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Chapter 1

Introduction

1.1 Streaky motions in transitional wall-bounded shear flows flows

Bypass transition. The ‘classical’ scenario of transition to turbulence in a number of flows is un-
derstood as the onset of a linear instability of the basic flow followed by secondary instabilities
and then by transition. For instance in flat plate boundary layers, the primary instability is in the
form of 2D Tollmien-Schlichting waves which are exponentially amplified for Reynolds numbers
larger than the critical Rec. However, it has long been known that in the presence of high levels
of perturbations, such as e.g. free-stream turbulence, transition occurs below the critical Reynolds
number, bypassing the onset of the primary instability. In this transition scenario, called ‘bypass
transition’ the prominent feature of the flow is the presence of ‘streamwise streaks’ in smoke vi-
sualisations of the flow, as shown in figure 1.1 (see e.g. Kendall, 1985; Matsubara & Alfredsson,
2001). The streaks consist of spanwise alternating regions of high and low streamwise velocity
which are elongated in the streamwise direction. In transitional flows their characteristic span-
wise wavelength is of the order of the shear thickness (the boundary layer thickness in boundary
layer flows, the channel half-width in plane channels, etc.) .

Similar phenomena are observed in a number of other wall-bounded shear flows such as the
pressure-driven channel flow where transition is observed for values of the Reynolds number
(Re ≈ 1000, Patel & Head, 1969) much smaller than the critical Reynolds number (Rec = 5772,
Orszag, 1971) at which Tollmien-Schichting waves become linearly unstable. In the case of plane
Couette and of the Hagen-Poiseuille flow in a pipe, transition to turbulence is observed despite the
linear stability of the basic flow. Also in this case streaky structures are observed in the transitional
regime. These scenarios of transition to turbulence have long remained basically unexplained. A
particularly intriguing issue, for instance, is that critical modes are spanwise uniform with a fi-
nite wavelength in the streamwise direction, while the observed streaks have exactly the opposed
feature: they are quasi-uniform in the streamwise direction but periodic in the spanwise direc-
tion. In the next section we will explain how the solution of this apparent contradiction is now
understood.

The lift-up effect. In shear flows the fluid in a region of the flow (e.g. near the wall in Poiseuille
flow) moves at a lower speed than the fluid in the other region (e.g. the channel centre in Poiseuille
flow). If low-energy spanwise periodic counter-rotating streamwise vortices are introduced in the
flow, they redistribute the streamwise velocity by carrying low velocity fluid in the high-speed
fluid region and high velocity fluid in the low speed region. This redistribution of streamwise
momentum, called ‘lift-up effect’ leads to the formation of spanwise periodic regions of high and
low speed streamwise velocity, i.e. the streamwise streaks (Moffatt, 1967; Ellingsen & Palm, 1975;
Landahl, 1980, 1990). The liftup effect has been shown to be associated with the nonnormal na-
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Figure 1.1: Smoke visualization of streaks in transition under the high-level free-stream turbulence in a
boundary layer. The level of free-stream turbulence increases in panels a to d (from Matsubara & Alfredsson,
2001).

ture of the linearized Navier-Stokes operator and optimal perturbations maximizing the energy
growth of the streaks have been computed for virtually all the canonical shear flows in the initial
value problem (Butler & Farrell, 1992; Reddy & Henningson, 1993; Trefethen et al., 1993; Schmid
& Henningson, 1994; Hristova et al., 2002), the harmonic forcing problem (Reddy & Henningson,
1993; Reddy et al., 1993; Trefethen et al., 1993) and for stochastic excitation (Farrell & Ioannou,
1993a,b, 1996; Bamieh & Dahleh, 2001; Jovanović & Bamieh, 2005). The optimal input perturba-
tions consist of streamwise vortices and the most amplified perturbations in streamwise streaks,
with typical spanwise wavelengths of the order of the shear layer thickness. In the linear context
the growth of the streaks is only transient as they are modally stable, but the maximum energy
growths reached at finite times are proportional to the square of the Reynolds number (Gustavs-
son, 1991) and therefore can be very large (see e.g. Schmid & Henningson, 2001, for a summary of
the main results).

Streak instability and self-sustained process. When the streaks reach sufficiently large ampli-
tudes they become unstable to secondary perturbations via an inflectional, typically sinuous, in-
stability (Waleffe, 1995; Reddy et al., 1998; Andersson et al., 2001). As this secondary instability is
subcritical small finite amplitude perturbations can also develop on top of streaks of amplitude
smaller than the critical one (Schoppa & Hussain, 2002; Cossu et al., 2011). A key feature of the sec-
ondary (linear or nonlinear) instability is that is amplifies streamwise non-uniform perturbations
in a particular streamwise waveband. The breakdown of streamwise streaks leads to the regen-
eration of streamwise vorticity via nonlinear mechanisms. Under particular conditions, related
to the streamwise and spanwise wavelength of the perturbations and to the Reynolds number,
the process can be self-sustained. This concept has been investigated by Hamilton et al. (1995)
who studied it in a small periodic domain (the minimal flow unit of Jiménez & Moin, 1991) for
plane Couette flow. The flow visualization and careful analysis of the energy associated with var-
ious Fourier modes enabled them to identify a three step process, as shown in figure 1.2. First,
spanwise fluctuation in streamwise velocity i.e., streaks, are generated through the lift-up effect.
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Figure 1.2: The self-sustaining mechanism (SSP). Left panel: schematic representation (from Hamilton
et al., 1995). Right panel: SSP-based equillibrium solution in plane Couette flow recomputed here (from
Waleffe, 1997). Green is the iso-surface of streamwise velocity component at u+

