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ABSTRACT

OPTIMIZATION METHODS
FOR ACTIVE AND PASSIVE LOCALIZATION

by
Nil Garcia

Active and passive localization employing widely distributed sensors is a

problem of interest in various fields. In active localization, such as in MIMO radar,

transmitters emit signals that are reflected by the targets and collected by the receive

sensors, whereas, in passive localization the sensors collect the signals emitted by the

sources themselves. This dissertation studies optimization methods for high precision

active and passive localization.

In the case of active localization, multiple transmit elements illuminate the

targets from different directions. The signals emitted by the transmitters may

differ in power and bandwidth. Such resources are often limited and distributed

uniformly among the transmitters. However, previous studies based on the well known

Crámer-Rao lower bound have shown that the localization accuracy depends on the

locations of the transmitters as well as the individual channel gains between different

transmitters, targets and receivers. Thus, it is natural to ask whether localization

accuracy may be improved by judiciously allocating such limited resources among the

transmitters. Using the Crámer-Rao lower bound for target localization of multiple

targets as a figure of merit, approximate solutions are proposed to the problems of

optimal power, optimal bandwidth and optimal joint power and bandwidth allocation.

These solutions are computed by minimizing a sequence of convex problems. The

quality of these solutions is assessed through extensive numerical simulations and

with the help of a lower-bound that certifies their optimality. Simulation results

reveal that bandwidth allocation policies have a stronger impact on performance

than power.



Passive localization of radio frequency sources over multipath channels is a

difficult problem arising in applications such as outdoor or indoor geolocation.

Common approaches that combine ad-hoc methods for multipath mitigation with

indirect localization relying on intermediary parameters such as time-of-arrivals, time

difference of arrivals or received signal strengths, are unsatisfactory. This dissertation

models the localization of known waveforms over unknown multipath channels in

a sparse framework, and develops a direct approach in which multiple sources are

localized jointly, directly from observations obtained at distributed sources. The

proposed approach exploits channel properties that enable to distinguish line-of-sight

(LOS) from non-LOS signal paths. Theoretical guarantees are established for correct

recovery of the sources’ locations by atomic norm minimization. A second-order-cone-

based algorithm is developed to produce the optimal atomic decomposition, and it

is shown to produce high accuracy location estimates over complex scenes, in which

sources are subject to diverse multipath conditions, including lack of LOS.
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CHAPTER 1

INTRODUCTION

Localization (or Geolocation or Positioning) is the determination of the geographic

location of an object. There are a wide variety of localization systems, each

characterized by its own requirements and different applications. For instance, Global

Navigation Satellite Systems (GNSS) [1, 2], such as the Global Positioning System

(GPS) [3, 4], are very popular because they provide worldwide autonomous local-

ization to their users. Such systems employ constellations of satellites transmitting

highly synchronized signals, allowing a receiver to locate itself by measuring the

propagation times. Another example, which has gone through major advancements

since its invention, is radar [5, 6]. In its most basic form, an antenna or group of

antennas transmit pulses that bounce off any object in their path. By measuring the

propagation delays and angles of incidence of the returns, a radar is able to find the

positions of those objects.

This thesis focuses on localization with observations obtained by widely

distributed sensors. Multiple examples of such systems may be found in civil and

military applications. For instance, cellular networks comprise many cells that provide

radio coverage over large geographical areas. At the center of each cell lies a base

station that can transmit and receive signals to and from user equipments (UE), such

as mobile phones. The main purpose of cellular networks is to provide communications

to UE’s. Nevertheless, cellular networks can also provide additional services, such as

localization [7, 8]. In particular, in uplink localization, multiple base stations collect

the signals emitted by the user equipments to infer their locations. Multiple-input

multiple-output (MIMO) radar is another example [9, 10]. MIMO radar is a new

paradigm in radar, where instead of a single antenna with high-directional gain,

multiple omni-directional sensors are employed. Every transmit sensor sends a

1



2

different waveform, which are then bounced off by the targets and collected by receive

sensors. If the transmit and receive sensors are widely distributed, MIMO radar

provides advantages over traditional radar, such as higher resolution [11, 12] and

higher probability of detection [13, 14].

Localization employing widely distributed sensors falls into two categories:

active and passive. In active localization, transmitters actively illuminate the targets

and the reflections are used to infer their locations, such as in MIMO radar. In

contrast, in passive localization, sensors collect signals that the sources emit. These

signals are processed to infer the sources’ location. This is the case of uplink

localization in cellular networks.

Whether active or passive, it is possible to localize sources/targets using

widely distributed sensors because the received signals carry information from their

locations. The strength of the received signals decays, approximately, at a rate

that is inversely proportional to the square of the distance travelled, whereas the

propagation delays of the received signal are directly proportional to the distance

traveled. Once the distances traveled by the received signals are estimated, the

locations of the sources/targets can be found by multilateration or similar techniques

[15, 16]. Several classes of localization methods exist in the literature depending on

which signal parameters are exploited. In received signal strength (RSS) [17, 18], as

the name points out, the traveled distances of the received signals are estimated

from the signal strengths. However, in practice, the function relating signal

strengths and distances is known only approximately, thus resulting in coarse location

estimates. In time-of-arrival (TOA)-based localization, the traveled distances are

found by estimating the propagation delays of the received signals [19, 20]. Such

approach requires knowledge of the baseband waveforms and synchronization among

transmitters and receivers. Techniques based on time-difference-of-arrivals (TDOA)

measure the difference of propagation delays between different sensors. This may
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be accomplished by subtracting the estimated TOA’s at each sensor with the TOA

estimated at a reference sensor [21], or if the baseband waveforms are unknown,

by cross-correlating the received signals at all sensors with that of the reference

sensor and finding the location of its peak [22]. TDOA techniques overcome some

of the requirements of TOA techniques as they require synchronization only at the

receivers. In coherent localization [11, 23], the traveled distances of the received

signals are estimated from their phases. Since the phase varies much faster than the

envelope of the signals, accuracies much higher than in the other techniques may be

achieved. However, coherent localization requires phase synchronization of the order

of nanoseconds or better. This thesis focus on active and passive localization based

on TOA information, i.e., based on the delays of the signal envelope and not on the

phase delays of the received signals. TOA and TDOA-based localization techniques

are more accurate than RSS-based technique because signal strengths depend on

other factors rather than just the signals travelled distances. While employing

TOA information requires synchronization between transmitters and receivers, it also

results in techniques with better accuracy than those employing TDOA.

The clear distinction between active and passive localization is that in the active

case, transmitters are required. While in passive localization, all the processing takes

place after receiving the signals, in active localization, the processing takes place also

at the transmitting end. In a network of widely distributed sensors, the receivers

process the signals and relay them, or a function of them, to a fusion center that

combines all the information in order to infer the locations. The transmitters, in

the case of active localization, emit some signals that are appropriate for the task

of localization. Irrespective of the waveforms of choice, there are two fundamental

parameters that need to be selected depending on the requirements of the applications:

the transmitting power and the signal bandwidth. Obviously, such resources are not
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unlimited. Thus, in the case of multiple transmitters, it is natural to ask what is the

optimal strategy for allocating such limited resources among the transmitters.

Ideally, analytical solutions to the problem of localizing the sources and

allocating resources are preferred because of their simplicity. Nonetheless, analytical

solutions are usually very hard, if not impossible, to obtain if the mathematical

models are not simplified. Instead, it is possible in many cases to obtain solutions

by numerically solving one or multiple optimization problems. The purpose of an

optimization problem is to find the best solution which maximizes or minimizes

a certain function from a set of feasible solutions. This dissertation proposes

some optimization methods for efficient resources allocation in active localization

in Chapter 2 and for precise passive localization of sources in Chapter 3. Next, the

motivation of the proposed methods is reviewed in more detail.

1.1 Allocation of Power and Bandwidth in MIMO Radar

In a MIMO radar, transmit elements emit their respective signals, which are

subsequently scattered by targets in the field of view towards receive elements. If the

antenna elements are widely spaced, then they view the targets from different aspect

angles, making these (substantially diverse) paths exhibit different amplitudes and

phases [9, 10, 13, 24]. The point target model employed in traditional radar, breaks

down in favor of an extended target model [25], because targets display different radar

cross-sections (RCS) in different directions. In this case, processing is non-coherent

and angular diversity becomes an object of interest [10, 26, 27]. In a non-coherent

MIMO system where phase is not preserved across the elements, and if the system

elements are time-synchronized, targets may be localized by, first, estimating the

TOA’s of the paths at each sensor, and then performing multilateration [28, 29],

or by more computation-intensive techniques such as Direct Position Determination

(DPD) [30]. When the target reflections towards different directions are unknown,
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performance is enhanced by illuminating the target from different angles, and

averaging the target scintillations [13].

Besides high-accuracy localization, resource-aware design is of importance

in surveillance radars with mounted mobiles stations powered off-grid, as it can

be found in network-centric warfare [31]. Such a configuration with multiple

transmitters and receivers is robust to the loss of nodes, e.g., due to hostile action.

Furthermore, resource management is an essential part of military operations in

hostile environments, where low-probability-of-intercept operation may be required

[32]. Another growing field where non-coherent MIMO might be applied, is ultra

wide band (UWB) radar sensor networks [33], which usually operate under severe

power constraints because they reuse wireless communications equipment or operate

in unregulated frequencies. The ability of UWB to perform through-the-wall detection

makes it an attractive tool for detecting intruders in buildings [34]. Another example

of non-coherent radar localization, very similar to our system as it will become

clear in the next paragraphs, is presented in [35], where an air traffic control radar

uses multiple transmitters operating at different frequencies, and multilateration

techniques are used for tracking.

A criterion for measuring the target location accuracy is necessary for allocating

the resources. The Crámer-Rao lower bound (CRLB) for the estimation of a target

location in a distributed architecture [36] is picked as cost function. An advantage

of this cost function is that it is in closed form, thus making it suitable for algebraic

manipulations. Also, the CRLB is known to provide a tight lower bound on the error

of an unbiased estimator at high signal-to-noise ratio (SNR) [27, 37], and this is the

SNR regime in which we operate. And lastly, another important particularity of this

CRLB is that, under the assumption of full orthogonality between transmitted signals,

it depends only on the two parameters of interest: power and effective bandwidth (see

[38] for the definition of effective bandwidth). It is shown in [39] that this CRLB is



6

the product of two factors, which capture the nature of the localization error: one

is the CRLB of time delay estimation by a single sensor, and the second is a term

known as Geometric Dilution of Precision (GDOP), which depends on the number

of transmit and receive elements and their locations. Tight bounds are also available

for lower SNR, such as the Barankin [40] and Ziv-Zakai [41] bounds, however, they

entail more complicated expressions not suitable to serve as cost functions.

Chapter 2 is concerned with improving the accuracy of the localization of

multiple detected and stationary targets. The premise of the work is that, judicious

allocation of system resources, power and bandwidth, has an impact on the accuracy

of localization. To this end, it is proposed a technique for finding the optimal power

allocation, bandwidth allocation and joint power bandwidth allocation to minimize

the CRLB on the localization of multiple targets. The model assumes that a fusion

center performs resource allocations based on past localization estimates.

1.2 Direct Localization for Passive Localization in Multipath Channels

Traditional time-of-arrival (TOA)-based localization is accomplished through a

two-step process. In the first step, sensors estimate TOA’s from all incoming signals;

in the second step, such estimates are transmitted to a central node, that subsequently

estimates the location of each source by multilateration [42]. These localization

techniques are known as indirect. In a multipath environment, each sensor receives, in

addition to a line-of-sight (LOS) signal, multiple (possibly overlapping) replicas due to

non-line-of-sight (NLOS) paths. Due to these multiple arrivals, it is, in general, more

challenging to obtain accurate TOA estimates of the LOS components at the sensors.

Matched filtering is a method for time delay estimation. However, its performance

degrades greatly in the presence of multipath whose delay is of the same order than

the inverse of the bandwidth of the signal. Moreover, in the case of blockage of the

LOS path, the TOA of the first arrival does not correspond to a LOS component
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anymore, and will corrupt localization. In such a case, it is customary to apply

techniques, like the one in [43], to mitigate NLOS channel biasing of the geolocation

estimate.

A better approach than indirect localization is to infer the source locations

directly from the signal measurements without estimating any parameters such as

propagation delays. The concept of direct localization was first introduced by Wax

and Kailath [44, 45] in the 70’s, however it is in the last decade that Weiss et al. have

further investigated and proposed actually efficient techniques [30, 46, 47, 48]. In the

absence of multipath, the state-of-the-art is Direct Position Determination (DPD) [46]

which outperforms standard indirect localization, particularly at low signal-to-noise

ratio (SNR), because it takes into account the fact that signals arriving at different

sensors are emitted from the same location. The literature on direct localization in

the presence of multipath is scarce. In [49] a maximum likelihood (ML) estimator has

been developed for the location of a single source assuming a fixed and known number

of multipath, but without providing an efficient way to compute the estimator. In

[48], a Direct Positioning Estimation (DPE) technique is proposed for operating in

dense multipath environments, but requires knowledge of the power delay profile and

is limited to localization of a single source.

A requirement of direct localization is that the signals, or a function of them,

are sent to a fusion center which estimates the source’s locations. Thus, direct

techniques are best suited for centralized networks. An example of this are Cloud

Radio Access Networks (C-RAN) [50, 51]. C-RAN is a novel architecture for wireless

cellular systems whereby the base stations relay the received signals to a central

unit center which does all the baseband processing. Cellular systems are required

to be location-aware, that is they must be able to estimate the locations of the

user equipments (UE) for applications such as security, disaster response, emergency

relief and surveillance in GPS-denied environment [33]. In uplink localization, the
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base stations perform time measurements of the received signals emitted by the

UE’s in order to infer their positions. In addition, in the USA, it is required by

the Federal Communications Commission (FCC) that by 2021 the wireless service

providers must locate 80% of the UE’s initiating an Emergency 911 (E-911) call with

an accuracy of 50 meters [52]. Consequently, a high accuracy direct localization

technique designed for multipath channels, such as the one proposed in Chapter 3

work, may enhance the localization accuracy of current existing cellular networks by

utilizing the C-RAN infrastructure. Moreover, it exists other applications that may

benefit from high accuracy TOA-based geolocationm such as in WLAN and WPAN

networks. For instance, the setup of [53] uses radios with the IEEE 802.15 (WPAN)

standard to localize devices. The setups by [54, 55] employ TOA-based localization

for localizing 802.11 devices (WLAN). In [56] it is proposed a hybrid RSS(received

signal strength)-TOA based localization algorithm that works with 802.11 and 802.15

technologies. Other TOA-based localization applications are in the radio frequency

identification (RFID) field [57].

Chapter 3 presents a TOA-based direct localization technique for multiple

sources in multipath environments (DLM) assuming known waveforms and no prior

knowledge of the statistics of the NLOS paths. Without some prior knowledge on

the multipath, NLOS components carry no information, and the best performance is

obtained by using only LOS components [33]. Based on ideas of compressive sensing

and atomic norm minimization [58], an innovative approach is proposed for jointly

estimating the sources’ locations using as inputs the signals received at all sensors.

1.3 Contributions

In summary, the contributions of this dissertation are:
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1. Using the CRLB for localization accuracy in MIMO radar as figure of merit,
a new unified framework is proposed for formulating three resource allocation
problems:

(a) Optimal power allocation.

(b) Optimal bandwidth allocation.

(c) Joint power and bandwidth allocation.

2. Efficient algorithms are developed for power and/or bandwidth allocation in
MIMO radar for static targets. The inputs are the initial estimates of the
targets locations. The algorithms rely on solving a series of convex optimization
problems where the preceding solution is passed as initialization point to the
next problem. The algorithms stop when practical convergence is achieved, i.e.,
two consecutive solutions result in the same localization accuracy.

3. Lower-bounds are obtained on the optimum value of the cost function of the
optimization problems. The lower-bounds provide a certificate that can confirm
that the allocations resulting from our algorithms are close to the optimal one.

4. A method is proposed for mitigating the non-line-of-sight interference on the
received signals at each sensor. The propagation delays of different paths
are estimated, and the multipath contributions are removed from the received
signals.

