

To cite this version : Hugues, Jérôme and Delange, Julien AADLv2,
a Domain Specific Language for the Modeling, the Analysis and the
Generation of Real-Time Embedded Systems. (2015)
In: Models Conference 2015, 27 September 2015 - 2 October 2015
(Ottawa, Canada)

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 14207

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78385082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AADLv2, a Domain Specific Language for the
Modeling, the Analysis and the Generation of

Real-Time Embedded Systems
Julien Delange

Carnegie Mellon Software Engineering Institute
4500 Fifth Avenue

Pittsburgh, PA 15213-2612, USA
Email:jdelange@sei.cmu.edu

Jerome Hugues
Université de Toulouse, ISAE

10, Avenue E. Belin 31055 Toulouse Cedex 4, France
Email: jerome.hugues@isae.fr

I. TITLE

AADLv2, a Domain Specific Language for the Modeling,
the Analysis and the Generation of Real-Time Embedded
Systems

II. PRESENTERS BIO

• Julien Delange (Software Engineering Institute, Pitts-
burgh, USA) is a researcher at the Carnegie Mellon
University (CMU) Software Engineering Instute (SEI).
Julien got a PhD (2010) in Computer Science that focuses
on the design of safe and secure embedded systems. Prior
working at the SEI, he worked at the European Space
Agency and was involved in many aerospace-related
projects for using model-based engineerins approaches
to improve the development of safety-critical systems.

• Jérôme Hugues (ISAE/DMIA, Toulouse, France) is as-
sociate professor at the Department of Mathematics,
Computer Science, and Control of the Institute for Space
and Aeronautics Engineering (ISAE). He holds a PhD
(2005) and an engineering degree (2002) from Tele-
com ParisTech. His research interests focus on design
of software-based real-time and embedded systems and
tools to support it. He is a member of the SAE AS-2C
committee working on the AADL; and is involved in
the Ocarina and TASTE projects, two flagships AADL
projects.

III. ABSTRACT

The Architecture Analysis and Design Language (AADL)
is an SAE International Standard dedicated to the precise
modeling of complex real-time embedded systems, covering
both hardware and software concerns. Its definition relies on a
precise set of concepts inherited from industry and academics
best practice: clear separation of concerns among layers, rich
set of properties to document system metrics and support
for many kind of analysis: scheduling, safety and reliability,
performance, but also code generation.

In this tutorial, we provide an overview of AADLv2 and
illustrate how several analyses can be combined on an il-
lustrative example: a radar platform. This tutorial, we also
present Model-based engineering process allowed by AADL to
both verify and implement automatically a real-time embedded
systems.

IV. KEYWORDS

Model-based engineering; AADL; semantics; safety analy-
sis; code generation

V. PROPOSED LENGTH OF THE LECTURE

3 hours

VI. LEVEL OF THE TUTORIAL

Advanced

VII. TARGET AUDIENCE AND ANY PRE-REQUISITE
BACKGROUND REQUIRED BY ATTENDEES

This tutorial requires basic knowledged on Model Driven
Engineering. As both AADL and real-time verification meth-
ods will be introduced, this tutorial does not assume skills on
them.

VIII. DESCRIPTION OF THE TUTORIAL

A. Overview of the AADL

The “Architecture Analysis and Design Language” AADL is
a textual and graphical language for model-based engineering
of embedded real-time systems. It has been published as an
SAE Standard AS-5506B [1]. AADL is used to design and
analyze the architecture of embedded real-time systems.

AADL allows for the description of both software and
hardware parts of a system. It focuses on the definition of
block interfaces, and separates the implementations from these
interfaces. It can be expressed using both a graphical or a
textual syntax. From the description of these blocks, one can
assemble blocks to represent the full system.

An AADL model can incorporate non-architectural ele-
ments: embedded or real-time characteristics of the com-
ponents (execution time, memory footprint, . . .), behavioral

descriptions, . . . Hence it is possible use AADL as a backbone
to describe all the aspects of a system. Let us review them:

An AADL description is made of components. The AADL
standard defines software components (data, thread,
thread group, subprogram, process) and execution
platform components (memory, bus, processor, device,
virtual processor, virtual bus) and hybrid com-
ponents (system).

