore-scale dissolution models and the corresponding

constraints were studied. Based on available data in the literature and the nu-

merical computations performed with the model, it was shown that dissolved

gypsum may be treated as a pseudo-component, provided a few percent incer-

titude is acceptable for the mass fraction field calculation. The impact of the

use of different boundary conditions was also analyzed: the use of a two-rate

reactive boundary condition compared to the one-reaction rate, as well as to

a thermodynamic equilibrium condition, only produces a very small difference

less than 4%. While it is not numerically difficult to keep a complex reactive

boundary condition when solving directly the equations, for instance using

ALE method, the choice of a thermodynamic equilibrium is more relevant

with the later use of the diffuse interface model based on a thermodynamic

equilibrium condition at the pore-scale interface (or any model using such a

boundary condition). This screening study shows that such an approach would

give acceptable results with an error up to a few percent.



Chapter 3

Effective surface and boundary

conditions for heterogeneous

surfaces with mixed boundary

conditions

3.1 Introduction

In this chapter, the case of a rough heterogeneous surface with mixed

boundary conditions is studied, i.e., part of the surface is subject to a Dirich-

let condition while the rest is subject to a no-flux Neumann condition. Such

problems may arise when dealing with dissolution problems, especially when

working on large-scale cavity formation in geological structures (solution min-

ing, karst formations, etc.). A similar mathematical problem arises when one

considers the drying rate of a surface with wet and dry patches such as a

porous surface [156] or for atmosphere-scale problems [157]. Taking the devel-

opment of karstic cavity for example, it often involves multi-scale problems as

schematized in Fig.3.1, and it is generally difficult to take into consideration

the small-scale heterogeneities or roughnesses over the interface while working

at the cavity scale. Therefore, the implemented models of such dissolution

problems take in practice the form of an effective surface modeling, with a

heuristic boundary condition. In general one uses the Dirichlet condition as

the macro-scale boundary condition, even if heterogeneities (e.g., insoluble ma-

terial) and roughnesses are present. The position of the effective surface itself

is guided by meshing consideration without an explicit link to the physics of

the problem. These questions are addressed in this chapter and a methodol-

43
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ogy is proposed to build and position the effective surface with appropriate

boundary conditions.
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Figure 3.1: Multi-scale description of the system. The dissolving medium is
denoted as the s-phase and the non-dissolving part as the i-phase.

In this study, it is focused as a guideline on mass and momentum transfer

in the case of a laminar boundary layer over an heterogeneous surface com-

posed of a dissolving medium and a non-dissolving one. Two length scales are

important to describe the phenomena taking place at the surface: one is the

characteristic length of the large-scale cavity, L, for instance the depth of the

large-scale boundary layer developing over the rough surface, and the other

one is the roughness length scale lcell. As illustrated in Fig. 3.1, the consider-

ation is the laminar steady-state flow in a domain Ω of a fluid l, over a rough,

heterogeneous surface Ar, made of a salt medium, s, and an insoluble mate-

rial, i. Mass transport over the rough surface in contact with the fluid, can be

modeled by different boundary conditions. Two configurations are particularly

interesting. In case I, it is assumed that the surface is composed by patches

under thermodynamic equilibrium (Als), with surrounding areas with no flux

(Ali). In case II, the boundary condition at Als is replaced by a reactive one

such as Eq. 1.4.

The steady-state mass and momentum transfer problem can be described

as follows:
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Pb I in Ω

ρl (u ·∇)u −µl△u +∇p = 0 in Ω, (3.1)

∇·u = 0 in Ω, (3.2)

u ·∇c = ∇· (Dl∇c) in Ω, (3.3)

u = 0 at Ar, (3.4)

−n ·Dl∇c = 0 Ae, Ali and Arb (3.5)

(B.C. I) c = ceq at Als, (3.6)

or (B.C. II) −nls ·Dl∇c = −k ceq

(
1− c

ceq

)
at Als, (3.7)

c = 0 at Alb (3.8)

n · (−pI+µl(∇u +∇uT )) = 0 at Ae and Arb (3.9)

u = U0e1 at Alb (3.10)

where c is the concentration of the dissolved species in kgm−3, k is the reaction

rate coefficient in m s−1 which may depend on the position of the surface, n

is the normal vector pointing outward from the studied domain at Ae, Alb,

Arb and the later mentioned Al,i, and U0 denotes the magnitude of the inlet

velocity. One has n=nls at Ar, with nls the normal vector of Ar pointing

towards the solid phase. B.C. I and B.C. II refer to case I and case II problems,

respectively. It is worthy noticing that the no flux condition at Ae and the

constant velocity condition at Alb are not unique, which can be replaced, for

instance, by zero concentration condition at Ae and constant pressure at Alb,

respectively.

Eq. 3.7 has a form similar to rate laws proposed in [47, 48, 140] for lime-

stone and gypsum dissolution. Additional assumptions are used: the fluid is

incompressible and its physical properties do not vary significantly with con-

centration, and hydrostatic pressure has been included in the field p. While

we have in mind potential evolution of the surface Ar due to the dissolution

process, it is assumed that the relaxation time for the transport problem is

smaller at the roughness scale than the one of the dissolution process. There-

fore, the transport problem is considered steady-state for a given geometry.

The evolution of the geometry in the case of a dissolution process is not within

the scope of this chapter. The reader my refer to [85] for a study of the impact

of the actual dissolution process on the surface roughness and hence on the

effective surface behavior.

A typical solution of this multi-scale problem would feature large-scale evo-
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lution of the pressure, velocity and concentration far from the surface and de-

viations from this large-scale pattern in the neighborhood of the roughnesses.

This situation is schematically represented in Fig. 3.2. It is distinguished in

this figure a bulk domain, Ω0, where the variables do not show fluctuations in-

duced by the roughnesses at the lcell-scale, and a series of elementary volumes,

Ωi, characteristic of the surface geometry. Assuming some kind of periodicity

is typical of most situations and it is also adopted in this study. Clearly, this

suggests that some kind of effective boundary condition may be imposed at

the surface of A0 in order to reproduce the same bulk fields. Under such cir-

cumstances, one technique to derive effective surface and effective boundary

conditions is based on a multi-domain decomposition method, as illustrated

by [42, 43, 87]. The idea is to solve the flow and mass transport problems

in each Ωi by introducing an asymptotic expansion of deviation terms based

on the macro-scale bulk velocity and concentration fields. In general, closure

problems may be found for variables mapping the deviations onto the bulk

variables and their derivatives. This can be used to provide a set of effective

boundary conditions that may be applied at the boundary A0. It is often inter-

esting in terms of efficiency to place the effective surface in a different location

than A0, which will be discussed in Sec. 3.3. Effective parameter calculations

will be provided in Sec. 3.4 for some simple roughness geometries. Finally,

a comparison of DNS results and effective surface results is proposed in Sec.

3.5 for a typical boundary layer problem in order to illustrate the application

of the concept of effective surface. This allows to discuss the practical imple-

mentation of the effective surface model, and, in particular, the choice of the

“optimal” position of the effective surface.

Figure 3.2: Close-up view of the velocity field near the rough surface.
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3.2 Multi-domain decomposition

As discussed in the introduction chapter, the domain decomposition method-

ology has already been used to model diverse transport phenomena [42,43,87].

In this section, the domain decomposition is presented, which splits the prob-

lem over Ω into a problem over Ω0 and Ωi subdomains, and is applied to our

specific transport problem.

As previously introduced, the characteristic length-scale of the rough het-

erogeneous surface, lcell, is much smaller than the one of the global domain Ω,

L, e.g., the depth of the large-scale boundary layer. Therefore, it is assumed

that all fluctuations of velocity and concentration resulting from the wall non-

uniformity vanish far from the wall. By introducing an arbitrary surface A0,

the Ω domain is decomposed into a global external subdomain, Ω0 (with ⋆0

quantities), and local subdomains, Ωi (with ⋆i quantities), which contains the

wall perturbations, roughness and heterogeneity. This decomposition is illus-

trated in Fig. 3.3.

Figure 3.3: Multi-domain decomposition.

The wall surface, Ar, is assumed to have a periodic structure. As a result,

the initial problem will be decomposed as a Ω0 problem and a series of Ωi

problems. It is noteworthy that A0 has no defined position. It should be

located at an appropriate position to ensure that all fluctuations are contained

in Ωi subdomains and that the assumption lcell ≪ L is valid. For sake of

simplicity, the development is presented in 2D ((e1,e2) plane), with e1 (x-

coordinate) corresponding to the infinite flow direction and e2 (y-coordinate)
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to the opposite direction of the macroscopic wall normal, as sketched in Fig.

3.3.

Velocity, pressure, concentration, mass flux and stress tensor are all con-

tinuous across A0, which give

u0 = ui, (3.11)

p0 = pi, (3.12)

c0 = ci, (3.13)

n0,i · (−Dl∇c0 +u0c0) = n0,i · (−Dl∇ci +uici), (3.14)

n0,i · (−p0e2 +µl(∇u0 +∇uT
0 )) = n0,i · (−pie2 +µl(∇ui +∇uT

i )), (3.15)

at A0,i, with A0,i referring to the intersection between Ω0 and Ωi, and n0,i

referring to the normal vector to A0,i pointing from Ω0 towards Ωi.

As the initial global domain has been decomposed into subdomains at dif-

ferent scales, Ω0 and Ωi problems can be written separately while linked by the

continuity conditions across A0 presented above. In Ω0, equations for the flow

and the mass transport problems are similar to the ones in the initial domain,

adding Eqs. 3.11 to 3.15 for continuity conditions:

Pb II (in Ω0) (i.e., macro-scale problem)

ρl (u0 ·∇)u0 −µl△u0 +∇p0 = 0 in Ω0, (3.16)

∇·u0 = 0 in Ω0, (3.17)

u0 ·∇c0 = ∇· (Dl∇c0) in Ω0, (3.18)

c0 = 0 at Alb/Ω0 (3.19)

−n ·Dl∇c0 = 0 at Ae and Arb/Ω0 (3.20)

n · (−p0I+µl(∇u0 +∇uT
0 )) = 0 at Ae and Arb/Ω0 (3.21)

u0 = U0e1 at Alb/Ω0 (3.22)

where Alb/Ω0 and Arb/Ω0 denote the parts of lateral boundaries contained in

Ω0.

As a result of the wall periodic motif and assuming that the transverse

flux through Al,i (i.e., the interface of two unit cells) is negligible compared to

the one in the vertical direction (across A0,i), pseudo-periodic conditions are

prescribed at the lcell-scale. With the continuity conditions unchanged at A0,i,
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the following problem for Ωi is obtained:

Pb III (in Ωi) (i.e., micro-scale problem)

ρl (ui ·∇)ui −µl△ui +∇pi = 0 in Ωi, (3.23)

∇·ui = 0 in Ωi, (3.24)

ui ·∇ci = ∇· (Dl∇ci) in Ωi, (3.25)

ui (x+wcell) = ui(x) at Al,i, (3.26)

pi (x+wcell) = pi(x) at Al,i, (3.27)

n · (−piI+µl(∇ui +∇uT
i )) = 0 at Al,i and A0,i (3.28)

ci (x+wcell) = ci(x) at Al,i, (3.29)

ui = 0 at Ar, (3.30)

−n ·Dl∇ci = 0 at Ali and Al,i, (3.31)

(B.C. I) ci = ceq at Als, (3.32)

or (B.C. II) −nls ·Dl∇ci = −k ceq

(
1− ci

ceq

)
at Als. (3.33)

with wcell denoting the width of the unit cell Ωi, as illustrated in Fig. 3.2.

Solving these problems in a direct manner will make little benefit com-

pared to DNSs. To gain computational efficiency, one should look for generic

expressions of variables in the Ωi subdomains and describe the microscopic

behaviors by some kind of averaging, instead of considering all the details in-

duced by the surface non-uniformity. Asymptotic expansions are used in the

next section to estimate ui and ci at first order. By means of closure problems,

these estimates can be found, and effective boundary conditions can be built

for effective surfaces defined at different positions.

3.3 Effective boundary conditions

Since first proposed by Carrau [158], effective boundary conditions, or

wall laws, have been the research topic of many scholars. With a multi-

domain decomposition technique and an asymptotic approach, Achdou et

al. [87, 88, 159, 160] studied both mathematically and numerically the prob-

lem of laminar flows over periodic rough surfaces with no-slip condition. This

problem was reviewed by Jäger and Mikelić, including the problem of the in-

terface between a liquid domain and a porous domain [93, 95, 161]. Veran et

al. [43] and Introïni et al. [42] developed the concept of effective surface for
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momentum and mass (or heat) transfer on a rough surface, with a particular

attention on the question of positioning the effective surface. This study makes

use of similar ideas, incorporating not only the reactive case as in [43] (how-

ever with a different expression of the reaction rate in our study suitable for

dissolution problems), but also the case of surface under thermodynamic equi-

librium and taking into account parts of the surface corresponding to insoluble

or non-reactive material.

In this section, the momentum and mass transfer problems are solved sep-

arately. Assuming that the flow properties are independent of c, the momen-

tum problem can be decoupled from the mass transport one. The momentum

transfer problem has already been worked out in the above cited literature.

Therefore, the development is rapidly reviewed for reader’s understanding, fol-

lowing similar notations and presentation proposed in [42, 43]. Estimates are

first made for ui and pi by the sum of macroscopic terms and deviations. The

macroscopic terms are then developed by Taylor expansion from A0. The de-

viation terms are decomposed by means of closure mapping variables. Closure

problems are then used to get first order estimates of the deviations, and this

in turn can be utilized to determine the effective boundary conditions. The

problem for mass transfer is solved in a similar manner.

3.3.1 Momentum effective boundary conditions

As detailed previously, the micro-scale variables are partitioned as shown

below

ui = u + ũi, pi = p+ p̃i, (3.34)

where ui, p̃i and later mentioned c̃i are the deviations, which are defined as the

difference between micro- and macro-scale variables. The global field u and

p are equal to u0 and p0 in Ω0 and some smooth continuation of these fields

in Ωi. Approximating u and p in Ωi with Taylor expansions in the normal

direction to the fictitious surface A0, the estimates of ui and pi can be written

as

ui = u0|y=0 +y ·∇u0|y=0 +
1

2
yy ·∇∇u0|y=0 + · · ·+ ũi, (3.35)

pi = p0|y=0 +y ·∇p0|y=0 +
1

2
yy ·∇∇p0|y=0 + · · ·+ p̃i. (3.36)
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Taking into consideration the no-slip boundary condition described by Eq.

3.30, the following relation is established between the different velocities in

terms of order of magnitude

O (ũi) = O (u0|y=0) = O

(
lcell

L
U

)
, (3.37)

with U the magnitude of the global velocity u and L the depth of the bulk

flow boundary layer.

In order to characterize the flow features at the different length-scales, the

macro- and micro-scale Reynolds numbers are introduced respectively, follow-

ing the discussion in [42], as

ReL =
ρlUL

µl
, (3.38)

and, since the roughnesses are well included in the boundary layer,

Re =
ρlǫUlcell

µl
, (3.39)

where ǫ = lcell
L and the reference velocity is estimated linearly in the roughness

domain as compared to U .

From the above two equations, one can write immediately

Re = ǫ2ReL. (3.40)

It has been assumed that the roughnesses are much smaller than the thick-

ness of the boundary layer, which gives ǫ ≪ 1. Assuming a laminar flow implies

that the boundary layer thickness scales as Re
−1/2

L . With these two hypothe-

ses one obtains ReL ≪ ǫ−2. By substituting this relation into Eq. 3.40, it is

obtained that Re ≪ 1.

Using the approximations of ui and pi defined by Eqs. 3.34, Eq. 3.23 can

be rewritten as

ρl ((u + ũi) ·∇)(u + ũi)−µl△(u + ũi)+∇(p+ p̃i) = 0 in Ωi. (3.41)

Subtracting Eq. 3.1 from Eq. 3.41 results

ρl (u ·∇) ũi +ρl (ũi ·∇)u +ρl (ũi ·∇) ũi −µl△ũi +∇p̃i = 0 in Ωi, (3.42)
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which can be expressed in a dimensionless form, as

Re
(
u′ ·∇′) ũ′

i +Re
(
ũ′

i ·∇′)u′ +Re
(
ũ′

i ·∇′) ũ′
i −△′ũ′

i +∇′p̃i
′ = 0 in Ωi,

(3.43)

where the dimensionless variables (⋆′ quantities) are defined as follows

u′ =
u

ǫU
,∇′ = ∇lcell, ũ′

i =
ũi

ǫU
and p̃i

′ =
p̃ilcell

µlǫU
. (3.44)

Given that Re ≪ 1, Eq. 3.43 can be simplified by omitting the first three

terms. Going back to a dimensional form, it gives

−µl△ũi +∇p̃i = 0. (3.45)

Hereby the Navier-Stokes equations have been transformed into a Stokes prob-

lem in Ωi, which is a simplification similar to that proposed in [42,43,93].

First order estimates of ui and pi are

ui = u0|y=0 +y ·∇u0|y=0 + ũi, pi = p0|y=0 +y ·∇p0|y=0 + p̃i. (3.46)

In a developed boundary layer, the velocity is mainly tangential and the

gradients for both velocity and pressure are dominated by the components

normal to the wall, i.e., ∂
∂x ≪ ∂

∂y . The first order term of the above estimates

can be rewritten as

y ·∇u0|y=0 = y
∂u0

∂y

∣∣∣∣
y=0

e1, y ·∇p0|y=0 = y
∂p0

∂y

∣∣∣∣
y=0

. (3.47)

The obtained equations for the deviations are summarized as the following

boundary value problem

Pb IIIũi
(in Ωi):
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−µl△ũi +∇p̃i = 0 in Ωi, (3.48)

∇· ũi = 0 in Ωi, (3.49)

n · (−p̃iI+µl(∇ũi +∇ũT
i )) = 0 at A0,i and Al,i (3.50)

p̃i = 0 at A0,i (3.51)

ũi (x+wcell) = ũi(x) at Al,i, (3.52)

p̃i (x+wcell) = p̃i(x) at Al,i, (3.53)

u0|y=0e1 +y ∂u0

∂y

∣∣∣
y=0

e1 + ũi = 0 at Ar. (3.54)

So far, the resolution of this set of equations still remains expensive, due

to the coupling of micro- and macro-scale variables. As discussed in [42],

and given the linear structure of the problem, the macroscopic terms can be

considered to be generators of the deviations. From Eq. 3.54, it is obvious that

if the terms with macroscopic variables are zero, the deviations of velocity and

pressure will both go zero. Therefore, one can represent the deviation terms

in the following form:

(1) ũi = Au0|y=0 +B
∂u0

∂y

∣∣∣
y=0

, (2) p̃i = mu0|y=0 + s
∂u0

∂y

∣∣∣
y=0

. (3.55)

Closure problems for closure variables(A,m) and (B, s) are given by

Pb III(A,m)(in Ωi):

−µl△A+∇m = 0 in Ωi, (3.56)

∇·A = 0 in Ωi, (3.57)

n · (−mI+µl(∇A+∇AT )) = 0 at A0,i and Al,i (3.58)

A(x+wcell) = A(x) at Al,i, (3.59)

m(x+wcell) = m(x) at Al,i, (3.60)

A+e1 = 0 at Ar. (3.61)

Pb III(B,s)(in Ωi):
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−µl△B+∇s = 0 in Ωi, (3.62)

∇·B = 0 in Ωi, (3.63)

n · (−sI+µl(∇B+∇BT )) = 0 at A0,i and Al,i (3.64)

B(x+wcell) = B(x) at Al,i, (3.65)

s(x+wcell) = s(x) at Al,i, (3.66)

B+ye1 = 0 at Ar. (3.67)

At this point, one can see that (A,m)=(−e1,0) is a solution for closure

problem Pb III(A,m). Inserting this solution into Eq. 3.55-1 gives

ũi = −u0|y=0e1 +B
∂u0

∂y

∣∣∣
y=0

. (3.68)

According to velocity continuity at A0,i, it gives ũi |y=0= 0. By introducing

−wv
x = B |y=0, with B the x-component of B, the velocity at A0,i can be

written as

u0|y=0 = u0|y=0e1 = −wv
x

∂u0

∂y

∣∣∣
y=0

e1 at A0,i, (3.69)

which has the form of a Navier condition.

Following [42,43], it is interesting to look at the modification of this bound-

ary condition for another position of the effective surface. For a given effective

surface Aeff , defined by its position at y = w, a first order Taylor expansion

allows us to write

u0|y=w = u0|y=0 +w
∂u0

∂y

∣∣∣
y=0

e1, (3.70)

and the new boundary condition can be obtained from Eq. 3.69 as

u0|y=w = (w −wv
x)

∂u0

∂y

∣∣∣
y=0

e1 at Aeff . (3.71)

It is shown that a position of Aeff exists where one can recover a no-slip

boundary condition. This specific position is defined by w = wv
x (cf. Fig. 3.4)

and it plays an important role in the macro-scale simulations.

Up to this point, the homogenization procedure has been finished to build

the effective boundary condition at an effective surface for the momentum

transfer problem. This effective boundary condition depends on the chosen

position of the effective surface. In the next section, the same method is
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applied to the mass transfer problem.

Figure 3.4: Definition of effective surfaces for velocity and concentration.

3.3.2 Mass effective boundary condition

First order estimate for ci can be written as

ci = c0|y=0 +y
∂c0

∂y

∣∣∣
y=0

+ c̃i. (3.72)

Consequently, Eq. 3.25 can be transformed into

v
∂c0

∂y

∣∣∣
y=0

+ui ·∇c̃i = ∇· (Dl∇c̃i) , (3.73)

with v = ui ·e2. The reader are reminded that e2 corresponds to the direction

of the y-coordinate, normal to A0,i and pointing from Ω0 towards Ωi. The

boundary conditions can be rewritten as

−nls ·
(

Dl
∂c0

∂y

∣∣∣
y=0

e2

)
−nls ·Dl∇c̃i = 0 at Ali, (3.74)

(B.C. I) c0|y=0 +y ∂c0

∂y

∣∣∣
y=0

+ c̃i = ceq at Als, (3.75)

or (B.C. II) −nls ·
(

Dl
∂c0

∂y

∣∣∣
y=0

e2

)
−nls ·Dl∇c̃i

= −k ceq


1−

c0|y=0 +y ∂c0

∂y |y=0 + c̃i

ceq


 at Als. (3.76)

Adding the continuity conditions across A0,i and the periodic constraints,

the problem for c̃i can be written as

Pb IIIc̃i
(in Ωi):
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v ∂c0

∂y

∣∣∣
y=0

+ui ·∇c̃i = ∇· (Dl∇c̃i) in Ωi, (3.77)

c̃i (x+wcell) = c̃i(x) at Al,i, (3.78)

c̃i = 0 at A0,i, (3.79)

−nls ·
(

Dl
∂c0

∂y

∣∣∣
y=0

e2

)
−nls ·Dl∇c̃i = 0 at Ali, (3.80)

(B.C. I) c0|y=0 +y ∂c0

∂y

∣∣∣
y=0

+ c̃i = ceq at Als, (3.81)

or (B.C. II) −nls ·
(

Dl
∂c0

∂y

∣∣∣
y=0

e2

)
−nls ·Dl∇c̃i

= −k ceq


1−

c0|y=0 +y ∂c0

∂y |y=0 + c̃i

ceq


 at Als. (3.82)

To solve this problem, a solution is sought by linking the deviation to the

macroscopic concentration, i.e., it writes

c̃i = a(c0|y=0 − ceq)+ b
∂c0

∂y

∣∣∣
y=0

, (3.83)

where a and b are first-order mapping variables.