5. Developing a framework for passive localization in multipath channels that
incorporates contributions to the signals of both LOS and NLOS paths. In
this framework, the observations at the sensors are described as a noisy linear
combination of atoms. Such atoms are the building blocks of the received signals
and act as proxies for the locations of the sources. By finding the sparsest linear
combination of atoms describing the observations, the locations of the sources
are estimated.

6. Developing an algorithm for direct localization of sources in multipath (DLM).
In order to find the sparsest linear combination of atoms describing the
observations, it is proposed to minimize the atomic norm of the received signals,
which is cast as a convex optimization problem. DLM exploits the sparsity of the
sources as well as differences in the properties of line of sight versus multipath
components of signals received at the sensors. The proposed technique requires
no a priori channel state information. The inputs are solely the noise variance
and the signal waveforms, whereas the outputs are the sources’ location and the
number of LOS paths. By design, DLM is robust to multipath and to sensors
with block LOS.

7. Establishing theoretical guarantees for correct recovery of the sources’ locations.
It is shown how the correct recovery depends on a parameter that determines
the relative contributions of the LOS and NLOS atoms to the cost function of
the DLM’s optimization problem.
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8. Proposing a grid refinement procedure to reduce the high computational
complexity of the DLM’s optimization problem.



CHAPTER 2

RESOURCES ALLOCATION FOR ACTIVE LOCALIZATION

Multi-input multi-output (MIMO) radar [10] utilizes multiple transmit and receive

antennas. The antennas at each end of the radar system are sufficiently separated

such that the target provides uncorrelated reflection coefficients between each

transmit/receive pair of antennas. Because the transmit antennas emit orthogonal

waveforms for all delays, the receivers can distinguish the received signals from

different transmitters. In general, the available power and bandwidth are limited. In

this chapter is addressed the problem of finding the optimal power and/or bandwidth

allocation among multiple transmitters for best localization of multiple targets. To

assess the the optimality of any localization, the well known Crámer-Raw lower bound

(CRLB) [36] for target localization is used as a figure of merit.

2.1 Signal Model

Consider a MIMO-radar network consisting of M transmitters, located at

{(xtxm, ytxm)}Mm=1, N receivers, located at {(xrxn , yrxn )}Nn=1, and Q stationary targets,

located at {(xtarq , ytarq )}Qq=1. Denote dtxm,q and drxq,n the Euclidean distances from

transmitter m to target q and from target q to receiver n, respectively. Let {sm(t)}Mm=1

be the transmitted pulses, where each pulse sm(t) has bandwidth wm, energy Em and

time duration Tm. Assuming a fixed pulse repetition fr frequency, the pulse energy

Em is connected to the average power pm through the formula pm = Emfr. For later

use, the vector of powers p = [p1, . . . , pM ]> and the vector of effective bandwidths

w = [w1, . . . , wM ]> are defined. The transmitted signals are assumed narrowband in

the sense that a target’s frequency response (for a given transmitter-receiver pair) is

represented by a complex-valued scalar. For sufficiently spaced sensors, the target

returns vary among pairs of transmitters and receivers, thus each target is modeled

11
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as a collection of MN reflection coefficients. In this work, target returns are assumed

deterministic and unknown. The low-pass signal observed at the n-th receiver is

written as

rn(t) =

Q∑
q=1

M∑
m=1

√
αmqnEmhmqnsm(t− τmqn) + en(t) (2.1)

where fc is the carrier frequency, c the speed of light,

αmqn =
1

4π
(
dtxm,q

)2 1

4π
(
drxq,n
)2 1

4πf 2
c

(2.2)

models the pathloss in free space along the path transmitter m – target q – receiver

n. For simplicity, the pathloss αmqn assumes free space propagation, however any

other power-law model may be used for the pathloss without impacting any of the

theoretical results. The time delay along the path is τmqn, and hmqn represents the

targets complex gains. The noise en(t) is assumed circularly-symmetric complex

Gaussian and white (AWGN) with constant power spectral density N0.

The unknown parameters in (2.1) are the target locations {(xtarq , ytarq )}Qq=1 and

the MQN complex gains hmqn. The goal of the radar system is to estimate the target

location, with the complex gains hmqn serving as nuisance parameters. Our objective

is to allocate resources (power and/or bandwidth) to system elements, to optimize

the target localization performance, using the CRLB as the optimization metric.

In the case of a single target, the CRLB is a 2×2 matrix, obtained by inverting

the Fisher information matrix (FIM), whose diagonal elements are the lower-bounds

on the variances of respectively the target location estimate along the x-axis (var(x̂tar))

and y-axis (var(ŷtar)). The trace of this matrix represents a lower-bound on the

mean square error (MSE) of the target location estimate, i.e. var(x̂tarq ) + var(ŷtarq ) ≥

tr{Cq} , Tq, where Cq is the CRLB matrix of a target located at {(xtarq , ytarq )}. An

expression for the trace of the CRLB for localizing a single target using a single
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observation is derived in [36]:

var(x̂tarq ) + var(ŷtarq ) ≥ Tq ,
(aq + bq)

> (diag w)2 p

p> (diag w)2 Hq (diag w)2 p
. (2.3)

The symbol (·)> denotes the transpose operator and diag forms a diagonal matrix

with the input vector w. Hq = (0.5aqb
>
q + 0.5bqa

>
q − cqc

>
q ), and aq, bq and cq are

length M vectors defined as follows:

aq = η



N∑
n=1

α1qn|h1qn|2
(
xtx1 − xtarq
dtx1,q

+
xrxn − xtarq
drxq,n

)2

...

N∑
n=1

αMqn|hMqn|2
(
xtxM − ytarq

dtxM,q

+
yrxn − ytarq

drxq,n

)2


(2.4)

bq = η



N∑
n=1

α1qn|h1qn|2
(
ytx1 − xtarq
dtx1,q

+
xrxn − xtarq
drxq,n

)2

...

N∑
n=1

αMqn|hMqn|2
(
xtxM − xtarq
dtxM,q

+
xrxn − xtarq
drxq,n

)2


(2.5)

cq = η



N∑
n=1

α1qn|h1qn|2
(
xtx1 − xtarq
dtx1,q

+
xrxn − xtarq
drxq,n

)(
ytx1 − xtarq
dtx1,q

+
xrxn − xtarq
drxq,n

)
...

N∑
n=1

αMqn|hMqn|2
(
xtxM − ytarq

dtxM,q

+
yrxn − ytarq

drxq,n

)(
xtxM − xtarq
dtxM,q

+
xrxn − xtarq
drxq,n

)


.

(2.6)

The constant η is given by η = 8π2

c2frN0
. The vectors (2.5) relate the CRLB parameter

Tq to the sensors locations, target location, target gain, and pathloss. Note that the

matrix Hq is symmetric.

Computation of the CRLB for localizing Q targets requires inverting a 2Q×2Q

FIM which is a complicated mathematical operation. To simplify the matrix inversion,

we make the following assumption which makes the FIM approximately block diagonal
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(see [59]):

1

‖sm(t)‖2
∫ ∞
−∞

sm(t− τmqn)s∗m(t− τmq′n) dt ≈ 0 (2.7)

for any pair of targets q 6= q′, and for any transmitter m and receiver n. Let C denote

the CRLB matrix for multiple targets, then assuming (2.7), the FIM becomes a block

diagonal matrix, that can be easily inversed, and leads to a CRLB matrix for multiple

targets C whose main diagonal is

dg
(
C
)
≈ [dg (C1) , . . . , dg (CQ)] , dg (C) . (2.8)

where operator dg takes the main diagonal of the matrix between the brackets. The

lower bounds on the variances of the targets locations estimates are obtained by

taking the sum of the diagonal elements corresponding to the respective target:

var(x̂tarq ) + var(ŷtarq ) ≥ dg
(
C
)
2(q−1)+1

+ dg
(
C
)
2q

, T q (2.9)

where the subindex selects the components in dg
(
C
)
. Hence, if (2.7) is satisfied,

combining (2.8) and (2.9) results in T q ≈ Tq. In section 2.5, the validity of this

approximation will be assessed by evaluating T q and Tq for multiple scenarios and

allocations.

2.2 Resource Allocation

2.2.1 Problem Formulation

In this section we formulate several optimization problems that minimize the lower-

bounds on the MSE (which are tight under a high-SNR regime) of the targets locations

(2.3) given constraints on power and bandwidth. These lower-bounds form a length Q

vector function [C1(p,w), . . . ,CQ(p,w)], where the dependency on the transmitters

powers and bandwidths is made explicit. A standard technique for minimizing a

vector function is known as scalarization [60], and it consists in minimizing a scalar
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function whose input is the vector function. In this regard a common requirement

is ensuring that the localization error of any target is not too large. This can be

cast as minimizing the worst CRLB on the variance of all target locations estimates,

a criterion known in the literature as minimax. The worst MSE among all targets

is written as the scalar function maxq T q. According to this, a possible objective

function f to minimize is

f(p,w) = max
q∈{1,...,Q}

T q(p,w). (2.10)

We refer from now on to this cost function as the “maximum CRLB”. However,

because T q lacks an easy-manipulable algebraic expression, we rely to its approxi-

mation

f(p,w) = max
q∈{1,...,Q}

Tq(p,w) (2.11)

which will be referred to as the “approximate maximum CRLB”. Three allocation

problems can now be formally stated using this objective function:

Problem 1 (Power allocation): Given a total power P and a fixed bandwidth w

per transmitter, the optimal power allocation is the solution popt to

popt =


min
p

f(p, w1)

s.t. 1>p ≤ P

p < 0

(2.12)

where minp means “minimize with respect to p”, s.t. is the abbreviation for “subject

to”, 1 and 0 are the all-ones and all-zeros vectors respectively and < is component-

wise “greater or equal than”.



16

Problem 2 (Bandwidth allocation): Given a uniform power allocation p and a

total bandwidth B, the bandwidth allocation is the solution wopt to

wopt =


min
w

f(p1,w)

s.t. 1>w ≤ B

w < 0 .

(2.13)

Problem 3 (Joint power and bandwidth allocation): Given a total power P

and bandwidth B, the power and bandwidth allocations are the solution (pjopt,w
j
opt) to

(
pjopt,w

j
opt

)
=



min
p,w

f(p,w)

s.t. 1>p ≤ P

1>w ≤ B

p,w < 0 .

(2.14)

In all of the above problems, the function that is minimized is (2.11), which

depends on the targets locations through Tq (2.3). The target locations are not

known, otherwise power and/or bandwidth would not be allocated to improve the

localization accuracy. Thus from now on it is assumed that the target locations in Tq

are coarse estimates obtained in previous cycles and denoted [x̃tar1 , ỹtar1 , . . . , x̃tarQ , ỹtarQ ].

2.2.2 Unified Framework

Next, the three previous allocation problems are rewritten in a unified form. Such

reformulation enables us to find an approximate solution to all three problems using

the same mathematical tools. In order to write the allocation problems in this unified

form, some algebraic manipulations are performed. First, the following lemma is

enunciated.
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Lemma 1 (Scaling): For any constants α, β > 0, the lower-bound on the MSE of a

target location meets the following scaling property

Tq(αp, βw) =
1

αβ2
Tq(p,w). (2.15)

Proof. It suffices to expand Tq(αp, βw) using (2.3).

Applying Lemma 1 to Problems 1 and 2, simplifies the respective objective

functions by moving from scaling the argument to scaling the full function. The

following proposition will be applied to simplify Problem 3:

Proposition 1 : The power pjopt and bandwidth wj
opt solutions to Problem 3 are

related through

wj
opt =

B

P
pjopt. (2.16)

Proof. See Appendix A.

By knowing beforehand how the power (pjopt) and bandwidth (wj
opt) solutions

relate to each other for Problem 3, the feasible set of Problem 3 can be restricted to

points satisfying w = B
P

p. Performing such substitution for vector w in Problem 3,

transforms it into an optimization problem with only one vector variable p instead

of two,

pjopt =


min
p

f(p,p)

s.t. 1>p ≤ P

p < 0

(2.17)

where wj
opt is recovered by applying Proposition 1.

At this point, it has been shown that the specific values of bandwidth per user

(w) and power per user (p) in Problems 1 and 2, do not change the solutions, and

consequently Problems 1 and 2 can be solved with w = p = 1. Additionally thanks
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to Proposition 1, Problem 3 has been rewritten in a more compact form (2.17).

Notice that except for the problem specific constants P and B, Problems 1, 2 and 3

(expressed as (2.17)) have similar objective functions and constraints. In fact, upon

introducing the function

gq(y, k) =
(aq + bq)

> (diag y)k y

y> (diag y)k Hq (diag y)k y
(2.18)

that closely resembles that of Tq in (2.3), the three problems can be dealt with in a

unified manner through

min
y

max
q∈{1,...,Q}

gq(y, k)

s.t. 1>y ≤ D

y < 0 .

(2.19)

Denoting the optimal solution yopt, it is easily verified that if

y = p D = P k = 0 (2.20a)

then popt = yopt, if

y = w D = B k = 1 (2.20b)

then wopt = yopt, and lastly if

y = p D = P k = 2 (2.20c)

then (pjopt,w
j
opt) = (yopt,

B
P

yopt).

An optimization problem where the max operator appears in the constraints,

instead of being in the objective function like in problem (2.19), is in general easier

to solve. If a problem had constraint maxq∈{1,...,Q} gq(y, k) ≤ E where E is just a

constant, then the max operator may be avoided by expressing the constraint

gq(y, k) ≤ E for all q = 1, . . . , Q. (2.21)
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It turns out that the solution to the optimization problem,

min
y

1>y

s.t. max
q∈{1,...,Q}

gq(y, k) ≤ E

y < 0

(2.22)

which has no max operator in the objective function, can be closely related to that

of problem (2.19) as established by the following proposition:

Proposition 2 : For any value of constant E, the solution to problem (2.19) is the

same than for problem (2.22) up to a scaling factor.

Proof. See Appendix B.

We impose E = 1 because it leads to the same solution than any other E up to

a scaling factor. Therefore, the solution to (2.19) can be recovered through problem

(2.22) with E = 1, and later according to Lemma 2, the solution can be normalized

by the correct factor. Writing the constraints of problem (2.22) in the form of (2.21),

and expressing gq(y, k) using (2.18), problem (2.22) is rewritten as

Problem 4 (Canonical problem):

min
y

1>y (2.23)

s.t. (aq + bq)
> (diag y)k y ≤ y> (diag y)k Hq (diag y)k y (2.24)

for all q = 1, . . . , Q

y < 0 (2.25)

The goal of this section was to attain Problem 4, however, the scaling constant

relating its solution to the solution of problem (2.19) is still unknown. To this end

the following lemma is enunciated

Lemma 2 : Constraint 1>y ≤ D in problem (2.19) is active at the solution yopt.
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Proof. The proof is done by contradiction. Assume there exists a minimum point y′

such that 1>y′ < D, i.e., constraint is not active. Define y∗ = D
1>y′

y′. From the

definition of gq(y, k) in (2.18)

max
q∈{1,...,Q}

gq(y
∗, k) =

[(
1>y′

D

)k+1

max
q∈{1,...,Q}

gq(y
′, k)

]
< max

q∈{1,...,Q}
gq(y

′, k). (2.26)

This contradicts the assumption that the CRLB achieves its minimum at y′. It follows

that the power constraint evaluated at the optimal point must be active.

By Lemma 2, the solution yopt to (2.19) satisfies 1>yopt = D; and by

Proposition 2, the solution y′ to Problem 4 satisfies y′ ∝ yopt. Thus it is trivial

that

yopt =
D

1>y′
y′. (2.27)

Using this result, the solution to Problem 4 can now be related to the solution

of problem (2.19), which is related in turn, to the original Problems 1-3 via (2.20).