≈ −2.9, whereas red and
blue represent iso-surface of positive and negative streamwise vorticity at ωx ≈ ±0.65max(ωx).

This streaky flow has inflection points which results in their breakdown after the introduction of
streamwise dependent disturbances. They close the regeneration cycle by showing that the non-
linear interaction of the unstable eigen modes of opposite y-symmetry self-interact to reenergize
streamwise vorticity and restart the whole regeneration cycle again. For the process to be self-
sustained the Reynolds number and the spanwise length of the box need to be large enough to
allow for sufficient energy amplification by the lift-up effect and the streamwise length needs to
be large enough to allow the secondary instability to be sufficiently amplified.

Subcritical transition. From the perspective of the theory of nonlinear dynamical systems, the
bypass transition is understood as a subcritical transition where the laminar solution is linearly
stable but only conditionally (nonlinearly) stable and some perturbations with sufficiently large
amplitude, lying outside the basin of attraction of the laminar flow, lead to other solutions. For a
subcritical transition to be possible the linear stability operator evaluated on the laminar basic flow
must be non-normal (Reddy & Henningson, 1993; Schmid & Henningson, 2001) and non-trivial
finite amplitude solutions must exist in phase space. A notable challenge when investigating sub-
critical transitions is to be able to compute these non-trivial solutions around which the dynamics
in phase space is organized. In subcritical instability analysis, these solutions are tracked down
from the subcritical primary transition of the basic flow. This approach has for instance been used
in plane Poiseuille flow by Orszag & Patera (1983) and Ehrenstein & Koch (1991). However, in
flows like the plane Couette or Hagen-Poiseuille flow, such a primary instability does not exist.
An ingenious solution has been, in this case, to first obtain unstable solutions in a different system
and then track them to the desired flow by following a suitable path in the physical parameters
space (homotopy). For instance Nagata (1990) has been able to continue unstable solutions of the
centrifugally unstable Taylor-Couette flow to the plane Couette solution by continuation in the
rotation parameter in the limit of vanishing curvature while Clever & Busse (1992) have reached
a similar solution starting from an unstable Rayleigh-Bénard-Couette flow.

Non-trivial Navier-Stokes solutions based on the self-sustained process and transition. Based
on the physics of the self-sustained process, Waleffe (1998, 2001, 2003) proposed a new technique
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Figure 1.3: Dependence of the friction factor on the Reynolds number in Hagen-Poiseuille (pipe) flow. The
solid lines correspond to travelling waves (TW) solutions and are labelled by their azimuthal wavenum-
ber. The symbols correspond to experimental data from Schlichting (1979) (empty circles) and McKeon
et al. (2004) (filled circles) while the dashed blue lines correspond to the drag of the laminar Poiseuille so-
lution (lower line) and to the log-law parametrization of the mean turbulent drag. Figure reproduced from
Kerswell (2005).
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to compute non-trivial Navier-Stokes solutions in linearly stable laminar flows. The idea is to
artificially force streamwise vortices, which induces streamwise streaks that become unstable at
a critical forcing amplitude. The (linear, artificially induced) streak instability coincides with the
bifurcation to a nonlinear solution which can then be tracked down to a zero forcing amplitude,
where it is self-sustained. The solution typically found is a ‘lower branch’ solution generated
via a saddle-node bifurcation at a lower Reynolds number (or negative forcing amplitude). The
lower branch solution can therefore be continued in Reynolds number or in the forcing amplitude
in order to find the corresponding upper branch solution. This method has proven successful
to recover the Nagata-Clever-Busse solutions in plane Couette flow, and to compute non-trivial
solutions in plane Poiseuille or in pipe Hagen-Poiseuille flow (Wedin & Kerswell, 2004; Kerswell,
2005; Pringle & Kerswell, 2007; Duguet et al., 2008a).