Substituting Eq. 3.83 into Eqs. 3.80 to 3.82 , one has at Ali

−nls ·
(

Dl
∂c0

∂y

∣∣∣
y=0

(e2 +∇b)
)

−nls ·Dl (c0|y=0 − ceq)∇a = 0, (3.84)

and at Als

(B.C. I) (1+a)(c0|y=0 − ceq)+(y + b)
∂c0

∂y

∣∣∣
y=0

= 0, (3.85)

or (B.C. II) −nls ·
(

Dl
∂c0

∂y

∣∣∣
y=0

(e2 +∇b)
)

−nls ·Dl (c0|y=0 − ceq)∇a

= k ceq

(
(1+a)(c0|y=0−ceq)+(b+y)

∂c0
∂y |y=0

ceq

)
. (3.86)

Pb IIIc̃i
may be transformed into two independent problems for a and b as

follows:

Pb IIIa (in Ωi):



3.3. Effective boundary conditions 57

ui ·∇a = ∇· (Dl∇a) in Ωi, (3.87)

a(x+wcell) = a(x) at Al,i, (3.88)

a = 0 at A0,i, (3.89)

−n ·Dl∇a = 0 at Ali and Al,i (3.90)

(B.C. I) 1+a = 0 at Als, (3.91)

or (B.C. II) −nls ·Dl∇a = k (1+a) at Als. (3.92)

Pb IIIb (in Ωi):

v +ui ·∇b = ∇· (Dl∇b) in Ωi, (3.93)

b(x+wcell) = b(x) at Al,i, (3.94)

b = 0 at A0,i, (3.95)

−nls · (e2 −∇b) = 0 at Ali, (3.96)

(B.C. I) y + b = 0 at Als, (3.97)

or (B.C. II) −nls ·Dl (e2 +∇b) = k (b+y) at Als. (3.98)

It is noted that b = −y is a solution of Pb IIIb. Consequently, ci can be

simply expressed as

ci = a(c0|y=0 − ceq)+ c0|y=0. (3.99)

With the continuity conditions u0 = ui and c0 = ci at A0,i, the mass flux

balance described by Eq. 3.14 can be rewritten as

ˆ

A0,i

n0,i ·Dl∇c0dA =

ˆ

A0,i

n0,i ·Dl∇cidA at A0,i. (3.100)

which can be transformed into

n0,i · (−Dl∇c0) = −c0|y=0 − ceq

A0,i
Dl

ˆ

A0,i

∂a

∂y
dA at A0,i. (3.101)

For later use, an effective reaction rate coefficient k0
eff is defined as

k0
eff = −

Dl

´

A0,i

∂a
∂y dA

A0,i
, (3.102)
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and the effective boundary condition at A0 can be recast into

−n0,i ·Dl∇c0|y=0 = −k0
eff ceq

(
1− c0|y=0

ceq

)
at A0. (3.103)

Remarkably, the obtained effective boundary condition is, mathematically

speaking, of a reactive type, even in the case with micro-scale thermodynamic

equilibrium. Of course, the effective boundary condition has the same form in

case I and case II, but the values of k0
eff are given by different closure problems.

For Aeff at an arbitrary position y = w, the first order estimate of the

macro-scale concentration is developed as

c0|y=w = c0|y=0 +w
∂c0

∂y

∣∣∣∣∣∣
y=0

. (3.104)

Assuming at first order that ∂c0

∂y |y=w = ∂c0

∂y |y=0, Eq. 3.101 is rewritten as

Dl
∂c0

∂y

∣∣∣
y=w

= k0
eff ceq


1−

c0|y=w −w ∂c0

∂y |y=w

ceq


 at y = w. (3.105)

Therefore, the following reactive condition at an arbitrary effective surface

is obtained for case I and case II

n0,i · (−Dl∇c0) = −kw
eff ceq

(
1− c0|y=w

ceq

)
at Aeff (3.106)

with

kw
eff =

k0
eff

1− w
Dl

k0
eff

. (3.107)

Again, the remarkable result is obtained that, whatever the boundary con-

dition at Als (i.e., thermodynamic equilibrium or reactive), the effective bound-

ary condition has the same reactive form.

However, it is possible to define an effective surface, Ac
eff , such that an

equilibrium condition is recovered, i.e., c0 = ceq. From Eq. 3.105, the position

of this surface is given by

wc
x =

Dl

k0
eff

= − A0,i
´

A0,i

∂a
∂y dA

. (3.108)
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3.3.3 Effective surface and effective boundary conditions

After resolution of the closure problems, it has been shown that the bound-

ary condition for the flow problem is of Navier type (results already known,

briefly presented here for completeness) and of Robin type for the mass trans-

fer problem (the original part of this study). It has also been indicated how

to estimate the effective boundary condition for a different position of the ef-

fective surface. Nevertheless, the three surfaces defined previously (i.e., A0,

the boundary surface between Ω0 and Ωi, Av
eff , the surface with the no-slip

boundary and Ac
eff , the one under thermodynamic equilibrium) are those of

main interest, as discussed in the next sections. Effective parameters will be

calculated in Sec. 3.4, and the obtained effective boundary value problem will

be tested in Sec. 3.5.

The obtained general form of the effective boundary value problem consists

of Pb II and the boundary conditions at the effective surface, for instance, Eqs.

3.71 and 3.106 for an arbitrary surface position Aeff (at y = w), which become

ui = −wv
x

∂u0

∂y

∣∣∣
y=0

e1 (3.109)

−nls ·Dl∇c0 = −k0
eff ceq

(
1− c0

ceq

)
(3.110)

at the fictive surface A0, or

ui = 0 (3.111)

−nls ·Dl∇c0 = −kv
eff ceq

(
1− c0

ceq

)
(3.112)

for effective surface Av
eff with the no-slip condition at y = wv

x, or

ui = (wc
x −wv

x) ∂u0

∂y

∣∣∣
y=0

e1 (3.113)

c0 = ceq. (3.114)

for effective surface Ac
eff at y = wc

x, where the thermodynamic equilibrium

condition is recovered.
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3.4 Effective parameters calculations

The aim of this section is to analyze the impact of some factors, for instance

the roughness features, the Péclet, the Schmidt and the mean Damköhler num-

bers, on the effective parameters. The Péclet and the Schmidt numbers are

defined as

Pe =
uref w0

x

Dl
, Sc =

µl

ρlDl
, (3.115)

where the cell height, w0
x, is used as a characteristic length. The reference flow

velocity uref is chosen as the x-component of the velocity at A0. The mean

Damköhler number will be defined later.

Dimensionless forms of closure problem Pb III(B,s) and Pb IIIa are solved

to obtain the effective surface position and boundary conditions, with the unit

cell presented in Fig. 3.5. Two shapes of roughness are used in the simulations,

semi-ellipse or rounded square. The height of the roughness hr and its width

br are the two independent parameters. The height and width of the unit cell

are denoted as w0
x (with w0

x = 8hr) and wcell, respectively. In the following

simulations, w0
x and hr have fixed values, while wcell and br are varied in order

to modify either the roughness geometry or the roughness density as shown in

Fig. 3.5.

Figure 3.5: Unit cell geometry for the simulation (left) and illustration of
roughness shape and roughness density (right).
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All the following simulations are performed using COMSOL®. The linear

systems are solved with the direct solver UMFPACK, which is based on the

Unsymmetric MultiFrontal method. The velocity field in Pb IIIa is calculated

by solving dimensionless steady-state Navier-Stokes equations. Quadratic La-

grange element formulation is used for the closure variables a, B and the

velocity. Linear Lagrange element settings are used for pressure and its map-

ping variable s. Proper mesh qualities are obtained to ensure convergence.

For example for the unit cell with br
wcell

= 0.1, Pe = 25 and Sc = 1, since fur-

ther increase of the number of degrees of freedom larger than 104 leads to the

variation of
´

A0,i

∂a
∂y dA less than 1%, it is considered that the results are of

appropriate quality in such circumstances. Given the fact that the unit cell

geometry under study is quite simple, it is very easy to get converged results;

therefore no more details of the procedure are provided here.

3.4.1 Effect of roughness features on effective surface

positions

In this subsection the influences of the roughness geometry and density

on the positions of Av
eff and Ac

eff are investigated. Since wv
x and wc

x are

values varying with the choice of A0, it is more convenient to introduce the

corresponding normalized values δv = w0
x−wv

x
hr

and δc = w0
x−wc

x
hr

to indicate the

effective positions relative to the solid surface (see Fig. 3.4, where δv and δc

are not normalized with respect to hr). Results for four sets of simulations are

presented in Fig. 3.6.

In Fig. 3.6a, it is observed that both the geometry and the roughness

density have an impact on δv. One can observe that for higher roughness

densities, i.e., br
wcell

→ 1, Av
eff goes closer to the roughness height because the

narrow gaps between asperities make it difficult for the fluid to flow through.

The upper limit of δv is one and is nearly reached for the thin semi-ellipse and

the rounded squares because their roughness shapes are steep. For roughnesses

close enough to each other, the heterogeneous surface has a similar behavior in

terms of momentum transport as a smooth surface located at the height of the

roughnesses. For smoother roughnesses, the limit case where two roughnesses

are adjacent gives a value of δv smaller than one as the fluid can still flow

partially between the roughnesses. The three sets of simulations with semi-

ellipse shape also show that thin roughnesses create more resistance to the flow

than wider ones. The curves exhibit another limit when br
wcell

→ 0. Even if the

two neighboring asperities are far enough from each other, e.g., wcell = 50hr
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in this case, the roughnesses still have some small impact on the flow and δv

tends towards 0.1hr.

(a)

(b)

Figure 3.6: Effective surface position of Av
eff (a) and Ac

eff (b) for different
roughness geometries and densities.

In Fig. 3.6b, the negative values of δc mean that Ac
eff locates inside the
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solid part. The presence of insoluble materials makes the averaged concentra-

tion on Ar smaller than the equilibrium concentration, therefore Ac
eff must

be located beneath Ar to recover the thermodynamic equilibrium. Similar to

the case with no-slip condition, both roughness shape and roughness density

are playing a role on δc. However, one can observe that the three sets of

simulations with semi-ellipse shapes are superposed, indicating that the width

of the roughness has little impact on δc for a given ratio of br
wcell

. One sees

from these results that δc tends towards −∞ when the ratio br
wcell

increases

towards one, independently of the roughness geometry. For br
wcell

→ 1, the solid

surface in contact with the fluid is mainly formed by the insoluble material

and little mass transfer occurs between the solid and the fluid, which makes it

difficult to recover thermodynamic equilibrium effective boundary condition.

The upper limit of δc is equal to zero and is obtained for low roughness density

( br
wcell

→ 0). In this case the solid-liquid interface behaves like a homogeneous

soluble surface.

In Fig. 3.7, the low influence of the Péclet number and Schmidt number

on δc is illustrated. In this set of simulations, the roughness shape is fixed to a

rounded square roughness with br = hr and the roughness density is modified

by varying the ratio br
wcell

. These results show that δc is mostly independent of

the Péclet number and the Schmidt number as the four curves are superposed.

As shown in the insert of Fig. 3.7, some small differences appear for low values

of br
wcell

and for the couple Pe = 1000 and Sc = 1.

3.4.2 Thermodynamic equilibrium case (B.C. I)

In this subsection, the dependence of kv
eff on different factors is investigated

first. Simulations are conducted for both advective-diffusive mass transport

regime and purely diffusive regime. In the latter case, the effective reaction

rate coefficient is denoted as kv
effdiffu

. The flat part of the solid-liquid interface

is under thermodynamic equilibrium. The roughness shape is semi-ellipse with

a height of hr. The other geometric parameters of the unit cell are w0
x = 8hr,

br = 0.5hr and wcell = 5hr.

The ratio of
kv

eff

kv
effdiffu

as a function of Pe and Sc is plotted in Fig. 3.8.

One sees in the figure that
kv

eff

kv
effdiffu

increases globally with Pe and Sc, which

means that the flow has a stronger impact on mass transport, as advection

becomes more important when increasing (Pe, Sc). For all tested Sc, when

Pe < 10, the effective reaction rate coefficient with advection is nearly the
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Figure 3.7: Effective surface position Ac
eff for a rounded square roughness for

different densities, Pe and Sc values. Insert: zoom of the upper part of the
initial graph.

same as the one under a purely diffusive regime. For Sc < 0.1, the difference

between kv
eff and kv

effdiffu
is less than 1% for Pe < 1000. Consequently, the

mass transport problem can be simplified into a pure diffusion case in such

circumstances, producing an error smaller than 1%. For the cases with Sc

close to 1,
kv

eff

kv
effdiffu

reaches a maximum at high Pe values, then decreases and

increases again. For higher Sc the ratio increases with Pe with different rate

except for Sc = 100 and Sc = 1000 that are superposed on the studied range

of Pe. One has to pay attention that the considered situation in this study is

laminar flow within a boundary layer. Therefore for the cases with small Sc,

the considered Pe should not be too large.

To illustrate the different regimes between mass transport governed by

diffusion or by advection, the streamlines of the total flux of a versus Sc and

Pe are plotted in Fig. 3.9. With small Pe (10 and 50), the variation of Sc only

has some small impact on the streamlines, which illustrates the weak influence

of the flow on the mass exchange at the reactive surface. The value of kv
eff

is therefore close to the value in the purely diffusive case (with a difference

less than 1%) as illustrated in Fig. 3.8. With larger Pe values, increasing Sc

(i.e., increasing the viscosity) delays the occurrence of recirculations close to



3.4. Effective parameters calculations 65

Figure 3.8: Ratio between kv
eff with advection and its value in the purely

diffusive case, as a function of Pe and Sc. Semi-ellipse roughness was used
with br = 0.5hr and br

wcell
= 0.1.

the rough surface, which explains the maximum values observed in Fig. 3.8.

The recirculations first limit mass transport towards the soluble material, and

then enhance it for increasing Pe, corresponding to the decrease and increase

of
kv

eff

kv
effdiffu

after the maximum values.

In a second set of simulations, the influence of the rough surface geometry

on
kv

eff

kv
effdiffu

is investigated by changing the roughness density. From the re-

sults presented in Fig. 3.10, a high roughness density leads to a delay in the

transition between the advective and diffusive regime. One can observe for

example that for br
wcell

= 0.4 and br
wcell

= 0.5, the flow alone has a small impact

on the effective reaction rate coefficient (less than 1%) even for high Pe values.

In these configurations, kv
effdiffu

is a good estimate of kv
eff . As the roughness

density decreases,
kv

eff

kv
effdiffu

increases because the flow can pass through the

roughness more easily, and therefore more solid surface under thermodynamic

equilibrium is available for mass transfer.
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Figure 3.9: Total flux streamlines of closure variable a for different Sc and Pe.
The roughness shape is a semi-ellipse with br = 0.5hr and br

wcell
= 0.1.

Figure 3.10: Ratio between kv
eff with convection and its value in the purely

diffusive case, as a function of the local Péclet number, for different roughness
densities given by br

wcell
.
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3.4.3 The case of a reactive surface (B.C. II)

In this subsection, the flat part of the solid-liquid interface is reactive.

To study the impact of the chemical features on the effective reaction rate

coefficient, some parameters are first introduced. Let kli denote the reactivity

at surface Ali. One should note that kli is equal to zero in this study since

the i-phase is non-reactive. The surface average reaction rate coefficient for

a heterogeneous surface can be approximated as k̂ = klsAls+kliAli
Als+Ali

, with Als

and Ali representing the surface areas of Als and Ali, respectively. According

to the mass conservation from Ar to Av
eff , the surface average reaction rate

coefficient at Av
eff can be estimated as k̂v = klsAls+kliAli

Av
, with Av denoting the

surface area of Av
eff . The structure of the concentration field inside the domain

will depend on the ratio between reaction characteristic rates and diffusion,

corresponding to a mean Damköhler number defined as D̂a = k̂w0
x

Dl
.

The roughness shape under consideration is semi-ellipse. The height and

width of the roughness, as well as the height of the unit cell remain unchanged,

with br = 0.5hr and w0
x = 8hr. Two roughness densities, wcell = 5hr and wcell =

10hr, are considered.

The results of
kv

eff

k̂v
versus D̂a are presented in Fig. 3.11 for different Pe

and Sc. For small D̂a,
kv

eff

k̂v
tends towards one despite of the flow properties.

In such circumstances, the characteristic time of reaction is long compared to

the mass-transfer kinetics, and the process is consequently limited by reaction.

With the increase of D̂a, mass transfer becomes insufficient and the process is

therefore limited by the mass transport. In other words, k̂v tends to infinity

while kv
eff remains a constant, leading to

kv
eff

k̂v
tending towards zero.

For a fixed roughness density, wcell = 5hr or wcell = 10hr, when Pe = 1, an

increase of Sc does not affect
kv

eff

k̂v
since the curves of Sc = 1 and Sc = 1000

are superposed, while when Sc remains unchanged, the increase of Pe delays

the decrease of
kv

eff

k̂v
. These results illustrate that only relatively large Pe have

some impact on kv
eff , consistent with the following discussion about Dav

eff

and with the results illustrated later by Fig. 3.13. For the geometry with

wcell = 10hr, the decrease of
kv

eff

k̂v
is delayed since the fluid can flow through

the roughness more easily thus enhance mass transfer. Therefore, it can be

concluded that the roughness density, the flow properties in terms of Pe and

the chemical features in terms of D̂a have an important influence on kv
eff .

Since it is not convenient to use the ratio
kv

eff

k̂v
when D̂a is large because

it tends to zero, an effective Damköhler number defined as Dav
eff =

kv
eff w0

x

Dl
is
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Figure 3.11: The ratio of effective reaction rate coefficient kv
eff over the surface

average reaction rate coefficient k̂v, as a function of the mean Damköhler
number, with different surface geometries.

introduced to indicate the evolution of kv
eff with D̂a. Results are plotted in

Fig. 3.12. Dav
eff is proportional to D̂a before it reaches a plateau when mass

transport becomes the limiting factor of the chemical process, consistent with

the results of a similar analysis in [162]. Quantitatively, when Pe remains un-

changed, Dav
eff for wcell = 10hr is twice as large as for wcell = 5hr in the limit of

large D̂a. This is also explained by the fact that mass transport is limiting the

process under large D̂a and increasing the proportion of the dissolving phase is

equivalent to increasing mass transport. Moreover, flow and roughness density

have only a small impact on Dav
eff for small D̂a because in such circumstances

it is the surface reaction rate coefficient but not mass transport that controls

the process. Furthermore, Dav
eff increases with roughness density under small

D̂a and decreases with roughness density under large D̂a, which is due to the

transition of the limiting factor.

Finally, the importance of mass transport by advection is studied by plot-

ting
kv

eff

kv
effdiffu

versus Pe for two D̂a values and for different Sc, as shown in

Fig. 3.13. One sees from the figure that with the increase of Pe, the ratio
kv

eff

kv
effdiffu

tends to increase since the advection term becomes more important.

The curves with the same Sc have similar trends but with different magni-
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Figure 3.12: The functionality of the effective Damköhler number Dav
eff with

the mean Damköhler number D̂a.

tudes. In the case with higher D̂a, the role of advection is more important and

the transitions from the diffusive regime to the advective regime take place at

smaller Pe. For the curves with Sc = 0.1, the increases happen at relatively

large Pe and can lead to larger
kv

eff

kv
effdiffu

than the curves with Sc = 10 in some

circumstances, because the growth of
kv

eff

kv
effdiffu

with Sc = 10 slows down at

about 3000 < Pe < 7000. This trend is similar to the results obtained with the

thermodynamic equilibrium boundary condition. Recirculations close to the

rough surface have a similar impact, first limiting the mass transport towards

the reactive surface and then enhancing it. To summarize, to estimate kv
eff by

kv
effdiffu

will produce an error less than 5% for the studied cases with D̂a = 1,

because the reaction rate coefficient is the limiting factor of process and the

flow properties have negligible impact. One has to be careful to represent kv
eff

by kv
effdiffu

at large D̂a since the flow properties can have significant influence

in such conditions.

3.5 Application of the effective surface model

As introduced in Sec. 3.3, there are different potential choices for the po-

sition of the effective surface, e.g., the fictive surface A0, surface Av
eff which

recovers the no-slip boundary condition, surface Ac
eff which recovers the ther-

modynamic equilibrium condition, or any arbitrary location. In this section
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Figure 3.13: Ratio between kv
eff with advection and its value in the purely

diffusive case, as a function of the local Péclet number and for different Schmidt
numbers. The roughness shape is a semi-ellipse with br = 0.5hr and br

wcell
= 0.1.

the objective is to identify the most appropriate effective surface by investigat-

ing the errors between direct numerical simulations (DNSs) over the original

rough surface and simulations with the effective surface model. Two situations

are considered, typical of the development of a mass boundary layer over a

rough surface.

The first application corresponds to a boundary layer over a rough wall

parallel to the flow. The original model for DNSs is illustrated by the upper

drawing of Fig. 3.14a. The characteristic length of the system used to nor-

malize the space variables is HΩ, i.e., L, the height of the global domain. The

system is W = 3HΩ wide. A short flat zone is set with a length of 0.5HΩ be-

fore the rough surface in order to have an already developed boundary layer,

which is closer to the periodic boundary condition hypothesis stated previ-

ously. In addition, the roughness height is chosen to be small enough to have

ǫ = lcell
L = 0.1 and lcell = 8hr. The roughness has a shape of semi-ellipse with

br = 0.5hr. In terms of geometry for the effective models, the flat surface at

the entrance remains unchanged and the original rough surface is replaced by

a smooth effective one. The lower drawing in Fig. 3.14a gives an example of

the effective model with no-slip condition at the effective surface. The original

flat surface and the effective surface are connected by a small step. It is clear
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that some assumptions of the homogenization are not valid in this particular

area, which is a singularity (no-periodicity, etc...). Specific developments could

be done to overcome this problem, but in the present work the general results

are simply used to see if it is acceptable.

In the second application, the boundary layer develops on a rough cylinder

perpendicular to the flow. As illustrated in Fig. 3.14b, the rough surface in

the DNSs is replaced by the smooth circular surface in the effective model.

Since the considered geometry is symmetric with respect to x-axis, only the

transport in the upper half domain is simulated. The characteristic length of

the system used to normalize the space variables is L, the cylinder diameter.

The height of the half domain is HΩ = 1.5L and the width is W = 2.5L.
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Figure 3.14: Schematic representation of the computational domain: DNSs
over the heterogeneous surface and the first order effective models (application
1 in (a) and application 2 in (b)).

DNSs are performed using dimensionless forms of Pb I equations with B.C.

I. For the effective model, the closure problems Pb III(B,s) and Pb IIIa i are

solved first to obtain the effective surface position and the effective boundary

conditions. Then the effective macro-scale problem Pb II is solved using these

obtained effective boundary conditions. Similar numerical settings were used

as in the last section.

The convergence behavior for the relative error (reference based on the

calculation with the maximum number of DOF) of the normal total flux in-

tegrated over the reactive surface as a function of the number of degrees of

freedom (DOF) is presented in Fig. 3.15, for both the rough surface and the

effective surface with no-slip boundary condition in application 1. The mesh

quality was considered good when a negligible increase of the flux was observed
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with the increase of DOF. The DNS relative error is higher for an equal number

of DOF. This also demonstrates the computational efficiency of the effective

model. For a relative error of 1% there is a factor 2 between the number of

DOF, as for lower relative error level the factor increases with the number of

DOF. Similar analyses were done for application 2.

Figure 3.15: An example of convergence analysis for the effective model

3.5.1 Application 1: boundary layer over a rough wall parallel

to the flow

The way to quantify the differences between the two simulations is to cal-

culate the error on the integration of the total mass flux over the solid-liquid

surface, called QDNS for the rough surface and Qeff for the effective one.

Simulations are done for flows with ReL = 1 and ReL = 50, with two roughness

densities: br
wcell

= 0.5 and br
wcell

= 0.1. The relative errors on the total mass flux

are plotted in Fig. 3.16 for different effective surface positions. For effective

surface at a position lower than 2.5hr, the relative error committed by the

model is smaller than 1%. At higher effective surface positions and for the

different Reynolds numbers, the error increases when increasing the position

of the effective surface. One can also observe that the roughness density has

little impact on the error compared to the influence of ReL. Increasing the dis-
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tance between roughnesses by a factor of five only increases the error by less

than 1%, while increasing ReL from 1 to 50 nearly doubles the error. For the

different flow conditions or geometry, a minimum value of the relative error is

obtained around yeff = hr. It is closest to Av
eff among the particular effective

surface positions discussed before.

Figure 3.16: Relative error on Qeff compared to QDNS, for different positions
of the effective surface, with different surface geometries, Sc = 1 and two values
of ReL.

To demonstrate the representativeness of the effective model with the ef-

fective surface located at Av
eff , the results of DNSs and the first order effective

model are compared in terms of velocity, concentration fields and the distri-

bution of mass flux over the reactive surface as illustrated in Figs. 3.17 and

3.18, respectively. Results with the effective surface at A0 are also shown in

these figures to illustrate the discrepancies created by the large step between

the flat zone and the effective surface.

In the upper graph of Fig. 3.17, one can observe that the velocity contours

obtained by DNSs (solid line) and those obtained with the first order effective

model with an effective surface at wv
x

L , i.e., at Av
eff , are overlapped, with neg-

ligible errors. This is consistent with previous findings in the literature for the

momentum transport problem. Results with the effective surface at A0 (dot

line), give the good trend but are not precisely representing the DNSs velocity

field. As for concentration contours, one sees in the lower graph of Fig. 3.17

that those obtained with the effective surface at wv
x

L are also well superposed



74 Chapter 3. Effective surface and boundary conditions

Figure 3.17: Dimensionless velocity field (upper graph) and concentration
(lower graph) contours for the initial rough domain and two effective smooth
domains, with an entrance dimensionless flow velocity of 1, ReL = 25 and
Sc = 1.

with the DNSs results, except inside the small entrance region where the con-

ditions for upscaling break down as discussed previously. Quantitatively, this

creates a small and rather acceptable discrepancy of 0.07% on the total mass

flux. The iso-concentration contours obtained with the effective surface at A0

show some discrepancies that increase with x
L , leading to a relative error on

the total mass flux of around 6.2%.