Putting it all together, the direct link between Problem 4, which we plan to solve,

and the original Problems 1-3 is obtained. Given the solution to Problem 4, y′, the

solutions to Problems 1, 2 or 3, depending on the value of k, can be obtained as

follows:

Problem 1 Problem 2

popt =
P

1>y′
y′
∣∣∣∣
k=0

wopt =
B

1>y′
y′
∣∣∣∣
k=1

Problem 3

pjopt =
P

1>y′
y′
∣∣∣∣
k=2

wj
opt =

B

1>y′
y′
∣∣∣∣
k=2

(2.28)

2.3 Proposed Approximate Solution

Currently, the goal is to find an approximate solution to Problem 4 for any k ∈

{0, 1, 2}. It is not difficult to see that for Problem 4, the objective function is linear,
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constraints (2.24) are polynomials of 2nd (case k = 0), 4th (k = 1) or 6th (k = 2)

order, and the last constraint is linear. The problem would fit in the framework

of convex optimization, for which very efficient techniques exist [60], if (2.24) were

convex. However, this is true only for some very particular cases of Hq. Therefore,

we have to rely on techniques designed for nonconvex optimization. In most cases

such techniques do not lead to the global minimum. Moreover, the computational

cost of such techniques grows exponentially with the dimension of the problem.

An alternative approach is to approximate the original problem with a sequence

of convex problems, firstly proposed in [61], and later referred to as Sequential

Parametric Convex Approximation (SPCA) [62]. To explain SPCA, observe that

any constraint in Problem 4 may be written as h(y) ≤ 0, where h will be called the

constraint function. If h is a convex function, then h(y) ≤ 0 is a convex constraint.

The main idea of SPCA is that at each iteration, each of the nonconvex constraints

functions in Problem 4 is replaced by a convex approximation. To construct such

approximation, the nonconvex function is decomposed into a sum of a convex and

a concave function. The concave function is linearized around a point as proposed

in [63]. At each iteration, the algorithm solves the approximate convex problem. It

stops when there is no further improvement in the objective function. The solution at

each iteration is passed to the next iteration as the linearization point. Convergence

of this algorithm is ensured at least to a local minimum [61].

As mentioned previously, the first step is to decompose the nonconvex constraints

functions in Problem 4 into a sum of a convex and a concave function. Accomplishing

this for (2.24) is not straightforward. First, let z = [z1, . . . , zM ]> be a vector of slack
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variables linked to the components of y by zm = yk+1
m . Problem 4 is recast as

min
y,z

1>y (2.29a)

s.t. (aq + bq)
> z− z>Hqz ≤ 0 for q = 1, . . . , Q (2.29b)

zm − yk+1
m = 0 for m = 1, . . . ,M (2.29c)

y, z < 0 . (2.29d)

The advantage of this new problem over Problem 4 is that (2.29b) is now in a

quadratic form, and a simple way to decompose a quadratic function into a convex

plus concave function is to separate matrix Hq into a sum of a nonnegative-definite

(H+
q ) and a nonpositive-definite (H−q ) matrix. Notice that if the newly introduced

constraint (2.29c) is relaxed by putting zm − yk+1
m ≤ 0 instead, then it is also a sum

of a convex (zm) and a concave (−yk+1
m ) function:

min
y,z

1>y (2.30a)

s.t. (aq + bq)
> z− z>H−q z− z>H+

q z ≤ 0 (2.30b)

for q = 1, . . . , Q

zm − yk+1
m ≤ 0 for m = 1, . . . ,M (2.30c)

y, z < 0. (2.30d)

Lemma 3 : The optimal solution to problem (2.30) always satisfies (2.30c) with

equality, and therefore, it is also the optimal solution to problem (2.29).

Proof. Assume that is a solution (yopt, zopt) such that for some component m satisfies

zoptm < (yoptm )k+1. Then another point (y′, zopt) can be defined such that the mth

component of y′ is y′m = (zoptm )
1

k+1 < yoptm and the remaining components are y′m = yoptm .

This point satisfies zm − yk+1
m ≤ 0 with equality and gives a smaller value for the

objective function, contradicting the fact that (yopt, zopt) is a solution.
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Given that problem (2.30)’s constraints are separated into convex and concave

functions, problem (2.30) may be convexified by linearizing the concave parts,

−z>H+
q z in (2.30b) and −yk+1

m in (2.30c) around a point (y(n), z(n)). Linearization

may be implemented by a first order Taylor expansion, where n indexes the iteration.

Then the optimization problem becomes

min
y,z

1>y (2.31a)

s.t. (aq + bq)
> z− z>H−q z− z>(n)H

+
q (2z− z(n)) ≤ 0 (2.31b)

for q = 1, . . . , Q

zm + kyk+1
(n),m − (k + 1)yk(n),mxm ≤ 0 (2.31c)

for m = 1, . . . ,M

y, z < 0 . (2.31d)

The feasible set of problem (2.31) is convex, and in addition, it is a subset of the

feasible set of problem (2.30). To confirm this point, notice the constraint function

in (2.31c) is equal or larger than the constraint function in (2.30c) for all (y, z), and

therefore, the set of points satisfying constraint (2.31c) is a subset of the one defined

by (2.30c). The set of points defined by (2.31c) is also a subset of (2.30b). Therefore,

any solution resulting from solving the approximate problem (2.31b) is in the feasible

set of problem (2.30b), and consequently of Problem 4.

Algorithm : First, parameter k in (2.31) is set to 0, 1 or 2, depending on if power

(Problem 1), bandwidth (Problem 2) or joint power-bandwidth (Problem 3) are being

allocated, respectively. The algorithm consists in solving a series of convex problems

(2.31). The solution (y(n), z(n)) to (2.31) at each iteration n is passed to the next

iteration n + 1 and used as a linearization point for (2.31). In the initial step, the

uniform allocation y(0), z(0) ∝ 1 is used as the linearization point because it treats all

transmitters equally. The algorithm stops when the value in the cost function (2.31a)
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does not change substantially. After denoting y′ the solution to (2.31) in the last

iteration, the allocation vector is recovered via (2.28).

At each iteration, the above algorithm first proposed in [62], uses the previous

solution as the next linearization point of the new convexified optimization problem.

Since the linearization point lies within the feasible set of the new problem, the

global minimum of the new problem is equal or smaller than the previous one. If the

previous solution is not improved, then the algorithm stops, otherwise the algorithm

keeps iterating. Therefore, the final solution is ensured to be equal or better than the

uniform allocation, which is used as initialization point. Moreover, since the objective

function (2.31a) is bounded below by zero and it decreases at each iteration, by the

monotone convergence theorem [64], the algorithm is ensured to converge irrespective

of the parameters.

2.4 Lower Bound on the Accuracy of the Optimal Allocations

The previous section provided an algorithm that finds approximate solutions to

Problems 1 to 3. In this section, we provide a method for assessing their quality. Let

popt, wopt and (pjopt,w
j
opt), be the actual solutions to Problems 1, 2 and 3, respectively,

and let p̃opt, w̃opt and (p̃jopt, w̃
j
opt) be the approximate solutions to Problems 1, 2 and

3 obtained by the algorithm in the previous section. Obviously, the objective function

of Problems 1, 2 and 3 evaluated at the approximate solutions, are equal or larger

than if it they were evaluated at the optimal points:

max
q
Tq(p̃opt, w1) ≥ max

q
Tq(popt, w1) ≥ Lp (2.32)

max
q
Tq(p1, w̃opt) ≥ max

q
Tq(p1,wopt) ≥ Lb (2.33)

max
q
Tq(p̃

j
opt, w̃

j
opt) ≥ max

q
Tq(p

j
opt,w

j
opt) ≥ Lj (2.34)

where Lp, Lb and Lj are some lower-bounds on the unknown global minimums.

This section is devoted to developing these lower-bounds, and their usefulness is
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explained in the following example. Assume that for Problem 1 (power allocation) the

lower-bound is tight to our approximate minimum maxq Tq(p̃opt, w1) ≈ Lp. Then by

(2.32) it follows that the approximate minimum is very close to the global minimum

maxq Tq(p̃opt, w1) ≈ maxq Tq(popt, w1) ≈ Lp. However, nothing can be asserted if

maxq Tq(p̃opt, w1)� Lp.

The process of finding lower-bounds for the global minimums of Problems 1, 2

and 3 is simplified by the following proposition:

Proposition 3 : Let Lc denote a lower-bound to the global minimum of Problem 4.

Then lower-bounds, Lp, Lb and Lj, to the global minimums of Problems 1, 2 and 3

can be obtained through the following equations

Lp =
Lc
Pw2

∣∣∣∣
k=0

, Lb =
L2
c

pB2

∣∣∣∣
k=1

and Lj =
L3
c

PB2

∣∣∣∣
k=2

. (2.35)

Therefore, it suffices to find a lower-bound (Lc) for Problem 4. The following

lemma is needed for the proof of Proposition 3.

Lemma 4 : Constraint (2.24) in Problem 4 must be active when evaluated at the

solution.

Proof of Lemma 4. Assume there exists a minimum point y′ such that maxq gq(y
′, k) <

1. Define y∗ = [maxq gq(y
′, k)]

1
k+1 y′. From (2.18) it follows that maxq gq(y

∗, k) = 1,

thus it satisfies the constraints of the optimization problem (2.22). Next

1>y∗ =

[
max

q∈{1,...,Q}
gq(y

′, k)

] 1
k+1

1>y′ < 1>y′ (2.36)

This contradicts the assumption that the problem achieves its minimum at y′. It

follows that (2.22) evaluated at the optimal point must be active.

Proof of Proposition 3. The proof is done, only, for Problem 1’s lower-bound Lp. For

Problems 2 and 3, the proof follows the same steps with very minor differences and are
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omitted here for brevity. Recall that, according to (2.28), the solution of Problem 1

is directly related to the solution of Problem 4 by popt = P
1>y′

y′|k=0. Substituting popt

in the global minimum (2.32) of Problem 1 results in

max
q
Tq(popt, w1) =

1>y′

Pw2
max
q
Tq(y

′,1)

∣∣∣∣
k=0

(2.37)

where we made use of Lemma 1 to simplify it. By Lemma 4, it can be further

reduced to maxq Tq(popt, w1) = 1>y′

Pw2 |k=0. By definition Lc is a lower-bound of the

global minimum of Problem 4, so it must satisfy Lc ≤ 1>y′, which leads to

max
q
Tq(popt, w1) ≥ Lc

Pw2

∣∣∣∣
k=0

(2.38)

The right side is obviously a lower-bound to global minimum of Problem 1 and proves

the first equality in Proposition 3.

To get a lower-bound Lc, several relaxations are applied to the feasible set of

Problem 4 in order to obtain another optimization problem whose solution can be

computed, and whose global minimum is equal or smaller than that of Problem 4.

This global minimum then constitutes a lower bound to the minimum of Problem 4,

which will be denoted by Lc. To that end, the first step consists in making a variable

vector substitution zm = yk+1
m for all m = 1, . . . ,M in Problem 4. Such operation

does not change the global minimum of the problem.

min
z

M∑
m=1

k+1
√
zm (2.39)

s.t. (aq + bq)
> z ≤ z>Hqz for q = 1, . . . , Q (2.40)

z ≥ 0 (2.41)

Where z = [z1, . . . , zM ]>. It is easy to verify that an equal or smaller objective

function to that of (2.39) for all values of zm is

k+1
√

1>z (2.42)
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Let z′ denote the solution to problem (2.40) with the new objective function (2.42)

instead of (2.39). The minimum will be equal or smaller than that of Problem 4, i.e.

k+1
√

1>z′ ≤ 1>y′. As the root is a monotonically increasing function, suppressing it

from the objective function (2.42) still leads to the same solution z′, and therefore,

Problems (2.39)-(2.40) can be simplified to

min
z

1>z (2.43)

s.t. (aq + bq)
> z ≤ z>Hqz for q = 1, . . . , Q (2.44)

z ≥ 0 (2.45)

The feasible set of problem (2.44) is now relaxed by removing Q− 1 constraints from

(2.44):

min
z

1>z

s.t. (aq + bq)
> z ≤ z>Hqz

z ≥ 0

(2.46)

Here q takes only one value between 1 and Q. Call z′q the solution to problem

(2.46). Because problem (2.46) is a relaxation of problem (2.44), its minimum satisfies

1>z′q ≤ 1>z′. It turns out that this problem has the same algebraic form as the power

allocation problem in [65] (Section III.A.2), where an exact solution is provided by

solving the Karush-Kuhn-Tucker conditions [66]. By solving (2.46) for all possible

values of q ∈ {1, . . . , Q}, a tighter inequality maxq(1
>z′q) ≤ 1>z′ is obtained. Putting

this together with the fact that
k+1
√

1>z′ ≤ 1>y′, we obtain the desired computable

lower-bound for Problem 4’s global minimum:

Lc = k+1

√
max

q∈{1,...,Q}
1>z′q ≤ 1>y′ (2.47)
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Combining (2.47) with (2.35), the final expressions for the lower-bounds of

Problems 1, 2 and 3 are

Lp =
maxq 1>z′q
Pw2

, Lb =
maxq 1>z′q

pB2
, Lj =

maxq 1>z′q
PB2

(2.48)

Quite relevant is that if these lower-bounds are tight to the minimums of Problems 1,

2 and 3, it suggests that bandwidth has a bigger impact than power because the

bandwidth variables w and B appear as quadratic terms in comparison to p and P .

2.5 Numerical Results

The numerical examples presented in this section were obtained with five transmitters,

five receivers and four targets. The choice of the number of elements enables sufficient

choice for resource allocation, while not making the system overly complex. The total

bandwidth available to the network is set to 3 MHz. The average power available for

the network is an adjustable parameter. The pulse repetition frequency is set to

5 kHz, which is sufficient for unambiguous range estimation in our setup. The targets

are static. The pulse integration time is 10 ms.

The proposed allocation algorithms assign power and/or bandwidth depending

on the specific locations of the elements and the reflection coefficients of the targets.

To avoid obtaining results that are specific to a particular layout, each point in the

figures that are to follow is formed as averaging results of 1000 simulations. For

each simulation, the transmitters, receivers and targets are positioned randomly in a

20 km× 20 km area, according to a uniform distribution. The reflection coefficients

of the targets are set to a fixed value of 10 m2. Performance was evaluated from the

average of 1000 values of the cost function (2.10). Each value represents an optimal

allocation of power, bandwidth, or joint power-bandwidth for an instantiation of

targets locations, reflection coefficients and noise.
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Figure 2.1 Square root maximum CRLB vs. SNR after resource allocation.

2.5.1 Resource Allocation for Different SNR Values

Figure 2.1 presents the square root of the max CRLB as a function of the relative

SNR for four different case studies: power and bandwidth evenly distributed among

transmitters, power allocation, bandwidth allocation, and joint power-bandwidth

allocation. As expected, the joint allocation performs the best decreasing the cost

function by 70% compared to uniform allocation, which has the worst performance.

Bandwidth allocation is second best and power allocation is just slightly better than

uniform allocation, with decreases in the cost of 50% and 10%, respectively. Increasing

the SNR improves the localization accuracy for all methods.

To validate the results based on the CRLB, localization errors are computed

also for a multilateration algorithm implemented to estimate the target locations.

Multilateration is comprised of three steps. In the first step, the time of arrivals

(TOA’s) of the transmitted pulses are estimated at all the receivers by the WRELAX

algorithm [67]. The TOA information is then transmitted to a fusion center, where an
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Figure 2.2 Square root maximum localization error vs. SNR after resource
allocation.

algorithm associates TOA’s to targets. Finally, using the TOA’s, the target locations

are estimated using the BLUE method in [39]. For the simulation, we choose the

square root of the Hamming window [68] as pulse shape in the frequency domain,

which can be shown to have a good mainlobe to secondary lobe ratio necessary for

TOA estimation. For a given simulation, all elements are positioned randomly in the

area. After positioning the elements, resources are allocated among the transmitters

and, then the signals at the receivers are simulated and we perform localization

by multilateration. To compare it with the cost function (2.10), the maximum

localization error among all targets is averaged for all 1000 instantiations.

Figure 2.2 plots the square root of the maximum localization error versus SNR.

Here an increase of 1 dB is simply used to denote an increase of 1 dB in total power.