These early investigations discovered (nonlinear) travelling wave (TW) solutions, which are
steady solutions in a reference frame travelling at their phase speed. These solutions, which rep-
resent saddles in phase space, have been shown to appear at Reynolds numbers much lower
than the transitional ones. Lower branch solutions are related to the laminar-turbulent transition
boundary, while upper branch solutions display features consistent with the turbulent flow issued
from the transition process (see figure 1.3). It was initially believed that turbulent solutions may
spend a significant time in the neighbourhood of relevant NTW, but was later shown that these
visits last only 10-20%, on average, of the total time (Kerswell & Tutty, 2007; Schneider et al., 2007).
Attention has therefore also been given to unstable periodic (in time) solutions (periodic orbits or
relative periodic orbits), both for their potentially very important role in the transition process
and because they might provide the missing building blocks to predict the statistics of the chaotic
attractor or repellor itself (Artuso et al., 1990). Periodic solutions have been computed in plane
Couette (Clever & Busse, 1997; Kawahara & Kida, 2001; Viswanath, 2007), plane channel (Toh &
Itano, 2003) and pipe flows (Duguet et al., 2008a) and in the asymptotic suction boundary layer
(Kreilos et al., 2013). It has recently been confirmed that unstable periodic orbits and their stable
and unstable manifolds play an important role in the transition to chaos of linearly stable shear
flows in small spatially periodic domains, both in hydrodynamic plane Couette flow (Kreilos &
Eckhardt, 2012), and in a similar problem of magnetohydrodynamic transition in Keplerian shear
flow (Herault et al., 2011; Riols et al., 2013).

1.2 Streaky motions in turbulent wall-bounded shear flows

Streaks are observed not only in transitional regimes, but also in fully developed turbulent flows
where they are ubiquitous. In fully developed wall-bounded turbulent shear flows the dynamics
is ruled by the presence of two different scales of the motions: inner units are used in the (viscous)
near-wall region while outer units are relevant in the outer region. In the intermediate logarithmic
region, the only relevant scale is the distance from the wall. Historically, streaky motions have
been first detected in the viscous layer of turbulent shear flows with dimensions scaling in inner
units. The relevance of large and very large-scale structures, which scale in outer units, has only
recently been recognised.

Turbulent streaky motions in the viscous layer. The flow visualizations of Kline et al. (1967) (see
figure 1.4) revealed the near region of turbulent boundary layers is very active and is populated
by streamwise streaks in a spanwise quasi-periodic pattern (see figure 1.4). In the viscous sublayer
the streaks have a regular pattern and sinuously oscillate. In the buffer layer, however, the pattern
is less regular. The streaks are seen to breakdown in an intermittent way associated with ‘bursts’.
The data of Kline et al. (1967) and Smith & Metzler (1983) indicate that the average spanwise
streak-spacing corresponds approximately to λ+

z = 100, in wall units in the near-wall region. This
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Figure 1.4: Streaks in developed turbulent flows. Left panel: hydrogen bubbles visualization of streaks in
the viscous sub-layer of turbulent boundary where the mean streaks spanwise spacing is λ+

z ≈ 100 (from
Kline et al., 1967). Right Panel: large-scale coherent streaks in plane Couette flow at Re = 750 (Reτ = 52)
with mean streak spacing λz ≈ 4 − 5h (from Komminaho et al., 1996).

spacing has been confirmed by the first direct numerical simulation of channel flow at Reτ ≈ 180 by
Kim et al. (1987). This first DNS also revealed the existence of counter-rotating quasi-streamwise
vortices, and that the mean spanwise spacing λ+

z increases with the distance from the wall.

Turbulent large (LSM) and very large (VLSM) scale motions. It has long been known that in
turbulent flows the outer region is dominated by large-scale structures with dimensions of the
order of the outer length scale h (e.g. the channel half-width or the boundary layer δ99 thickness)
often separated by regions of non-turbulent fluid. These structures are called large-scale motions
(LSM) and they have typical streamwise and spanwise size of ≈ 2− 3h and ≈ 1− 1.5h respectively
(Corrsin & Kistler, 1954; Kovasznay et al., 1970; Blackwelder & Kovasznay, 1972).

More recently it has been realized that in addition to large-scale motions, ‘very large-scale
motions’ (VLSM) with even longer scales extending up to λx ' O(10h) exist1 in plane Couette
flow (Lee & Kim, 1991; Komminaho et al., 1996; Kitoh et al., 2005; Kitoh & Umeki, 2008; Tsukahara
et al., 2006), in plane channels (Jiménez, 1998; del Álamo & Jiménez, 2003; del Álamo et al., 2004)
and pipe flows (Kim & Adrian, 1999; Guala et al., 2006) as well as in boundary layers (Tomkins
& Adrian, 2005; Hutchins & Marusic, 2007a,b). Motions at large and very large-scale account for
a significant amount of the turbulent kinetic energy and Reynolds stress in the outer region and
they modulate the near-wall cycles (Hutchins & Marusic, 2007b; Mathis et al., 2009).