Each component category describe well identified elements
of the actual architecture, using the same vocabulary of system
or software engineering:

• Subprograms model procedures like in C or Ada. Threads
model the active part of an application (such as POSIX
threads). AADL threads may have multiple operational
modes. Each mode may describe a different behaviour
and property values for the thread. Processes are memory
spaces that contain the threads. Thread groups are used
to create a hierarchy among threads.

• Processors model micro-processors and a minimal oper-
ating system (mainly a scheduler). Memories model hard
disks, RAMs, buses model all kinds of networks.

• Virtual bus and Virtual processor models logical point
of view of hardware components. A virtual bus is a
communication channel on top of a physical bus; a virtual
processor denotes a dedicated scheduling domain inside
a processor (e.g. an ARINC653 partition running on a
processor).

• Unlike other components, Systems do not represent any-
thing concrete; they combine building blocks to help
structure the description as a set of nested components.
Packages add the notion of namespaces to help structur-
ing the models. Abstracts model partially defined com-
ponents, to be refined during the modeling process.

Component declarations have to be instantiated into sub-
components other components in order to model an architec-
ture. At the top-level, a system contains all the component
instances. Most components can have subcomponents, so that
an AADL description is hierarchical. A complete AADL
description must provide a top-most level system that will
contain certain kind of components (processor, process, bus,
device, abstract and memory), thus providing the root of the
architecture tree. The architecture in itself is the instantiation
of this system, which is called the root system.

The interface of a component is called component type. It
provides features (e.g. communication ports). communicate
one with another by connecting their features. A compo-
nent type can have several implementations. They describe
the internals of the components: subcomponents, connections
between those subcomponents, . . .

An implementation of a thread or a subprogram can specify
call sequences to other subprograms, thus describing the
execution flows in the architecture. Since there can be different
implementations of a given component type, it is possible
to select the actual components to put into the architecture,
without having to change the other components, thus providing
a convenient approach to configure applications.

Fig. 1. IST-ASSERT demonstrator

The AADL defines the notion of properties that can be
attached to most elements (components, connections, features,
. . .). Properties are typed attributes that specify constraints or
characteristics that apply to the elements of the architecture:
clock frequency of a processor, execution time of a thread,
bandwidth of a bus, . . . Some standard properties are defined,
e.g. for timing aspects; but it is possible to define new prop-
erties for different analysis (e.g. to define particular security
policies).

AADL is a language, with different representations. A
textual representation provides a comprehensive view of all
details of system. A graphical representation also exists if one
want to hide some details and to quick navigate in multiple
dimensions of the architecture model. In the following, we
illustrate both notations. Let us note that AADL can also be
expressed as a UML model following the MARTE profile [2].

The concepts behind AADL are those typical to the con-
struction of embedded systems, following a component-based
approach: blocks with clear interfaces and properties are
defined, and compose to form the complete system. Besides,
the language is defined by a companion standard document
that documents legality rules for component assemblies, its
static and execution semantics.

The figure 1 illustrates a complete space system, as a
demonstrator during the ASSERT project. It illustrates soft-
ware and hardware concerns can be separately developed and
then combined in a complete model.

As we mentioned earlier, AADL, or other like MARTE or
EAST-ADL provides similar constructs, and are conceptually
really closed as underlined in [3].

B. AADL for embedded systems

AADL provides interesting features to model embedded
systems, analyze them but also implement them. In this
section, we review some existing tools1:

• Modeling: OSATE [4], and Stood [5] provide AADL
modeling features for both textual and graphical variants;

1An updated list of supporting tools, projects and papers can be found on
the official AADL web site http://www.aadl.info.

• Model of computation and architectural patterns:
AADLv2 annexes define patterns for supporting IMA
architectures, the Ravenscar [6] or Synchronous compu-
tational models;

• Safety analysis: using OSATE plug-ins mapping AADL
concepts onto fault trees, and supporting FHA and FMEA
analysis;

• Code generation: Ocarina implements Ada and C code
generators for distributed systems [7].