Obviously, the localization error decreases with the increase in SNR. A threshold

effect is observed approximately at around 4 dB of relative SNR with slight variations

for the different allocation algorithms. On the right of this threshold the maximum
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Figure 2.3 Relative frequencies of the number of active transmitters.

localization error tightens over the maximum CRLB in Figure 2.1, even though it still

maintains a gap for all SNR values. The reason for this gap is, to the best knowledge

of the authors, because there do not exist multilateration techniques that converge

to the CRLB in the presence of multiple targets.

2.5.2 Number of Active Transmitters

The resource allocation algorithms distribute among the transmitters power, bandwidth,

or both. Figure 2.3 plots the relative frequency of the number of active transmitters

(transmitters whose assigned power and bandwidth is different than zero) for the three

types of resource allocation. The SNR is not specified because, for all allocations the

SNR simply scales the amount of resources to be assigned, but does not change which

transmitters are selected.
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2.5.3 Numerical Evaluation of the Approximations

The purpose of this section is to validate two approximations used in this chapter.

The first one is due to the fact that the resource allocation algorithms employ an

approximate closed-form formula for the CRLB of multiple targets (2.8) as explained

in section 2.1. The second approximation was to consider that the solutions of our

algorithms are almost as good as the optimal (but unknown) solutions. For this

purpose were developed the lower-bounds in Section 2.4.

Simulations for all three types of resource allocations are performed, and plot

in Figure 2.4, the maximum CRLB (2.10), the approximate maximum CRLB (2.11),

and the lower-bound on the optimal CRLB for a prescribed total power. The figure

shows how the approximate maximum CRLB and the true maximum CRLB do not

vary more than 10%. It also shows how the lower-bound is tight to the approximate

maximum CRLB for the case of power allocation, thus in this case the algorithm is

performing optimally. For the bandwidth and joint allocation cases, the lower-bound

is not as tight, being the separation greater for the joint case, meaning another joint

power-bandwidth allocation algorithm could perhaps perform slightly better.
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CHAPTER 3

DIRECT LOCALIZATION FOR PASSIVE LOCALIZATION

Traditional time-of-arrival (TOA)-based localization is accomplished through a two-

step process. In the first step, sensors estimate TOAs from all incoming signals; in

the second step, such estimates are transmitted to a central node, which subsequently

estimates the location of each source by multilateration. We refer to these localization

techniques as indirect localization. A better approach than indirect localization is to

infer the source locations directly from the signal measurements, without estimating

any intermediary parameters such as propagation delays. In the absence of multipath,

a method known as Direct Position Determination (DPD) [46] outperforms standard

indirect localization, particularly at low signal-to-noise ratio (SNR), because it takes

into account the fact that signals arriving at different sensors are emitted from the

same location. In a multipath environment, each sensor receives, in addition to a line-

of-sight (LOS) signal, multiple (possibly overlapping) replicas due to non-line-of-sight

(NLOS) paths. Due to these multiple arrivals, it is, in general, more challenging to

obtain accurate TOA estimates of the LOS components at the sensors. This chapter

presents a passive direct localization technique for frequency-selective channels based

on TOA information.

3.1 Signal model

Consider a network composed of L sensors and Q sources located in a plane. The

location of the q-th source is defined by two coordinates stacked in a vector pq. All

sources share the same bandwidth B, and transmit their own signals {sq(t)}Qq=1. The

number of sources Q and their waveforms are known. The observation time is T ,

assumed to be shorter than the time coherence of the channel, therefore, the channel

34
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is time-invariant. The complex-valued baseband signal at the l-th sensor is

rl(t) = rLOS
l (t) + rNLOS

l (t) + wl(t) 0 ≤ t ≤ T, (3.1)

where wl(t) is circular symmetric complex white Gaussian noise with known variance

E |wl(t)|2 = σ2
w. The term rLOS

l (t) is the sum of all LOS components:

rLOS
l (t) =

Q∑
q=1

aqlsq (t− τl(pq)) , (3.2)

where aql is an unknown complex scalar representing the signal strength and phase

of the LOS path between the q-th source and l-th sensor, and τl(p) is the delay of a

signal originating at p and reaching the l-th sensor:

τl(p) = ‖p− p′l‖2 /c. (3.3)

In (3.3), p′l is the location of the l-th sensor, c is the speed of light and ‖·‖2 denotes the

standard Euclidean norm. The term rNLOS
l (t) in (3.1) aggregates all NLOS arrivals:

rNLOS
l (t) =

Q∑
q=1

Mql∑
m=1

a
(m)
ql sq

(
t− τ (m)

ql

)
, (3.4)

where Mql denotes the unknown number of NLOS paths between the q-th source and

the l-th sensor, a
(m)
ql is an unknown complex scalar representing the amplitude of the

m-th NLOS path between the q-th source and l-th sensor, and τ
(m)
ql is the delay of the

NLOS component. The received signal (3.1) is sampled at a frequency fs satisfying

the Nyquist sampling criterion: fs ≥ 2B, where B is the bandwidth of r(t). Each

sensors collects N time samples at each observation time. By stacking the N acquired

samples, the received signal rl = [rl(0), . . . , rl((N − 1)/fs)]
T at the l-th sensor can be

written in the following vector form

rl =

Q∑
q=1

αqlsq (τl(pq)) +

Q∑
q=1

Mql∑
m=1

α
(m)
ql sq

(
τ
(m)
ql

)
+ wl, (3.5)
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where sq(τ) is the vector of the N received samples from the q-th source waveform

with delay τ :

sq(τ) =

[
sq (0− τ) · · · sq ((N − 1)/fs − τ)

]T
. (3.6)

Since all sensors acquire the same number of samples, the samples may be stacked in

an N × L matrix

R =

[
r1 · · · rL

]
=

=

Q∑
q=1

[
αq1sq (τ1(pq)) · · · αqLsq (τL(pq))

]
+

Q∑
q=1

L∑
l=1

Mql∑
m=1

α
(m)
ql sq

(
τ
(m)
ql

)
vTl + W,

(3.7)

where the rows and columns index time instants and sensors, respectively, and vl

is an all-zeros vector except for the l-th entry which is one. The LOS and NLOS

components are parametrized by the first and second summands in (3.7), respectively.

From now on, we will switch between the notations in (3.5) and (3.7) depending on

whether we are interested in the signal of one sensor only or of all sensors.

3.2 Proposed Localization Technique

In order to develop a localization technique, it is first necessary to understand what

parameters of the received signals depend on the sources locations. In the signal model

introduced in the previous section, the propagation delays of the NLOS components

(3.4) were assumed to be unknown and arbitrary, because of the lack of prior statistical

knowledge of the channel. Thus information on the sources locations is carried only

by the LOS components (3.2). This claim is supported by the analysis in [33], which

showed that the CRB increases when NLOS components are present. Consequently,

without a priori knowledge, the optimal strategy is to reject NLOS components as

much as possible, and rely on the LOS components to infer the sources’ locations.
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With indirect techniques, first, the TOA’s of the LOS components are estimated,

and then used to localize the sources by multilateration. However, indirect techniques

are suboptimal because they estimate the TOA of the first path at each sensor

independently, instead of taking into account that all LOS components originate from

a single source location. In this section, we propose a direct localization technique that

relies on the fact that all LOS components associated with a source must originate

from the same location. Under the Gaussian assumption, the maximum likelihood

estimator (MLE) is the solution to the following fitting problem

min
p1,...,pQ
a11,...,aLQ

M11,...,MLQ

τ
(1)
11 ,...,τ

(MLQ)

LQ

a111,...,a
MLQ
LQ

L∑
l=1

∥∥∥∥∥rl −
Q∑
q=1

aqlsq (τl(pq))−
Q∑
q=1

Mql∑
m=1

a
(m)
ql sq

(
τ
(m)
ql

)∥∥∥∥∥
2

2

(3.8)

subject to τ
(m)
ql > τl(pq), for all q, l and m. The parameters of interest are the source

locations {pq}Qq=1, while the rest act as nuisance parameters. Besides the fact that it

is an enormous challenge to find an efficient technique for minimizing this objective

function, the ML criterion does not even lead to a satisfactory solution. The reason

is that Mql, for all l and q, are hyperparameters that control the number of NLOS

paths in our model. It is known that increasing the values of hyperparameters always

leads to a better fitting error [69], and in our case, it would lead to the erroneous

conclusion that there is a very large number of NLOS arrivals. Instead, we assume

that the number of NLOS arrivals and the number of sources is low with respect to

the number of observations. This assumption enables the formulation of a feasible

solution to the ML multipath estimation problem by means of a sparse recovery

technique.

In order to obtain a high-precision localization technique, there are two

properties of the signal paths that need to be exploited. These properties allow

to distinguish LOS from NLOS components. The first one is that NLOS components
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arrive with a longer delay than LOS components, and the second property is that

all LOS paths originate from the same location. Our technique is divided in two

stages, which are explained in the following two sections. In the first stage, NLOS

components are canceled out from the received signals by exploiting the fact that LOS

components must arrive first. This processing can be done locally at each sensor. In

the second stage, the cleaned version of the received signals are sent to a fusion

center that finds the sources’ location. It is in this stage that the source locations are

estimated by exploiting the fact that LOS components must originate from the same

location, whereas NLOS components may be local to the sensors.

3.3 Stage 1: Deconvolution

In this stage, the multipath channel is deconvolved, or equivalently, the propagation

delays of different paths are estimated, and the multipath contributions are removed

from the received signals. Our technique of choice for deconvolution is the sparsity-

based delay estimation technique proposed by Fuchs [70] because of its high accuracy

and because it uses only a single snapshot of data as in our case. Other high accuracy

time delay estimation methods, like MUSIC [19], are not applicable here because

they require multiple uncorrelated data snapshots. Let τmax be the largest possible

propagation delay, then in the Fuchs’ technique, the continuous set of all possible

propagation delays [0, τmax] is discretized forming a grid of delays

D = {0, τres, . . . , τmax} , (3.9)

where parameter τres denotes the finesse of the grid. Define the dictionary matrix

stacking the received signal waveforms for all possible (discrete) delays (3.9):

A =

[
s (0) · · · s (τmax)

]
. (3.10)
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Then, the propagation delays of all paths from a single source reaching the l-th sensor

are estimated by solving the following Lasso problem of the form

min
x
λ ‖x‖1 + ‖rl −Ax‖22 , (3.11)

where λ is a regularization parameter, ‖ · ‖1 is the `1-norm of a vector, and rl is the

received signal defined in (3.5). Solving this convex optimization problems, results in a

sparse vector x̂ whose non-zero entries indicate the estimated delays. More precisely,

if the d-th entry of x̂ is different than zero, then a path has been detected with

propagation delay (d− 1)τres. After estimating the propagation delays, Fuchs uses a

maximum description length (MDL) criterion to filter out false detections. For more

details on this technique see [70], and for a better understanding on the mathematics

behind the Lasso problem see [71]. In [70], the time delay estimation technique was

designed for real-valued signals, and assuming only a single emitting source. Here, we

generalize such approach to complex valued signals by simply allowing the variables

and parameters in (3.11) to be complex. We also generalize it to multiple sources by

expanding the columns of the dictionary (3.10) to the waveforms of all sources:

A =

[
s1 (0) · · · s1 (τmax) · · · sQ (0) · · · sQ (τmax)

]
. (3.12)

It is possible to use other delay estimation techniques. Obviously, the more accurate

the delay estimation technique, the better performance would be expected from this

NLOS interference mitigation. Contrary to indirect localization techniques, the goal

here is not to precisely estimate the propagation delays of the first paths, but rather

to estimate the propagation delays of all subsequent arrivals, and cancel them out.

Let τ̃ 1ql, . . . , τ̃
Pql

ql be the estimated propagation delays from source q to sensor l,

then their amplitudes may be estimated by solving a linear least squares fit

{
ãpql
}

= arg min
{apql}

∥∥∥∥∥∥rl −
Q∑
q=1

Pql∑
p=1

apqlsq
(
τ̃ pql
)∥∥∥∥∥∥

2

2

. (3.13)
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Assuming the estimated propagation delays are ordered in ascending order τ̃ 1ql < . . . <

τ̃
|Oql|
ql , then all arrivals, except the first, can be canceled out from the received signals

r̃l = rl −
Q∑
q=1

Pql∑
p=2

ãpqlsq
(
τ̃ pql
)
. (3.14)

Ideally, all NLOS arrivals would be perfectly detected and their propagation delays

estimated, in which case we could continue with a direct localization technique

designed for absent multipath. However, (3.14) is not guaranteed to cancel all NLOS

components for two reasons. First, if the LOS path between a source and sensor is

blocked, then the first arrival corresponds to a NLOS paths, in which case it is not

removed. Also, it is possible that the chosen delay estimation technique misses some

arrivals or detects some false ones, thus failing to remove some NLOS components

or adding some extra components, respectively. In short, this stage is essential as it

reduces the multipath, but does not necessarily remove it completely. In the next

section, we present a localization technique designed to work in the presence of the

residual multipath as well as blocked paths.

3.4 Stage 2: Localization

This stage seeks to estimate the sources locations using the signals {r̃l}Ll=1 output by

Stage 1. As explained in the preceding section, such signals include LOS and also

NLOS components, therefore, the signal model introduced in (3.5) for rl is also valid

for r̃l. Obviously, since r̃l and rl are different, so are the values of the parameters

appearing in (3.5) that characterize them. From here on, to keep the notation in

check, we abuse the notation by writing rl instead of r̃l. However, always bear in

mind that the observations in this stage are the signals output by Stage 1.

To compute the MLE (3.8), it is required that the number of LOS and NLOS

paths be known, otherwise the minimization (3.8) tends towards a nonsensical solution

with an infinite number of paths. In this section, it is assumed that the number of
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sensors that receive a LOS path from the q-th source, say Sq, is known, even though

it will be shown later in Section 3.4.3 that such information is not really needed.

Nevertheless, even if {Sq}Qq=1 are known, but since the number of NLOS paths is not,

a pure MLE approach is still not feasible. To bypass this issue, we will rely on the

fact that the number of sources and NLOS paths is relatively small.

Define a LOS atom as the N × L matrix of measurements of LOS paths of a

signal sq(t) emitted from location p and received at the L sensors

Lq (b,p) =

[
b(1)sq (τ1(p)) · · · b(L)sq (τL(p))

]
(3.15)

where b = [b(1) · · · b(L)]T are the complex amplitudes of the LOS components. It is

important to normalize b as it will be discussed shortly. Hence, ‖b‖2 is constrained

to a given value that we will denote uq, i.e., ‖b‖2 = uq. Define a NLOS atom as the

N × L matrix of measurements due to a single NLOS path from the q-th source to

the l-th sensor

Nql (φ, τ) = eiφsq(τ)vTl (3.16)

where the phase and delay are φ and τ , respectively, and vl is a unit vector, with

the unit entry indexed by l. Let R̂ denote the matrix of received signals (3.7) in the

absence of noise. Then, R̂ may be expressed as a positive linear combination of given

atoms

R̂ =
∑
k

c(k)A(k), A(k) ∈ A (3.17)

where c(k) > 0 for all k, and A is the set of all atoms (or atomic set). The atomic set

includes all different LOS and NLOS atoms,

A = ALOS ∪ ANLOS (3.18)
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where ALOS

ALOS =

Q⋃
q=1

{
Lq (b,p) : b ∈ CL,p ∈ S ⊂ R2, ‖b‖2 = uq

}
(3.19)

and ANLOS

ANLOS =

Q⋃
q=1

L⋃
l=1

{
Nql (φ, τ) : 0 ≤ φ < 2π, τ ∈ [0, τmax]

}
. (3.20)

Here, S denotes the search area of the sources and τmax the maximum possible delay

in the system. Notice, that set of LOS atoms and the set of NLOS atoms are infinite

in the sense that p and τ are continuous variables within their domain. Thus,

this framework is inherently different in comparison to the finite sets of atoms in

traditional compressive sensing.