The autonomous near-wall cycle The understanding of the origin of streaky motions in the vis-
cous region has progressed along lines similar to those followed to understand the nature of sub-
critical transition with, often, a risk of confusion between the two mechanisms. Jiménez & Moin
(1991) provided a seminal contribution by showing that near-wall turbulence can be sustained in
spanwise and streamwise periodic numerical domains as small as λ+

z ≈ 100,λ+
x ≈ 250 − 300. In

this way it was shown that the motions in the viscous region are sustained independently from
motions at larger scales. A great effort followed to elucidate the nature of the self-sustained mech-
anism in ‘minimal flow units’. Hamilton et al. (1995) studied the weakly turbulent dynamics in
a minimal flow unit in plane Couette flow and proposed the self-sustained process (as already
discussed in §1.1). Jiménez & Pinelli (1999) modified the evolution equation to include a filtering
mechanism to damp the fluctuation above a certain distance from the wall. They found that the
near-wall turbulence is sustained by an autonomous cycle in the range of y+

≈ 20 ∼ 60 which is
independent of the core region. The process of streak generation via lift-up effect, streak instability
leading to breakdown and vortex regeneration via nonlinear process is found to be the essential
feature of this autonomous cycle.

1These motions are also known as ‘superstructures’ or, sometimes, ‘global modes’.
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Figure 1.5: Experimental measures of large-scale coherent streaks produced using an array of cylindrical
roughness elements. Left panel: Instantaneous streamwise velocity field: large-scale structures with super-
imposed small-scale fluctuations. Right panel: Time-averaged streamwise velocity revealing the structure
of large-scale, coherent streaks. Note the transient downstream growth of the streaks amplitude (the am-
plitude of the spanwise velocity modulation). Figure from Pujals et al. (2010b).

Origin of LSM and VLSM: earlier interpretations. Large scale motions have been shown to con-
tain a number of smaller scale structures which have been interpreted as hairpin vortices (Falco,
1977; Head & Bandyopadhyay, 1981) generated by the mutual vortical induction (Zhou et al., 1999;
Adrian et al., 2000) and merger and growth of hairpins (Tomkins & Adrian, 2003; Adrian, 2007).
A first attempt at explaining the origin of the very large-scale streaks was made by Kim & Adrian
(1999) and Guala et al. (2006) who conjectured that they result from the concatenation of LSM.
From a different perspective, Itano & Toh (2005) conjectured the existence of a co-supporting cycle
where near wall structures sustain large-scale structures in plane Poiseuille flow. According to
these explanations, large-scale streaky motions in the outer layer would not exist in the absence of
the near-wall cycles. However, Flores & Jiménez (2006); Flores et al. (2007) showed that the outer
motions are not significantly influenced by a drastic change of the near wall dynamics obtained
by high roughness elements placed on the wall.

The coherent lift-up effect An alternative conjecture about the formation of large-scale motions
is that they are sustained by a mechanism similar to the self-sustained process identified in tran-
sitional flows. An essential ingredient of this mechanism would be a sort of lift-up effect for large
scale motions to be able to extract energy from the mean flow. This is exactly what del Álamo
& Jiménez (2006), later corrected by Pujals et al. (2009), and Cossu et al. (2009) did by computing
the optimal transient growth sustained by fully-developed turbulent channel and boundary layer
flows, using the linear model of Reynolds & Hussain (1972) who model small coherent motions
with an eddy viscosity. This approach was pursued by Hwang & Cossu (2010a,b); Willis et al.
(2010), who computed the optimal response to harmonic and stochastic forcing and considered
also the turbulent Couette and Hagen-Poiseuille flow cases. These investigations showed that co-
herent streaks are amplified by a coherent lift-up effect. The most amplified perturbations display
two amplification peaks, which scale in outer and inner units respectively. The dominant optimal
wavelengths have been shown to be in good agreement with the spanwise spacing of large-scale
streaks in the outer region. The maximum amplification associated to this peak increases with
the Reynolds number. The secondary optimal wavelength is found at λ+

z ≈ 100, in agreement
with the spanwise spacing of the near-wall streaks, the associated maximum amplification is rela-
tively small and does not increase with the Reynolds number. Pujals et al. (2010a) experimentally
confirmed the existence of spatial coherent transient growth in the turbulent boundary layer (see
figure 1.5).
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Figure 1.6: Iso-surface of instantaneous streamwise velocity fluctuations (from Hwang & Cossu, 2010c).
Left Panel: at Cs ≈ 0.05, large-scale streaks are populated with small-scale structure. Right Panel: Small-
scale structures are quenched with artificial damping using Cs ≈ 0.2 and large-scale streaks becomes more
visible.

A self-sustained process at large scale and in the logarithmic layer. The existence of a robust
coherent lift-up effect and the stability analysis of Park et al. (2011), who found that large-scale
coherent streaks can undergo secondary instabilities, were strong indications that a self-sustained
process might be at work at large scale in turbulent flows. A strong confirmation of this conjecture
has been given by Hwang & Cossu (2010c) who have shown that large scale motions can self-
sustain even in the absence of small-scale structures. In order to suppress the small-scale motions
while preserving the dissipation associated with them, Hwang & Cossu (2010c) used a large eddy
simulation (LES) filter and artificially increased its cutoff characteristic length. They were able to
prove that when the motions associated to the near wall are artificially quenched, motions with the
usual scales of large scale motions survive, as shown in figure 1.6. These conclusions have been
later extended by Hwang & Cossu (2011) to intermediate flow units, characteristic of motions in
the logarithmic layer.