In Fig. 3.18, the distribution of the normal mass flux, q, along the reactive

surfaces in the effective model with Av
eff and A0 and that along the rough

surface in the original model are compared. For the DNSs, values are discrete

because q needs to be averaged for each wcell. The results of the DNSs and

the effective model with Av
eff show a good agreement. For the model with the

effective surface at A0, q distribution differs from the DNSs in the entrance

region after the step. This is mainly the consequence of the discrepancies

observed in the velocity field.
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Figure 3.18: Normal flux along the reactive surfaces for the initial rough do-
main and two effective smooth domains, with an entrance dimensionless flow
velocity of 1, ReL = 25 and Sc = 1.

3.5.2 Application 2: rough cylinder in a laminar flow

This second case illustrates the accuracy of the effective model for a more

complex configuration than the previous application. Simulations are done for

a flow with ReL = 0.1 and Sc = 1000, with 50 roughnesses distributed uniformly

over the cylinder surface and ǫ = 0.1. In the two graphs of Fig. 3.19, one can

observe that both velocity contours (left) and concentration contours (right)

obtained by DNSs (black solid line) and with an effective surface at Av
eff (blue

dashed line) are overlapped, with negligible errors. The error on Q is less

than 0.1%, proving again the validity of the first order effective surface model.

This error remains smaller than 0.1% even by increasing ǫ to 0.5 (the scale

separation assumption is no more valid). However for ReL = 1, Sc= 1000 and

ǫ = 0.5, the model starts to show some limitations and gives results with an

error around 3%.

3.5.3 Effective parameters estimates

In these last paragraphs, potential estimates of the effective properties are

discussed in order to reduce computational costs, taking application 1 as an

example. As mentioned previously in Sec. 3.4, for a high roughness density

the effective surface position is close to the roughness height. One first possible

approximation is to set the effective surface position at the roughness height,

using a no-slip boundary condition and then use the effective reaction rate

obtained for an effective surface at hr, which will be called Ar
eff . Relative
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Figure 3.19: Dimensionless velocity field (left) and concentration (right) con-
tours for the initial rough domain and the effective smooth domain, with an
entrance dimensionless flow velocity of 1, ReL = 0.1 and Sc = 1000.

errors committed on the total mass flux using this approximation are compared

to the one with the correct effective model with Av
eff . Results are assembled

in Table 3.1 for ReL = 25 and Sc = 1, and for rounded square roughnesses with

br = hr. The approximated model gives results with relative errors less than

1% even for roughness densities as low as 0.2, i.e., br
wcell

= 0.2 with δv = 0.73.

This first approximation gives good results for certain rough surface geometries

and will save computational time as the closure problem for the flow does not

need to be solved anymore.

br
wcell

δv Av
eff (in %) Ar

eff (in %)
0.8 0.977 0.262 0.179
0.67 0.964 0.234 0.117
0.2 0.729 0.372 0.674
0.1 0.458 0.581 1.63

0.067 0.318 0.675 2.03

Table 3.1: Relative errors committed on the total mass flux over the reactive
surface between the effective model simulations and the DNSs, for different
roughness densities with br = hr and rounded square roughnesses, an entrance
dimensionless flow velocity of 1, ReL = 25 and Sc = 1.

In addition to this first estimate, an approximation can be made on the

effective reaction rate as well. In the range of ReL used for the global simula-

tions (1 to 1000), the corresponding micro-scale Péclet number will not exceed

100 for Schmidt numbers below 10. From the parametric study of Sec. 3.4, it

has been observed that the effective reaction rate obtained for pure diffusion

can be a good approximation of the effective reaction rate with flow. As a

result, Pb IIIa with B.C. I can be simplified into a purely diffusive one in these

application ranges. For example, the largest difference between errors on Q,
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committed with and without accounting for the flow in kv
eff is 0.002 (obtained

with br
wcell

= 0.1, ReL = 500 and Sc = 5 which has a ratio
kv

eff

kv
effdiffu

≈ 1.02).

To sum up, all these numerical results demonstrate the efficiency of using an

effective surface model, characterized by a homogeneous and smooth surface,

to reproduce the flow and reactive mass transport over a heterogeneous rough

surfaces, with a good accuracy. The use of estimates without solving Pb III(B,s)

can help to gain computational time, but may need to be tested on larger

domains.

3.6 Conclusion

The concept of effective surface has already proven its usefulness for sev-

eral transport mechanisms. The main contribution of this study concerns mass

(and momentum) transfer for a laminar flow over a heterogeneous rough sur-

face characterized by mixed boundary conditions. A very important constraint

necessary to develop the effective surface concept is the separation of scales be-

tween the global boundary layer thickness and the zone of influence of the sur-

face heterogeneities within that boundary layer. Additional assumptions were

made, like micro-scale pattern periodicity, which could probably be replaced

by less restrictive constraints. Based on these assumptions, the methodology

of multi-domain decomposition was used to decompose the domain under in-

vestigation into a macro-scale subdomain and a range of micro-scale unit cells.

To determine what boundary conditions should be prescribed and where

the effective surface should be placed, first order estimates of the micro-scale

variables were made by means of Taylor expansion, and the resolution was ob-

tained by solving corresponding closure problems. After this homogenization

procedure, alternative effective surface positions were found. General expres-

sions for the effective boundary conditions were obtained, and, for some effec-

tive surfaces of interest, the related effective boundary conditions were derived

from the generic form. Among the different choices, the effective surface with

a no-slip boundary condition or any other position close to this surface have

the advantage that it induces the smallest errors. For a rough surface with

part under equilibrium and part with no flux, the effective boundary condition

turns out to be of a reactive type, with an effective reaction rate coefficient de-

pending on the geometry and flow properties. Interestingly, this establishes a

fundamental relationship with the case of a reactive surface with non-uniform

reaction rates ( [43] and this study).
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The influences of some parameters, including roughness geometry, flow

properties and surface chemical characteristics, were studied. These analy-

ses showed that the geometry of the asperities, in terms of density and shape,

has a significant impact on the effective surface position. A higher roughness

density leads to an effective surface farther from the lower part of the rough

surface, and vice versa. Flow properties have a stronger impact for the case

with smaller roughness density.

The study of the impact of flow properties showed that in some circum-

stances, the advective-diffusive flow regime can be simplified into a purely

diffusive one. In addition, since the chemical characteristics are the limiting

factors at small D̂a, it is acceptable to approximate the effective reaction rate

coefficient by the surface average. At large D̂a, the chemical process is con-

trolled by the mass transport, and the effective reaction rate coefficient should

be calculated by the closure problems developed for the specific conditions.

Due to the strong impact of flow properties at large D̂a, the mass transport

by advection should be taken into account.

At last, simulations were conducted for both the original model and the

effective ones in application 1. The results comparison in terms of total flux

showed that the one with the no-slip condition (Av
eff ) is more accurate than the

fictive surface with slip condition (A0). Contours of velocity and concentration,

and total flux at a specific cross-section obtained by the original model and by

the effective model with the effective surface at Av
eff agreed very well. Velocity

and concentration comparisons for a more complex geometry also showed good

agreements. These two applications demonstrate the representativeness of the

effective surface models to the original ones.

As indicated in the introduction, one of the motivation for this study was to

model phenomena taking place at “dissolving” interfaces (drying, karstic and

other underground cavities, etc.). Therefore, the surface geometry is not given

a priori but is a result of the process. How the surface geometry changes with

time under different conditions? What is the recession rate? And how these

effects can be handled by a macro-scale theory (here the concept of effective

surface) are open problems which are of major interest. Additional coupling

may arise, in particular, hydrodynamic and dissolution instabilities may pro-

duce different surface patterns (as illustrated in [120]) and this also is an issue

that needs to be considered in the future.



Chapter 4

Dispersion in porous media with

heterogeneous nonlinear

reactions

4.1 Introduction

In addition to the case which involves the treatment of rough solid-liquid

dissolution surfaces, such as the problems studied in Chap. 3, another situation

corresponds to the dissolution of a porous medium. To describe the dissolution

of the soluble medium contained in a porous medium such as illustrated in Fig.

2.1, it is often not practical, even if this is the more secure way of handling

the geometry evolution [66], to take into account all the pore-scale details by

direct numerical modeling in a L-scale problem. Consequently, attempts have

been made to filter the pore-scale information through the use of upscaling

techniques.

The case of thermodynamic equilibrium at the interface leads, when local-

equilibrium is considered, to a simple model stating that the macro-scale con-

centration is equal to the pore-scale surface equilibrium concentration. Non-

equilibrium models have been obtained through the volume averaging method,

neglecting contributions of the interface velocity in the closure problems and at

several points in the averaging process, leading to the introduction of a linear

exchange term in the macro-scale equation [10, 109, 110, 163]. These results

have been extended to the case of mass exchange controlled by partitioning

expressions (Raoult’s law, Henry’s law, etc.) in [164] and [165], with the ad-

ditional terms associated to the interface recession velocity being taken into

account in this latter paper. Non-traditional convective terms appear in the

79
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macro-scale equations, which are often discarded in practical implementations

of the macro-scale models. However, it was shown in [166] that they must be

taken into account, at least for simple unit cells like tubes.

The case of heterogeneous reaction with a linear reaction has been inves-

tigated by a large amount of studies using the previously mentioned various

upscaling techniques [41, 58, 108, 167–170]. The major feature of the result-

ing macro-scale models is the notion of effective reaction rate, which depends

highly on the pore-scale Damköhler number, as well as the pore-scale medium

geometry. In particular, the form and value of the reaction rate is in theory

affected by the coupling between reaction and transport. In addition, contrary

to most engineering practice, these upscaling studies show also that the result-

ing dispersion tensor is affected by the heterogeneous reaction, i.e., dispersion

curves depend on the Damköhler number.

To our knowledge, few works have been published concerning macro-scale

models developed from pore-scale problem with nonlinear reactions. Wood

et al. [171] reported on the development of an effective macro-scale reaction

rate using the method of volume averaging for a Michaelis–Menton reaction

in the biotransformation problems and discussed the dependence of the ef-

fective macro-scale reaction rate on the closure variable, the Damköhler and

the Péclet numbers respectively. Heße et al. [172] studied the upscaling of

a Monod reaction at the interface of polluted water and biofilm through a

simple averaging scheme based on DNS. Interestingly, the results show that

the macro-scale reaction rate does not follow the Monod type in the transi-

tion zone between the reaction-limited regime and the diffusion-limited regime.

This is also consistent with the findings of [173] about reactive transport in

porous media with biofilms. This adds to the motivation of developing a more

comprehensive averaging scheme. The nonlinear heterogeneous reactions at

the dissolving interface are often expressed under the form of Eq. 1.4 and

the dissolution kinetics were obtained by Jeschke et al. [49] for gypsum dis-

solution as mentioned in Chap. 1. Given this research survey, the objective

of this study is to develop a general form of the macro-scale model, starting

from pore-scale problems with thermodynamic equilibrium or nonlinear reac-

tive boundary conditions, taking into account as much as possible the role of

the interface velocity in the upscaling process.

This chapter is organized as follows. In Sec. 4.2 the method of volume

averaging is used to develop a non-equilibrium macro-scale model, as well as

the corresponding closure problems from which the effective parameters are
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obtained, starting from the pore-scale model developed in Chap. 2. Some

limiting cases in terms of Da are also discussed in order to connect our results

to the literature. In Sec. 4.3 closure problems are resolved for the stratified

and the 3D representative unit cells with nonlinear reaction rates, and the

properties of the generated effective parameters are studied. In the last sec-

tion an example of the use of this macro-scale model is presented in order to

investigate the importance of the non-traditional effective parameters.

The main new features taken into account in this study are: (i) a more

general form of the reaction rate, (ii) the introduction of the soluble mate-

rial1, (iii) a full coupling of the two closure variables in the closure problems,

(iv) an investigation on the potential implications of non-traditional terms.

The development are presented in a simplified manner with the emphasis on

the original and specific points of our study. The reader are referred to the

cited literature for more thorough developments on the classical aspects of the

upscaling method.

4.2 Upscaling

As mentioned in the introduction, several upscaling methods can be adopted

[174], for instance, volume averaging [102], ensemble averaging [175,176], mo-

ments matching [106, 169] and multi-scale asymptotic [177]. In this present

study, the developments of a macro-scale model are followed based on the

method of volume averaging. The general framework has been developed over

several decades and a comprehensive presentation can be found in [102]. Our

present work extends the contribution of [58,109,165]. Therefore, the focus of

this study is on the original contribution, while presenting the classical steps

at a minimum necessary for reader’s comprehension.

4.2.1 Averages and averaged equations

Averages are defined in the traditional2 manner as

〈vl〉 =
1

V

ˆ

Vl

vldV = εl 〈vl〉l , (4.1)

1A non dissolving material was also introduced in [109,164]
2For a more comprehensive use of spatial averaging, especially for simple periodic unit

cells, see [178–182]
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εl =
1

V

ˆ

Vl

dV, (4.2)

and

〈ωl〉 =
1

Vl

ˆ

Vl

ωldV, (4.3)

where 〈vl〉 and 〈vl〉l denote the superficial and intrinsic average of the pore-

scale liquid velocity, respectively, V denotes the volume of the representative

unit cell, εl denotes the porosity and 〈ωl〉l denotes the intrinsic average of the

mass fraction of Ca in the liquid phase. The following deviation fields are

introduced

ωl = 〈ωl〉l + ω̃l (4.4)

vl = 〈vl〉l + ṽl, (4.5)

with ω̃l and ṽl denoting the deviation of mass fraction and liquid velocity,

respectively.

The average of Eq. 2.19 gives simply

∂εlρl

∂t
+∇· (ρl 〈vl〉) = −Kg, (4.6)

with the mass exchange term corresponding to

Kg =
1

V

ˆ

Als

nls ·ρl (vl −wsl)dA. (4.7)

The average of the solid mass balance equation gives

∂εsρs

∂t
= Kg, (4.8)

where Eq. 2.22 has been used to obtain

Kg =
1

V

ˆ

Als

nls · (−ρswsl)dA =
1

V

ˆ

Als

nls ·ρl (vl −wsl)dA

= −avlMgks

〈(
1− ωl

ωeq

)n〉

ls

, (4.9)
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with the definition of the surface average and specific area as

〈⋆〉ls =
1

Als

ˆ

Als

⋆dA, (4.10)

and

avl =
1

V

ˆ

Als

dA, (4.11)

respectively.

Finally, the mass balance equation for the Ca component yields

∂εlρl 〈ωl〉l

∂t
+∇·

(
εlρl 〈ωl〉l 〈vl〉l

)
+∇· (ρl 〈ω̃lṽl〉)︸ ︷︷ ︸

dispersion

=

∇·




εlρlDl∇〈ωl〉l +
1

V

ˆ

Als

nlsρlDlω̃ldA+
1

V

ˆ

Ali

nliρlDlω̃ldA

︸ ︷︷ ︸
tortuosity




−KCa.

(4.12)

The total mass exchange term is related to KCa by

KCa =
MCa

Mg
Kg = −avlMCaks

〈(
1− ωl

ωeq

)n〉

ls

. (4.13)

Using Eq. 4.6, Eq. 4.12 can be written as

εlρl
∂ 〈ωl〉l

∂t
+ εlρl 〈vl〉l ·∇〈ωl〉l +∇· (ρl 〈ω̃lṽl〉)︸ ︷︷ ︸

dispersion

=

∇·




εlρlDl∇〈ωl〉l +
1

V

ˆ

Als

nlsρlDlω̃ldA+
1

V

ˆ

Ali

nliρlDlω̃ldA

︸ ︷︷ ︸
tortuosity




−KCa +Kg 〈ωl〉l . (4.14)
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4.2.2 Deviation equations and closure

At this point, an estimate for the concentration deviations has to be found.

The governing equations are obtained by substituting Eq. 4.4 into the pore-

scale mass balance equations, then subtracting the averaged equation (Eq.

4.14) divided by εl (neglecting spatial variations of the volume fraction and

liquid density over the representative elementary volume). Using the following

intermediate results, which make use of classical algebra and approximations

about averages involving averages that are discussed at length in the averaging

literature, in particular [178–182] and [102]

∇· (ρlωlvl) = ρlωl∇·vl +ρlvl ·∇ωl = ρlvl ·∇〈ωl〉l +ρlvl ·∇ω̃l, (4.15)

−ε−1
l ∇·

(
εlρlDl∇〈ωl〉l +

1

V

ˆ

Als

nlsρlDlω̃ldA+
1

V

ˆ

Ali

nliρlDlω̃ldA

)
≈

−∇·
(

ρlDl∇〈ωl〉l +
ε−1

l

V

ˆ

Als

nlsρlDlω̃ldA+
ε−1

l

V

ˆ

Ali

nliρlDlω̃ldA

)
, (4.16)

ε−1
l KCa − ε−1

l Kg 〈ωl〉l = ε−1
l

1

V

ˆ

Als

nls · (ρlωl (vl −wsl)−ρlDl∇ωl)dA

−ε−1
l 〈ωl〉l 1

V

ˆ

Als

nls ·ρl (vl −wsl)dA = −ρlDlε
−1
l

1

V

ˆ

Als

nlsdA ·∇〈ωl〉l

+ε−1
l

1

V

ˆ

Als

nls · (ρlω̃l (vl −wsl)−ρlDl∇ω̃l)dA (4.17)

∇·
(

ε−1
l

V

ˆ

Als

nlsρlDlω̃ldA+
ε−1

l

V

ˆ

Ali

nliρlDlω̃ldA

)
≪ ∇· (ρlDl∇ω̃l) , (4.18)

one obtains
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ρl
∂ω̃l

∂t
+ρlvl ·∇ω̃l +ρlṽl ·∇〈ωl〉l − ε−1

l ∇· (ρl 〈ω̃lṽl〉) = ∇· (ρlDl∇ω̃l)

+
ε−1

l

V

ˆ

Als

nls ·ρlω̃l (vl −wsl)dA− ε−1
l

V

ˆ

Als

nls ·ρlDl∇ω̃ldA

−ρlDlε
−1
l

1

V

ˆ

Als

nlsdA ·∇〈ωl〉l . (4.19)

In addition, the assumption (see cited literature) that

Ωls = 〈ωl〉ls =
1

Als

ˆ

Als

ωldA ≈ 〈ωl〉l , (4.20)

is used, so any integral of the form 1
V

´

Als
ωldA will be approximated by

1

V

ˆ

Als

ωldA ≈ avl 〈ωl〉l . (4.21)

Using Eq. 2.21, the boundary condition for the deviation may be written

nls ·
(
ρl 〈ωl〉l (vl −wsl)

)
+nls · (ρlω̃l (vl −wsl))+nls · (−ρlDl∇ω̃l)

+nls ·
(
−ρlDl∇〈ωl〉l

)
= −MCaks


1− 〈ωl〉l + ω̃l

ωeq




n

at Als. (4.22)

The crucial assumption now, which will be tested quantitatively against

DNS in Sec. 4.4, is the approximation of the nonlinear reaction rate by a

first-order Taylor expansion, i.e.,

nls ·
(
ρl 〈ωl〉l (vl −wsl)

)
+nls · (ρlω̃l (vl −wsl))+nls · (−ρlDl∇ω̃l)

+nls ·
(
−ρlDl∇〈ωl〉l

)
= −MCaks


1− 〈ωl〉l

ωeq




n

+
nMCaks

ωeq


1− 〈ωl〉l

ωeq




n−1

ω̃l

at Als, (4.23)

or
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nls ·
(
ρl 〈ωl〉l (vl −wsl)

)
+nls · (ρlω̃l (vl −wsl))+nls · (−ρlDl∇ω̃l)

+nls ·
(
−ρlDl∇〈ωl〉l

)
= −MCaks

ωeq


1− 〈ωl〉l

ωeq




n−1 (
ωeq −〈ωl〉l −nω̃l

)

at Als. (4.24)

Similarly, Eq. 2.24 gives

nli · (−ρlDl∇ω̃l)+nli ·
(
−ρlDl∇〈ωl〉l

)
= 0 at Ali. (4.25)

Following the developments described in the literature [58,109,165],
(
〈ωl〉l −ωeq

)

and ∇〈ωl〉l may be viewed as source terms in the above coupled macro-scale

and micro-scale governing equations since they may act as generators of the

deviation terms. Given the mathematical structure of these coupled equa-

tions, an approximate solution can be built based on an expansion involving

the source terms and their higher derivatives under the following form

ω̃l = sl

(
〈ωl〉l −ωeq

)
+bl ·∇〈ωl〉l + ..., (4.26)

which gives for the first-order derivatives

∇ω̃l = ∇sl

(
〈ωl〉l −ωeq

)
+(∇bl + slI) ·∇〈ωl〉l + ... (4.27)

According to the length scale constraints ls, li, ll ≪ r0 ≪ L, terms involving

higher order derivatives than ∇〈ωl〉l in Eq. 4.27 can be neglected. Substitut-

ing Eqs. 4.26 and 4.27 into Eq. 4.19, collecting terms for
(
〈ωl〉l −ωeq

)
and

∇〈ωl〉l and then applying the fundamental lemma stated in [109], the follow-

ing two “closure problems” were obtained, which depend on the macro-scale

concentration 〈ωl〉l as a parameter. This latter result is entirely a consequence

of the Taylor expansion approximation.

Problem I:

ρl
∂sl

∂t
+ρlvl ·∇sl = ∇· (ρlDl∇sl)+ ε−1

l ρlXl in Vl, (4.28)
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B.C. I nls · 〈ωl〉l

〈ωl〉l −ωeq

ρl (vl −wsl)+nls · (ρlsl (vl −wsl)−ρlDl∇sl)

=
MCaks

ωeq


1− 〈ωl〉l

ωeq




n−1

(1+nsl) at Als(t), (4.29)

B.C. II nli · (−ρlDl∇sl) = 0 at Ali, (4.30)

〈sl〉 = 0 in Vl, (4.31)

sl (x + li) = sl (x) , (4.32)

where the notation Als(t) was used to remind the geometry evolution. In the

above set of closure problem, the following notation has been used

ρlXl =
1

V

ˆ

Als

nls ·ρlsl (vl −wsl)dA− 1

V

ˆ

Als

nls ·ρlDl∇sldA

− 1

V

ˆ

Ali

nli ·ρlDl∇sldA. (4.33)

Taking the average of Eq. 4.28, and the fact that ρl 〈vl ·∇sl〉 = ρl∇·〈vlsl〉 =

0 because of the periodicity conditions leads to the equation

ρl
∂ 〈sl〉

∂t
= − 1

V

ˆ

Als

nls ·ρlsl (vl −wsl)dA+
1

V

ˆ

Als

nls ·ρlDl∇sldA

+
1

V

ˆ

Ali

nli ·ρlDl∇sldA+ρlXl ≡ 0, (4.34)

which confirms the consistency of the proposed closure problem.

Problem II:

ρl
∂bl

∂t
+ρlvl · (∇bl + slI)+ρlṽl − ε−1

l ρl 〈ṽlsl〉 = ∇· (ρlDl (∇bl + slI))

+ε−1
l ρlul in Vl, (4.35)
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B.C. I nls · (ρl (vl −wsl)bl −ρlDl (∇bl + slI))−ρlDlnls

= nMCaks

ωeq

(
1− 〈ωl〉l

ωeq

)n−1

bl at Als(t), (4.36)

B.C. II nli · (−ρlDl (∇bl + slI)) = ρlDlnli at Ali, (4.37)

〈bl〉 = 0 in Vl, (4.38)

bl (x + li) = bl (x) , (4.39)

in which

ρlul =
1

V

ˆ

Als

nls ·ρl (vl −wsl)bldA− 1

V

ˆ

Als

nls ·ρlDl (∇bl + slI)

− 1

V

ˆ

Als

nlsρlDldA. (4.40)

Using the following relation3

−∇εl =
1

V

ˆ

Als

nlsdA+
1

V

ˆ

Ali

nlidA = 0, (4.41)

it may be written that

− 1

V

ˆ

Als

nlsρlDldA =
1

V

ˆ

Ali

nliρlDldA, (4.42)

which becomes

− 1

V

ˆ

Als

nlsρlDldA = − 1

V

ˆ

Ali

nli · (ρlDl (∇bl + slI))dA. (4.43)

because of Eq. 4.37.