Since the atomic sets are infinite, determining the coefficients c(k) from

measurements R̂ is a highly undetermined problem. This problem is resolved by

seeking a sparse solution to the coefficients c(k). As motivated in [58], this can be

accomplished through the atomic norm. Precisely, the atomic norm ‖ · ‖A induced by

A is defined as∥∥∥R̂∥∥∥
A

= inf
c(k)>0

{∑
k

c(k) : R̂ =
∑
k

c(k)A(k),A(k) ∈ A

}
. (3.21)

An atomic decomposition of R̂ is any set of coefficients {c(k)} for given atoms {A(k)}

such that R̂ =
∑

k c
(k)A(k). The cost of an atomic decomposition is defined as

the sum of its positive coefficients:
∑

k c
(k). An atomic decomposition is optimal if

its cost achieves ‖R̂‖A, or equivalently, if its cost is the smallest among all atomic

decompositions. Sparsity is imposed here in the sense that we assume that the

coefficients c(k) for which the atomic decomposition is optimal are associated with the

true solution in terms of locations and time delays. This sparsity condition resolves

the undetermined nature of (3.17). In practice, in the presence of noise, we seek
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the optimal atomic decomposition that approximately matches the received signals.

Precisely, in [58] it is suggested that the noiseless signals R̂ may be estimated by

minimizing

min
R̂

∥∥∥R̂∥∥∥
A

(3.22a)

s.t.
∥∥∥R− R̂

∥∥∥2
F
≤ ε, (3.22b)

where ‖ · ‖F is the Frobenius norm. Recall that the Frobenius norm is defined as the

square root of the sum of the absolute squares of its elements. Roughly speaking,

minimizing the atomic norm (3.22a) enforces sparsity, while constraint (3.22b) sets a

bound on the mismatch between the noisy signals and the estimated signals. In fact,

the left hand side of (3.22b) is the cost function of the MLE (3.8); hence, parameter

ε may be regarded as an educated guess of the ML cost. The optimum solution to

problem (3.22), say R̂?, may be regarded as an estimate of the received signals in the

absence of noise. However, notice that solving such problem only produces R̂? and

not its optimal atomic decomposition, which is the primary goal because the LOS

atoms are a proxy for the sources’ locations. Thus, in general, in order to recover the

optimal atomic decomposition, first, the optimum R̂? to problem (3.22) is computed,

and second, the optimal atomic decomposition of R̂? is found.

The atomic decomposition of R̂? may be expressed

R̂? =

Q∑
q=1

Kq∑
k=1

c(k)q Lq

(
b(k)
q ,p(k)

q

)
+

Q∑
q=1

L∑
l=1

Kql∑
k=1

c
(k)
ql Nql

(
φ
(k)
ql , τ

(k)
ql

)
(3.23)

where {c(k)q }Kq

k=1 are the positive coefficients associated to the Kq non-zero LOS atoms

from the q-th source, and {c(k)ql }
Kql

k=1 are the positive coefficients associated to the Kql

non-zero NLOS atoms between the source-sensor pair (q, l). Given R̂? is expressed

as in (3.23) and given that (3.23) is an optimal atomic decomposition, i.e., its cost

C =

Q∑
q=1

Kq∑
k=1

c(k)q +

Q∑
q=1

L∑
l=1

Kql∑
k=1

c
(k)
ql (3.24)
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is the smallest, then the set of locations for the q-th source associated with the optimal

atomic decomposition are

{
p(k)
q for all k = 1, . . . , Kq

}
, (3.25)

the set of LOS propagation delays between source q and sensor l are

{
τl
(
p(k)
q

)
: b(k)q (l) 6= 0, for all k = 1, . . . , Kq

}
, (3.26)

and the set of NLOS propagation delays between source q and sensor l are

{
τ
(k)
ql for all k = 1, . . . , Kql

}
. (3.27)

Next, a definition of correct recovery is provided.

Definition 1 : Given R̂? is expressed as in (3.23) and given that (3.23) is an optimal

atomic decomposition, then the sources locations are correctly recovered if

Kq = 1 (3.28)

p(1)
q = pq, (3.29)

for q = 1, . . . , Q.

Condition Kq = 1 is required for all q because, obviously, it exists only one valid

location for each source, and in such case p
(1)
q must match the true location of the

q-th source.

In Table 3.1, the procedure for recovering the sources’ locations from the

received signals is summarized. In some specific cases, such as estimating frequencies

from a mixture of complex sinusoids [72], some sophisticated techniques have been

devised for minimizing the atomic norm, and then recover the optimal atomic

decomposition of R̂?, thanks to the particular structure of the atomic set. However,
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Solve problem (3.22) 

Find optimal atomic 
decomposition (3.23) 

  

 

Non-zero atoms 
Coefficients 

Proxy for locations 
Proxy for amplitudes 

𝑄, 𝐿, search area (𝒮), 
maximum delay (𝜏𝑚𝑎𝑥), 
sensors locations, waveforms 

𝑄, 𝐿, search area (𝒮), 
maximum delay (𝜏𝑚𝑎𝑥), 
sensors locations and 
waveforms 

Figure 3.1 Flow diagram of the process for recovering the sources’ locations.

in general, it is challenging to solve (3.22), because computing the atomic norm

is not always straightforward. In Section 3.4.2, an approximate method based on

discretizing the atomic set is proposed for simultaneously solving the atomic norm

minimization problem (3.22) and recovering the optimal atomic decomposition (3.23).

Before delving into the details on how to actually solve problem (3.22) and find the

optimal atomic decomposition as expressed in (3.23), in the next section, it is shown

that tuning the parameters {uq}Qq=1 appropriately is critical to the correct recovery

of the sources’ locations.

3.4.1 Guarantee for Correct Recovery of the Sources’ Locations

In this part are developed guarantees for correct recovery of the sources’ location

in the sense of Definition 1. To ensure and identifiable signal model, we make the

following assumption

Assumption 1 : For each sensor, signal model (3.5) is identifiable in the sense that

the observed data is explained by a unique set of delays, τl(p) for q = 1, . . . , Q, and

τ
(m)
ql for q = 1, . . . , Q and m = 1, . . . ,Mql.
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A justification of Assumption 1 is given based on the identifiability analysis

in [73] for the problem of delay estimation in the presence of multipath. In [73], it

was shown that if the waveforms are unambiguous, then Assumption 1 is true if the

number of propagation delays is known to be below a certain threshold. Given that

each propagation delay corresponds to a path, in our case, the number of propagation

delays at each sensor is sparse by assumption, while the optimal atomic decomposition

will include a low number of atoms, which in turn means a low number of propagation

delays.

Further, to develop correct recovery guarantees, we assume noiseless obser-

vations, in which case the solution to (3.22) is trivially R̂? = R. However, as

shown in the numerical section, the theoretical results obtained in this section are

also meaningful in the presence of noise. The key properties that are exploited to

obtain guarantees are:

1. LOS signal paths associated with a source have a common location (see (3.2)).

2. NLOS signal paths are local to sensors (see (3.4)).

To formalize the notion that LOS path emitted by a source have a common

location, we introduce the notion of location consistency:

Definition 2 : A location p is said to be consistent with X paths (LOS or NLOS),

or vice-versa, if the propagation delays of such paths, say τ1, . . . , τX , satisfy

τx = τlx (p) for x = 1, . . . , X, (3.30)

where {l1, . . . , lX} ⊆ {1, . . . , L} are the indexes of the destination sensors of the X

paths, and τlx(p) is the delay of the direct path between location p and sensor lx.

In order to find the sources’ locations exploiting the notion of consistency in

Definition 2, the following assumptions are made.
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Assumption 2 : The number of LOS paths from source q, Sq, is known.

By its very nature, a source location cannot be consistent with any NLOS, thus

the location of the q-th source is consistent with exactly Sq paths.

Assumption 3 : Only the true location of the q-th source is consistent with Sq paths

emitted by the q-th source.

By Assumptions 2 and 3, given a source with a known emitted waveform and

a known number S of LOS paths, its location is the one consistent with S paths. No

other location is consistent with S paths with the same waveform.

From (3.23) and Definition 1, the solution containing the true locations of the

sources is associated with the optimal atomic decomposition. However, from (3.18)

and the definition of atoms, namely, LOS atoms (3.15) and NLOS atoms (3.16), the

optimal atomic decomposition is parameterized by the norm of the amplitudes in the

LOS atoms uq (3.15). For given data R̂?, decreasing uq has to be counteracted by an

increase in the coefficients of the LOS atoms, thus raising their contribution to the

cost C (3.24). Put another way, different values of uq lead to different explanations

of the data R̂? manifested as different optimal atomic decompositions, and thus

corresponding to different solutions of the source localization problem. We seek

to determine which values of parameters uq ensure that the corresponding optimal

atomic decomposition results in locations that are consistent with the number of

paths indicated by Assumption 2. This in turn guarantees that these are the true

sources’ locations. The next lemma establishes the condition on uq under which a

location associated with the optimal atomic decomposition is also consistent with the

number of LOS paths.

Lemma 5 : Given a known number of LOS paths Sq of the q-th source, if parameter

uq satisfies

uq <
1√
Sq − 1

, (3.31)
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then any location (for the q-th source) associated to the optimal atomic decomposition

(3.25) is consistent with Sq or more paths in the sense of Definition 2.

For the proof of Lemma 5, see Appendix C. The interpretation of this lemma is

that given a solution that produces a location with less than Sq paths, and if condition

(3.31) is met, there exists another lower cost solution, implying that a solution with

fewer than Sq paths cannot be optimal.

The previous lemma guaranteed that any location associated with the optimal

atomic decomposition is consistent with Sq paths. The next lemma establishes the

condition on uq which ensures that at least one location is associated with the optimal

atomic decomposition.

Lemma 6 : Given a known number of LOS paths Sq of the q-th source, if parameter

uq satisfies

uq >
1√
Sq
, (3.32)

then at least one location (for the q-th source) is associated to the optimal atomic

decomposition.

For the proof of Lemma 6, see Appendix D. The interpretation of this lemma

is that given a solution that does not produce a location for the q-th source, and

if condition (3.32) is met, there exists another lower cost solution that produces a

location for the q-th source.

The two lemmas lead directly to the following theorem establishing the

guarantee for correct recover of the sources’ locations.

Theorem 1 : The sources’ locations are correctly recovered according to Definition 1

if uq is chosen within the interval

1√
Sq

< uq <
1√
Sq − 1

(3.33)
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for all q.

Proof. If uq > 1/
√
Sq for all q, by Lemma 6, at least one location is associated to

the optimal atomic decomposition for each source. By Assumption 2, the number

of LOS paths Sq is known for each source q. Therefore, if uq is chosen such that

uq < 1/
√
Sq−1 for all q, then by Lemma 5, the locations associated to the optimal

atomic decomposition for the source q are consistent with Sq or more paths. However,

according to Assumption 3, only the location of the source is consistent with Sq or

more paths, thus finishing our proof.

A numerical examples illustrates Theorem 1. Let the search area be of size

200 m× 200 m and centered around the origin of the coordinate system. A single

source is positioned at (20 m, 30 m) and 5 sensors are positioned at coordinates (40 m,

=40 m), (=40 m, =40 m), (=40 m, 40 m), (40 m, 40 m) and (0 m, 0 m). All sensors

receive a LOS path except for the sensor located (40 m, =40 m). Therefore, the

number of LOS paths is S1 = 4. In addition, the sensor at the origin receives a NLOS

path whose path length is 91 m. The goal is to compute the probability of correct

recovery in the sense of Definition 1 as a function of u1 and under the conditions

of Theorem 1, i.e., the noiseless case. The implementation of the procedure leading

to Figure 3.2 is discussed in Section 3.4.2. To estimate the probability of correct

recovery, the experiment is repeated 1000 times, and in each experiment the emitted

waveform as well as the amplitudes of the LOS and NLOS paths are chosen randomly.

The exact model for generating the waveforms, as well as other parameters is the same

as the one detailed in Section 3.6. Figure 3.2 plots the probability of correct recovery

versus parameter v which is defined as v = (1/u1)2. Theorem 1 guarantees a correct

solution if

S1 − 1 < v < S1. (3.34)
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Figure 3.2 Probability of correct recovery in the sense of Definition 1 in the absence
of noise.

As it can be seen in Figure 3.2, for values of v within the interval [3, 4], the probability

of correct recovery is close to one, whereas it is smaller for other values.

3.4.2 Practical Implementation: Discretization of the Atomic Set

Remind the reader that in general, when noise is present the process for recovering

the sources locations follows Figure 3.1. The most straightforward method for solving

problem (3.22) and obtain its optimal atomic decomposition (3.23) is to substitute

the atomic norm in the objective function (3.22a) by its definition (3.21), and

optimize over the set of positive coefficients {c(k)}. However, such approach yields

an infinite-dimensional problem because the number of atoms is infinite. Except for

some particular cases, like recovering frequencies of mixtures of sinusoids [72, 74], in

general, it is very challenging to optimize infinite-dimensional convex problems. In

[75], it is advocated that dictionaries whose atoms depend on continuous parameters

are discretized. For instance, the NLOS atoms (3.16) depend on a delay, which is by
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definition within the interval [0, τmax], and can be discretized into a grid of discrete

delays such as (3.9). In [75], it is proven that the optimization problem based on

the discretized atomic set converges to the original problem (3.22) as the grid finesse

increases. Indeed, grid refinement approaches can be found in some signal processing

applications such as delay estimation [70], direction-of-arrival estimation [76, 77, 78]

or direct localization of sources [47].

The atomic set is composed of LOS (3.15) and NLOS atoms (3.16). The LOS

atoms are parametrized by the location of the source whereas the NLOS atoms are

parametrized by their propagation delays. Therefore, two different type of grids need

to be created: one grid of locations and one grid of delays. The propagation delays

of the NLOS paths vary between 0 and τmax. Upon discretizing the interval of delays

with a resolution of τres

D =

{
0, τres, . . . ,

⌊
τmax

τres

⌋
τres

}
, (3.35)

a new set of NLOS atoms is obtained

ÃNLOS =

Q⋃
q=1

L⋃
l=1

{
Nql (φ, τ) : 0 ≤ φ < 2π, τ ∈ D

}
. (3.36)

Similarly, upon discretizing the search area S into a uniform grid of squared cells

whose center points are

G = {θ1, . . . ,θ|G|}, (3.37)

where the grid resolution is defined as dres = mini6=j ‖θi − θj‖2, a new set of LOS

atoms is obtained

ÃLOS =

Q⋃
q=1

{
Lq (b,p) : b ∈ CL,p ∈ G ⊂ R2, ‖b‖2 = uq

}
. (3.38)

The discrete atomic set including the LOS and NLOS atoms is

Ã = ÃLOS ∪ ÃNLOS, (3.39)
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and the atomic norm induced by Ã has the same expression than in (3.21)

∥∥∥R̂∥∥∥
Ã

= inf
c(k)>0

{∑
k

c(k) : R̂ =
∑
k

c(k)A(k),A(k) ∈ Ã

}
, (3.40)

except for the fact that A has been replaced by Ã. By expressing the generic atoms

A(k) in (3.40) as LOS or NLOS atoms, the new atomic norm ‖ · ‖Ã may be cast

similarly to (3.21) as

∥∥∥R̂∥∥∥
Ã

= inf
c
(g)
q ,c

(d)
ql ≥0

{
Q∑
q=1

|G|∑
k=1

c(g)q +

Q∑
q=1

L∑
l=1

|D|∑
g=1

c
(d)
ql : (3.41a)

:R̂ =

Q∑
q=1

|G|∑
g=1

c(g)q Lq

(
b(g)
q ,θg

)
+

Q∑
q=1

L∑
l=1

|D|∑
d=1

c
(d)
ql Nql

(
φ
(d)
ql , (d− 1)τres

)}
,

(3.41b)

and b
(g)
q may be any vector such that ‖b(g)

q ‖2 = uq for all q and g. By introducing the

finite grids of delays and locations, the new atomic norm (3.40) has been expressed

as the infimum of a finite sum of coefficients. By replacing the LOS and NLOS atoms

in (3.41b) by their definitions (3.15)-(3.16), constraint (3.41b) becomes

r̂l =

Q∑
q=1

|G|∑
g=1

c(g)q b(g)q (l)sq (τl (θg)) +

Q∑
q=1

L∑
l=1

|D|∑
d=1

c
(d)
ql e

iφ
(d)
ql sq ((d− 1)τres) (3.42)

for l = 1, . . . , L
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where R̂ = [r̂1 · · · r̂L] and b
(g)
q = [b