1.3 Objective of this thesis

An impasse in the invariant solutions approach. The analysis of invariant solutions of the
Navier-Stokes equations using methods borrowed from dynamical systems theory has led to im-
portant progress in our understanding of subcritical transition in shear flows. This progress can
be appreciated in figure 1.3. From that figure it is also apparent that while the lower branch
solutions explain well the departure from the laminar state to attain the turbulent one, the under-
standing of the turbulent state itself needs improvement. The original hope was that turbulent
solutions spend a significant time in the neighbourhood of relevant saddle points (NTW) in phase
space, but this has been later shown not to be the case (Kerswell & Tutty, 2007; Schneider et al.,
2007). The current hope is that turbulent statistics could be captured by expansions based on the
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properties of unstable periodic solutions (Artuso et al., 1990). However, to this date, attempts
to prove the relevance of this approach have not been completely successful (see e.g. Chandler
& Kerswell, 2013). One may therefore question the relevance of invariant solutions in the fully
turbulent regime developing at high Reynolds numbers. It could well be that the number of so-
lutions needed to describe the flow increases with the Reynolds number, in accordance with the
Richardson-Kolmogorov energy cascade picture.

Scope of this thesis. A possible, practical way out of this impasse is to model small-scale mo-
tions, in order to take only their averaged effect into account, and to concentrate on large-scale
motions which contain most of the energy and do carry most of the turbulent Reynolds stresses.
This is exactly the approach taken by Hwang & Cossu (2010c, 2011) in using a large eddy sim-
ulation approach to investigate self-sustained processes at large scales. Furthermore, the most
recent results indicate that these motions at large scale play an increasingly important role at high
Reynolds numbers (see e.g. Guala et al., 2006; Marusic et al., 2010). The main goal of this thesis
is to compute invariant solutions corresponding to these large-scale motions and understand
their relevance to the fully developed turbulent flows. Such an understanding could also help
to better assess the relevance of upper branch invariant solutions computed for the Navier-Stokes
equations mainly at transitional Reynolds numbers. Are they really relevant in fully developed
turbulent flows? Do they evolve into near-wall or large-scale structures when the Reynolds num-
ber is raised sufficiently for scale separation of these structures to exist ?

Plan of the thesis. In chapter 2 and in appendix A and B, we introduce the mathematical and
numerical tools used in this work. We then proceed, in chapter 3, to verify if large and very
large-scale motions self-sustain in plane Couette flow in very wide and long numerical integra-
tion domains. In chapter 4 we then investigate the dynamics of large-scale motions in a ‘LSM-Box’,
which is a sort of minimal flow unit for these motions. In this domain we are able to compute
self-sustained coherent steady solutions and establish their relation to the Nagata-Clever-Busse-
Waleffe Navier-Stokes solutions. We also investigate if the Nagata-Clever-Busse-Waleffe solutions
can be continued into near-wall cycle solutions. Chapter 5 is dedicated to plane Poiseuille flow
where we are able to compute relative periodic orbit solutions of the Navier-Stokes equations. We
show that these periodic orbits are connected to travelling wave (TW) solutions via a global bi-
furcation (a saddle-node-infinite period bifurcation). We show that the lower branch of these TW
solutions evolve into spanwise localized states when the spanwise size of the domain is increased
while the upper branch solution displays features consistent with large-scale motions. These up-
per branch solutions are then continued to a turbulent coherent regime at Re = 2000. The main
conclusions of this study are summarized and discussed in chapter 6.
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Chapter 2

Background

2.1 Navier-Stokes equations, direct and large eddy simulations

Navier-Stokes equations. In this study the fluid is modelled by the usual Navier-Stokes equa-
tions for incompressible flows which, in Cartesian coordinates, read:

∂ui

∂xi
= 0 (2.1)

∂ui

∂t
+ u j

∂ui

∂x j
= −

∂p
∂xi

+ ν
∂2ui

∂x2
j

(2.2)

where ui is the i-th velocity component, t is time, xi is the spatial coordinate and p is the pressure
and ν is the viscosity.

Direct numerical simulations. Direct numerical simulations (DNS) are used to solve eq. (2.2)
with the aim of resolving the whole range of spatial and temporal scales of the turbulence. The
Kolmogorov length scale η = (ν3/ε)1/4, where ε is the rate of dissipation, is often used as a refer-
ence size of the smallest scale to be resolved by the DNS. The memory and CPU requirements of
DNS can become quickly prohibitive even at moderate Reynolds numbers because motions with
decreasing scale must be resolved when the Reynolds number is increased. For instance, DNS
of turbulent channel or Couette flows at Reτ = O(103) in sufficiently large domains have been
performed only very recently (see e.g. Jiménez & Hoyas, 2008; Avsarkisov et al., 2014).