With that in hand, Eq. 4.40 may be recast into a more convenient form

3It must be reminded that neglecting spatial variations of the phase volume fractions is
only made at the closure level, and is consistent with the use of periodicity conditions.
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ρlul =
1

V

ˆ

Als

nls ·ρl (vl −wsl)bldA− 1

V

ˆ

Als

nls ·ρlDl (∇bl + slI)dA

− 1

V

ˆ

Ali

nli ·ρlDl (∇bl + slI)dA, (4.44)

which can be used to check the consistency relationship

ρl
∂ 〈bl〉

∂t
≡ 0. (4.45)

In both closure problems, the zero average conditions on the mapping fields

sl and bl ensure that the concentration deviation is zero. The initial conditions

that must be added to the two sets of equations in order to get a complete

problem remain unspecified. They depend on the specific problem to be solved

in the transient case. Since only the steady-state behavior is considered in the

next sections, this discussion is not pushed here.

Here one sees that a complete coupling between Problem I and II has

been kept according to terms involving sl in Problem II. As shown in [166],

such a coupling may be necessary to get an accurate estimate of the exchanged

flux. So far the interface velocity has not been discarded at any step, which

provides a very consistent theory in the mass balance equations. In order

to solve these problems, however, the interface position and velocity, as well

as the macro-scale concentration must be known properties because of the

reaction nonlinearity. The classical geochemistry problem faced here is that

in principle, the coupled pore-scale (here the closure problems) and macro-

scale equations must be solved at each time step in order to compute the

interface evolution and 〈ωl〉l. In geochemistry (or other problems involving

changing geometries) it is often assumed a given interface evolution and the

closure problems are solved for each realization, which in turn yields effective

properties depending on, for instance, the medium porosity. In turn, these

effective properties can be used in a macro-scale simulation without the need

of a coupled micro-scale/macro-scale solution. Of course, it is well known that

some history effects are lost in this process [66], but it has the advantage that

this is far more practical than solving the coupled problem.

Assuming that mass fluxes near the interface are triggered by the diffusive

flux, which is acceptable in most dissolution problems, approximate closure

problems may be developed as indicated in Appendix A.
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4.2.3 Macro-scale equation and effective properties

Introducing the deviation expression Eq. 4.26 in the averaged equation Eq.

4.12 leads to

∂εlρl 〈ωl〉l

∂t
+∇·

(
εlρl 〈ωl〉l 〈vl〉l

)
+∇·

(
ρl 〈ṽlsl〉

(
〈ωl〉l −ωeq

)
+ρl 〈ṽlbl〉 ·∇〈ωl〉l

)

= ∇·
(
εlρlDl∇〈ωl〉l

)
+∇·

(
1

V

ˆ

Als

nlsρlDl

(
bl ·∇〈ωl〉l + sl

(
〈ωl〉l −ωeq

))
dA

)

+∇·
(

1

V

ˆ

Ali

nliρlDl

(
bl ·∇〈ωl〉l + sl

(
〈ωl〉l −ωeq

))
dA

)
−KCa, (4.46)

with KCa defined by Eq. 4.13.

It is convenient to write Eq. 4.46 under the form of a generalized dispersion

equation such as

∂εlρl 〈ωl〉l

∂t
+∇·

(
εlρl 〈ωl〉l 〈vl〉l + εlρl

(
〈ωl〉l −ωeq

)
U∗

l

)
= ∇·

(
εlρlD

∗
l ·∇〈ωl〉l

)

−KCa, (4.47)

with the dispersion tensor given by

D∗
l = Dl

(
I+

1

Vl

ˆ

Als

nlsbldA+
1

Vl

ˆ

Ali

nlibldA

)
−〈ṽlbl〉l , (4.48)

and the non-traditional effective velocity given by

U∗
l = 〈ṽlsl〉l − 1

Vl

ˆ

Als

nlsDlsldA− 1

Vl

ˆ

Ali

nliDlsldA. (4.49)

The mass exchange term can be calculated as (neglecting higher order

derivatives than ∇〈ωl〉l)

KCa =
1

V

ˆ

Als

nls.

(
ρl (vl −wsl)

(
〈ωl〉l +bl ·∇〈ωl〉l + sl

(
〈ωl〉l −ωeq

))

−ρlDl

(
∇〈ωl〉l +(∇bl + slI) ·∇〈ωl〉l +

(
〈ωl〉l −ωeq

)
∇sl

))
dA. (4.50)
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It can be recast into

KCa = 〈ωl〉ls Kg +
1

V

ˆ

Als

nls ·
(

ρl (vl −wsl)
(
bl ·∇〈ωl〉l + sl

(
〈ωl〉l −ωeq

))

−ρlDl

(
∇〈ωl〉l +(∇bl + slI) ·∇〈ωl〉l +

(
〈ωl〉l −ωeq

)
∇sl

))
dA, (4.51)

or

KCa = 〈ωl〉ls Kg +
(
〈ωl〉l −ωeq

) 1

V

ˆ

Als

nls · (ρlsl (vl −wsl)−ρlDl∇sl)dA

+

(
1

V

ˆ

Als

nls · (ρl (vl −wsl)bl −ρlDl (∇bl + slI))dA

)
·∇〈ωl〉l

−ρlDl

(
1

V

ˆ

Als

nlsdA

)
·∇〈ωl〉l . (4.52)

This formula is useful in the sense that it emphasizes the structure of the

mass exchange term regardless of the chosen expression used for the reaction

rate (it could be also an equilibrium boundary condition). In particular it

shows that the mass exchange term is not only depending on the averaged

concentration but also on its gradient. Of course, it is also useful to relate this

term to the reaction rate expression by a direct averaging of Eq. 4.13. The

following expression may be written

KCa = −avlMCaks

〈
1−

〈ωl〉l + sl

(
〈ωl〉l −ωeq

)
+bl ·∇〈ωl〉l

ωeq




n〉

ls

. (4.53)

The linearized version, as in Eq. 4.24, would lead to

KCa = −avl
MCaks

ωeq


1− 〈ωl〉l

ωeq




n−1 (
ωeq −〈ωl〉l −n〈ω̃l〉ls

)
, (4.54)

or

KCa = −avlMCa


1− 〈ωl〉l

ωeq




n

ks,eff +avlMCa


1− 〈ωl〉l

ωeq




n−1

h∗
l ·∇〈ωl〉l .

(4.55)
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where the effective reaction rate coefficient is given by

ks,eff = ks (1+n〈sl〉ls) , (4.56)

in a similar form as in [171] for the first-order reaction case. The additional

gradient term coefficient is

h∗
l = n

ks

ωeq
〈bl〉ls . (4.57)

One must remember that the macro-scale problem involves also the follow-

ing averaged equations

∂εlρl

∂t
+∇· (ρl 〈vl〉) = −Kg,

∂εsρs

∂t
= Kg. (4.58)

The resulting macro-scale model is a generalization to nonlinear reaction

rates of non-equilibrium models previously published. Such models are useful

in many circumstances, for instance as diffuse interface models for modeling

the dissolution of cavities [120, 121] or for studying instability of dissolution

fronts [10].

4.2.4 Reactive limiting cases and thermodynamic equi-

librium

It is useful to rewrite the above developed closure problems into a dimen-

sionless form as presented in Appendix A, where two dimensionless numbers

were generated therein with the following definitions

Pe =
Urlr
Dl

, Da =
MCa

ρlωeq

lrks

Dl


1− 〈ωl〉l

ωeq




n−1

, (4.59)

where Da is the second Damköhler number since the reaction takes place at

the solid-liquid surface. The first limiting case of interest is obtained when Da

is very small (cf. Appendix B) , which leads to

1. the mapping variable sl is zero,

2. one recovers for bl the closure problem for passive dispersion.

As a consequence, the mass exchange rate from Eq. 4.53 can be written as
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KCa = −avlMCaks

〈
1−

〈ωl〉l + sl

(
〈ωl〉l −ωeq

)
+bl ·∇〈ωl〉l

ωeq




n〉

ls

= −avlMCaks

〈
1− 〈ωl〉l

ωeq




n〉

ls

, (4.60)

where the estimate

bl ·∇〈ωl〉l ≈ O
(

ll
L

〈ωl〉l

)
, (4.61)

has been used to discard this term in front of 〈ωl〉l.

The second limiting case of interest is obtained when Da is very large (cf.

Appendix C), then Eq. 2.21 may be replaced by

B.C. I ωl = ωeq at Als, (4.62)

and thermodynamic equilibrium at the dissolving interface is recovered at pore-

scale. With the definition of Da by Eq. 4.59, this may be obtained under the

following two conditions

1. the physical parameters must be such that MCa
ρlωeq

lrks
Dl

≫ 1,

2. n = 1 (since 〈ωl〉l has a tendency to grow up to ωeq), which excludes

nonlinear reaction rates!

As a consequence of Eq. 4.62, one recovers

sl = −1 and bl = 0 at Als(t), (4.63)

when Da ≫ 1.

In the case of thermodynamic equilibrium at pore-scale, the macro-scale

equations are the same as before obtained for the reactive case (Eqs. 4.46

to 4.49 and 4.58), but for a different expression of the mass exchange term

which can be rewritten from Eq. 4.52 (one cannot use Eq. 4.55 because of the

undetermined limit at large ks), since 〈ωl〉ls = ωeq, as
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KCa = 〈ωl〉ls Kg +
(
〈ωl〉l −ωeq

) 1

V

ˆ

Als

nls · (−ρl (vl −wsl)−ρlDl∇sl)dA

+

(
1

V

ˆ

Als

nls · (ρl (vl −wsl)bl −ρlDl (∇bl + slI))dA

)
·∇〈ωl〉l

−ρlDl

(
1

V

ˆ

Als

nlsdA

)
·∇〈ωl〉l , (4.64)

or (since 〈ωl〉ls = ωeq)

KCa = ωeqKg +
(
〈ωl〉l −ωeq

) 1

V

ˆ

Als

nls · (−ρlDl∇sl)dA

+

(
1

V

ˆ

Als

nls · (−ρlDl∇bl)dA

)
·∇〈ωl〉l , (4.65)

which can be formally written as

KCa = ωeqKg +ρlαl

(
〈ωl〉l −ωeq

)
+ρlhl ·∇〈ωl〉l , (4.66)

where the following notation for the mass exchange coefficient

αl =
1

V

ˆ

Als

nls · (−Dl∇sl)dA, (4.67)

and the additional gradient term

hl =

(
1

V

ˆ

Als

nls · (−Dl∇bl)dA

)
, (4.68)

have been adopted. The case for a stratified unit cell is taken as an example

in Appendix D.

One should note that the mass exchange term is often reduced in the lit-

erature to the single term ρlαl

(
〈ωl〉l −ωeq

)
.

When assuming that terms involving the interface velocity are small, the

two closure problems are reminiscent of the closure problems encountered in

NAPL dissolution and studied in [109]. One limiting case of this transport

model is the local-equilibrium model, obtained when αl is very large and that

will impose

〈ωl〉l = ωeq, (4.69)
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as soon as the liquid is in contact with a zone containing the dissolving material.

In that case, 〈ωl〉l = ωeq is put in Eq. 4.47 to calculate Kg in Eq. 4.58.

Of special interest is the case of a linear reaction rate, i.e., n = 1. The

closure problems are presented in Appendix D and the mass exchange term

can be written as

ωeq

MCa
KCa = −avlks,eff

(
ωeq −〈ωl〉l

)
+avlks 〈bl〉ls ·∇〈ωl〉l , (4.70)

where an effective reaction rate coefficient, ks,eff , has been introduced such as

ks,eff

ks
|n=1= (1+ 〈sl〉ls) . (4.71)

The two limiting cases with respect to Da lead to

1. Da → 0: sl = 0 and hence ks,eff

ks
|n=1= 1;

2. Da → ∞: the effective reaction rate becomes independent of Da and is

only controlled by the transport problem.

Neglecting the additional coupling terms and the terms involving the interface

velocity, the theoretical results presented in [58] are recovered.

4.3 Effective parameters for the nonlinear re-

active case

In this section, the steady state form of the closure equations in Appendix

A are solved for stratified (1D), 2D and 3D representative unit cells. All the

unit cells in case I are composed of a solid (s), an insoluble (i) and a liquid

(l) phase (cf. Figs. 4.1a, 4.1c and 4.1e). In case II all the solid phases are

soluble (cf. Figs. 4.1b, 4.1d and 4.1f). The dependency of the macro-scale

effective parameters on the flow properties and chemical features in terms of

local Péclet (Pe) and Damköhler (Da) numbers defined by Eq. 4.59, as well as

on the reaction nonlinearity, are investigated. In the dimensionless problems,

the characteristic lengths for stratified geometry are (li + ll + ls) and ll in in

case I and case II, respectively. The diameter of the circles and spheres, d0 in

the 2D and 3D geometries, are used as the characteristic length in both cases.

The characteristic velocity Ur is defined as the x-component of the intrinsic
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average velocity 〈ul〉l. For the stratified unit cell, the flow is of Poiseuille type

given by the following expression

ul =
3

2
〈ul〉l


1− (y −R0)2

(
ll
4

)2


 , (4.72)

with R0 = ±(li/2+ ll/4) in case I and R0 = ±(ls + ll)/4 in case II, positive

in the upper part and negative in the lower part of the domain. The velocity

field is obtained numerically for the 2D and 3D flow problems, by solving

dimensionless Navier-Stokes equations with Re = ρUrlr
µl

= 10−6, i.e., negligible

inertia effects.

4.3.1 Analytical solutions for the stratified unit cell

Three-phase case

Solving the dimensionless form of the simplified closure problems in Ap-

pendix A for the stratified unit cell presented in Fig. 4.1a, the analytical

solutions for the effective parameters generated in Sec. 4.2 were obtained as

(D∗
l )xx

Dl
= 1+

Pe2ε2
l

(
11Da2ε2

l n2 −3Da2ε2
l n+146Daεln+16Daεl +480

)

11200(Daεln+6)2 ,

(4.73)

(D∗
l )xy

Dl
=

PeDaε2
l

(
4Daεln

2 +3Daεln+24n+24
)

320(Daεln+6)2 , (4.74)

(D∗
l )yx

Dl
= −

PeDaε2
l

(
7Daεln

2 −4Daεln+42n−126
)

560(Daεln+6)2 , (4.75)

(D∗
l )yy

Dl
=

3Daεln(4Daεln−Daεl +24)

16(Daεln+6)2 , (4.76)

(U∗
l )x

Ur
=

Daεl

20(Daεln+6)
, (4.77)

(U∗
l )y

Ur
=

3Da

(Daεln+6)Pe
, (4.78)

ks,eff

ks
=

6

Daεln+6
, (4.79)
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(a) Stratified unit cell with insoluble material. (b) Stratified unit cell without insoluble ma-
terial.

(c) 2D unit cell with insoluble material. (d) 2D unit cell without insoluble mate-
rial.

(e) 3D unit cell with insoluble material. (f) 3D unit cell without insoluble material.

Figure 4.1: Unit Cells.
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(h∗
l )x

lr
=

nksPeε2
l (7Daεln+17Daεl +42)

280ωeq (Daεln+6)2 , (4.80)

(h∗
l )y

lr
= −3nksεl (4Daεln−Daεl +24)

8ωeq (Daεln+6)2 . (4.81)

Values of the effective parameters in the transversal direction, i.e., the z-

axis, perpendicular to the x-axis and the flow direction, can be estimated by

taking the x-axis values with Pe = 0. Regarding the impact of flow properties,

the longitudinal dispersion coefficient (D∗
l )xx /Dl has a classical square depen-

dence on the local Péclet number (Pe) typical of Taylor dispersion. (D∗
l )xy /Dl,

(D∗
l )yx /Dl and (h∗

l )x /lr are linear functions of Pe. (D∗
l )yy /Dl, (U∗

l )x /Ur,

ks,eff /ks and (h∗
l )y /lr are independent of Pe, while (U∗

l )y /Ur is inversely pro-

portional to Pe. It must be understood that these results, because of the

periodicity condition, correspond to a fully developed concentration field, i.e.,

at some distance of the entrance region (cf. [166]). If one wants to take into

account precisely the entrance region effect (i.e., dissolution at the beginning

of the front), one has to develop a non-local closure in which the distance from

the front beginning will play a role.

When Da = 0, the classical passive dispersion case is recovered, with the

transport properties

U∗
l = 0, (4.82)

(D∗
l )xx

Dl
= 1+

Pe2ε2
l

840
, (4.83)

(D∗
l )xy

Dl
=

(D∗
l )yx

Dl
=

(D∗
l )yy

Dl
= 0. (4.84)

The effective reaction rate coefficient turns to be

ks,eff

ks
= 1 in the limit Da→ 0 and

ks,eff

ks
= 0 in the limit Da→ ∞.

(4.85)

As stated previously, the condition of large Da can be obtained only in the lin-

ear reactive case with n = 1, with the analytical solution of the mass exchange

coefficient at large Da calculated as
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αll
2
r

Dl
= − 1

V ′

ˆ

A
′

ls

nls ·∇′sldA′ =
12

εl
. (4.86)

The impact of the heterogeneous reaction is clearly seen, for instance when

comparing the passive and active dispersion coefficient. It is interesting to

notice that the coefficient of nonlinearity, n, plays also an important role and

this is discussed in the following subsection.

Two-phase case

For case II as illustrated in Fig. 4.1b, one obtains

(D∗
l )xx

Dl
= 1+

Pe2ε2
l

(
Da2ε2

l n2 +Da2ε2
l n+52Daεln+32Daεl +480

)

2800(Daεln+12)2 , (4.87)

(D∗
l )xy

Dl
=

(D∗
l )yx

Dl
= 0, (4.88)

(D∗
l )yy

Dl
=

nDaεl

nDaεl +4
(4.89)

(U∗
l )x

Ur
=

Daεl

5(Daεln+12)
, (4.90)

(U∗
l )y

Ur
= 0, (4.91)

ks,eff

ks
=

12

nDaεl +12
(4.92)

(h∗
l )x

lr
=

nksPeε2
l (7Daεln+5Daεl +84)

140ωeq (Daεln+12)2 , (4.93)

(h∗
l )y

lr
= 0. (4.94)

Comparing these results to the three-phase case, the impact of the insoluble

materials is clearly seen. The problem is simpler with all the solid medium

soluble, with (D∗
l )xy /Dl, (D∗

l )yx /Dl, (U∗
l )y /Ur and (h∗

l )x /lr all being zero.
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4.3.2 Numerical calculations

Special procedures have been devised to solve easily for the integro-differential

equations involved in the closure problems for sl and b
′

l which are presented

in Appendix E. Following [109], the decompositions

sl = − 1

n
+X

′

l ψs and b
′

l = b
′

0 +ψbu
′

l, (4.95)

are introduced. The closure problems can be rewritten consequently for ψs,

b
′

0 and ψb, respectively without integro-differential terms. One may notice

that the closure problems for ψs and ψb are identical, therefore the closure

problems can be subsequently simplified by solving only one of them. The

numerical simulations were performed with COMSOL® with proper choices

of the mesh size and other numerical parameters to ensure convergence. For

instance for the 3D geometry in case I, the mean element volume ratio, the

element number and the number of degree of freedom (DOF) were equal to

5 × 10−4, 7 × 104 and 176968 (plus 20634 internal DOFs), respectively. The

porosity is taken at a value of 0.36 for all the unit cells, and the soluble and

insoluble materials have the same volume fraction in case I. As introduced

in [49] for gypsum dissolution, the reaction order may range from 1 to 4.5 at

different stages, so in the following numerical simulations n = 1, 3, 5 are chosen

as examples of the nonlinear reaction orders.

For the impact of parameter Da and n, it must be noticed that large values

of n have practical applications only when the concentration is close to ωeq.

This situation is expected:

• when the time evolution of concentrations and compatible BCs make ωl

close to ωeq.

• rapidly, whatever the initial and boundary conditions, when the Da num-

ber is large.

Therefore, we did not limit the range of value of Da when taking a large

parameter n.

The effective parameters under investigation were the longitudinal disper-

sion coefficient (D∗
l )xx /Dl, the ratio of the effective and surface reaction rate

coefficient ks,eff /ks, the x-component of the dimensionless effective velocity

(U∗
l )x /Ur and the x-component of additional gradient term coefficient in the

form of
(
h*

l

)
x

ωeq/(kslr). For all these four parameters, the analytical solu-

tions developed above for the stratified unit cell were verified by the numerical
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results. As illustrated in Figs. 4.2, 4.8, 4.12 and 4.17, one observes that the

analytical solutions agree very well with the corresponding numerical results

for the studied effective parameters.

Figure 4.2: (D∗
l )xx /Dl as a function of Da with Pe = 100 for the 1D geometries.

Dispersion

The results of (D∗
l )xx /Dl as a function of Da with Pe = 100 (cf. Figs.

4.2 to 4.4) are discussed firstly, i.e., a case with important dispersion effects.

One sees that when Da → 0, i.e., in the passive case, dispersion reaches three

different values for the 1D, 2D and 3D geometries, respectively, regardless of

n, since a different value of n does not affect the limit of Da. In the limit for

Da → ∞, (D∗
l )xx /Dl reaches constant values again which are dependent on the

geometry, the proportion of the insoluble material and n. When Pe is large,

the decrease of (D∗
l )xx /Dl in the active case illustrated in Figs. 4.2 to 4.7

has been also observed previously [58, 109]. While the increase of (D∗
l )xx /Dl

with Da when Pe is small for the 2D and 3D geometries is attributed to the

fact that a large Da makes the concentration field around the surface more

uniform than the zero flux condition, which in turn produces less “tortuosity”.

The word tortuosity used in this study was not in the classical geometrical

sense, i.e., path length, but rather as an indication of the decrease of the

apparent diffusion coefficient in the macro-scale equation, which depends on

the tortuous character of the geometry but also on transport properties, in
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Figure 4.3: (D∗
l )xx /Dl as a function of Da with Pe = 100 for the 2D geometries.

Figure 4.4: (D∗
l )xx /Dl as a function of Da with Pe = 100 for the 3D geometries.

particular the boundary conditions at the liquid-solid interface as made clear by

the closure problems. Results show that nonlinearity has a significant impact,

dependent upon the topological properties of the unit cell: monotonous for the
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3D unit cells and case II for the 1D and 2D geometries under consideration,

with a transition at intermediate Da for case I of the 1D and 2D unit cells.

It is interesting to note that the nonlinearity of the reaction rate, quantified

through n, makes the effect of Da more dramatic for the 3D unit cell than for

the stratified and the 2D unit cells. The influences of Da and n are, as one

would expect, stronger for the case with only soluble solid than for the one

with insoluble material.

Figure 4.5: (D∗
l )xx /Dl as a function of Pe for the 1D geometries .

Effective reaction rate

The second parameter under consideration is the effective reaction rate co-

efficient, in the form of ks,eff /ks. Regarding the impact of Pe on ks,eff /ks,

one sees from Eqs. 4.79 and 4.92 that ks,eff /ks is independent of Pe for the

stratified unit cell, either with or without insoluble material, which must be

attributed to the fact that periodicity conditions are corresponding to a fully

developed regime. According to our numerical calculations, when increasing

Pe from 0.1 to 1000, ks,eff /ks increases 2.0%, 5.5% and 8.4% for n = 1, 3and 5,

respectively, for the 3D unit cell with insoluble material and Da = 1. In sum-

mary, the Pe number is not important for the linear reactive case while it has

larger impacts in the nonlinear reactive cases.

The results of ks,eff /ks versus Da are presented in Figs. 4.8 to 4.10 for the

three pairs of unit cells and for different values of n. One observes the classical
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Figure 4.6: (D∗
l )xx /Dl as a function of Pe for the 2D geometries .

Figure 4.7: (D∗
l )xx /Dl as a function of Pe for the 3D geometries.

behavior for the ratio ks,eff /ks, which is equal to one at small Da and tends

to zero at large Da. Similar results were also reported in [58,171] for different

geometries with heterogeneous reactions. Nonlinearity in the reaction rate
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and the presence of insoluble material tend to decrease ks,eff /ks, in a limited

manner, for a given value of Da.

One should notice that, the increase of Da is also equivalent to an increase in

ks. Therefore, looking at the limit of ks,eff /ks at large Da number is not infor-

mative. Instead, results for an effective Damköhler number, Daeff =
ks,eff

ks
Da,

are plotted in Fig. 4.11, taking some 1D and 3D unit cells as examples. One

sees that ks,eff reaches a constant at large Da, i.e., in transport limited situa-

tions. The constant decreases with n and the proportion of insoluble material.

One should also remember that in the case of large Da with n = 1, the bound-

ary condition will become the one of thermodynamic equilibrium and the mass

exchange coefficient should be predicted by Eq. 4.67 instead of Eq. 4.56, as

already discussed.

Figure 4.8: ks,eff /ks as a function of Da for the 1D geometries.