(g)
q (1) · · · b(g)q (l)]T . Next, substituting the atomic

norm ‖ · ‖Ã instead of ‖ · ‖A in problem (3.22) with (3.41a) and (3.42) yields

min
c
(g)
q ,c

(d)
ql ≥0

‖b(g)
q ‖2=uq

0≤φ(d)ql <2π

Q∑
q=1

|G|∑
k=1

c(g)q +

Q∑
q=1

L∑
l=1

|D|∑
g=1

c
(d)
ql (3.43a)

s.t.
L∑
l=1

‖rl − r̂l‖22 ≤ ε (3.43b)

r̂l =

Q∑
q=1

|G|∑
g=1

c(g)q b(g)q (l)sq (τl (θg)) +

Q∑
q=1

L∑
l=1

|D|∑
d=1

c
(d)
ql e

iφ
(d)
ql sq ((d− 1)τres)

for l = 1, . . . , L. (3.43c)

Problem (3.43) is not convex because of the bilinear forms, c
(g)
q b

(g)
q (l) and c

(d)
ql e

iφ
(d)
ql ,

appearing in constraint (3.43c). This can be easily remedied by the following variable

changes

c(g)q b(g)
q = y(g)

q (3.44a)

c
(d)
ql e

iφ
(d)
ql = z(d)q (l), (3.44b)

from which it follows that

∥∥c(g)q b(g)
q

∥∥
2

= c(g)q uq =
∥∥y(g)

q

∥∥
2

(3.45a)∣∣∣c(d)ql eiφ(d)ql

∣∣∣ = c
(d)
ql =

∣∣z(d)q (l)
∣∣ . (3.45b)
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Combining (3.44) and (3.45) with (3.43c) and (3.43a), respectively, results in the

following optimization problem

min
y
(g)
q

z
(d)
q (l)

Q∑
q=1

|G|∑
g=1

∥∥∥y(g)
q

∥∥∥
2

uq
+

Q∑
q=1

L∑
l=1

|D|∑
d=1

∣∣z(d)q (l)
∣∣ (3.46a)

s.t.
L∑
l=1

‖rl − r̂l‖22 ≤ ε (3.46b)

r̂l =

Q∑
q=1

|G|∑
g=1

y(g)q (l)sq (τl(θg)) +

Q∑
q=1

|D|∑
d=1

z(d)q (l)sq ((d− 1)τres) (3.46c)

for l = 1, . . . , L,

which is convex and finite-dimensional. Problem (3.46) is equivalent to the latent

group Lasso problem [79], and specific algorithms for solving (3.46) exist in the

literature [80]. Moreover, the problem also falls into the class of second-order cone

programs (SOCP), a subfamily of convex problems, for which efficient algorithms

are available [81]. In our case, the SOCP type of algorithms resulted in the fastest

computational times. The variable y
(g)
q (l) represents the amplitude of a LOS paths

from source q to sensor l with delay τl(θg), whereas the variable z
(d)
q (l) represents

the amplitude of a NLOS path from source q to sensor l with delay (d − 1)τres.

Let {ŷ(g)
q } and {ẑ(g)q (l)} be the solutions to problem (3.46). Then, the location

of the q-th source is the grid location θg for which ‖ŷ(g)
q ‖2 is larger than zero.

Intuitively speaking, minimizing the term
∑Q

q=1

∑L
l=1

∑|D|
d=1 |z

(d)
q (l)| in the objective

function (3.46a) induces a sparse number of NLOS paths, whereas minimizing∑Q
q=1

∑|G|
g=1 ‖y

(g)
q ‖2 induces a sparse number of sources’ locations.

3.4.3 Estimation of the Number of LOS Sensors

According to Theorem 1, we must fix uq to a value that satisfies 1/
√
Sq < uq < 1/

√
Sq−1

for each source q, where Sq is the number of sensors receiving a LOS component from
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the q-th source. Hence, uq must be set to uq = 1/
√
Sq−µ for a parameter µ ∈]0, 1[.

For instance, it has been observed that a satisfactory choice was µ = 0.2 as it led to

a the best probability of correct recovery for all experiments in Section 3.6. In this

section, we propose a method for estimating the sources locations that not only does

not require a priori knowledge on the number of LOS sensors Sq, but in fact estimates

them. The method works as follows. We start by assuming that all sensors receive

a LOS component from all sources, Ŝq = L for all q, and set uq such that it satisfies

(3.33). Then problem (3.46) is solved. According to Lemma 5, the sources’ locations

associated to the optimal atomic decomposition for the q-th source are consistent with

at least Ŝq paths. However, by Assumption 3, no location is consistent with more than

Sq paths. Therefore, if the number of LOS sensors (Ŝq > Sq) had been overestimated,

no location would be obtained for source q. In the next step, Ŝq is decreased by

one for all those sources without a location estimate, and problem (3.46b) is solved

again. These steps are repeated until a location is obtained for each source. The last

value of Ŝq is the estimated number LOS sensors for the q-th source. This method

corresponds to steps 10, 11, 20–28 of DLM’s algorithm described in Section 3.5.

3.4.4 Spurious Locations

It is observed in numerical simulations that when the sources are off-grid (pq /∈ G for

any q) and/or when the propagation delays of the paths are off-grid (τ
(m)
ql , τl(pq) /∈ D

for any q, l, m), then some spurious locations may be obtained from problem (3.46).

This phenomenon is not new and it was studied in [82] in the case of delay estimation

using the `1-norm (3.11). It was shown that if the propagation delay of a path is

off-grid, a peak appears around such propagation delay but also secondary peaks of

much weaker strength appear further apart.

To eliminate spurious locations, we set a simple threshold criterion. Let ŷ
(g)
q be,

for all q and g, the solution to problem (3.46), and denote ŷ
(g)↓
q the vector with the
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same components, but sorted in descending order, i.e., |ŷ(g)↓q (1)| ≥ · · · ≥ |ŷ(g)↓q (L)|.

The components of ŷ
(g)
q are the estimated signal strengths of the LOS paths of source

q positioned at θg. We propose that for each source q, the locations {θg}|G|g=1, whose

Ŝq strongest components do not satisfy∣∣∣ŷ(g)↓q

(
Ŝq

)∣∣∣ > AT (3.47)

are dismissed. Here, Ŝq is the number of guessed LOS paths for source q as explained

in Section 3.4.3, parameter A is the strongest (LOS or NLOS) estimated path strength

A = max

(
max
g,q,l

∣∣ŷ(g)q (l)
∣∣ ,max

d,q,l

∣∣ẑ(d)q (l)
∣∣) . (3.48)

and T is a value smaller than 1. For instance, in the simulations it was used T = 1/30,

so that all locations whose signal strengths are 20 log10(30) ≈ 30 dB weaker than the

strongest path are discarded. The intuition behind this heuristic approach is that, if

θg is the correct location of source q, then the Ŝq largest entries in vector ŷ
(g)
q are

the more likely to be signal strengths of the LOS paths and they will pass the test

(3.47). Instead, if the spurious locations occurred due to off-the-grid noise, some of

their entries may be close to zero and not meet (3.47). If after the threshold criterion

(3.47) one or more locations still remain for the q-th source, then the one with the

largest strength is picked

p̂q = θĝ : ĝ = arg max
g

∣∣∣ŷ(g)↓q

(
Ŝq

)∣∣∣ . (3.49)

It is important to not skip (3.47), and apply (3.49) directly. As explained in

Section 3.4.3, the proposed technique works by initially assuming that the number

of LOS paths for the q-th source is Ŝq = L, and if no location is obtained, then

successively decreasing Ŝq until it matches the true number of LOS paths Ŝq = Sq.

However, if the threshold criterion (3.47) is skipped and Ŝq > Sq, a spurious location
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may be erroneously selected as the correct source location instead of concluding that

there is no location and that Ŝq needs to be decreased.

3.4.5 Tuning Parameter ε

Parameter ε in optimization problem (3.46) constraints the fitting error between the

received signals and the estimated signals. Such a parameter is set so that the received

signals without noise are a feasible solution. Let r̂l be the noiseless received signal at

sensor l, then we require that

L∑
l=1

‖rl − r̂l‖22 =
L∑
l=1

‖wl‖22 ≤ ε. (3.50)

If ε is chosen too small, then it can happen that
∑L

l=1 ‖wl‖22 ≮ ε, thus excluding

the noiseless signals from the set of possible solutions. Because the noise {wl}Ll=1 are

random independent complex Gaussian vectors of length N , it follows that the error

normalized by the noise variance 2σ−2n
∑L

l=1 ‖wl‖22 is a Chi-square random variable

with 2NL degrees of freedom. Thus, parameter ε must be set to a large enough value

so that
∑L

l=1 ‖wl‖22 ≤ ε is satisfied with high probability, e.g.,

Pr

(
L∑
l=1

‖wl‖22 ≤ ε

)
= 0.99. (3.51)

Let F(x, k) be the cumulative distribution function of the chi-squared distribution

with k degrees of freedom evaluated at x, then

ε =
σ2
w

2
F−1 (0.99, 2NL) . (3.52)

At low signal-to-noise ratio (SNR), it is possible that the energy of the received

signals is too low compared to the energy of the noise causing that
∑L

l=1 ‖rl‖22 ≤ ε.

In such case problem (3.46) has the trivial solution y
(g)
q (l) = z

(g)
q (l) = 0 for all q, l, g

and d, and it will not output any locations. If
∑L

l=1 ‖rl‖22 ≤ ε, we propose to estimate
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the locations by finding the LOS signals which correlate the most with the received

signals:

p̂q = arg max
p∈G

L∑
l=1

∣∣sHq (τl (p)) rl
∣∣2 . (3.53)

This is in fact the ML estimate of the sources’ locations in absence of multipath [46]

and can result on the correct locations when multipath is scarce.

3.4.6 Grid Refinement

The computational complexity of minimizing the second-order cone problem (3.46)

is O((Q|G| + QL|D|)3.5) [83]. To lower it we propose a recursive grid refinement

procedure inspired by the ones in [76, 77, 78]. The optimization problem (3.46)

employs a grid of delays in order to estimate the NLOS paths between every source-

sensor pair, and a grid of locations in order to estimate the location of every source.

In total QL grids of delays and Q grids of locations. In comparison to previous grid

refinement approaches, ours is a more complex due to the two different type of grids

used to explain the observed data. The idea behind a grid refinement procedure is to

start with a coarse grid(s) and refine each grid only around the active points. Let τres

and dres be the grid resolutions we wish to achieve in the grids of delays and locations,

respectively, and suppose that in order to lower the computational complexity, the

grids are refined R times. If the resolution of the grids is increased by a factor of two

at every step, then the grids resolutions at each step are

τres,r = 2R−rτres for r = 1, . . . , R (3.54)

dres,r = 2R−rdres for r = 1, . . . , R. (3.55)

Let Dql,r be the grid of delays for the source-sensor pair (q, l) at step r, and Gq,r the

grid of locations for source q. At the first step (r = 1), the continuous set of delays
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− 𝜏res
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θ∗ θ∗ +
𝑑res
(2)

−𝑑res
(2)

 θ∗ +
𝑑res
(2)

−𝑑res
(2)

+ −𝑑res
(3)

0
 

Step 2 Step 3 

Estimate: 

Estimate: 

Figure 3.3 Illustration of three steps of a grid refinement procedure. The top
image shows the grid refinement for the delays between a hypothetical source and
sensor, and the bottom image shows the grid refinement for the locations of some
hypothetical source, for r = 1, 2, 3. The dots point out the position of a non-zero
delay and location as a result of optimizing problem (3.58). The positions of such
non-zeros are progressively refined at each step.
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[0, τmax] is discretized with resolution τres,1

Dql,1 = {i τres,1 ∈ [0, τmax] : i ∈ Z} , (3.56a)

and the search area S is discretized uniformly with resolution dres,1

Gq,1 =

dres,1
i
j

 ∈ S : i, j ∈ Z

 , (3.56b)

where Z is the set of integers. Consider step r, and let the active propagation delays

between the source-sensor pair (q, l) be {τ̂ (m)
ql,r : m = 1, . . . , M̂ql,r}, and the active

locations for source q be {p̂(m)
q,r : m = 1, . . . , K̂q,r}. Then, the grids at step r + 1

include the previous active delays and locations plus some neighbor points. For

instance, in addition to the active delays and locations, we include two points at the

left and right of the active delays

Dql,r+1 =

M̂ql,r⋃
m=1

{
τ̂
(m)
ql,r + i τres,r+1 : i = −2,−1, 0, 1, 2

}
, (3.57a)

and all points within distance 2dres,r+1 in the x- or y-axis of the active locations

Gq,r+1 =

K̂q,r⋃
m=1

p̂(m)
q,r + dres,r+1

i
j

 : i, j = −2,−1, 0, 1, 2.

 . (3.57b)
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Next, problem (3.46) is solved again but only for the new grid points:

min{
y
(g)
q

}
,{

z
(d)
q

}
Q∑
q=1

∑
g:

θg∈Gq,r+1

∥∥∥y(g)
q

∥∥∥
2

uq
+

Q∑
q=1

L∑
l=1

∑
d:

(d−1)τres
∈Dql,r+1

∣∣z(d)q (l)
∣∣ (3.58a)

s.t.
L∑
l=1

‖rl − r̂l‖22 ≤ ε (3.58b)

r̂l =

Q∑
q=1

∑
g:

θg∈Gq,r+1

y(g)q (l)sq (τl(θg)) +

Q∑
q=1

∑
d:

(d−1)τres
∈Dql,r+1

z(d)q (l)sq ((d− 1)τres)

(3.58c)

for l = 1, . . . , L.

The process of refining the grids and solving problem (3.58) is repeated for the R

steps. For a more intuitive picture on the grid refinement procedure see the examples

in Figure 3.3 with three steps. The proposed grid refinement procedure corresponds

to steps 12–18 in DLM’s algorithm described in Section 3.5.

In regards to the resolutions of the grids, instead of choosing the resolution of

both types of grids completely independently, they are set according to

c τres,r = dres,r for any r, (3.59)

where c is the speed of light.

3.5 Algorithm

In this section, it is presented the proposed DLM algorithm for source localization in

multipath. The inputs to the DLM algorithm are the received signals {rl}Ll=1 and the

noise variance σ2
w. The number of sensors L, sources Q and samples per sensor N

are assumed known. The outputs of the algorithm are the source locations estimates
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{p̂q}Qq=1. The summary of the proposed algorithm for direct localization of RF sources

in the presence of multipath is as follows:

Input: L, Q, N , {rl}Ll=1 and σ2
w.

Parameters that need to be selected: S, τmax, dres, T .

Output: The source locations estimates {p̂q}Qq=1

Procedure:

1: for sensor l where l = 1, . . . , L do

2: Estimate multipath TOA’s {τ̃ pql} using [70] or any other delay estimation

technique of choice.

3: Estimate multipath amplitudes {ãpql} through (3.13).

4: Reduce NLOS interference on the received signal rl through (3.14).

5: end for

6: Compute parameter ε through (3.52).

7: if
∑L

l−1 ‖rl‖2 > ε then

8: Compute the initial coarse grids with (3.56) and (3.59).

9: Initialize Ŝq = L for q = 1, . . . , Q

10: while p̂q = ∅ for any q ∈ {1, . . . , Q} do

11: uq = 1√
Ŝq−0.2

for q = 1, . . . , Q

12: for r = 1, . . . , R do

13: Optimize problem (3.58). Output: {ŷ(g)
q,r} and {ẑ(d)q,r (l)}.

14: Find the active delays locations {p̂(m)
q,r } and {τ̂ (m)

ql,r }.

15: if r 6= 1 then

16: Refine the grid with (3.57) and (3.59).

17: end if

18: end for

19: Compute A through (3.48).

20: for q = 1, . . . , Q do
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21: if any locations are active for the q-th source and such locations satisfy

(3.47) then

22: Estimate the location of the q-th source through (3.49).

23: else if Ŝq > 1 then

24: Ŝq ← Ŝq − 1

25: else

26: Estimate the location of the q-th source through (3.53).