Large eddy simulations with the static Smagorinsky model. In large eddy simulations (LES),
scales larger than the grid size are resolved both temporally and spatially, while the effect of sub-
grid scales (SGS) are modelled. The equations governing the evolution of large-scale motions
are derived from the Navier-Stokes equations by using an appropriate low-pass filter1 (see e.g.
Deardorff, 1970; Pope, 2000):

∂ui

∂xi
= 0 (2.3)

∂ui

∂t
+ u j

∂ui

∂x j
= −

∂q
∂xi

+ ν
∂2ui

∂x2
j

−

∂τr
i j

∂x j
(2.4)

where the overhead bar denotes the filtering action, the residual stress tensor is defined as

τR
ij = uiu j − uiu j, (2.5)

1The large-scale motions are then also called ‘filtered’ motions.

15
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the anisotropic residual stress tensor is

τr = τR
−

tr(τR)
3

I, (2.6)

and q = p + tr(τR)/3. The anisotropic residual stress tensor τi j is modelled choosing an appropriate
subgrid model in terms of eddy viscosity νt:

τr
i j = −2νtSi j, (2.7)

where Si j is the rate of strain tensor of filtered motions:

Si j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
(2.8)

For the eddy viscosity we choose the static Smagorinsky (1963) model:

νt = D(CS∆)2
S, (2.9)

where ∆ = (∆x∆y∆z)1/3 is the average length scale of the filter based on the grid spacing in the
simulation, S ≡ (2Si jSi j)1/2. and CS is the Smagorinsky constant. To avoid non-zero residual velocity
and shear stress at the wall we use the wall (damping) function D = 1 − e−(y+/A+)2

proposed by
Kim & Menon (1999). The use of static Smagorinsky model ensures that the residual (unsolved)
motions cannot transfer energy to the (resolved) filtered motions, i.e. there is no ‘backscatter’ of
energy. This is essential in our approach of proving that large-scale motions can also be sustained
in the absence of forcing by smaller-scale motions. The absence of backscatter can be verified by
considering the rate of change of kinetic energy of the filtered velocity field2:

∂
∂t

(1
2

u2
i

)
+ u j

∂
∂x j

(1
2

u2
i

)
︸                        ︷︷                        ︸

dE f
dt

=
∂
∂x j

[
ui

(
qδi j + 2νSi j − τ

r
i j

)]
︸                           ︷︷                           ︸

transport

− 2νSi jSi j︸  ︷︷  ︸
ε f

+ τr
i jSi j︸︷︷︸
Pr

(2.10)

The second term on the right hand side ε f represents viscous dissipation due the filtered velocity
field. The third term, Pr, is the rate of production of kinetic energy due to the work of subgrid
scale motions against the filtered shear. Energy backscatter is associated to a positive production
term Pr. However, by using the static Smagorinsky model, the production term is transformed
into a (eddy viscosity) viscous dissipation term Pr = −2νtSi jSi j and is therefore always negative.

The Hwang & Cossu (2010c) overdamping. In chapter 3 and chapter 4 we will use the tech-
nique used by Hwang & Cossu (2010c, 2011) to quench small scale motions and investigate if the
large scale motions survive despite this quenching. The technique simply consists in increasing
the value of the Smagorinsky constant Cs which is equivalent to an increase of the ‘Smagorinsky
mixing length’ l0 = Cs∆, as shown by Mason & Callen (1986). When Cs is increased, an increasing
range of small-scale motions shifts from resolved to unresolved and therefore becomes inactive as
they are modelled with a (positive) eddy viscosity.

2Equation (2.10) is obtained by multiplying eq. (2.4) with ui and rearranging the right hand side.
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2.2 Considered flow configurations

In this study we consider the flow of a Newtonian incompressible viscous fluid confined by two
parallel rigid walls situated at y = ±h, where y denotes the wall-normal coordinate.

In the case of the plane Couette flow the two walls move in opposite directions with speed
±Uwex, where ex is the unit vector of the x (streamwise) axis, and no external pressure gradient
is enforced. In this case the Navier-Stokes equations are made dimensionless using h as reference
length and Uw as reference velocity. The Reynolds number is thus defined as Uwh/ν, where ν
the kinematic viscosity. In dimensionless units, the (laminar flow) Couette solution is {u, v,w} =
{y, 0, 0},where y and z denote the (dimensionless) wall-normal and spanwise coordinates and u, v,
w the (dimensionless) velocity components along x, y and z, respectively.

In the case of Poiseuille flow the walls are fixed but a constant streamwise pressure gradient
dP/dx is enforced along the x axis. If h is used as reference length and UP = (h2/2ρν)|dP/dx| is used
as reference velocity, the (laminar) Poiseuille solution is {1 − y2, 0, 0} and the Reynolds number
is defined as Re = UPh/ν. Thus, the reference velocity is the maximum velocity attained by the
laminar Poiseuille solution.