Non-classical terms

The first non-classical term of interest is the x-component of the effective

velocity, (U∗
l )x. The results of (U∗

l )x /Ur versus Da for the 1D and 3D unit cells

were plotted in Figs. 4.12 and 4.13. One sees that (U∗
l )x /Ur can be estimated

as a linear function of Da when Da < 1, and in this range the reaction order does

not play a role. With further increase of Da, the growth of (U∗
l )x /Ur becomes

slower and finally reaches an asymptote which decreases with increasing n.

The asymptotic value decreases also when decreasing the amount of soluble
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Figure 4.9: ks,eff /ks as a function of Da with Pe = 1 for the 2D geometries.

Figure 4.10: ks,eff /ks as a function of Da with Pe = 1 for the 3D geometries.

material in the unit cell. These results are a reminder of the discussion in [166]

about the potential increase of the apparent advection velocity by the non-

conventional terms. This effect may be up to 30% in the linear case for the
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Figure 4.11: Daeff as a function of Da with Pe = 1.

3D geometry without insoluble material and for large Da.

For the 2D unit cell, the results of (U∗
l )x /Ur as a function of Da are pre-

sented in Fig. 4.14. An overall comparison is that the curves show different

shapes, and under some conditions the values of (U∗
l )x /Ur are negative. Un-

like the curves for the case with insoluble material, which show decreasing

trends in the entire studied range of Da, those for the case without insolu-

ble material undergo more complex variations, with a marked minimum. The

reaction order n only plays a role when Da > 0.01, and the largest effect is

always observed with n = 1.

From Eqs. 4.77 and 4.90, one observes that the ratio (U∗
l )x /Ur is indepen-

dent of Pe for the stratified unit cell. The evolution of (U∗
l )x /Ur as a function

of Pe is illustrated in Figs. 4.15 and 4.16 for the 2D and 3D geometries,

respectively. For the 2D unit cells, the curves show increasing trends, with

negative values when Pe is small, which agrees with Fig. 4.14. The magnitude

of (U∗
l )x /Ur is larger for the case with insoluble material when Pe is small,

and for the case without insoluble material when Pe is large. For the 3D unit

cell with or without insoluble material, the common features of all the curves

are two folds: the ratio (U∗
l )x /Ur is constant for small and large Pe numbers.

There is a transition regime at intermediate Pe numbers, with non-monotonous

behavior when passive surfaces are present within the unit cell. The curves for
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Da = 1 show very small variations with Pe, and a negligible impact of n. The

curves for Da = 100 undergo complex and significant variations, with marked

minimums at intermediate Pe for the case with insoluble materials. A higher

reaction order decreases significantly (U∗
l )x /Ur.

Figure 4.12: (U∗
l )x /Ur as function of Da for the 1D geometries.

The second non-classical parameter to be studied is the x-component of

the additional gradient term coefficient in the form of
(
h*

l

)
x

ωeq/(kslr), which

contributes to the macro-scale mass exchange. According to analytical solution

Eqs. 4.80 and 4.93 for the stratified unit cell and our numerical results for the

3D geometries,
(
h*

l

)
x

ωeq/(kslr) can be represented as a linear function of Pe.

For the 2D geometry without insoluble material, there are some negative values

for
(
h*

l

)
x

ωeq/(kslr) with intermediate Pe, while the positive
(
h*

l

)
x

ωeq/(kslr)

is also proportional to Pe. The results of
(
h*

l

)
x

ωeq/(kslr) as a function of Da

with Pe = 1 are plotted in Figs. 4.17 and 4.18 for the 1D and 3D unit cells,

respectively. It is shown that
(
h*

l

)
x

ωeq/(kslr) is almost a constant for small

Da up to Da ≈ 1. The reaction order is important at this stage, and the linear

reactive case leads to smaller magnitude of
(
h*

l

)
x

ωeq/(kslr) for all the geome-

tries. After a transition zone, the values of
(
h*

l

)
x

ωeq/(Pekslr) become linear

functions of Da. Moreover, the presence of insoluble medium has a tendency to

increase
(
h*

l

)
x

ωeq/(Pekslr) for the 3D cases. The results of of
(
h*

l

)
x

ωeq/(kslr)

as a function of Da with Pe = 1 for the 2D unit cells are presented in Fig. 4.19.
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Figure 4.13: (U∗
l )x /Ur as function of Da with Pe = 1 for the 3D geometries.

Figure 4.14: (U∗
l )x /Ur as function of Da with Pe = 1 for the 2D geometries.

Once again, one sees negative values of
(
h*

l

)
x

ωeq/(Pekslr). Taking absolute

values for the results, similar shapes of curves were obtained for the 2D geom-

etry with three phases as the stratified and the 3D unit cells. While for the
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Figure 4.15: (U∗
l )x /Ur as a function of Pe for the 2D unit cells.

Figure 4.16: (U∗
l )x /Ur as a function of Pe for the 3D unit cells, with Da = 100

(curves indicated) and Da = 1 (other curves).

case with only two phases, the curves are irregular with Da between 10 and

100.
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Figure 4.17:
(
h*

l

)
x

ωeq/(Pekslr) as a function of Da for the 1D geometries.

Figure 4.18:
(
h*

l

)
x

ωeq/(Pekslr) as a function of Da with Pe = 1 for the 3D
geometries.

So far the impact of the flow properties and chemical features on the

four effective parameters has been presented. The results for (D∗
l )xx /Dl and
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Figure 4.19:
(
h*

l

)
x

ωeq/(Pekslr) as a function of Da with Pe = 1 for the 2D
geometries.

ks,eff /ks agree well with the previous works which considered the first-order

reactive case. Nonlinearity plays a significant role, similar to Da. Concern-

ing the non-traditional items, (U∗
l )x /Ur and

(
h*

l

)
x

ωeq/(kslr), it is clear that

they are important with respect to the classical terms only under some condi-

tions and neglecting their contributions may lead to errors when applying the

macro-scale model. This point is further discussed in the next section where

the macro-scale model against a reference obtained from DNS is tested.

4.4 Example of application to a macro-scale

problem

In this section, the potential importance of the additional terms is further

discussed based on a 1D macro-scale example. The corresponding macro-scale

steady-state problem may be written in dimensionless form as
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Pe∗εl

(
U

′

l +U∗′

l

(〈
ω

′

l

〉l
)) ∂

〈
ω

′

l

〉l

∂x
′

+Pe∗εl

(〈
ω

′

l

〉l
−ω

′

eq

) ∂U∗′

l

(〈
ω

′

l

〉l
)

∂x
′

= −


−

ks,eff

(〈
ω

′

l

〉l
)

ks


1−

〈
ω

′

l

〉l

ω
′

eq


 +h∗′

l

(〈
ω

′

l

〉l
) ∂

〈
ω

′

l

〉l

∂x
′


Da∗

(〈
ω

′

l

〉l
)

+ εl
∂

∂x
′




D∗
l

(〈
ω

′

l

〉l
)

Dr

∂
〈
ω

′

l

〉l

∂x
′


 (4.96)

with the dimensionless numbers defined as

Pe∗ = UrLr
Dr

, U
′

l = Ul
Ur

, U∗′

l

(〈
ω

′

l

〉l
)

=
U∗

l
Ur

,
〈
ω

′

l

〉l
= 〈ωl〉l

ωeq
, x′ = x

Lr
, ω

′

eq = ωeq

ωeq
= 1,

h∗′

l

(〈
ω

′

l

〉l
)

=
h∗

l ωeq

Lrks
, Da∗

(〈
ω

′

l

〉l
)

=
a

′

vlMCa

ρlωeq

Lrks
Dr


1−

〈
ω

′

l

〉l

ω
′

eq




n−1

, (4.97)

where Lr is the macro-scale characteristic length and Dr can be the molecular

diffusion coefficient or alternatively the maximum dispersion coefficient, de-

pending on the problem of interest. It must be emphasized that Da∗
(〈

ω
′

l

〉l
)

is not a constant in the nonlinear reactive cases and is dependent on the mass

fraction distribution. Since closure problems depend on parameter Da, the

effective parameters D∗
l

(〈
ω

′

l

〉l
)

, U∗′

l

(〈
ω

′

l

〉l
)

, ks,eff

(〈
ω

′

l

〉l
)

and h∗′

l

(〈
ω

′

l

〉l
)

are also dependent on the distribution of mass fraction accordingly in the

nonlinear reactive cases.

When taking Dr = max
(

D∗
l

(〈
ω

′

l

〉l
))

and Ur = 〈ul〉l, the mass transport

by dispersion is small compared to that by convection in the case of large Pe∗.

Therefore, Eq. 4.96 can be simplified into
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Pe∗εl

∂
〈
ω

′

l

〉l

∂x
′

≈

ks,eff

(〈
ω

′

l

〉l
)

ks
Da∗

(〈
ω

′

l

〉l
)


1+U∗′

l

(〈
ω

′

l

〉l
)

+
h∗

′

l

(〈
ω

′

l

〉l
)

Da∗

(〈
ω

′

l

〉l
)

Pe∗εl




︸ ︷︷ ︸
apparent reactive term


1−

〈
ω

′

l

〉l

ω
′

eq


 .

(4.98)

Even though the full Eq. 4.96 was employed in the actual computations,

this simplified form is interesting since it shows that additional terms may

be incorporated in an apparent reactive term, as suggested in [166]. Let us

introduce H
(〈

ω
′

l

〉l
)

= h∗
′

l

(〈
ω

′

l

〉l
)

Da∗
(〈

ω
′

l

〉l
)

/(Pe∗εl). To investigate the

contributions of the non traditional terms U∗′

l

(〈
ω

′

l

〉l
)

and H
(〈

ω
′

l

〉l
)

to the

apparent reactive term, the closure problems were solved for a 2D representa-

tive unit cell which contains only the l and s phases (cf. Fig. 4.20a), as well

as for the 3D representative unit cell containing the three phases as illustrated

in Fig. 4.1e. The location in the (Pe, Da) plane of points having the property

U∗′

l

(〈
ω

′

l

〉l
)

= 0.05 and H
(〈

ω
′

l

〉l
)

= 0.05 are plotted in Figs. 4.21a and 4.21b

for the 2D and 3D geometries, respectively, and for different reaction orders.

In the regions above the curves, here at large Pe and Da, the magnitudes of

U∗′

l

(〈
ω

′

l

〉l
)

and H
(〈

ω
′

l

〉l
)

are larger than 0.05. Therefore, this map can be

used to estimate regions for which the additional terms may play a role. All

the curves arrive at a plateau when Pe is relatively large, and the values of

U∗′

l

(〈
ω

′

l

〉l
)

and H
(〈

ω
′

l

〉l
)

are mainly determined by Da and n under such

circumstances. The curves for U∗′

l

(〈
ω

′

l

〉l
)

with n = 5 are not present because

U∗′

l

(〈
ω

′

l

〉l
)

is always smaller than 0.05 in the studied range. Typically, the

additional coefficients may be important for relatively large Pe and small Da,

and have a strong impact on the apparent nonlinear reaction rate coefficient.

This impact is much stronger for the 3D geometry than for the 2D geometry

in the case of small Da, as observed in Figs. 4.21a and 4.21b.

To test these ideas the pore-scale equations (later referred to as DNS) were

solved for case I illustrated by Fig. 4.20a, composed of 65 periodic elements

arranged along the x-direction with all the solid phase soluble, and in case

II corresponding to the geometry depicted in Fig. 4.20b, containing insoluble

materials. The pore-scale problem introduced in Chap. 2 was transformed

into dimensionless form, with the diameter of the circles as the characteristic
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Figure 4.20: 2D geometries for the DNS: (a) without insoluble material; (b)
with insoluble material.

length. The corresponding boundary conditions at the entrance and the exit

were ω
′

l = 0 and convective conditions, respectively. The Navier-Stokes equa-

tions were solved with low Reynolds number to get a periodic velocity field of

constant average velocity. The corresponding macro-scale problem is 1D, i.e.,

a line along the x-direction with the same length as the 2D geometry, Lr. For

case I, a significant impact of the additional terms with n = 3 was observed

successfully. In the nonlinear reactive case, since Da is a function of the mass

fraction, its value decreased quickly along the x-direction due to the mass frac-

tion distribution. For case II it was difficult to keep a relatively large Da to

see the impact of the additional non-classical terms and hence the linear reac-

tive case was chosen as an example. Since the mass fraction disappears in the

definition of Da for a linear reactive case, H
(〈

ω
′

l

〉l
)

and U∗′

l

(〈
ω

′

l

〉l
)

become

constant independent of
〈
ω

′

l

〉l
denoted H and U∗′

l . A large Pe and a proper

Da were used to study the impact of the non-classical terms, avoiding too large

Da, because in such circumstances the pore-scale boundary condition would

be close to the one of thermodynamic equilibrium. Numerical simulations for

both the DNS and the macro-scale model were performed with COMSOLr.

Let us estimate a reactive coefficient for the DNS results using the following

definition

αDNS =

1
V

′

´

ls nls ·ρ′

lD
′

l∇
′

ω
′

ldA
′


1−

〈
ω

′

l

〉l

ω
′

eq




, (4.99)

and computed at the centroid of each unit cell. The fact of not using very large

Da ensured that 1 −
〈

ω
′

l

〉l

ω
′

eq
Ó= 0 to avoid any numerical problem in estimating
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Figure 4.21: Pe-Da diagram for U∗′

l

(〈
ω

′

l

〉l
)

= 0.05 (curves 4 and 5) and

H
(〈

ω
′

l

〉l
)

= 0.05 (curves 1, 2 and 3): (a) for the 2D unit cell without in-

soluble case; (b) for the 3D unit cell with insoluble material.
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αDNS . The results of αDNS were compared with the apparent reactive term

estimated in Eq. 4.98 for the macro-scale model. Four cases were tested with

different non-traditional effective parameters taken into account: the apparent

reactive term αL1 was obtained by solving the macro-scale equation with both

H
(〈

ω
′

l

〉l
)

and U∗′

l

(〈
ω

′

l

〉l
)

, αL2 without H
(〈

ω
′

l

〉l
)

, αL3 without U∗′

l

(〈
ω

′

l

〉l
)

and αL4 without H
(〈

ω
′

l

〉l
)

and U∗′

l

(〈
ω

′

l

〉l
)

. For case I, the results are only

presented for regions far from the entrance region, as illustrated in Fig. 4.22a.

The reactive coefficients decrease along the x-axis because they are dependent

on the mass fraction field. Considering the non-traditional effective properties

improved the results and the best results were obtained by considering all the

effective properties, including H
(〈

ω
′

l

〉l
)

and U∗′

l

(〈
ω

′

l

〉l
)

. It must be pointed

out that, in this nonlinear case, two errors are accumulated. First, disper-

sion terms are not entirely controlled by the assigned value of the Pe number

because of nonlinearities in the effective dispersion tensor. In our case they

induce a minor but visible effect of about a few percent over the estimated

DNS reaction rate. Furthermore, because of the entrance region effect, the

macro-scale concentration field lags a little bit behind the DNS value, which

in turn impacts the estimation of the effective exchange rate. Improving the

solution would require the introduction of a non-local theory taking care of

the entrance region effect. From the results presented in Fig. 4.22b for case

II, one observes a relatively large discrepancy in the entrance region, which

may be attributed to the fact that the periodic assumption for the upscaling

breaks down in this area. This would call for a specific non-local treatment,

which is beyond the scope of this study. But in the regions with an established

regime, materialized by a constant αDNS , the relative errors become very small

and, among the four choices, αL4 gives the worst results, while the results are

improved by taking into consideration the non-traditional parameters. Never-

theless, our results emphasize the importance of the additional terms in order

to recover the correct mass exchange in the established regime, as was em-

phasized in [166] for a simpler flow problem and the case of thermodynamic

equilibrium.

4.5 Conclusion

The upscaling of a mass transport problem involving a nonlinear heteroge-

neous reaction typical of dissolution problems has been carried out using a first

order Taylor expansion for the reaction rate when developing the equations for
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the concentration deviation. A full model including all couplings and the in-

terface velocity has been obtained. Several limiting cases have been developed

emphasizing the coherence of the proposed theory with results available in the

literature for these limiting cases, the only difference being due to some ad-

ditional coupling terms, which, however, may correct the estimated effective

reaction rate by tenths of percent.

The closure problems providing the effective properties have been solved

analytically for a stratified unit cell and numerically for the stratified, 2D

and 3D unit cells with a quasi-steady approximation. Effects of the pore-

scale Damköhler and Péclet number were investigated, as well as the impact

of the coefficient n appearing in the nonlinear reaction rate. The influence of

the proportion of insoluble material was studied by comparing the 3D cases

with the solid phase completely soluble or partially insoluble. Results for the

classical effective properties such as dispersion coefficient and effective reaction

rates are compatible with previous findings on active dispersion. In particular,

tortuosity and dispersion effects becomes smaller when the Damköhler number

increases, due to the homogenization of concentration at the interface. The

nonlinear reaction rate coefficient tends to increase the impact of Da. The

behavior of the non-traditional terms that appear in the development has been

investigated based on comparisons between DNS of the pore-scale equations

and macro-scale results. It was shown that they may play a role for large

Pe and small Da, at least for the simple unit cells considered in this study.

This latter aspect deserves more investigation in terms of parameter range,

complexity of the representative unit cell, form of the nonlinear reaction rate,

etc.

The framework developed in this study is applicable to simulate dissolution

process in various research areas, for instance in the evolution of karstic struc-

tures, CO2 storage and in the application of acid injection in petroleum wells

to improve oil recovery. The development was based on a bundle of assump-

tions, such as constant fluid parameters, negligible interface velocity, pseudo

component for the dissolved material, etc. Also, the calculations of effective

parameters in the applications provided were not based on an actual dissolved

pore-scale geometry. Real conditions are much more complicated so great at-

tention should be paid where such assumptions may break down. For example,

the dissolution of the porous matrix may lead to significant variation of poros-

ity and consequently permeability and other effective parameters. In addition,

the dissolving front may become unstable and may lead to the development of
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wormhole structures. Under some circumstances, hydrodynamic instabilities

may also be induced by density change, such as in the case of salt dissolution in

water. It is beyond the scope of this conclusion to review all the perspectives

associated with these questions. Concerning the coupling with the pore-scale

geometry evolution, if one is not satisfied with the geochemistry assumption,

i.e., dependence of the effective parameters on the porosity, our developments

offer a framework for a coupled solution between the macro-scale equation, on

one hand, and the pore-scale closure problems under the full version including

the transient aspects, on the other hand.

More coupling and nonlinear effects can be introduced in the development,

such as variation of fluid properties and reaction rate with concentration, more

complicated geochemistry, etc. We believe that the idea of first-order correc-

tions at the closure level can be extended to such cases, of course at the expense

of some additional complexity.
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(a)

(b)

Figure 4.22: Comparison of apparent reactive term between DNS and the
macro-scale model: (a) for case I (nonlinear reactive order n = 3 without in-
soluble material) with Pe =1000 and Da|〈

ω
′

l

〉l

=0
= 80; (b) for case II (linear

reactive case with insoluble material) with Pe = 1000 and Da = 10.



Chapter 5

A framework for the modeling

of gypsum cavity dissolution

within geomechanical studies

5.1 Introduction

Given the research background about dissolution models, the objective set

in this chapter is a discussion about the modeling workflow for large-scale (de-

cametric scales) dissolution problems representative of situations which may

be encountered in the geotechnical or geomechanical fields. Sinkholes are ex-

amples among others. While the quantitative conclusions presented in this

study are specific to the gypsum case, the methodology may be reproduced for

salt or carbonate dissolution problems.

According to the discussion in Chap. 2, the approximation of an equilib-

rium boundary condition at the solid-liquid interface seems suitable. Based

on this assumption, a macro-scale non-equilibrium model can be built, for

instance using the method of volume averaging [10, 120, 163] as presented in

Chap. 4.

Before introducing the 3D large-scale model for gypsum dissolution, the

dissolution model was applied to two large-scale different cases in Sec. 5.2, the

first corresponding to a porous gypsum formation, the second to an imperme-

able solid. This allowed to discuss several important modeling questions: the

choice of appropriate DIM parameters, alternative choices of momentum equa-

tions, etc. In section 5.3, results for two 3D problems are presented in order

to show the potentialities of the method. Two dissolution configurations were

studied, one corresponding to an isolated pillar in a flooded gypsum quarry

121
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and the other one to a gypsum lens contained within a porous rocks layer.

These configurations are typical of problems often encountered in reality [7].

Geomechanical consequences (in terms of mechanical stability) of the dissolu-

tion process as evaluated using a simplified geomechanical model are presented.

The simple approach considers only the effects induced by the shape change

due to the leaching process, thus avoiding the need for a complete chemico-

hydro-mechanical coupling as proposed by [183, 184], taking into account the

changes in the constitutive models of the porous matrix. The proposed ap-

proach is complementary to current couplings [185, 186] which considers only

fixed domains, while with constitutive models often depending on complex

chemical processes [187]. Finally, a comparison on the same boundary value

problem of the dissolution rate and the form of the cavity obtained considering

gypsum or salt is presented.

5.2 Cavity formation computation

5.2.1 Description of the problem

The geometry of the studied porous medium is schematically illustrated in

Fig. 5.1. The 2D domain contains a subdomain d made of three phases at

the pore-scale level: two solid phases, one being soluble gypsum (s-phase), the

other being insoluble material (i-phase), and a liquid phase (l-phase) which

contains water and the dissolved gypsum. Subdomains a and e are only com-

posed of the liquid phase and the insoluble solid phase, with different per-

meabilities and porosities. With the injection of a fluid (fresh water in this

study) from the left boundary of subdomain a at a filtration velocity V0 in

the x-direction, the solid gypsum contained in subdomain d will be dissolved

gradually and finally create a cavity. This geometry is typical of a case where

dissolution may induce mechanisms such as subsidence or collapse which may

lead to sinkhole formation, depending on the size and shape of the cavity.

The notation Ωl is used to represent the Darcy-scale mass fraction of Ca2+,

Dl the dispersion tensor, Vl the Darcy velocity, Sl the fluid saturation with

Sl = εl/ε, Ss the solid gypsum saturation with Ss = εs/ε, with εl and εs rep-

resenting the volume fraction of the fluid and the solid gypsum, respectively.

We also have εl + εs = ε and ε + εi = 1, with εi denoting the volume fraction

of the insoluble material. The DIM mass transport equations in the studied

domain are summarized here:
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Figure 5.1: Schematic description of large-scale cavity dissolution problem at
Darcy-scale.

∂ερsSs

∂t
= Kg, (5.1)

∂ρlεSl

∂t
+∇· (ρlVl) = −Kg, (5.2)

∂ρlΩlεSl

∂t
+∇· (ρlΩlVl) = ∇· (εSlρlDl ·∇Ωl)−KCa. (5.3)

In the local non-equilibrium macro-scale model, the mass exchange of cal-

cium is estimated as a first-order expression in terms of the concentration

difference (Ωl −ωeq), i.e.,

KCa =
MCa

Mg
Kg = ρlα (Ωl −ωeq) , (5.4)

with Kg denoting the mass exchange of gypsum, KCa the mass exchange of

Ca and α the corresponding mass exchange coefficient. The components of

the dispersion tensor could be obtained from the closure problems for a given

shape of the representative unit cell of the porous medium, as done in Chap.

4. However, this is not done here while the classical linear dispersion model is

used. Hence, the dispersion tensor is written as [188]
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Dl =
D0

τl
I +αT

‖Vl‖
εSl

I +(αL −αT )
VlVl

‖Vl‖εSl
, (5.5)

where the tortuosity, τl, the longitudinal, αL, and transversal, αT , dispersivi-

ties depend on the pore-scale geometry.