27: end if

28: end for

29: end while

30: else

31: Recover sources’ locations through (3.53).

32: end if

3.6 Numerical Results

In this section, we illustrate the performance of the localization method by numerical

examples, and compare it to other existing techniques via Monte Carlo simulations.

In all examples, the sources and sensors are positioned within a square area of

200 m× 200 m, which is divided into a grid of 1 m× 1 m cells, thus resulting in 40,000

cells. Unless stated otherwise, we simulate a scenario containing one source positioned

at coordinates (20 m,30 m) and 5 sensors positioned at coordinates (40 m, =55 m),

(=45 m, =40 m), (=50 m, 55 m), (60 m, 60 m) and (5 m, 0 m) as pictured in Figure 3.4.

The signals emitted by the sources are drawn from a white Gaussian process and

filtered so that their passband bandwidth is 10 MHz. If multiple sources, such as

in the experiment of Section 3.6.5, the waveforms are generated independently, thus

the cross-correlation between signals from different sources is low but not necessarily

zero. All sensors are time-synchronized and sample the received signals at a 20 MHz
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Figure 3.4 Map with the locations of the sensors and source used in many of the
experiments in Section 3.6.
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frequency for a total time of 5µs, consequently each sensor observes 100 samples. For

each source, we define the SNR per observation time as

SNR = 10 log10

(
N
∑L

l=1 Pl
σ2
w

)
, (3.60)

where N is the number of observations per sensor, Pl is the power of the LOS

component between the source and sensor l, and σ2
w is the variance of the sampled

noise. According to [84], in urban and suburban areas, the signal strengths of LOS

and NLOS paths may be modeled as random variables with log-normal distribution.

It follows that the channel tap powers expressed in dB are random variables with

normal distribution. For our simulations, we set the standard deviation of the tap

powers to 10 dB. All multipath experiments simulate Turin’s urban channel model

[84]. The arrival times of NLOS components at all sensors are modelled by a Poisson

process. The mean inter-arrival time is set to 0.2 µs, and the average power P̄ of a

NLOS arrival at sensor l is governed by the power delay profile (PDP)

P̄l(t) = exp

(
−t− t

(0)
l

trms

)
(3.61)

where t is the arrival time of the NLOS component, t
(0)
l is the arrival time of the

LOS path and trms is the root mean square (rms) delay spread. An exponential PDP

assigns smaller power to later arrivals. Unless otherwise stated, all LOS paths have

normalized unit power. In multipath environments, it is possible that some sensors

have their LOS blocked, thus at each Monte Carlo repetition one randomly selected

sensor among the five receives no LOS component.

The figures compare the performance of the following two direct localization

techniques:

1. DLM — The proposed technique.
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2. DPD — Direct Position Determination as originally propose in [46] for AWGN
channels.

3. DPD with NLOS mitigation — In this variation, DPD is preceded by the
NLOS mitigation method introduced in Section 3.3. The goal is to show that
DLM outperforms this variation of DPD, to demonstrate that DLM’s high
accuracy is not due only to such NLOS interference mitigation method.

4. Indirect, CS TOA — Indirect localization comprises a two-step process. In
a first step, TOA’s at each sensor are estimated by a delay estimation method
based on compressive sensing (CS) [70]; in a second step, multilateration is
performed using the well-known method developed by Chen [43] to mitigate
the problem of potential LOS blockage on sensors.

5. Indirect, matched filter TOA — Same as previous indirect technique, except
that TOA’s are estimated by matched filter.

To solve the conic problem in DLM (step 13 of DLM’s algorithm described in

Section 13) and in CS TOA, we utilize the Mosek solver [85]. The bandwidth of

the emitted signals limits the localization accuracy, and it is known that the ranging

resolution is approximately

r =
c

B
(3.62)

where c is the speed of light and B is the signal bandwidth. For the particular case of

a 10 MHz bandwidth, the waveform ranging resolution is then 30 m. Also, we define

the probability of correct recovery for the case of a single source as

Pc =
1

Z

Z∑
z=1

1
(
|p− p̂(z)| < ε

)
, (3.63)

where p is the true source’s location, Z is the number of times that the experiment

is repeated, p̂(z) is the source’s location estimate for the z-th repetition, and 1(·) is

the indicator function. Unless otherwise stated, the error is set to ε = r/3, which is

a value smaller than the ranging resolution r. In some of the tests, it is plotted the

normalized root mean square error

rMSE =
1

r

√√√√ 1

Z

Z∑
z=1

(p− p̂(z))
2
. (3.64)
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Figure 3.5 Root mean square error vs. SNR for the scenario in Figure 3.4 when no
multipath is present.

All experiments are repeated 1000 times, i.e., Z = 1000.

3.6.1 Performance in the Absence of Multipath

This experiment’s purpose is to validate that DLM performs optimally in the absence

of multipath, i.e., its accuracy matches that of the DPD, which was shown to be

optimal (see [46]). All five sensors receive LOS components, and Turin’s channel

model does not apply here, since there are no NLOS paths. Figures 3.5 and 3.6 plot

the rMSE and the probability of correct recovery, respectively. DPD and DPD with

NLOS mitigation are plotted together because their performance is exactly the same

in the absence of multipath. As it can be observed, DPD and DLM perfom equally in

terms of rMSE and probability of recovery because essentially both techniques, in the

absence of multipath, look up for the location whose LOS signals correlate the most

with the received signals. DPD and DLM perform substantially better in comparison

to indirect techniques as it is expected from the theory.
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Figure 3.6 Probability of correct recovery vs. SNR for the scenario in Figure 3.4
when no multipath is present.

3.6.2 Performance in Multipath

In this example is simulated the multipath channel model described at the top of this

section. The rMSE and the probability of correct recovery vs. SNR are plotted in

Figures 3.7 and 3.8, respectively. Observe in Figures 3.7 and 3.8 that DPD fails to

localize the sources irrespective of the SNR due to the fact that it is not designed for

multipath. Also, the indirect technique relying on estimating by matched filter the

TOA of the first arrival, does not perform much better than DPD because matched

filter suffers from severe bias when multiple arrivals overlap in time. Interestingly,

it seems as if DLM does not perform better, in terms of rMSE, than the indirect

technique employing CS TOA estimates. In Figure 3.9, the probability of correct

recovery (3.63) is plotted for different errors ranging from 0 to 2r for an SNR value

of 30 dB. DLM achieves a high probability of correct recovery for much smaller

errors than the other methods. For instance, DLM’s probability of correct recovery

is 0.9 for an error smaller than 0.4r, whereas for the indirect technique with CS
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Figure 3.7 Root mean square error vs. SNR for the scenario in Figure 3.4 in a
multipath environment.
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Figure 3.8 Probability of correct recovery vs. SNR for the scenario in Figure 3.4 in
a multipath environment.
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Figure 3.9 Probability of correct recovery vs. error for the scenario in Figure 3.4
for a 30 dB SNR.

TOA, such probability is only achieved when the error is 0.9r. The other techniques

perform substantially worse than DLM, and in fact, they never achieve a probability

of recovery close to one even when very large errors are allowed. In summary, DLM

can achieve a high probability of recovery for very small errors. In terms of rMSE,

DLM and the indirect technique employing CS TOA estimates perform similarly,

because in the rMSE metric small errors have a much smaller impact compared to

the large errors. Hence, in the next experiments, we focus only on the probability of

correct recovery.

3.6.3 Probability of Correct Recovery vs. Delay Spread

The channel model employed depends on the rms delay spread, which determines

the interval between the LOS component and the last arriving NLOS component. In

general, larger delay spreads imply more multipath that make the localization more

challenging. In Figure 3.10, the probability of correct recovery is plotted for an rms
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Figure 3.10 Probability of correct recovery vs. rms delay spread for the scenario
in Figure 3.4 in a multipath environment for a 30 dB SNR.

delay spread ranging from 0 to 0.6µs at 30 dB SNR. At high-SNR and at a zero delay

spread all localization techniques perform similarly. However, as soon as the rms

delay spread increases by a little as 0.2 µs, DPD’s performance drops markedly. The

techniques specifically designed for multipath channels, such as the indirect technique

based on CS TOA estimates and DLM, degrade very slightly as the rms delay spread

increases. DLM outperforms all other techniques and is capable of recovering the

sources locations with a high probability of correct recovery irrespective of the delay

spread.

3.6.4 Probability of Correct Recovery vs. Number of Grid Refinement
Steps

The purpose of the grid refinement procedure introduced in Section 3.4.6 is to reduce

the computational complexity of DLM, while maintaining the localization accuracy.
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Figure 3.11 The left axis plots the probability of correct recovery and the right axis
the mean elapsed time for running DLM’s Stage 2, vs. the number of grid refinement
steps. The SNR is fixed at 30 dB.

Figure 3.11 plots the probability of correct recovery (square marker) and the DLM’s

mean elapsed time at Stage 2 (circle marker), versus the number of grid refinement

steps. The SNR is fixed at 30 dB. DLM is run on a computer with an Intel

Xeon processor at 2.8 GHz with 4 GB of RAM memory. Perhaps surprisingly, the

probability of correct recovery remains almost constant irrespective of the number of

steps. The lowest computational time is 5 s and is obtained for five grid refinement

steps. The number of grid steps that results in the lowest computational time depends

on many factors such as number of grid points, efficiency of the conic solver, particular

scenario and so forth. Thus, in general, the optimum number of steps must be found

by in situ testing.
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3.6.5 Multiple Sources

In this example is evaluated the probability of correct recovery of multiple sources

emitting different signals overlapping in the time and frequency domain. The SNR

is fixed at 30 dB. The definition of the probability of correct recovery defined in

(3.63) was for a single source. In the case of multiple sources, we define the average

probability of correct recovery

Pav =
1

ZQ

Z∑
z=1

Q∑
q=1

1
(
|pq − p̂(z)

q | <
r

3

)
, (3.65)

and the probability of correct recovery of all sources as

Pall =
1

Z

Z∑
z=1

Q∏
q=1

1
(
|pq − p̂(z)

q | <
r

3

)
, (3.66)

where pq is the true location of the q-th source, p̂
(z)
q is its estimate, and r is the

waveform’s ranging resolution as defined in (3.62). The latter metric is stricter than

the former because an experiment is counted as successful only when all sources

are located correctly. For Q = 1, both metrics boil down to the probability of

correct recovery of a single source (3.63), i.e., Pav = Pall = Pc. In Figure 3.12, it

is shown how the average probability of correct recovery degrades as the number of

sources increases. This is expected because the signals from different sources interfere

with each other. Nonetheless, in Figures 3.12 and 3.13, we can observe that DLM

outperforms all other localization techniques when localizing multiple sources.
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Figure 3.12 Average probability of correct recovery vs. the number of sources for
a 30 dB SNR.
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Figure 3.13 Probability of correct recovery of all sources vs. the number of sources
for a 30 dB SNR.



CHAPTER 4

CONCLUSIONS AND FUTURE WORK

With the goal of performing high-accuracy active and passive TOA-based localization,

this dissertation has addressed two important problems: allocating the limited

available power and/or bandwidth among transmitters for optimal localization

accuracy and the localization problem itself.

In Chapter 2, strategies for allocating power and/or bandwidth are formulated,

given that transmitters access the medium using disjoint bandwidths of the spectrum.

Extensive simulations are run on the performance of resource allocation for different

SNR’s in terms of the theoretical CRLB and tested by a multilateration algorithm.

Numerical evidence shows that very rarely more than three transmitters are required

for optimal allocation of power and/or bandwidth. For the case of five transmitters,

up to 70%, 50% and 10% reduction in localization error in comparison to uniform

allocation can be achieved by jointly allocating power and bandwidth, allocating

bandwidth only and allocating power only, respectively. Thus, it follows that

bandwidth is a more valuable resource than power.

By combining concepts from compressive sensing and direct localization, in

Chapter 3, a novel direct passive localization technique, dubbed DLM, was developed

for multiple sources in the presence of multipath. DLM assumes the emitted

waveforms are known but requires no prior information on the channel. In fact, its

localization accuracy is almost constant irrespective of the delay spread of the channel.

At the core of this technique lies an optimization problem that recovers the locations

of the sources with high accuracy by exploiting properties that are different for LOS

and NLOS paths. It is shown theoretically how to set the algorithm’s parameters

to guarantee successful recovery including a parameter that determines the relative

contributions of the LOS and NLOS components to the cost function. Contrary to
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indirect techniques, the proposed technique is capable of localizing sources with an

accuracy beyond that of the signal resolution, with high probability. In absence of

multipath, DLM’s accuracy matches that of the maximum likelihood estimator of the

sources’ locations. In the presence of multipath, DLM’s accuracy outperforms indirect

and other direct techniques, and can find the sources’ location even when some sensors

suffer from LOS blockage. The gain in localization accuracy does not come for free, as

DLM requires larger computational resources than previous techniques. To this end,

a grid refinement procedure is proposed which greatly reduces the computational

complexity without affecting its localization accuracy. Nonetheless, this should be

less of a burden as computational power keeps increasing and second-order cone

program solvers become more efficient. DLM’s high accuracy is validated by extensive

numerical simulations.

The novel sparse framework introduced in Chapter 3 exploits the fact that

LOS paths must originate from the same location to estimate the sources’ locations.

This framework may be extended to other cases of direct localization in different

conditions. For instance, when the signals are unknown, the indirect approach for

localizing the sources consists in cross-correlating the signals received at the sensors

with that of a reference sensor. The peaks of such cross-correlations can provide

estimates of the time-difference-of-arrivals (TDOA’s). Then, the sources’ locations

can be estimated by hyperbolic multilateration from the TDOA measurements. In the

case of multipath channels, such approach fails because multiple peaks appear on such

cross-correlations and it is virtually impossible to find out which peaks correspond to

time-differences between LOS components, a problem known in the literature as the

data-association problem. Instead, by employing the novel framework in this work,

we expect to estimate the sources’ locations directly, and therefore, completely bypass

the data-association problem.
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A drawback of direct localization is that it requires that the baseband signals

acquired at all sensors are relayed to a fusion center. In contrast, indirect techniques

only transmit the TOA estimates at all sensors to the fusion center. Therefore, a

possible future line of research is to investigate and develop techniques that combine

the advantages of both worlds, i.e., techniques that require relaying only a function

of the received signals while still achieving high localization accuracy.



APPENDIX A

PROOF OF PROPOSITION 1

The power allocation pjopt and the bandwidth allocation wj
opt as solutions for

Problem 3 must satisfy pjopt ≤ P and wj
opt ≤ B, and must be colinear. To prove

the latter, we define two colinear allocations p̂ and ŵ whose m-th components are

defined as

p̂(m) =
P

M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

(
pjopt(m)

) 1
3
(
wjopt(m)

) 2
3 (A.1)

ŵ(m) =
B

M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

(
pjopt(m)

) 1
3
(
wjopt(m)

) 2
3 (A.2)

The cost (2.11) associated to these new allocations can be written in terms of the

cost function of the previous allocations using (2.3)

g(p̂, ŵ) =

[
M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

]3
PB2

g(pjopt,w
j
opt) (A.3)

By Hölder’s inequality [86], and using the fact that pjopt(i), w
j
opt(i) ≥ 0, the numerator

in the above fraction satisfies[
M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

]3
≤
[
(1>pjopt)

1
3 (1>wj

opt)
2
3

]3
(A.4)

Since the allocations must satisfy 1>pjopt ≤ P and wj
opt ≤ B, it follows easily that[

(1>pjopt)
1
3 (1>wj

opt)
2
3

]3
≤ PB2, and therefore (A.3) reads

g(p̂, ŵ) ≤ g(pjopt,w
j
opt) (A.5)
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Thus for any power and bandwidth allocation, it exists always a colinear alternative

solution (p̂, ŵ) performing equal or better, and such that ŵ = B
P

p̂. Hence, the

solution (pjopt,w
j
opt) must also satisfy this property, i.e. wj

opt = B
P

pjopt.



APPENDIX B

PROOF OF PROPOSITION 2

The proof of Proposition 2 is by contradiction. Call y′ the solution to problem (2.22).