2.3 Turbulent statistics

Average. Many of the results presented in the following chapters describe mean properties of
turbulent flows. Here we briefly recall the definitions that will be used in the remainder of this
thesis. We denote by a the average of a vector field a(x, t,n) which, in general, depends on the
spatial coordinate x, on time t and on the specific realization n. While, in principle, the use of
ensemble average based on n would be highly desirable, in practice this approach is very rarely
followed due to the often limited number of realizations of the flows we describe. In the following,
therefore, as a general rule, we will use a spatio-temporal average based on a single realization,
which is justified by the stationarity and x − z spatial homogeneity of turbulent processes in the
considered parallel flows:

a(y) =
1

|t2 − t1|LxLz

∫ t2

t1

∫ Lx

0

∫ Lz

0
a(x, y, z, t) dz dx dt. (2.11)

Mean and rms velocity profiles. In the considered turbulent plane Couette and Poiseuille flows,
the mean velocity field is of the form:

u = U(y)ex. (2.12)

Velocity fluctuations are defined as u′ = u − u. The root mean square (rms) perturbation veloc-

ity fields are defined as the square root of the variance of the fluctuations ui,rms =
[
(u′i )

2
]1/2

and
therefore:

urms =
[
(u −U)2

]1/2
; vrms =

[
v2

]1/2
; wrms =

[
w2

]1/2
; (2.13)

Two-point correlation and energy spectra. The two-points velocity correlation is defined as:

Ri j(y, r) = u′i (x, t)u
′

j(x + r, t) (2.14)

Suppose we have computed two-point correlations along the streamwise direction (x) for a se-
lected y, then one-dimensional spectra Φi j(y, kx) are defined to be the one-dimensional Fourier
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Figure 2.1: One-dimensional pre-multiplied spectra of the streamwise velocity at selected dis-
tances from the wall in turbulent Poseuille flow at Reτ = 590. Left panel: spanwise premultiplied
spectrum. Right panel: streamwise premultiplied spectrum. Figure from Jiménez (1998).

transform of Ri j(y, rx) :

Φi j(y, kx) =
1
π

∫
∞

−∞

e−i kxrxRi j(y, rx)drx (2.15)

Ri j(y, rx) is the inverse Fourier transform of Φi j:

Ri j(y, rx) =
1
2

∫
∞

−∞

Φi j(y, kx)eikxrxdkx. (2.16)

The local velocity variance can be expressed in terms of Φ:

u2
i,rms(y) = Rii(y, 0) =

∫
∞

0
Φii(y, kx) dkx. (2.17)

Thus, Φii(y, kx)dkx represents the average contribution to the variance ui,rms of motions with
wavenumber in the range [kx−dkx/2, kx +dkx/2]. The same rationale can be applied to compute the
velocity spectra in the spanwise direction z. The following notation is used in the remainder of the
manuscript, in accordance with standard notation used in the literature: Φ11 → Euu, Φ22 → Evv,
Φ33 → Eww.

Premultiplied spectra. Due to the large range of spatial scales involved in the considered tur-
bulent motions, when representing the spectra as a function of the wavenumbers kx or kz, a loga-
rithmic scale is used for the wavenumber axis. In this case, to preserve the property that the area
Ed log k below the curve in the range [k, k + dk] is proportional to the energy content in this range,
it is customary (see Bullock et al., 1978; Jiménez, 1998) to plot the premultiplied energy spectra k E
which respects this property.3 The same rationale applies when the energy is displayed against
wavenumbers in log-scale.4. The pre-multiplied spectra are often used to determine the scales of
motion present in a turbulent flow. Jiménez (1998) plotted pre-multiplied spectra to determine
the relevant scales of motion in a turbulent channel flow at Reτ = 180, 590. He indeed showed the
existence of the λ+

z ≈ 100 peak in spanwise premultiplied spectra in the near wall region and of
large-scale structures in the bulk of the flow (see figure 2.1).

3Indeed kEd log k = Edk.
4Indeed d log(λ) = −d log(k)
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Figure 2.2: Sketch, reproduced from Toh & Itano (2003), of the edge of chaos surface with an
embedded edge state fixed point (the attractor within the edge of chaos).

2.4 Edge-tracking

Langton (1990), a leading scientist in the field of artificial life, while studying one dimensional
cellular automata problems, found out two states of automation one “dead” and the other “alive“.
The dead states are highly organized and extreamly ascertainable, while alive states seem almost
chaotic. In between the border of dead and alive state, he discovered a third state that displayed
complex, almost lifelike behaviour. He defined a parameter λ, whose value if 0 leads to ”dead“
state and if 1 leads to ”alive” state and for a particular value in between 0 − 1 the system settle
down to a border state. The mathematician J. Doyne Farmer coined the term ‘Edge of Chaos’ to
describe this ‘border state’. The idea of edge of chaos has been extended to various other fields
like economics, social and biological systems and physical sciences. The basic idea of studying the
objects confined on edge surface remains the same irrespective of the field of applicability.