Many integrated industry-driven projects rely on these tools
: the TASTE toolset driven by the European Space Agency [8]
or the “System Architecture Virtual Integration” (SAVI) by the
Aerospace Vehicle Systems Institute [9], an initiative gathering
numerous key players from the aeronautics domain.

C. About the tutorial

The tutorial illustrates the two key dimensions of AADL: 1)
a modeling process following a system engineering approach,
2) connection with various analysis down and up the traditional
engineering V-cycle. The tutorial will cover both language
and state-of-the- art tools: OSATE2, Cheddar and Ocarina and
connections with other tools like Simulink or SCADE.

We illustrate2 how to merge various modeling and analysis
concerns using AADL: validation of mission-level objectives,
high-level system validation, reliability analysis and code
generation.

IX. INTENDED OUTLINE

As the goal of this tutorial is to introduce model-based
analysis embedded systems using the AADLv2 Architecture
Description Language, the outline of the tutorial will be as
follow:

• Part 1: introduction to AADLv2 core (about 60 minutes).
We will present the syntax and semantics of the AADL.

• Part 2: introducing a case study (about 30 minutes). We
present an avionics case study to illustrate the use of
AADL.

• Part 3: safety analysis (about 60 minutes). We will
introduce the requirements of safety analysis and how
safety documentation can be generated from AADL.

• Part 4 : code generation (about 60 minutes). Finally, we
will present how to generate code from an AADL model
for avionics (ARINC653) architectures and how it can be
run.

X. NOVELTY OF THE TUTORIAL

This tutorial has been given by the speakers at the ESWeek
2013, HILT 2014 and MODELS 2014 conferences. The atten-
dees of these tutorials were interested in, but not expert on
real-time embedded systems. J. Hugues also delivered a short
version of this tutorial, in French, at Ecole dété Temps Réel,
the French summer school on real-time systems in 2009.

This occurrence would be adapted and enhanced for this
new occurence to include latest developmeent on the AAD

2All models used in the tutorial are available on the authors web pages.

standard, and its associated toolset. We plan to provide a
stronger focus on usage of the OSATE AADL toolset.

XI. SAMPLE SLIDES

Slides from the previous tutorial are available at the follow-
ing URL: http://www.openaadl.org/post/2014/09/28/models/

REFERENCES

[1] SAE: Architecture Analysis and Design Language (AADL) AS-5506B.
Technical report (2012)

[2] Faugere, M., Bourbeau, T., de Simone, R., Gerard, S.: Marte: Also an uml
profile for modeling aadl applications. Engineering of Complex Computer
Systems, IEEE International Conference on 0 (2007) 359–364

[3] Johnsen, A., Lundqvist, K.: Developing dependable software-intensive
systems: Aadl vs. east-adl. In Romanovsky, A., Vardanega, T., eds.: Ada-
Europe 2011, Springer-Verlag (2011) 103–117

[4] SEI: OSATE : An extensible Source AADL Tool Environment. SEI
AADL Team technical Report (2004)

[5] Dissaux, P.: Using the AADL for mission critical software development.
2nd European Congress ERTS, EMBEDDED REAL TIME SOFTWARE
Toulouse (2004)

[6] Gilles, O., Hugues, J.: Expressing and enforcing user-defined constraints
of AADL models. In: Proceedings of the 5th UML& AADL Workshop
(UML&AADL 2010), University of Oxford, UK (2010) 337–342

[7] Lasnier, G., Zalila, B., Pautet, L., Hugues, J.: OCARINA: An Envi-
ronment for AADL Models Analysis and Automatic Code Generation
for High Integrity Applications. In: Reliable Software Technologies’09 -
Ada Europe. Volume LNCS., Brest, France (2009) 237–250

[8] Conquet, E., Perrotin, M., Dissaux, P., Tsiodras, T., Hugues, J.: The
TASTE Toolset: turning human designed heterogeneous systems into
computer built homogeneous software . In: Proceedings of Embedded
Real Time Software and Systems 2010, Toulouse, France (2010)

[9] Feiler, P., Hansson, J., de Niz, D.: System Architecture Virtual Integration:
An Industrial Case Study. Technical report, Software Engineering
Institue, Carnegie Mellon University (2009)