Suppose that problem (2.19) admits a solution y∗ that is better than any scaled copy

of y′ satisfying the constraints of problem (2.19); i.e. y∗ better than αy′ for any

α such that 0 < α < D
1>y′

. As a better solution, the objective function evaluated

at y∗ must be smaller than evaluated at αy′: maxq gq(y
∗, k) < maxq gq(αy′, k) for

α ∈ [0, D
1>y′

]. For the right side of this inequality, using the definition of g(y, k) (2.18),

we can put the constant α as a factor in front of the max operator: maxq gq(y
∗, k) <

1
αk+1 maxq gq(y

′, k). The most limiting value of α is α = D
1>y′

, thus leading to

max
q
gq(y

∗, k) <

(
1>y′

D

)k+1

max
q
gq(y

′, k) ≤ E

(
1>y′

D

)k+1

(B.1)

where we use the fact that y′ must satisfy the constraints of problem (2.22), i.e.

maxq gq(y
′, k) ≤ E. The allocation policy y′′ =

(
maxq gq(y∗,k)

E

)1/k+1

y∗ based on y∗,

satisfies gq(y
′′, k) = E. Computing the sum of y′′’s components and making use of

(B.1) it is obtained

1>y′′ =

(
maxq gq(y

∗, k)

E

)1/k+1

1>y∗ <
1>y′

D
1>y∗ (B.2)

Because y∗ is a solution to problem (2.19) it satisfies 1>y∗ ≤ D, and consequently in

(B.2), 1>y′′ < 1>y′. This indicates that y′′, rather than y′, is a solution to problem

(2.19) and contradicts the original hypothesis.
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APPENDIX C

PROOF OF LEMMA 5

Let an atomic decomposition of R be (3.23). The goal of the proof is to show that

all locations, p
(k)
q for q = 1, . . . , Q and k = 1, . . . , Kq are consistent with Sq or more

paths if ∥∥p(k)
q

∥∥
2

= uq <
1√
Sq − 1

. (C.1)

From (3.23), the signal at the l-th sensor is

rl =

Q∑
q=1

Kq∑
k=1

b
(k)
q (l)6=0

c(k)q b(k)q (l)sq
(
τl
(
p(k)
q

))
+

Q∑
q=1

Kql∑
k=1

c
(k)
ql e

iφ
(k)
ql sq

(
τ
(k)
ql

)
. (C.2)

By Assumption 3, τl(p
(k)
q ) is a true propagation if b

(k)
q (l) 6= 0. Therefore, if b

(k)
q has

Sq or more non-zero entries, according to Definition 2, p
(k)
q is consistent with Sq or

more paths. It is left to prove that ‖b(k)
q ‖0 ≥ Sq. The proof is by contradiction. Let,∥∥∥b(1)
1

∥∥∥
0
< S1. (C.3)

and let the atomic decomposition (3.23) in which the atom L1

(
b
(1)
1 ,p

(1)
1

)
is replaced

by ‖b(k)
q ‖0 NLOS atoms as follows

L1

(
b
(1)
1 ,p

(1)
1

)
=

L∑
l=1

b
(1)
1 (l)6=0

∣∣∣b(1)1 (l)
∣∣∣N11

(
φ
(
b
(1)
1 (l)

)
, τl

(
p
(1)
1

))
. (C.4)

Consider now the two decompositions (3.23) and the one obtained with (C.4). The

costs of the two decompositions differ only in the coefficients of the atoms shown in

(C.4). Ignoring the common atoms, the cost of decomposition (3.23) is c
(1)
1 , whereas
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the cost of decomposition obtained from combining (C.4) with (3.23) is

c
(1)
1

L∑
l=1

b
(1)
1 (l)6=0

∣∣∣b(1)1 (l)
∣∣∣ . (C.5)

Normalizing the two costs by c
(1)
1 , and if (3.23), which by (C.3) has a location p

(1)
1

with less than Sq paths, is optimal, then

1 ≤
L∑
l=1

b
(1)
1 (l)6=0

∣∣∣b(1)1 (l)
∣∣∣ . (C.6)

We show next that inequality (C.6) cannot be satisfied if ‖b(1)
1 ‖2 satisfies (C.1).

Define the vector function 1(b
(1)
1 ) whose l-th entry is one if b

(1)
1 (l) 6= 0, and 0 otherwise,

and denote | · | the element-wise absolute value. Then the right hand side of (C.6) is

L∑
l=1

b
(1)
1 (l)6=0

∣∣∣b(1)1 (l)
∣∣∣ =

[
1
(
b
(1)
1

)]T ∣∣∣b(1)
1

∣∣∣ , (C.7)

and by the Cauchy-Schwarz inequality[
1
(
b
(1)
1

)]T ∣∣∣b(1)
1

∣∣∣ ≤ ∥∥∥1(b
(1)
1

)∥∥∥
2

∥∥∥b(1)
1

∥∥∥
2

=

√∥∥∥b(1)
1

∥∥∥
0

∥∥∥b(1)
1

∥∥∥
2
. (C.8)

However ‖b(1)
1 ‖2 = u1, and by equation (C.1), ‖b(1)

1 ‖2 < 1/
√
S1−1. Moreover, by

assumption (C.3), ‖b(1)
1 ‖0 ≤ S1 − 1. Therefore, it follows√∥∥∥b(1)

1

∥∥∥
0

∥∥∥b(1)
1

∥∥∥
2
< 1, (C.9)

which combined with (C.7) and (C.8) results in

L∑
l=1

b
(1)
1 (l)6=0

∣∣∣b(1)1 (l)
∣∣∣ < 1, (C.10)

which contradicts (C.6).



APPENDIX D

PROOF OF LEMMA 6

Assume the optimal atomic decomposition of R is (3.23). Then, parameter Kq is

the number of locations associated to the optimal atomic decomposition for the q-th

source. We aim to prove that if parameter uq∥∥b(k)
q

∥∥
2

= uq >
1√
Sq
, (D.1)

then Kq ≥ 1. The proof is by contradiction. Let K1 = 0, then the optimal atomic

decomposition (3.23) simplifies to

R =

Q∑
q=2

Kq∑
k=1

c(k)q Lq

(
b(k)
q ,p(k)

q

)
+

Q∑
q=1

L∑
l=1

Kql∑
k=1

c
(k)
ql Nql

(
φ
(k)
ql , τ

(k)
ql

)
, (D.2)

and the signal at the l-th sensor is

rl =

Q∑
q=2

Kq∑
k=1

b
(k)
q (l)6=0

c(k)q b(k)q (l)sq
(
τl
(
p(k)
q
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+

Q∑
q=1

Kql∑
k=1

c
(k)
ql e

iφ
(k)
ql sq
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τ
(k)
ql

)
. (D.3)

Notice that the first summation begins with q = 2 because K1 = 0. By Assumption 3,{
τ
(k)
1l

}K1l

k=1
(D.4)

are the true propagation delays of the paths between source 1 and sensor l. By

Assumption 2, there are S1 LOS paths from source 1. Let

{l1, . . . , lS1} ⊆ {1, . . . , L} (D.5)

be the indexes of the destination sensors of such LOS paths, and let τ
(1)
1l in (D.4) be

the propagation delay corresponding to the LOS path between source 1 and sensor l,

i.e.

τ
(1)
1l = τl (p1) for l ∈ {l1, . . . , lS1} . (D.6)
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We show next that there exists a decomposition different than (D.2) for which

K1 ≥ 1 and whose cost is smaller, thus contradicting the assumption that (D.2)

is optimal. According to (3.15) and (3.16), the sum of NLOS atoms with delays

τ
(1)
1l for l ∈ {l1, . . . , lS1} in the presumed optimal atomic decomposition (D.2), i.e.,∑
l∈{l1,...,lS1

} c
(1)
1l N1l(φ

(1)
1l , τ

(1)
1l ), can be expressed for any parameter c as

∑
l∈{l1,...,lS1

}

c
(1)
1l N1l

(
φ
(1)
1l , τ

(1)
1l

)
=

=

√
S1c

u1
L1 (b,p1) +

∑
l∈{l1,...,lS1

}

(
c
(1)
1l − c

)
N1l

(
φ
(1)
1l , τ

(1)
1l

)
, (D.7)

where b is

b(l) =


u1√
S1
eiφ

(1)
1l for l ∈ {l1, · · · , lS1}

0 otherwise.

(D.8)

Let c = cmin defined by

cmin = min
l∈{l1,...,lS1

}
c
(1)
1l . (D.9)

Next it is shown that the cost of the decomposition obtained by combining (D.7)–

(D.9) with (D.2) is lower than the cost of the decomposition (D.2), contradicting the

assumption that (D.2) is optimal. Notice the former decomposition includes the LOS

atom L1(b,p1). The costs of the two decompositions differ only in the coefficients of

the atoms shown in (D.7). Ignoring the common atoms, the cost of decomposition

(D.2) is ∑
l∈{l1,...,lS1

}

c
(1)
1l (D.10)

whereas the cost of decomposition obtained from (D.7) is

√
S1cmin

u1
+

∑
l∈{l1,...,lS1

}

(
c
(1)
1l − cmin

)
. (D.11)
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Since (D.2) is optimal, it means they must satisfy

∑
l∈{l1,...,lS1

}

c
(1)
1l ≤

√
S1cmin

u1
+

∑
l∈{l1,...,lS1

}

(
c
(1)
1l − cmin

)
, (D.12)

and after simplification u1 ≤ 1/
√
S1, which contradicts (D.1).
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[8] A. Küpper, Location-based services: fundamentals and operation. West Sussex,
United Kingdom: John Wiley & Sons, 2005.

[9] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, “MIMO
radar: an idea whose time has come,” in IEEE Radar Conference, 2004, pp.
71–78.

[10] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated
antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116–129, 2008.

[11] N. H. Lehmann, A. M. Haimovich, R. S. Blum, and L. Cimini, “High resolution
capabilities of MIMO radar,” in Signals, Systems and Computers, IEEE 40th
Asilomar Conference on, 2006, pp. 25–30.

[12] N. H. Lehmann, E. Fishler, A. M. Haimovich, R. S. Blum, D. Chizhik, L. J. Cimini,
and R. A. Valenzuela, “Evaluation of transmit diversity in MIMO-radar
direction finding,” Signal Processing, IEEE Transactions on, vol. 55, no. 5,
pp. 2215–2225, 2007.

[13] E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A.
Valenzuela, “Spatial diversity in radars-models and detection performance,”
Signal Processing, IEEE Transactions on, vol. 54, no. 3, pp. 823–838, 2006.

86



87

[14] Q. He, N. H. Lehmann, R. S. Blum, and A. M. Haimovich, “MIMO radar moving
target detection in homogeneous clutter,” Aerospace and Electronic Systems,
IEEE Transactions on, vol. 46, no. 3, pp. 1290–1301, 2010.

[15] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network localization
techniques,” Computer networks, vol. 51, no. 10, pp. 2529–2553, 2007.

[16] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source localization
problems,” Signal Processing, IEEE Transactions on, vol. 56, no. 5, pp. 1770–
1778, 2008.

[17] E. Elnahrawy, X. Li, and R. P. Martin, “The limits of localization using signal
strength: A comparative study,” in Sensor and Ad Hoc Communications and
Networks, 1st Annual IEEE Communications Society Conference on, 2004, pp.
406–414.

[18] M. Bshara, U. Orguner, F. Gustafsson, and L. Van Biesen, “Fingerprinting local-
ization in wireless networks based on received-signal-strength measurements:
A case study on WiMAX networks,” Vehicular Technology, IEEE Transactions
on, vol. 59, no. 1, pp. 283–294, 2010.

[19] X. Li and K. Pahlavan, “Super-resolution TOA estimation with diversity for indoor
geolocation,” Wireless Communications, IEEE Transactions on, vol. 3, no. 1,
pp. 224–234, 2004.

[20] H. Saarnisaari, “Tls-esprit in a time delay estimation,” in IEEE 47th.

[21] J. Caffery and G. L. Stuber, “Subscriber location in cdma cellular networks,”
Vehicular Technology, IEEE Transactions on, vol. 47, no. 2, pp. 406–416,
1998.

[22] C. Knapp and G. C. Carter, “The generalized correlation method for estimation of
time delay,” Acoustics, Speech and Signal Processing, IEEE Transactions on,
vol. 24, no. 4, pp. 320–327, 1976.

[23] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on, vol. 37, no. 6, pp.
1067–1080, 2007.

[24] E. Fishler, A. Haimovich, R. Blum, R. Cimini, D. Chizhik, and R. Valenzuela,
“Performance of MIMO radar systems: advantages of angular diversity,” in
Signals, Systems and Computers, IEEE 38th Asilomar Conference on, vol. 1,
2004, pp. 305–309.

[25] R. L. Mitchell, “Models of extended targets and their coherent radar images,”
Proceedings of the IEEE, vol. 62, no. 6, pp. 754–758, 1974.



88

[26] Q. He, R. S. Blum, H. Godrich, and A. M. Haimovich, “Target velocity estimation and
antenna placement for MIMO radar with widely separated antennas,” Selected
Topics in Signal Processing, IEEE Journal of, vol. 4, no. 1, pp. 79–100, 2010.

[27] Q. He, R. S. Blum, and A. M. Haimovich, “Noncoherent MIMO radar for location
and velocity estimation: More antennas means better performance,” Signal
Processing, IEEE Transactions on, vol. 58, no. 7, pp. 3661–3680, 2010.

[28] H. Godrich, A. Haimovich, and R. S. Blum, “Target localisation techniques and tools
for multiple-input multiple-output radar,” IET Radar, Sonar & Navigation,
vol. 3, no. 4, pp. 314–327, 2009.

[29] H. Wang and H. Guo, “Hyperbolic localization method for MIMO radar,” in IEEE
International Radar Symposium (IRS), 2011, pp. 880–885.

[30] O. Bar-Shalom and A. J. Weiss, “Direct positioning of stationary targets using MIMO
radar,” Signal Processing, vol. 91, no. 10, pp. 2345–2358, 2011.

[31] A. Dekker, “A taxonomy of network centric warfare architectures,” Defense Technical
Information Center (DTIC) Document, Canberra, Australia, Tech. Rep., 2008.

[32] M. E. Nelms and P. J. Collins, “Development and evaluation of a multistatic
ultrawideband random noise radar network,” in IEEE Radar Conference, 2011,
pp. 1068–1073.

[33] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and
Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning
aspects for future sensor networks,” IEEE Signal Processing Magazine, vol. 22,
no. 4, pp. 70–84, 2005.

[34] E. Paolini, A. Giorgetti, M. Chiani, R. Minutolo, and M. Montanari, “Localization
capability of cooperative anti-intruder radar systems,” EURASIP Journal on
Advances in Signal Processing, vol. 2008, no. 1, p. 726854, 2008.

[35] C. Tong, M. Inggs, and A. Mishra, “Towards a MIMO radar based on commensal use
of fm broadcast transmitters of opportunity,” in Synthetic Aperture Radar,
9th European Conference on. VDE, 2012, pp. 283–286.

[36] H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localization accuracy gain
in MIMO radar-based systems,” Information Theory, IEEE Transactions on,
vol. 56, no. 6, pp. 2783–2803, 2010.

[37] S. K. Sengijpta, “Fundamentals of statistical signal processing: Estimation theory,”
Technometrics, vol. 37, no. 4, pp. 465–466, 1995.

[38] D. Gabor, “Theory of communication. part 1: the analysis of information,” Journal of
the Institution of Electrical Engineers — Part III: Radio and Communication
Engineering, vol. 93, no. 26, pp. 429–441, 1946.



89

[39] H. Godrich, V. M. Chiriac, A. M. Haimovich, and R. S. Blum, “Target tracking in
MIMO radar systems: Techniques and performance analysis,” in IEEE Radar
Conference, 2010, pp. 1111–1116.

[40] J. Tabrikian, “Barankin bounds for target localization by MIMO radars,” in Sensor
Array and Multichannel Processing, IEEE 4th Workshop on, 2006, pp. 278–
281.

[41] C. Musso and J.-P. Ovarlez, “Improvement of the ziv-zakai lower bound for time
delay estimation,” in 15th European Signal Processing Conference, 2007, pp.
960–964.
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