Regarding the momentum equations, three approaches may be used as

discussed in [119, 120]: (i) Stokes equations and Darcy’s law in the fluid and

the porous domain, respectively; (ii) a continuous formulation such as Darcy-

Brinkman equation in the entire domain; and (iii) Darcy’s law in both the

fluid and the porous domains. In this present study, since dissolution may

lead to a true cavity without any solid phase, a modified version of the Navier-

Stokes equation may be used in this dissolved region reminiscent of the Darcy-

Brinkman equation

∂ρlVl

∂t
+ρlVl ·∇Vl = −(∇Pl −ρlg)+µ∗

l ∇2Vl −µlK
−1
l ·Vl, (5.6)

where µ∗
l is the so-called effective viscosity of the fluid, depending on the porous

medium property. In general, µ∗
l is heterogeneous due to the large spatial

variations of material properties within the domain, however, in practice it is

often assumed that the effective viscosity is homogeneous and equals to µl for

simplification [189]. If local Reynolds number is small, which is the case in

this present study, the inertia effects are negligible, and Eq. 5.6 turns out to

be the Darcy-Brinkman equation

− (∇Pl −ρlg)+µ∗
l ∇2Vl −µlK

−1
l ·Vl = 0, (5.7)

which was also successfully used in [10]. When the permeability tends to

infinity the equation simplifies to Stokes equation, i.e.,

− (∇Pl −ρlg)+µ∗
l ∇2Vl = 0, (5.8)

and when the permeability is small enough Darcy’s equation is recovered

Vl = −Kl

µl
· (∇Pl −ρlg) . (5.9)

Combining Eqs. 5.1 and 5.2 gives

∇·Vl = −Kg

(
1

ρl
− 1

ρs

)
(5.10)
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The transport problems are in the same form for all the subdomains except

that for subdomains a and e one has

KCa = Kg = 0, ρs = 0 and εs = Ss = 0. (5.11)

5.2.2 Case I - subdomain d as a porous medium

Numerical simulations were carried out employing the porous medium

model described above. The parameters used are given in Table 5.1. In

addition, the dispersivities are negligible compared to the effective diffusion

coefficient when the pore-scale Péclet number is small, which is the case when

V0 = 10−6 ms−1. Therefore, the effective diffusion tensor for each subdomain

is written without dispersivity, with different tortuosity in the subdomains as

given in Table 5.1. The mass exchange coefficient is estimated as α = α0Ss,

which is a function of the solid gypsum saturation. Different values for α0 are

tested in order to investigate the impact on the dissolution process and try to

recover thermodynamic equilibrium at the dissolving surface. As illustrated

in Table 5.1, the permeability in subdomain d, as a function of Ss, is higher

than the surrounding porous media and the initial solid gypsum saturation is

not very large, the fluid is therefore able to penetrate into the porous region

of subdomain d. Since the permeabilities are small enough so the Darcy term

overcomes the viscous and inertia terms, Darcy’s law was used everywhere as

the momentum balance equation.

In the cavity evolution simulations with the porous medium model, the

dissolving interface between the fluid and the virgin porous medium has a

finite thickness, which is dependent on α. A sharp interface is obtained when

α tends to infinity, which is most of the time difficult to achieve due to the high

computational costs. In the next section, the interface position is arbitrarily

defined at Ss
Sinitial

= 0.9.

The simulation results regarding the mass fraction and fluid velocity fields

are presented in Fig. 5.2. It can be observed from these figures that, with the

continuous inlet of fresh (pure) water, the cavity grows very fast at the entrance

region of subdomain d. With increasing mass fraction of the dissolved species

from the entrance region to the exit region, the mass fraction gradient near the

liquid-porous medium interface becomes smaller accordingly. The dissolution

velocity is therefore becoming slower in the exit region, which explains the

obtained cavity geometry. Considering the impact of α and V0, when V0 is set

a constant, the variation of α0 will affect both the thickness of the dissolution
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Table 5.1: Geometric features and physical properties of the phases.

Parameters Value Description
D0 (m2 s−1) 10−9 diffusion coefficient

Kl (m2)

10−12 permeability for subdomains a
10−15 permeability for subdomains e

K0εSl with
K0 = 10−11 permeability for subdomain d

Sinitial
0

initial solid gypsum saturation in
subdomains a and e

0.75 in subdomain d

V0(ms−1) 10−6 inlet velocity

ε
0.35 porosity for subdomains a
0.2 porosity for subdomains e
0.9 porosity for subdomain d

τl

2 tortuosity of subdomains a
1.8 tortuosity of subdomains e
3 tortuosity of subdomains d

front (interface) and the dissolution rate (Fig. 5.2a to Fig. 5.2c). In the cases

with α0 = 10−7s−1 and α0 = 10−6s−1, the fronts are highly diffusive and a

cavity hardly develops. When α0 is kept unchanged, on one hand, an increase

of V0 will accelerate the enlargement of the cavity (Fig. 5.2c to Fig. 5.2e).

On the other hand, a smaller inlet velocity, which is equivalent to a longer

residual time, enables more water to flow into subdomain d. These results are

further illustrated in Fig. 5.3 representing the ratio Ss
Sinitial

along the diagonal

of subdomain d from the lower left corner to the upper right corner. It is

more clear in this figure that with α0 = 10−5 s-1, a true cavity may develop

corresponding to Ss
Sinitial

→ 0. With smaller α0, the region where dissolution

takes place remains porous. The smallest ratio of Ss
Sinitial

is about 0.32 and 0.88

for α0 = 10−6 s-1 and α0 = 10−7 s-1 respectively.

5.2.3 Case II- subdomain d as a quasi-solid

The dissolution of a solid domain (as materialized in the model by a very

low permeability) is studied in this subsection. This configuration is closer to

a leaching process and the dynamics of the phenomenon is very different from

the dissolution of a porous medium. In this case, the saturation of the solid

gypsum in subdomain d is increased to a high value, typically Sinitial = 0.9. As
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(a) V0 = 10−6, α0 = 10−7 (b) V0 = 10−6, α0 = 10−6 (c) V0 = 10−6, α0 = 10−5

(d) V0 = 5 × 10−6, α0 =
10−5

(e) V0 = 10−5, α0 = 10−5

(f) legend

Figure 5.2: Surface plot of the normalized mass fraction Ωl
ωeq

and fluid velocity

vector ( u
V 0 , v

V 0) at t = 109 s, with different α0 (s-1) and different inlet velocity
V 0 (m s-1).

already seen from the porous medium dissolution problem, a cavity develops

when α is large enough. Therefore, the DIM model is used to reproduce a

quasi-solid dissolution by taking the same permeability-saturation relationship,

Kl = K0εSl, but now with K0 equal to 10−15 m2, i.e., a very low value to make

the solid quite impermeable. The permeability for the dissolved region, which

is denoted Kf , has been determined after some investigations of its impact on

the dissolution process since its value changes the mathematical nature of the

momentum equations.

Another important issue is the choice of α, which greatly affects the results

of the DIM model. Thermodynamic equilibrium is achieved when α is infinitely

large, which is also the condition to recover a sharp solid-liquid interface. How-

ever, because sharpening the interface leads to expensive computational costs,

α cannot be taken as large as required to recover a perfect thermodynamic

equilibrium condition with a very thin dissolving interface. The result is that
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Figure 5.3: Normalized solid gypsum saturation Ss
Sinitial

along the diagonal of
subdomain d from the lower left corner to the upper right corner at t = 109 s,
with different α0 (s-1) and different inlet velocity V 0 (m s-1).

a diffuse interface is created in the dissolution region along with the mass and

velocity boundary layers as depicted in Fig. 5.4. The local mass boundary

layer thickness is denoted δlc, the velocity boundary layer thickness, δlv, and

they are the only ones in the front tracking model (Fig. 5.4a) while a diffusive

interface thickness, δD, appears in the case of the DIM model (Fig. 5.4b). In

order for the DIM approach to recover approximately the correct dissolution

fluxes, the diffuse interface must not perturb significantly the other boundary

layers, i.e., a condition such as δD ≪ δlc, δlv must be fulfilled.

5.2.3.1 The impact of three momentum equations

The first investigation is the impact of the choice of the momentum equa-

tions in subdomain d, i.e., the modified Navier-Stokes equation, the Darcy-

Brinkman equation and Darcy’s law, on the total mass flux over the lower

boundary of subdomain d under different Kf . Darcy’s law was used as the

momentum equation in subdomains a and e here and after. The total mass

flux was scaled by the largest value obtained and the simulation results are

presented in Fig. 5.5. Due to the artificial transition of Kf in the dissolved

and Kl in the undissolved region, as well as the required very fine mesh, the
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Figure 5.4: Schematic depiction of the dissolving interface in the front tracking
model (a) and in the DIM model (b), as well as the corresponding length scales.

results were not converged when Kf was greater than 10−8 m2. Therefore,

the results were only obtained for Kf ≤ 10−8 m2. One observes from Fig.

5.5 that the results obtained with the three momentum equations are sim-

ilar for the whole range of Kf . The mass flux over the dissolving surface

remains a constant when Kf < 10−15 m 2 and then increases dramatically with

10−15 m 2 < Kf < 10−11 m 2. After Kf reaches 10−10 m2, further increase of the

permeability leads to negligible increase of the mass flux. It may be concluded

that: (i) the inertia term is not important in this study, (ii) a Kf permeabil-

ity too low (< 10−10 m2) makes the flow in the cavity unrealistic, despite of

the momentum equation used, (iii) the modified Navier-Stokes and the Darcy-

Brinkman equation give the same results, which is a priori close to the physical

one (i.e., the flow of a viscous fluid in a cavity), (iv) surprisingly, a pure Darcy

model, with a relatively large permeability in the cavity gives almost the same

dissolving flux.

This last remark is encouraging since Darcy equations are easier to solve

for numerically. However, a generalization of this result has to be taken with

caution. Indeed, if there is a developing boundary layer over a flat surface,

classical boundary layer theory gives a Darcy Sherwood number along the

boundary at a position x equal to

Shx =
αxx

D0
= 0.564Pe

1/2

x . (5.12)
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where x is the position along the surface and αx the local mass exchange

coefficient at position x.

If the Schmidt number Sc (Sc = µl
ρlDl

) is small, this correlation is also the

same in the case of a laminar Navier-Stokes flow. However, the Schmidt num-

ber for water is about Sc ≈ 103, which suggests that there should be a difference

between Darcy and Navier-Stokes results. In addition, in the case of significant

water density variations, there might be a departure from the classical bound-

ary layer solution because of buoyancy effects. This may also change because

of different flow conditions (heterogeneity, roughness, confinement, etc...).

Figure 5.5: Normalized total flux over the dissolving surface as a function of
cavity permeability.

In order to investigate the impact of the choice of Kf and of the momentum

balance equations on the mass transfer problem, a much simpler geometry is

studied corresponding to a channel with parallel walls. Since the question is

to get the correct flux and given the difference between the time-scales for

dissolution and the relaxation of the concentration field, the pore-scale model

is implemented without the interface recession. The distance between the

two walls (dc) and the length of the channel are 0.5m and 20m, respectively.

The boundary conditions were constant velocity V0 = 10−6 ms−1 and constant

mass fraction ωl = 0 at the entrance boundary, no-slip and thermodynamic

equilibrium mass fraction at the two parallel walls and convective flux at the
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exit boundary. The channel permeability and the mass flux were transformed

into Darcy number and Sherwood number by

NDa =
Kf

l2r
and Sh =

αShlr
D0

, (5.13)

respectively, where the reference length is lr = 2dc and the mass transfer coef-

ficient is given by

αSh =

´

Als
nls · (−D0∇ωl)dA

Als (ωb −ωeq)
, (5.14)

with the bulk mass fraction in the channel defined as

ωb =
〈uωl〉l

〈u〉l
, (5.15)

in which 〈⋆〉l represents the area averaged variable and u represents the x-

component of the channel velocity. The Darcy number is used as an indicator

of the relative importance of the viscous traditional term and Darcy term in the

equation, a very small Darcy number meaning that the momentum equations

behaves like the classical Darcy’s law.

For the channel flow, after an entry zone with a developing boundary layer

for the mass fraction, the mass transfer coefficient and the corresponding Sher-

wood number approach an established regime with constant value. For the

laminar flow in a channel with parallel plates and a Dirichlet condition (i.e.,

a constant mass fraction) at the walls, this established regime value of the

Sherwood number is 7.541 for a velocity profile given by the Hagen-Poiseuille

parabola [190]. Let us denote this Sherwood number as Shr. Its value will be

used as a reference when analyzing Sherwood numbers obtained with differ-

ent momentum equations and various permeabilities. The Sherwood numbers

obtained with Navier-Stokes equation, the modified Navier-Stokes equation,

Darcy-Brinkman equation and Darcy’s law as the momentum equations are

denoted as Shns, Shmns, Shdb and Shd, respectively. Their values are plotted

in Fig. 5.6 together with Shr, as a function of the Darcy number. This fig-

ure shows the existence of two limits for the various Sherwood numbers. For

large Darcy numbers, the Sherwood number for the modified Navier-Stokes

equations tends as expected to the value Shr. On the contrary, for low Darcy

number, the velocity field is a pure piston-like Darcy flow and the resulting es-

tablished regime leads to a different Sherwood number, higher than Shr. Since

inertia terms do not play a role in this tube configuration, in the absence of
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turbulence, Shmns and Shdb have the same value. When using Darcy’s law,

the increase of permeability only changes the pressure field in the channel

and given that the inlet velocity remains unchanged this leads to constant

value of Shd independent of the channel permeability. The Sherwood num-

bers Shmns and Shdb vary between the two limits with Da due to competi-

tion between the Brinkman term and the Darcy term, which in turn modi-

fies the concentration field. In the condition with Kf smaller than 10−5 m2

(NDa < 10−5 ), the Darcy term is dominant and the Darcy-Brinkman equation

can be simplified into Darcy’s law. Therefore, Shmns and Shdb have similar

values as Shd. The values of Shmns and Shdb start to decrease dramatically

with Kf > 10−5 m2 (NDa > 10−5) until they reach another constant of about

7.565 when Kf > 10m2 (NDa > 10), which is very close to Shns and Shr. In

this case, the impact of the Brinkman term overcomes the Darcy term, and

the Darcy-Brinkman equation plays a similarly role as the Stokes equation.

These behaviors of the momentum equations agree well with the analysis of

the cavity scale calculations. Differences induced by the different choice of

the momentum equations were not observed, i.e., Fig. 5.5. This might be at-

tributed to the fact that the used permeability was not probably large enough

and also to the fact that the diffuse interface may have played a role since the

condition δD ≪ δlc, δlv is very difficult to fulfill.
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Figure 5.6: Sherwood number as a function of the channel permeability.
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This observed behavior of the Sherwood numbers may be better under-

stood by looking at the concentration fields. Examples of the velocity and

mass fraction distribution (scaled as u
V0

and ωl
ωeq

, respectively) along a cross-

section of the channel in the established region obtained with three different

permeabilities are presented in Fig. 5.7. The momentum equation used was

the modified Navier-Stokes equation (equivalent here to the Darcy-Brinkman

equation), which incorporates both the Brinkman and the Darcy term. The

three chosen permeabilities are representative of the two limit conditions and

an intermediate case for the Shmns curve in Fig. 5.6. The figure shows clearly

that, when the channel permeability is rather small, the velocity gradient is

very close to the immobile boundaries and therefore does not impact much the

concentration field which evolves like in a diffusive mass boundary layer. The

thickness of the velocity boundary layer increases with the increasing perme-

ability thus affecting correspondingly the concentration field, which is affected

by a thinner mass boundary layer. These remarks must be kept in mind when

evaluating the representativity of a DIM solution.

Figure 5.7: Normalized mass fraction ( ωl
ωeq

) and velocity ( u
V0

) along a cross-

section of the channel with various permeabilities (m2), calculated with the
modified Navier-Stokes equation.
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5.2.3.2 The choice of the mass exchange coefficient

To study the impact of α on the dissolution process in this solid disso-

lution case, similar simulations with DIM were carried out as for case I, the

dissolution of a porous medium. As the permeability in the undissolved region

of subdomain d is rather low, which makes it difficult for the fluid to flow

through, the flow streamlines in this case are nearly parallel to the dissolving

surface. To investigate the characteristic time in such a case, the residual time

is estimated approximately as

t =
wg

Vl
∼ 5×106 s, (5.16)

where wg = 5m is the width of subdomain d. This value must be compared

to the dissolution characteristic time in the DIM which is about the inverse

of α. As commented before, a relatively large α is necessary to reach rapidly

the thermodynamic equilibrium mass fraction along the dissolving surface in

order to have an actual boundary layer similar to the one with a sharp inter-

face. However, α cannot be infinite for computational reasons (see discussion

in [120]). As discussed above, the correct exchange flux between the solid and

the liquid, hence the dissolution velocity, is somehow difficult to capture with

a DIM model, due to the required very fine mesh in the diffuse interface, a

need for a relatively large α and the artificial tweak of Kf . Therefore, one

has to verify that the flux exchanged between the solid and the fluid reaches

acceptable values. Contrary to small-scale simulations, it is very difficult to

carry on proper ALE simulation with moving interfaces on a large cavity prob-

lem, so a so-called fixed boundary model was used in the reference simulations,

using once again the fact that the dissolution time is much longer than the

relaxation time for the mass transport problem. In this fixed boundary model,

the position of the immobile solid-liquid interface is obtained from the DIM

simulations at a given time, at which one wants to check the validity of the

DIM solution, by tracking the contour of Ss
Sinitial

= 0.9. The dissolution velocity

obtained by the DIM model is expected to be correct if it gives mass fraction

fields very similar to the fixed boundary model.

The chosen Kf was 10−9 m 2 to have a sufficiently large permeability, ac-

cording to the analysis of Fig. 5.5. Even though similar results have been

obtained by using different momentum equations, this point is further verified.

In the two sets of simulations with DIM, the modified Navier-Stokes equa-

tions and Darcy’s law were used alternatively in subdomain d. When using
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small α0, the simulations fail to produce a thin solid-liquid interface to satisfy

δD ≪ δlc and the assumptions to use DIM break down. When increasing α0

to 10−5 s−1, similar mass fraction distribution is obtained with DIM and with

the fixed boundary model, as illustrated by the results presented in Fig. 5.8.

Firstly, one observes that the use of the modified Navier-Stokes equation or

Darcy’s law as the momentum equation give very similar results, which is not

surprising given the above study for the channel flow case, Fig. 5.6, which

shows that the impact of different momentum equations can only be observed

when Kf > 10−5 m 2 . When Kf is relatively small the modified Navier-Stokes

equation behaves like Darcy’s law, as discussed previously. Secondly, the de-

velopment of the mass boundary layer along the dissolving surface induces a

decrease of mass flux from the entrance to the exit, which further causes the

slower dissolution velocity in the exit region (cf. Figs. 5.8a and 5.8b), similar

to case I (the porous medium dissolution case). Thirdly, one sees that the main

differences between the DIM and the fixed boundary model are in subdomains

e1 and e2. To further investigate the mass fraction fields in subdomain d ob-

tained with different models, the results are plotted in Fig. 5.9 under the form

of contour plots. Using Darcy’s law or the modified Navier-Stokes equations

produced very small differences for the mass fraction contours. Using DIM or

the fixed boundary model also led to small differences, except for Ωl
ωeq

= 0.1 in

the region far from the cavity entrance.

(a) DIM with modified N.S.
equation

(b) DIM with Darcy’ law (c) Fixed boundary method
with modified N.S.

Figure 5.8: Surface plot of the normalized mass fraction Ωl
ωeq

and the normalized

fluid velocity vector ( u
V 0 , v

V 0) at t = 8×109s with α0 = 10−5s−1. The legend is
the same as in Fig. 5.2f.

To check the length scale of the the mass fraction boundary layers and

the diffusive solid-liquid interface, the profiles of Ωl
ωeq

and Ss
Sinitial

along the

vertical middle cross-section of subdomain d were plotted in Fig. 5.10. The

abscissa represents the distance of the studied point on the cross-section from
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Figure 5.9: Mass fraction ( Ωl
ωeq

) contours for the range [0.1, 0.3, 0.5, 0.7, 0.9]
from lower to upper part of subdomain d for the three simulations at t =
8×109s with α0 = 10−5s−1.

the lower boundary of subdomain d. One sees from the figure that the diffusive

interface thickness in terms of the variation of solid gypsum saturation Ss in the

DIM model is indeed smaller than those of the mass fraction boundary layers

obtained by different models, provided the parameters are chosen carefully.

5.2.3.3 The impact of liquid density variation

In the above studies, the fluid had a constant density. However small it

is, the dissolved gypsum indeed changes the density of the fluid, which may

initiate natural convection since the residence time of water along the surface

is measured in months, which is enough time for the development of buoyancy

plumes. This potential effect was investigated and the results are presented

below. The geometry and parameters were the same as those used to obtain

Fig. 5.8a, except that density variations were taken into account using Boussi-

nesq approximation and a fluid density increase estimated as (ρmax −ρl)
Ωl

weq

with ρmax = 1002.63Kgm−3. Simulation results in terms of normalized mass

fraction and velocity fields are displayed in Fig. 5.11. One observes the pres-

ence of small convective plumes in the entrance region of the cavity from Fig.
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Figure 5.10: Comparison of the distribution of Ωl
ωeq

and Ss
Sinitial

along the vertical
middle cross-section of subdomain d. The abscissa indicates the position of
the cross-section, in terms of distance from the lower boundary of subdomain
d.

5.11a, while the mass boundary layer is smooth when neglecting the density

variations, as illustrated in Fig. 5.11b. The differences of the mass fraction

fields near the dissolving surface as shown in these two figures indicate that

the fluid density variation has a potential to affect the geometry and recession

rate of the dissolving surface. However, the quantitative difference remains

small, even after the relatively long period of time considered in this numer-

ical example. This would be certainly a different matter for the case of salt

dissolution, as illustrated in the calculations by [120,127] .

5.3 Three-dimensional dissolution modeling and

geomechanical issues

The aim of this section is not so much to apply the methods developed

previously to real cases but to show their potential applications. In order

to illustrate that, the numerical modeling of dissolution for two configurations
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(a) Results with natural convection (b) Results without natural convection

Figure 5.11: Surface plot of normalized mass fraction of dissolved gypsum and
normalized fluid velocity vector at t = 2.1 × 109 s, with (a) and without (b)
natural convection. The legend is the same as in Fig. 5.2f.

that can be met in real issues is discussed. The first relates to the dissolution of

gypsum pillars subjected to a continuous flow of water. This configuration can

be encountered in the case of flooded rooms in gypsum quarries as illustrated

in Fig. 5.12. The conceived scenario corresponds to a time continuous forced

convection of fresh water through the system. This process is of direct relevance

to gypsum mining. Indeed, because gypsum dissolves easily in flowing water,

a continuous flow of fresh water around pillars in a fully or partially flooded

mine could decrease significantly their cross sections (near the floor level in

case of partially flooded) and lead to the pillar failure. As a consequence, any

gypsum mine which becomes flooded on abandonment should be subject to a

hydrological study as advised by Cooper [29]. The second case corresponds

to the flow of water created by a natural hydraulic gradient through a rock

(porous) formation that contains a gypsum lens. This lens could be located

in a porous medium between two layers of marl for instance (Fig. 5.13). The

subsequent dissolution process can create hazardous mechanical collapse and

sinkhole or cavity formation.

Whatever the hydro-geological configuration, the dissolution of gypsum in

the ground raises the question of consequences in terms of geomechanical be-

havior: surface subsidence, sinkholes, caverns or pillar stability, etc. The pur-

pose of this section is to present some examples indeed simplified, to illustrate

the numerical robustness and the potentialities of the numerical dissolution

approach outlined in the previous sections. Here we are interested in 3D disso-

lution problems with large spatial scales. Roof collapse in interstratal gypsum
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Figure 5.12: Views of a pillar in the Rocquevaire abandoned quarry (Bouches-
du-Rhône, France) with two different water flooding level (left in 1996 and
right in 2010, by courtesy of Watelet JM, INERIS).

Figure 5.13: Left: illustration of the evolution of caprock sinkholes over a
gypsum karst in Ukraine and England (after [7]). Middle and right: photo
and schematic section through a void discovered within cover rocks of gypsum
in an underground railway station in Paris (France) (After [8]).

caves creates columns of largely insoluble breakdown debris (Fig. 5.13) that are

small compared to the breccia pipes (breccia pipe, also referred to as a chim-

ney, is a mass of breccia, often in an irregular and cylindrical shape) formed

over sites of deep-seated dissolution of either gypsum or salt [7]. These features

constitute a significant geohazard due to their potential failure at the surface

as caprock sinkholes, unless the volumetric expansion of breakdown material

fills the void and stops the failure process. For instance, many surface failures

occur over gypsum beneath Paris (France) [8], and the investigation of a cavity

found in 1975 beneath railway engineering works revealed a failure migrating

up through the cover rocks from dissolution cavities in a number of gypsum

horizons (Fig. 5.13). Numerous caprock sinkholes at Ripon, U.K. lie on top of

breccia pipes and are reactivated by ongoing dissolution of gypsum [191]. Over

time, most caprock sinkholes with weak cover rocks degrade to a gentle de-

pressions that may be confused with solution sinkholes unless the subsurface
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is investigated or exposed. Those in stronger rocks survive as deep circular

pits, as seen in Fig. 5.14 where dolomite overlies gypsum.

Figure 5.14: Examples of dissolution consequences: (Left) several sinkholes in
wood Buffalo National Park (Canada). The interstratal dissolution of gypsum
induced a collapse that propagated through dolomite cover beds and (right)
Vermilion Creek doline, near Norman Wells (Canada), a sinkhole of 180 × 100
m wide and 40 m deep to the waterline. It corresponds to a collapse through
calcareous shales overlying gypsum [7,9].

The problem to be solved now is not only a complex multi-scale problem

but also a strongly coupled multi-physic problem. Dissolution leads to a time

evolution of the domain and boundaries, changes of rock matrix porosity and

related properties. These lead in turn to rock deformations which retroac-

tively affect the fluid flow and consequently the dissolution process. Roughly,

the transient domain evolution induced by dissolution is a variable of the ge-

omechanical boundary value problem, but the matrix dissolution and its conse-

quences in terms of modification of the constitutive law (at the material point

level) of the rock must also be considered. Such a strong coupling is currently

under development. In this study, the mechanical consequences of dissolution

are approached in the geomechanical calculation through a simplified analysis

(weak coupling). For the mechanical response of the rock mass, only the effect

of domain geometry change induced by dissolution is considered. In the exam-

ples under consideration, the dissolution process will generate growing cavities

(case of lenses) or decreasing cross-section of pillars (case of rooms and pil-

lars quarries). Thus the situation corresponds to a pure leaching process as

encountered in solution mining, with no chemical impact on the mechanical

constitutive model.

Dissolution may be due to a natural or anthropic hydraulic regime. The

latter includes, for example, mining or civil engineering works that modify the

hydraulic regime (a leaking pipe, the damage of the matrix, cracking, dry-

ing, etc.). From a geochemical point of view, the dissolution rate can also be
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modified by external agents such as the increase of salinity or the change of

water pH due to the dissolution of CO2 after acid rain. The specific mecha-

nisms of internal erosion (mechanical) or suffusion, which can be combined and

added to chemical dissolution to increase the pore volume growth rate, are not

considered in this study. Indeed, erosion, as characterized by the mechanical

extraction of particles, is a special case of coupling with mechanics which may

intervene at various scales. First, erosion increases the intensity of dissolution

at the reactive surface and therefore the dissolution rate, by pulling away of-

ten passive particles. Second, erosion contributes to the change of porosity

and therefore permeability. Similarly, although it may also play a role, the

precipitation process is not considered in this study. All these assumptions

are consistent with the fact that this part addresses essentially the impact of

leaching rather than dissolution inside the porous matrix.

5.3.1 Three-dimensional modeling dissolution of a gyp-

sum pillar and a gypsum lens

The cubic gypsum pillar (size 5 × 5 × 5 m) located in a room of pillar

quarries and a gypsum lens (size 10 × 2.5 × 1.5 m) located strictly within

a porous layer are depicted in Figs. 5.15 and 5.16, respectively. The model

used is the same as presented in the last section. The injection velocity is

V=10−6ms−1 in the direction as presented in Figs. 5.15b and 5.16a. The

dissolution process is analyzed for a period of 30 years. No flow conditions

were imposed at the floor (bottom), the roof (top) levels and at the left and

the right boundaries of the domain. The parameters used are illustrated in

Tables 5.2 and 5.3.

(a) (b)

Figure 5.15: (a) 3D model of a gypsum pillar (size 5 × 5 × 5 m) located in
a flooded gypsum quarry; and (b) mesh of the gypsum pillar and the quarry
which is subject to a fresh water flow (velocity V=10−6 ms−1 ).

The pillar states at two different times (15 and 30 years) are illustrated in
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(a) (b)

Figure 5.16: (a) Lens located in a porous layer. For reasons of symmetry about
the vertical mid-plane, only half model (meshed domain) was considered; and
(b) the mesh corresponds to the investigated domain (field of study). The
location of the gypsum lens and the porous layer may also be observed.

Table 5.2: Mechanical parameters for the pillar and gypsum lens problems.

Young
Modulus
(MPa)

Poisson
coefficient

[-]

Friction
angle (°)

Cohesion
(MPa)

Lens Overburden 4 0.3 35 0.1
Porous layer 100 0.3 44 1

Gypsum 35000 0.34 44 8
Bottom Layer 2500 0.3 - -

Pillar Gypsum 35000 0.34 44 8
Room - - - -

Table 5.3: Geometrical features for the pillar and gypsum lens problems.

Dimensions Height (m) Width (m) Length (m)
Lens Overburden 10 26 34

Porous layer 5 26 34
Gypsum 1.5 10 15

Bottom Layer 5 26 34
Pillar Gypsum 5 5 5

Room 5 8 10

Figs. 5.17 and 5.18, respectively. The left figures give the normalized satu-

ration Ss
Sinitial

while the right figures give the meshed shape (initial and final).

Because of low gradient density effects, symmetry is maintained during dis-

solution. However, dissolution is naturally more pronounced at the upstream

and lateral sides of the pillar. The streamline shape modification of the con-

centration induced by the pillar shape may be observed in Fig. 5.19. The time

evolution of the normalized volume of the pillar is illustrated in Fig. 5.20, with

a volume reduction of about 40 % observed after 30 years.
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(a) (b)

Figure 5.17: (a) Example of isovalue of the normalized saturation degree; and
(b) focus on the pillar shape after 15 years.

(a) (b)

Figure 5.18: (a) Example of isovalue of the normalized saturation degree; and
(b) focus on the pillar shape after 30 years.

(a) (b)

Figure 5.19: Example of isovalues of the Ca concentration and flowing stream-
lines after 15 years (a) and 30 years (b) in a horizontal plane passing through
the middle of the pillar.
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Figure 5.20: Example of time evolution of the normalized pillar volume.

The lens states at three different times (3, 15 and 30 years) are illustrated in

Fig. 5.21. The shape evolution of the gypsum lens (in red) is observed. The 3D

shape of the lens is reconstructed using symmetry. The blue box corresponds

to the initial (half) gypsum lens. The dissolution rate of the lens is greater than

the pillar dissolution rate. Indeed, this is explained, firstly, by the fact that

the wetted surface is larger for the gypsum lens, and, secondly, that the ratio

of gypsum volume versus reactive surface is smaller for the pillar. An example

of the space distribution of the concentration at two different times (15 and

30 years) is given in Fig. 5.22. One may also observe the streamline shape

modification induced by the lens shape. A representation of the lens dissolution

inside the porous layer is shown in Fig. 5.23a and the flowing streamlines in

a horizontal plane passing through the middle of the layer (porous layer and

gypsum lens) after 30 years is presented in Fig. 5.23b. The volume reduction

for the gypsum lens is 60 % after 30 years, much faster than the 40% reduction

for the pillar case.
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(a) (b) (c)

Figure 5.21: 3D shapes (red) of the lens after 3, 15 and 30 years for a, b and
c, respectively. The initial volume is represented by the mesh domain.

(a) (b)

Figure 5.22: Example of isovalues of the Ca concentration after 15 years (a)
and 30 years (b) in a horizontal plane passing through the middle of the layer
(porous layer and gypsum lens).

(a) (b)

Figure 5.23: (a) Representation after 30 years of the lens dissolution inside the
porous layer; and (b) flowing streamlines in a horizontal plane passing through
the middle of the layer (porous layer and gypsum lens) after 30 years.

5.3.2 Three-dimensional geomechanical modeling of dis-

solution consequences

The mechanical behavior of bonded soils or rocks can be described by

constitutive models based on the classical theory of hardening plasticity or its

extensions [183, 184]. Geomaterial model subject to mechanical and chemical

effects are usually presented as a chemico-mechanical model or more generally

a coupled thermal–hydraulic–mechanical–chemical (THMC) model. In this
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framework, the chemical components are usually taken into account in the

yield surface and flow rule parameters [185–187]. In some constitutive models,

the chemical degradation is considered as affecting only the internal variables

while not other material properties, e.g., elastic module or friction angle. This

clearly limits the type of materials to which the proposed constitutive theory

can be applied.

One of the shortcomings of the current approaches is that they are based

on a given or estimated geometry or domain. The current numerical models

fail to take into account the heterogeneous development of the porosity and

the changes in the shape of the domain. Of course, it is well known that it is

difficult to take into account explicitly the loss and mass transfer in a constitu-

tive macro-scale mechanical model. A pure mechanical model (elastic-plastic

Mohr-Coulomb model) is used in this study. One should note that, although

the rheological model is simple and that chemical effects on the constitutive

law are not taken into account, the model is consistent with our initial hypoth-

esis of considering only the leaching process. The aim of this subsection is to

emphasize some mechanical phenomena linked to dissolution.

The full or strong dissolution-mechanical coupling is not yet implemented

and in order to solve for (only for illustration purpose) a time continuous

dissolution-mechanical problem, a simplified approach has been adopted to

couple in a weak sense the DIM and a geomechanical code. This weak coupling

is developed under the finite element code Marc (Msc Software) [192] by solving

a thermo-mechanical problems (with a nil expansion coefficient). An arbitrary

initial temperature is applied on the initial surfaces of the pillar or lens (which

are supposed to be in contact with the fluid in motion). Then a suitable

thermal diffusivity is chosen such that the velocity of the temperature front

reproduces the dissolution interface recession velocity obtained from the DIM.

Then a criterion is defined for deactivation of finite elements, i.e., specific

physic is deactivated while keeping others active in the same finite elements.

In fact, when the criterion is met (i.e., a given value of temperature), the

mechanical component no longer exists in the element, but it still possesses its

heat transport properties.

In the pillar quarry example, the gypsum pillar is loaded on its top by a

load P = 1.875 MPa (corresponding to an overburden of 75 m width). The

specific weight is 2.5 for all material. A domain containing a gypsum pillar is

illustrated in Fig. 5.24. The parameters of the model are also given in Tables

5.2 and 5.3.
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(a) (b) (c)

Figure 5.24: From left to right: pillar, roof and floor mesh and loading; initial
pillar cross section and final pillar cross section.

In the pillar context, dissolution has the effect of reducing its transversal

section. Consequently it increases the average vertical stress. After a given

dissolution period, pillar reaches a critical size and then will no longer sup-

port the weight induced by the recovery. Then one may expect a shearing

or buckling if the slenderness of the pillar is too large. A shear pillar failure

induced by dissolution is illustrated in Figs. 5.25 to 5.27. The graph in Fig.

5.26 describes the vertical displacement versus increment number and shows

clearly the corresponding critical (unstable) pillar state. Fig. 5.27 shows two

pillar failure modes induced by the dissolution and for two overburden stiff-

ness. The soft overburden leads to a non symmetric shear failure of the pillar.

We remind that the definition of the effective plastic strain is as follows

εp
eq =

ˆ t

0
ε̇p

eqdt with ε̇p
eq =

√
2

3
ε̇p

ij ε̇
p
ij . (5.17)

(a) (b) (c)

Figure 5.25: 3D views of the equivalent plastic strain distribution evolving
with pillar decreasing (dissolution) cross section.

The case of a domain containing a gypsum lens is shown in Fig. 5.28, with

the parameters given in Tables 5.2 and 5.3. The mechanical consequences of

gypsum lens dissolution are illustrated in Figs. 5.29 - 5.32. The first figures

give the vertical displacement evolution with time. The subsidence increases

with dissolution as expected. In some cases, function of the mechanical features
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(a) (b)

Figure 5.26: 3D view of the equivalent plastic strain at collapse and "time-
increment" evolution of the vertical displacement of material at a point located
in the center of the roof.

(a) (b)

Figure 5.27: Distribution of equivalent plastic strain for two top support layers:
(a) stiff-rigid; and (b) soft support.

(a) (b)

Figure 5.28: (a) 3D model geomechanical model; and (b) location of the gyp-
sum lens.

of overburden, sinkhole can develop and reach the surface. The pseudo-times
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T1 to T4 stand for four states of dissolution (four cavity volumes), and the last

T4 corresponds to the total dissolution. The vertical displacement along a line

passing through the middle of the model for the four states of dissolution is

illustrated in Fig. 5.31. It must be emphasized that even such small intensity

subsidence can affect buildings. In fact, this is not so much the intensity

of subsidence but the pond curvature and the position of the structure on

the pond. The effective plastic strain distribution at two dissolution states

(beginning and at the end) are depicted in Fig. 5.32. Although it is located in

a relatively small domain, plasticity affects a part of the recovery, due to poor

mechanical properties. For the lens dissolution problem, the layer containing

the gypsum lens is strong enough and prevents a global collapse (sinkhole).

(a) (b)

Figure 5.29: Isovalue of the vertical displacement: (a) after the whole dissolu-
tion of the gypsum lens; and (b) subsidence pond.

(a) (b) (c) (d)

Figure 5.30: From a to d : top views of surface vertical displacement increasing
with four cavity volumes.

The objective of this subsection was to show the mechanical consequences

of the dissolution. Assuming a situation closer to leaching, i.e., a sharp dis-

solution front, it is only necessary to solve for the geomechanical problem at

different stages of dissolution, regardless of the evolution kinetics. Indeed, the
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Figure 5.31: Vertical displacement (subsidence) along a line passing through
the middle of the model for four (T1,.., T4) states of dissolution.

(a) (b) (c)

Figure 5.32: Effective plastic strain distribution induced by the cavity growing.

resulting coupling is weak and should be replaced by a complete numerical

formulation in the case of a porous domain dissolution. One point that seems

important to emphasize is that, if the geometric features of a given cavity

and the hydrodynamic conditions are known properties, the dissolution model

may allow us, using an inverse analysis, to deduce the history of the dissolution

(time evolution of the cavity).
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5.4 Range of application of the method on other

evaporites

The general method developed in this study was illustrated in the case

of gypsum rock dissolution. However, it has a wide range of applications

as demonstrated in this section. The example presented briefly concerns the

dissolution of salt. The kinetic evolution of a cavity located in salt (NaCl) or

gypsum domain is also compared. The results show that the method is robust

whatever the kinetics of dissolution.

Gypsum dissolves in flowing water about one hundred times more rapidly

than limestone, but at only about one thousandth the rate of halite. Another

major difference lies in the fact that density variations with concentration are

much more pronounced in the case of halite dissolution than in the case of

gypsum. It is therefore interesting to test the proposed workflow on the case

of a large scale salt cavity. The test case corresponds to the solution mining

situation schematically represented Fig. 5.33. A salt layer located at a depth

of about 280 meters and with a thickness equal to 6.50 m is drilled with a

leaching well constituted by two concentric tubes. Then a leaching process

was initiated by injecting fresh water through the central annulus during 12

days [3]. The inlet flow was 3 m3/h (0.08 ms−1) during 4 days and then

1.5 m3/h (0.04 ms−1) during 8 days (Fig. 5.33) [3]. Calculations were also

performed with salt material replaced by gypsum. Some numerical results are

presented below to emphasize the differences in the dissolved shapes between

the salt and gypsum cases.

The shapes of the cavity created in the gypsum and salt medium are illus-

trated in Figs. 5.34 and 5.35, respectively. As expected, one observes a very

low dissolution rate and a different cavity geometry for gypsum compared to

those of salt. This shape difference is attributed to the presence of natural

convection effects which are very strong for salt compared to gypsum, which

has a much lower solubility.

This solution mining example corresponds to an INERIS pilot site [3] for

which measurements of total dissolved volume were available. The computed

dissolved volume is about 12 m3 after 4 days for an in situ measurement about

11 m3 and about 38 m3 after 12 days for an in situ measurement about 40 m3,

which shows a very good agreement between the large-scale simulations and

the actual pilot data. Overall, this example shows that the proposed workflow

works also very well for a more soluble material for which there is a strong
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Figure 5.33: Schematic illustration of the solution mining process.

(a) (b)

Figure 5.34: 2D (blue part) and 3D illustrations of the gypsum cavity (sym-
metry of revolution) after 3 years of injection of fresh water at the velocity of
0.08 ms−1 (thickness of the layer is 6.6 m).

potential for natural convection effects, especially for large cavities.
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(a) (b)

Figure 5.35: Isovalue of the porosity after 4 days (a) and 12 days (b) for salt.
(void is equal to unity).

5.5 Conclusion

Using the assumptions of a pseudo-component dissolving with a thermo-

dynamic equilibrium boundary condition, a general numerical approach has

been designed and tested to solve for large-scale cavity dissolution problems,

typically for an aquifer situation leading to potential subsidence, sinkhole for-

mation, etc. From a numerical view point direct interface tracking, such as

ALE, was found to be very difficult to carry on and an alternate route was

proposed using a DIM (Diffuse Interface Method) based on a non-equilibrium

porous medium theory. A workflow was proposed to choose properly the pa-

rameters in the DIM model that would reproduce as accurately as possible

the mass fraction field and fluxes and, consequently, the interface recession,

for problems with various temporal and space scales, e.g. 1D tube to 3D

decametric problems.

Additional tests were performed to check which type of momentum bal-

ance equation should be used. It was found that Darcy, Darcy-Brinkman or

Navier-Stokes formulations gave almost the same cavity formation because the

permeability used was small. This is explained by the absence of convective

plumes, verified by a comparison with a model taking into account density

variations through a Boussinesq approximation.

The proposed model allows to model dissolution of large scale problems

over very large time periods. The potential of the approach is shown on the

3D modeling of gypsum lens and pillar in gypsum quarry which may lead to

formation collapse. The strong coupling between mechanics and dissolution

is not fully taken into account, but geomechanical effects induced by disso-
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lution (leaching) were illustrated using a simplified approach. Results show

that while gypsum is a slightly soluble material, its dissolution rate is unfor-

tunately not zero and may impact on the long term structures and buildings

mechanical stability, if dissolution is triggered by natural or anthropic factors.

The developed approach, while it may be the subject of many enhancements

in terms of geochemistry and mechanics, has an undeniable predictive quality.



Chapter 6

General conclusions and

perspectives

In this thesis, the multi-scale features of dissolution problems were studied

in the context of karstic cavity evolution. At first, a pore-scale model was

developed, which describes the dissolution physics for “simple” geochemistry

(typically salt and gypsum). The assumptions introduced when developing

such a model were clarified. In particular, the hypothesis of working with a

pseudo-component dissolution in water was justified in the case of gypsum as

the soluble mineral, provided a few percent incertitude is acceptable for the

mass fraction field calculation. The different choices of boundary conditions

that may be prescribed at the dissolving surface, thermodynamic equilibrium,

one-rate reactive or two-rate nonlinear reactive, only produced differences of

a few percent in terms of mass flux at the outlet boundary, for a classical

boundary value problem. The fact that reactive boundary conditions can be

replaced by thermodynamic equilibrium in some circumstances provided the

possibility of using a diffuse interface model in large-scale cavity evolution

simulations, with proper choice of the effective parameters, which was discussed

in detail in Chap. 5.

Macro-scale descriptions of the dissolution problem were obtained for two

multi-scale situations, with one being developed with the concept of effec-

tive surface and the other with the method of volume averaging (an upscaling

method). Thermodynamic equilibrium and reactive solid-liquid boundary con-

ditions were both considered in the two model developments, in order to obtain

complete forms of the models. While the developments of the two macro-scale

models shared some common assumptions, for instance the periodicity of some

properties at pore-scale, the separation of scales involved and the decomposi-
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tion of the micro-scale variables, etc, there are many differences between these

two approaches, such as the way of defining macro-scale variables and the stage

of employing periodicity assumption, etc. With further discussions available

in [78] for the porous medium homogenization process, the working procedures

of these two approaches performed in this study can be summarized as follows.

For the model developed with the effective surface concept (ESCM), the

study concerns mass (and momentum) transfer for a laminar flow over a hetero-

geneous rough surface characterized by mixed boundary conditions. Assuming

local periodicity of the flow near the surface, then multi-domain decomposi-

tion was used to partition the domain under investigation into a macro-scale

subdomain and a range of micro-scale unit cells. The global problem was then

rewritten for the macro- and micro-scale domains, respectively. The micro-

scale variables were decomposed into a macro-scale term and a deviation term.

Considering ǫ ≪ 1 (ǫ = lcell/L) allowed to simplify the IBVPs, followed by the

definition of the structure of the deviation solution via the first order Taylor

expansion estimation of the macro-scale term. Solutions of the deviations by

solving the closure problems and consequently the description of the problem

with macro-scale variables were obtained. Hence, the effective boundary con-

ditions for an arbitrary choice of the effective surface can be prescribed, Navier

condition for the momentum boundary condition and “reactive condition” for

the Robin type mass condition. The effective boundary conditions which re-

cover no-slip or thermodynamic equilibrium condition are of special interests.

According to the recovery of such particular boundary conditions, the position

of the effective surface can be determined by solving the corresponding closure

problems.

For the macro-scale porous medium model (PMM) obtained with the method

of volume averaging, upscaling was carried out for a mass transport problem

involving a nonlinear heterogeneous reaction typical of dissolution problems,

starting from the pore-scale problem described in Chap. 2. Volume averages

were first defined and applied to average the pore-scale model. “Average-plus-

deviation” decompositions were introduced to the pore-scale variables, thus the

pore-scale problem was rewritten with coupled parameters at different scales.

First order Taylor expansion was also used for estimating the reaction rate

when developing the equations for the concentration deviation, and the solu-

tion structure was determined accordingly for the perturbation terms. Based

on the resolution of the closure problems, two classical effective parameters, the

dispersion tensor, the effective reaction rate coefficient and two non-classical
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effective parameters, the effective velocity and the gradient term coefficient

were obtained. Compared to the previous published works as mentioned in

the main body, a full couplings of the two closure variables as well as the inter-

face velocity were kept in the closure problems, in addition to the consideration

of the non-classical effective parameters.

After the homogenization of either ESCM or PMM, the impact of some

properties were investigated, as summarized in Table. 6.1. It is observed that

both the two models were affected by the geometry under consideration, the

flow properties and the chemical features of the media. The representativ-

ity of the macro-scale models were validated by comparing the results with

DNS, both showing good agreements except for the discrepancy created in the

entrance region, where the periodicity assumption breaks down.

The above developed macro-scale porous medium model is also capable to

behave as a diffuse interface model (DIM), which is an alternative way of sim-

ulating cavity evolutions at large-scale, while it is numerically difficult to use

explicit interface tracking methods such as ALE. A workflow was proposed to

choose properly the effective parameters in the DIM model in order to repro-

duce the mass fraction field, mass fluxes and consequently the interface reces-

sion with good accuracy, for problems with various temporal and space scales.

In addition, numerical tests illustrated that to use Darcy, Darcy-Brinkman or

Navier-Stokes formulations as the momentum equations gave almost the same

cavity formation because of the small permeability being used. The absence

of convective plumes in the case of gypsum was verified by a comparison with

a model taking into account density variations through a Boussinesq approxi-

mation.

The potential of the approach to model dissolution of large scale prob-

lems over very large time periods was shown in the 3D modeling of gypsum

lens and pillar in gypsum quarry which may lead to formation collapse. Ge-

omechanical effects induced by dissolution (leaching) were illustrated using a

simplified approach, without considering a strong coupling between mechanics

and dissolution. Results showed the impact of gypsum dissolution on the long

term structures and buildings mechanical stability, which may be triggered by

natural or anthropic factors.

The framework developed in this thesis is applicable to simulate dissolu-

tion process in various research areas, for instance in the evolution of karstic

structures, drying, CO2 storage and in the application of acid injection in

petroleum wells in enhanced oil recovery. As indicated in the introduction,
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Table 6.1: Summary of the impact of various parameters on the macro-scale
models.

parameters ESCM PMM

unit cell
geometries

steep roughness shape and
high roughness density
inducing the effective

surface position farther
from the lower part of the
original surface and weaker
impact of flow properties

less tortuosity impact in the
1D case; important role of the

insoluble materials

flow
properties

negligible impact of
convection: when Sc < 0.1

and Pe < 1000 with
thermodynamic

equilibrium BC; when
Sc < 1 and Pe < 1000 with
reactive BC at small D̂a

stronger impact of dispersive
term and non-classical

effective parameters at large
Pe

chemical
properties

(1) reaction limited case
under small D̂a: acceptable

to approximate the
effective reaction rate

coefficient by the surface
average;

(2) mass transport limited
case under large D̂a:
effective reaction rate
coefficient should be

calculated by the closure
problems; strong impact of
flow properties; important

convection

(1) under small Da:
representation of the effective
reaction rate coefficient by the

pore-scale one;
(2) under large Da: smaller

impact of tortuosity and
dispersion; stronger impact of
reaction nonlinearity; recovery
of thermodynamic equilibrium
and different estimation of the
mass exchange term from the

reactive case

model
validation
compared
with DNS

(1) considering:
concentration and velocity
contours, mass flux at the

interface
(2) results: good

representativity and
efficiency of ESCM; best
choice of effective surface

being the one that recovers
no-slip condition

(1) considering: apparent
reactive term;

(2) results: good
representativity of the PMM
except in the entrance region;
important to incorporate the
non-classical effective terms

one of the motivation for this study was to model phenomena taking place at

“dissolving” interfaces. Therefore, the surface geometry is not given a priori
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but is a result of the process. Even though the development of PMM kept

interface velocity in all the steps, the resolution of the closure problems, like

in the development of ESCM, were conducted assuming quasi-steady state.

Also, the calculations of effective parameters in the applications provided were

not based on an actual dissolved pore-scale geometry. In addition, the de-

velopment of the macro-scale models, either the ESCM or PMM, was based

on a bundle of assumptions, such as constant fluid parameters, negligible in-

terface velocity, pseudo component for the dissolved material, etc. However,

real conditions are much more complicated and great attention should be paid

where such assumptions may break down. For example, (i) the periodicity as-

sumption may be not valid in the entrance region of the considered domains;

(ii) the dissolution of the porous matrix may lead to significant variation of

porosity and consequently permeability and other effective parameters; (iii)

the dissolving front may become unstable and may lead to the development

of wormhole structures; and (iv) under some circumstances, hydrodynamic in-

stabilities may also be induced by density change, such as in the case of salt

dissolution in water. It is beyond the scope of this conclusion to review all the

perspectives associated with these questions.

Concerning the coupling with the pore-scale geometry evolution, if one is

not satisfied with the geochemistry assumption, i.e., dependence of the effective

parameters on the porosity, our developments offer a framework for a coupled

solution between the macro-scale equation, on one hand, and the pore-scale

closure problems under the full version including the transient aspects, on the

other hand.
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Conclusions générales et

perspectives en français

Dans cette thèse, on a étudié certains aspects multi-échelles rencontrés dans

l’étude de l’évolution de cavités souterraines. Dans un premier temps, on a

étudié un modèle de dissolution à l’échelle du pore pour une géochimie simple,

pouvant être appliquée à la dissolution de cavités salines ou de gypse. Les

hypothèses pour pouvoir développer un tel modèle sont clarifiées. En parti-

culier, on discute de la possibilité d’utiliser le concept de pseudo-constituant

pour le cas de la dissolution de gypse dans l’eau, à condition qu’une erreur de

quelques pour cents soit acceptable. Par ailleurs, les différents choix possibles

de conditions aux limites sur l’interface soluble, à savoir équilibre thermody-

namique, conditions réactive non-linéaire, produisent également une différence

de quelques pour cents sur les bilans de masse ou flux de sortie, pour un prob-

lème aux limites classique. Si on peut remplacer des conditions réactives par

des conditions d’équilibre, on peut alors utiliser un modèles de dissolution à

interface diffuse basé sur cette condition, pour simuler des cavités à grande

échelle sans suivi explicite du front de dissolution, à condition de choisir con-

venablement les paramètres du modèle, comme cela est expliqué dans le Chap.

5.

Deux problèmes multi-échelles ont été étudiés et les modèles macroscopiques

correspondant construits: le premier correspondant au concept de surface ef-

fective, le second étant un problème classique de milieu poreux. Des condi-

tions aux limites d’équilibre ou réactives ont été considérées dans les deux cas.

Bien que de nombreuses hypothèses soient similaires entre les deux problèmes

multi-échelles, par exemple certaines conditions de périodicité, les hypothèses

de séparation d’échelles ou la décomposition en déviations et grandeurs macro-

scopiques, la mise en oeuvre reste spécifique. Par exemple, la définition des

grandeurs macroscopiques est très différente. La mise en oeuvre de ces deux

méthodes est succinctement décrite ci-dessous, et on se référera à [78] pour des
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discussions supplémentaires sur le changement d’échelle.

Pour le modèle de surface effective (ESCM), l’étude à concerné le transfert

de masse et de quantité de mouvement pour un écoulement laminaire au-

dessus d’une surface rugueuse et hétérogène, avec une condition aux limites

mixte pour le transfert multiconstituant. En faisant l’hypothèse de périodic-

ité de l’écoulement près des motifs périodiques de la surface, une méthode de

décomposition multi-domaine est utilisée pour partitionner le domaine en un

domaine macroscopique et des sous-domaine microscopiques pour les cellules

unitaires de la surface. Le problème initial est ré-écrit dans ce contexte. Les

variables microscopiques sont décomposées en un terme macroscopique et un

terme de déviation. En faisant l’hypothèse ǫ ≪ 1(ǫ = lcell/L) et utilisant des

développements de Taylor, des simplifications permettent de proposer une so-

lution pour les déviations en termes de la solution macroscopique (problèmes

de fermeture). La résolution des problèmes de fermeture permet d’obtenir

un problème fermé pour les variables macroscopiques avec des conditions aux

limites effectives sur la surface séparant les deux domaines: une condition de

Navier pour le bilan de quantité de mouvement et une condition de Robin

réactive pour le transfert de masse. La méthode permet également, via des

développements de Taylor, de repositionner la surface effective, ce qui donne

de nouvelles conditions aux limites effectives. Certains choix permettent de

retrouver la condition de non-glissement, ou une condition d’équilibre.

Le modèle macroscopique pour le cas du milieu poreux (PMM) est obtenu

par une méthode de prise de moyenne volumique en partant du modèle à

l’échelle du pore introduit dans le Chap. 2 et impliquant une condition réactive

non-linéaire sur l’interface matériau soluble-eau. Les équations à l’échelle du

pore sont d’abord moyennées. Une décomposition valeurs moyennes-déviations

est ensuite introduite ce qui permet de réécrire les équations moyennes et

les équations à l’échelle du pore. Une solution approchée de ce problème

couplée est obtenue sous la forme d’une représentation des déviations en termes

des grandeurs moyennes (problèmes de fermeture). La contribution du terme

non-linéaire est traitée en utilisant une décomposition de Taylor au premier

ordre. La résolution des problèmes de fermeture permets de calculer deux

paramètres effectifs plus classiques (dispersion et réaction effective) ainsi que

des termes non-traditionnels introduisant une vitesse effective et des termes en

gradient supplémentaires. La contribution originale de la thèse correspond au

traitement de la non-linéarité, la prise en compte de la vitesse de l’interface

dans la fermeture et une discussion sur les termes complémentaires.
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Dans le cadre de ces deux processus de macroscopisation, l’impact quanti-

tatif de divers paramètres (géométrie, paramètres de l’écoulement et propriétés

réactives et du fluide) a été étudié, comme résumé Table 6.1. La capacité pré-

dictive des modèles macroscopiques a été testée par comparaison avec des

simulations numériques directes. L’accord est excellent, avec un écart observ-

able seulement dans la zone d’entrée pour laquelle l’hypothèse de périodicité

ne tient pas.

Le modèle de milieu poreux développé est aussi utilisable comme un modèle

de dissolution à interface diffuse (DIM), dans le cas d’une condition d’équilibre

sur la surface liquide-soluble. Une telle méthode est une alternative aux méth-

odes de suivi explicite de l’interface, comme la méthode ALE qui rencontre

souvent des difficultés à cause de la déformation particulière de l’interface en

dissolution. De nombreuses difficultés numériques doivent être résolues dues

à la physique à petite échelle conduisant à la récession de l’interface. Une

méthodologie particulière est proposée pour estimer correctement les paramètres

dans le DIM permettant de simuler correctement les flux et donc la vitesse

de récession. En outre, des tests ont été effectués pour vérifier l’impact du

choix du modèle macroscopique de bilan de quantité de mouvement Darcy,

Darcy-Brinkamn, Darcy-Navier-Stokes. Aucune différence significative n’a été

observée pour un problème de dissolution de cavité typique, à cause de la

faible perméabilité utilisée. L’absence d’impact significatif de la convection

naturelle dans le cas du gypse a été vérifié par des simulations dans le cadre

de l’hypothèse de Boussinesq.

Le potentiel de la méthodologie proposée pour simuler l’évolution de cav-

ités sur du long terme (plusieurs années) a été illustré sur un problème à

grande échelle 3D: dissolution d’un pilier dans une carrière souterraine de gypse

inondée. Les effets géomécaniques induits par la dissolution du pilier ont été

évalués de manière simplifiée sans considérer un couplage fort géomécanique-

géochimie. Les résultats montrent un impact fort de la dissolution, provoquée

par des causes naturelles ou anthropiques, sur la stabilité mécanique des struc-

tures.

La méthodologie proposée dans la thèse est applicable à la simulation de la

dissolution dans divers domaines, karsts, stockage de CO2, injection d’acide en

génie pétrolier, etc... Comme indiqué dans l’introduction, une des motivations

de l’étude était la prise en compte des transferts sur une interface en évolution

lors de la dissolution, qui n’est donc pas donnée à priori mais un résultat du

processus lui-même. Même si le développement du modèle de milieu poreux
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garde l’évolution de l’interface dans les problèmes de fermeture, ceux-ci n’ont

été résolus que pour des interfaces données à priori. De nombreuses hypothèses

complémentaires ont été également introduite dans le développement: pseudo-

constituant, propriétés du fluide constantes, quasi-stationnarité des problèmes

de fermeture, etc... Ces hypothèses ont été présentées avec attention et il

est souhaitable que, dans un cas d’application réel, celles-ci soient vérifiées

précisément. Par exemple, (i) la condition de périodicité n’est pas vérifiée dans

la zone d’entrée, (ii) la dissolution peut amener à des variations significatives

de la géométrie et des propriétés effectives, (iii) le front de dissolution peut

devenir instable (wormholing), (iv) des instabilités hydrodynamiques peuvent

prendre naissance dans les couches limites près de la surface de dissolution à

cause des variations de densité du fluide induisant une structure particulière

de l’interface. Ces points doivent faire l’objet de travaux complémentaires.

En ce qui concerne le problème fondamental du couplage avec l’évolution de

la géométrie de l’espace poral, le modèle proposé offre la possibilité de traiter de

manière couplée les équations macroscopiques et les problèmes de fermeture de

façon à actualiser en permanence la géométrie porale et les propriétés effectives

en liaison avec le processus macroscopique étudié.
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Appendix A

Simplified closure problems

In this appendix it is assumed that the interface velocity is small. The

closure problems in 4.2.2 may be written as

Problem I: for 〈ωl〉l

∂sl

∂t
+vl ·∇sl = ∇.(Dl∇sl)+ ε−1

l Xl, (A.1)

BC 1 nls ·∇sl =

− MCaks

ρlωeqDl


1− 〈ωl〉l

ωeq




n−1

(1+nsl) at Als(t), (A.2)

BC 2 nli ·∇sl = 0 at Ali, (A.3)

〈sl〉 = 0, (A.4)

sl (x + li) = sl (x) , (A.5)

Xl = − 1

V

ˆ

Als

nls ·Dl∇sldA. (A.6)

Problem II: for ∇〈ωl〉l

∂bl

∂t
+vl · (∇bl + slI)+ ṽl − ε−1

l 〈ṽlsl〉 = ∇· (Dl (∇bl + slI))+ ε−1
l ul, (A.7)
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BC 1 nls · ((∇bl + slI))+nls = −n
MCaks

ρlωeqDl


1− 〈ωl〉l

ωeq




n−1

bl at Als(t),

(A.8)

BC 2 nli · (−(∇bl + slI)) = nli at Ali, (A.9)

〈bl〉 = 0, (A.10)

bl (x + li) = bl (x) , (A.11)

ul = − 1

V

ˆ

Als

nls.Dl (∇bl + slI)dA− 1

V

ˆ

Ali

nli ·Dl (∇bl + slI)dA. (A.12)

While the interface velocity does not appear anymore in the equations, it

must be reminded that the evolving geometry is still there and this is empha-

sized by the introduction of the notation Als(t). As discussed in the text body,

the classical geochemistry problem are faced here, either to solve coupled pore-

scale (here the closure problems) and macro-scale equations at each time step

in order to compute the interface evolution, or assume a given interface evo-

lution and solve the closure problem for each realization, which in turn yields

effective properties dependent on, for instance, the medium porosity. This dif-

ficulty is not further discussed which is well known when solving dissolution

or crystallization problems. It is interesting to put the closure problem under

a dimensionless form using the following scaling

x′ = x/lr, (A.13)

b
′

l = bl/lr, (A.14)

v
′

l = vl/Ur, (A.15)

t′ = Dl

l2r
t. (A.16)

which leads to

Problem I: for 〈ωl〉l
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∂sl

∂t′ +Pev
′

l ·∇′sl = ∇′ ·
(
∇′sl

)
+ ε−1

l X
′

l , (A.17)

BC 1 nls ·∇′sl =

−Da (1+nsl) at Als(t
′), (A.18)

BC 2 nli ·∇′sl = 0 at Ali, (A.19)

〈sl〉
′

= 0, (A.20)

sl

(
x′ + l

′

i

)
= sl

(
x′) , (A.21)

X
′

l = − 1

V ′

ˆ

A
′

ls

nls ·∇′sldA′ =
l2r
Dl

Xl. (A.22)

where the Péclet and Damköhler1 numbers are defined as

Pe =
Urlr
Dl

, (A.23)

Da =
MCa

ρlωeq

lrks

Dl


1− 〈ωl〉l

ωeq


 .n−1 (A.24)

Problem II: for ∇〈ωl〉l

∂b
′

l

∂t′ +Pev
′

l ·
(
∇′b

′

l + slI
)

+Pe ṽ
′

l − ε−1
l Pe

〈
ṽ

′

lsl

〉′

= ∇′ ·
(
∇′b

′

l + slI
)

+ ε−1
l u

′

l,

(A.25)

BC 1 nls ·
(
∇′b

′

l + slI
)

+nls = −nDab
′

l at Als(t
′), (A.26)

BC 2 nli ·
(
−

(
∇′b

′

l + slI
))

= nli at Ali, (A.27)

1For convenience, MCa
ρlωeq

has been included in the definition.
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〈
b

′

l

〉′

= 0, (A.28)

b
′

l

(
x′ + l

′

i

)
= b

′

l

(
x′) , (A.29)

u
′

l = − 1

V ′

ˆ

A
′

ls

nls ·
(
∇′b

′

l + slI
)

dA′ − 1

V ′

ˆ

A
′

li

nli ·
(
∇′b

′

l + slI
)

dA′ =
l2r
Dl

ul.

(A.30)

Now the two limiting cases: small and large Damköhler numbers may be

examined.
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Small Da numbers

In the limit Da → 0, the closure problems become

Problem I: for 〈ωl〉l

∂sl

∂t′ +Pev
′

l ·∇′sl = ∇′ ·
(
∇′sl

)
+ ε−1

l X
′

l , (B.1)

BC 1 nls ·∇′sl = 0 at Als(t
′), (B.2)

BC 2 nli ·∇′sl = 0 at Ali, (B.3)

〈sl〉
′

= 0, (B.4)

sl

(
x′ + l

′

i

)
= sl

(
x′) , (B.5)

X
′

l = 0, (B.6)

and the resulting sl is zero since there is no source terms in the equations.

Problem II: for ∇〈ωl〉l

∂b
′

l

∂t′ +Pev
′

l ·
(
∇′b

′

l

)
+Pe ṽ

′

l = ∇′ ·∇′b
′

l + ε−1
l u

′

l, (B.7)

BC 1 nls ·∇′b
′

l +nls = 0 at Als(t
′), (B.8)

BC 2 nli ·∇′b
′

l = −nli at Ali, (B.9)
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〈
b

′

l

〉′

= 0, (B.10)

b
′

l

(
x′ + l

′

i

)
= b

′

l

(
x′) , (B.11)

u
′

l = − 1

V ′

ˆ

A
′

ls

nls ·∇′b
′

ldA′ − 1

V ′

ˆ

A
′

li

nli ·∇′b
′

ldA′ = ∇εl = 0. (B.12)

One recovers the closure problem for passive dispersion.
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Large Da numbers

In order to obtain a limit Da → ∞, two conditions, as emphasized in Sec.

4.2.4, must be fulfilled:

1. the physical parameters must be such that MCa
ρlωeq

lrks
Dl

≫ 1,

2. and n = 1 (since 〈ωl〉l as a tendency to grow up to ωeq).

In that case, the closure problems become

Problem I: for 〈ωl〉l

∂sl

∂t′ +Pev
′

l ·∇′sl = ∇′ ·
(
∇′sl

)
+ ε−1

l X
′

l , (C.1)

BC 1 sl = −1 at Als(t
′), (C.2)

BC 2 nli ·∇′sl = 0 at Ali, (C.3)

〈sl〉
′

= 0, (C.4)

sl

(
x′ + l

′

i

)
= sl

(
x′) , (C.5)

in which

X
′

l = − 1

V ′

ˆ

A
′

ls

nls ·∇′sldA′ =
l2r
Dl

Xl. (C.6)

Problem II: for ∇〈ωl〉l
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∂b
′

l

∂t′ +Pev
′

l ·
(
∇′b

′

l + slI
)

+Pe ṽ
′

l − ε−1
l Pe

〈
ṽ

′

lsl

〉′

= ∇′ ·
(
∇′b

′

l + slI
)

+ ε−1
l u

′

l,

(C.7)

BC 1 b
′

l = 0 at Als(t
′), (C.8)

BC 2 nli ·
(
−

(
∇′b

′

l + slI
))

= nli at Ali, (C.9)

〈
b

′

l

〉′

= 0, (C.10)

b
′

l

(
x′ + l

′

i

)
= b

′

l

(
x′) , (C.11)

in which

u
′

l = − 1

V ′

ˆ

A
′

ls

nls ·
(
∇′b

′

l + slI
)

dA′ − 1

V ′

ˆ

A
′

li

nli ·
(
∇′b

′

l + slI
)

dA′ =
l2r
Dl

ul.

(C.12)

It must also be emphasized that the resulting effective parameters do not

depend anymore on Da and are purely defined by the transport problem to-

wards the surface (diffusion controlled case).

It is worth noting the following relationship

ρlXl =
1

V

ˆ

Als

nls ·ρlsl (vl −wsl)dA− 1

V

ˆ

Als

nls ·ρlDl∇sldA. (C.13)
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Case of a linear reaction rate

This case is obtained when n = 1. Eq. 2.21 can be written as

B.C.1 nls · (ρlωl (vl −wsl)−ρlDl∇ωl) = −MCaks

(
1− ωl

ωeq

)
at Als,

(D.1)

The Damköhler number becomes

Da =
MCa

ρlωeq

lrks

Dl
, (D.2)

The simplified closure problems become

Problem I: for 〈ωl〉l

∂sl

∂t′ +Pev
′

l ·∇′sl = ∇′ ·
(
∇′sl

)
+ ε−1

l X
′

l , (D.3)

BC 1 nls ·∇′sl =

−Da (1+sl) at Als(t
′), (D.4)

BC 2 nli ·∇′sl = 0 at Ali, (D.5)

〈sl〉
′

= 0, (D.6)

sl

(
x′ + l

′

i

)
= sl

(
x′) , (D.7)
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X
′

l = − 1

V ′

ˆ

A
′

ls

nls ·∇′sldA′ =
l2r
Dl

Xl. (D.8)

Problem II: for ∇〈ωl〉l

∂b
′

l

∂t′ +Pev
′

l ·
(
∇′b

′

l + slI
)

+Pe ṽ
′

l − ε−1
l Pe

〈
ṽ

′

lsl

〉′

= ∇′ ·
(
∇′b

′

l + slI
)

+ ε−1
l u

′

l,

(D.9)

BC 1 nls ·
(
∇′b

′

l + slI
)

+nls = −Dab
′

l at Als(t
′), (D.10)

BC 2 nli ·
(
−

(
∇′b

′

l + slI
))

= nli at Ali, (D.11)

〈
b

′

l

〉′

= 0, (D.12)

b
′

l

(
x′ + l

′

i

)
= b

′

l

(
x′) , (D.13)

u
′

l = − 1

V ′

ˆ

A
′

ls

nls ·
(
∇′b

′

l + slI
)

dA′ − 1

V ′

ˆ

A
′

li

nli ·
(
∇′b

′

l + slI
)

dA′ =
l2r
Dl

ul.

(D.14)

The mass exchange rate, from Eq. 4.55, becomes

ωeq

MCa
KCa = −avlks,eff

(
ωeq −〈ωl〉l

)
+avlks 〈bl〉ls ·∇〈ωl〉l , (D.15)

where an effective reaction rate, ks,eff has been introduced such as

ks,eff

ks
= (1+ 〈sl〉ls) . (D.16)

Two limit cases with respect to the Da number lead to

1. Da → 0: we have sl = 0 and hence ks,eff

ks
= 1

2. Da → ∞: the effective reaction rate becomes independent of Da and is

only controlled by the transport problem.

Now a stratified unit cell is considered as represented Fig. D.1, in which there

is no insoluble material.
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Figure D.1: Stratified Unit Cell.

The medium volume fraction is

εl =
2R

H
, (D.17)

and the specific area

avl = 2/H. (D.18)

Problem I may be solved analytically in the steady-state case to obtain

sl =
R

′2 −3y
′2

2R
′2 +6R

′

/Da
, (D.19)

where lr = H has been adopted.

In terms of effective reaction rate, one has

ks,eff /ks = (1+ 〈sl〉ls) = 1− 2R
′2

2R
′2 +6R

′

/Da
=

1

1+ 1
3R

′

Da
, (D.20)

which can be written

ks,eff /ks =
1

1+ 1
6εlDa

. (D.21)

It is classically obtained that the effective coefficient does not depend upon

the velocity field for such a Unit Cell. It must be understood that this result,

because of the periodicity condition, corresponds to a fully developed concen-

tration field, i.e., at some distance of the entrance region (see [166]). If one

wants to take into account precisely the entrance region effect (i.e., dissolution

at the beginning of the front), one has to develop a non-local closure in which
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the distance from the front beginning will play a role.

The limit Da → 0 leads to

ks,eff /ks = 1, (D.22)

and the limit Da → ∞ leads to

ks,eff /ks = 0. (D.23)

However, this latter result cannot be used to calculate the mass exchange term

and the expression Eq. 4.66 has to be reverted

KCa = ωeqKg +ρlαl

(
〈ωl〉l −ωeq

)
+ρlhl ·∇〈ωl〉l , (D.24)

where

αl =
1

V

ˆ

Als

nls · (−Dl∇sl)dA, (D.25)

and

hl =

(
1

V

ˆ

Als

nls · (−Dl∇bl)dA

)
. (D.26)

The mass exchange coefficient can be calculated as

αlH
2

Dl
= − 1

V ′

ˆ

A
′

ls

nls ·∇′sldA′ =
12

εl
. (D.27)

Plots of the effectiveness factor ks,eff /ks are shown in Fig. D.2.

Figure D.2: Effectiveness factor as a function of the Damköhler number.
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Decomposition of the closure

variables

Owing to the definition of u
′

l and X
′

l , the closure problems related to sl and

b
′

l involves integro-differencial equations. However, it is possible to find a more

convenient way, decomposing the mapping variables, to solve such problems,

as done in [109,165]. The decompositions for sl and b
′

l write

sl = − 1

n
+X ′

lψs, (E.1)

b
′

l = b
′

0 +ψbu
′

l. (E.2)

Closure problems for ψs, b′
0 and ψb are presented below.

Problem Ia: for ψs

∂ψs

∂t′ +Pev
′

l.∇′ψs = ∇′.
(
∇′ψs

)
+ ε−1

l , (E.3)

BC 1 nls.∇
′

ψs =

−nDaψs at Als(t
′), (E.4)

BC 2 nli.∇′ψs = 0 at Ali, (E.5)

ψs

(
x

′

+ l
′

i

)
= ψs

(
x

′
)

. (E.6)

Problem IIa: for b
′

0

197



198 Appendix E

∂b
′

0

∂t′ +Pev
′

l.
(
∇′

b
′

0 + slI
)

+Pe ṽ
′

l − ε−1
l Pe

〈
ṽ

′

lsl

〉′

= ∇′.
(
∇′

b
′

0 + slI
)

, (E.7)

BC 1 nls.
(
∇′

b
′

0 + slI
)

+nls = −nDab
′

0 at Als(t
′), (E.8)

BC 2 nli.
(
−

(
∇′

b
′

0 + slI
))

= nli at Ali, (E.9)

b
′

0

(
x

′

+ l
′

i

)
= b

′

0

(
x

′
)

. (E.10)

Problem IIb: for ψb

∂ψb

∂t′ +Pev
′

l.∇
′

ψb = ∇′

.
(
∇′

ψb

)
+ ε−1

l , (E.11)

BC 1 nls.
(
∇′

ψb

)
= −nDaψb at Als(t

′), (E.12)

BC 2 nli.
(
−∇′

ψb

)
= 0 at Ali, (E.13)

ψb

(
x

′

+ l
′

i

)
= ψb

(
x

′
)

. (E.14)

The constrains of Eqs. C.4 and C.10, i.e., the averages of sl and of b
′

l are

0, allow us to write

X
′

l =
εl

n〈ψs〉
, (E.15)

and

u
′

l = −
〈
b

′

0

〉

〈ψb〉
. (E.16)
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