In dynamical systems theory applied to subcritical transition in fluid dynamics, the edge of
chaos is defined as a surface in phase space which separates regions leading to a fast decay to
the laminar state from regions with chaotic dynamics (see e.g. Skufca et al., 2006; Eckhardt et al.,
2007; Schneider et al., 2007, 2008). Edge states are attractors within the edge of chaos and can be
equillibrium points (Schneider et al., 2008), nonlinear travelling waves (Viswanath, 2008), periodic
or relative periodic orbit (Itano & Toh, 2001; Kreilos et al., 2013; Rawat et al., 2014). In cases where
the dimension of the edge of chaos is N − 1, N being the dimension of the phase space, it is
possible to constrain the solution to remain in a neighbourhood of the edge of chaos by a one
parameter bisection technique (see e.g. Itano & Toh, 2001; Toh & Itano, 2003), sometimes labelled
‘edge tracking’.

In this thesis we apply the edge-tracking technique to approach travelling wave or relative
periodic orbit solutions that typically are ‘lower branch’ solutions. In its most basic form, the edge
tracking is realized by adding some initial perturbation to the linearly stable laminar basic flow
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Figure 2.3: Examples of edge-tracking on the laminar-turbulent boundary where the edge state is, respec-
tively a nonlinear travelling wave (left panel, Couette flow, see chapter 4 for further details) and a relative
periodic orbit (right panel, Poiseuille flow, see chapter 5 for further details).

premultiplied with a control amplitude λ:

u0 = U + λu′0 (2.18)

Assume that we know two values λL and λT for which the initial condition relaxes to U or evolves
towards a chaotic behaviour respectively. A standard bisection is performed in the interval [λL, λT]
to determine if the value λ = (λL +λT)/2 will be the new λL or the new λT, halving the length of the
new interval. The bisection is performed iteratively to compute the threshold value for λ which
separates the two regions (see figure 2.2). In practice, iterations are stopped when the relative
variation of the control parameter is less than a predefined tolerance 2|λT − λL|/(λT + λL) < εedge.
Tolerances as low as εedge = 10−10 can be used to produce solutions lying on the edge for long
times, which may be required to approach sufficiently the edge state. Examples of edge-trackings
are given in figure 2.3.

2.5 Finding steady, TW and RPO solutions

Finding steady solutions. Steady solutions of the Navier-Stokes equations (2.2) or of the LES
equations (2.4) can be found by looking for solutions having ∂u/∂t = 0 and ∂u/∂t = 0 respectively.
These solutions, which are often unstable, can be computed using a Newton-based method. The
Newton methods we use in this thesis are based on calls to the diablo and channelflow LES
and DNS codes. In this approach one is typically led to compare solutions at a given time T
(obtained by DNS or LES) to the initial condition given to the simulation. A velocity field is a
steady solution if u(x, y, z,T) = u(x, y, z, 0),∀T (and similarly for u in the LES case). As one of the
velocity components and the pressure can be computed from the other two velocity components,
or in an equivalent way from the wall-normal velocity and vorticity, only two scalar fields are
stored in the state vectorΦ(x, y, z, t) describing the state of the system. The function that must be
set to zero by the Newton-based method therefore isΦ(x, y, z,T) −Φ(x, y, z, 0) where T is a given
final time which is assigned usually to small but finite values.

Finding travelling waves (TW). Travelling waves are solutions which travel at a given phase
speed Cx,Cz in the streamwise-spanwise directions without changing shape. They correspond to
steady solutions in a reference frame travelling at their phase speed and therefore satisfy u(x +
CxT, y, z+CzT,T) = u(x, y, z, 0),∀T. The solutions, in this case, are of course defined up to arbitrary
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Figure 2.4: Relative distance between the velocity field at time t and the one at time t+T. Dark blue
region indicated close recurrences (potential good initial guesses for Newton searches). Circles
correspond to the initial guesses successfully converged to periodic orbits while triangles denote
a convergence failure (figure from Cvitanovic & Gibson, 2010).

translations in x and z because of the continuous x−z translational invariances of the system. There
is therefore a double infinite number of solutions which physically represent the same solution
translated in space by the streamwise and spanwise phase. When looking for these solutions, it
is therefore customary to add to the system two additional scalar conditions to be satisfied by
the solutions, which have the effect of fixing the spatial phases of the solution. The phase speeds
Cx and Cz are the two additional unknowns associated with these equations (see §B.3 for more
details).

Finding relative periodic orbits (RPO). A periodic solution is such that u(x, y, z, t + T) =
u(x, y, z, t),∀t for the specific value of the temporal period T. Periodic solutions are defined up
to a temporal phase. A relative periodic (RPO) solution is periodic in the reference frame travel-
ling at its phase speed u(x + Cx(t + T), y, z + Cz(t + T), t + T) = u(x, y, z, t),∀t. RPO solutions are
therefore defined up to arbitrary translations in x and z and t. When looking for these solutions, it
is therefore customary to add to the system three additional scalar conditions to be satisfied by the
solutions and that have for effect to fix the spatial and temporal phases of the solution. The three
additional conditions are needed to solve also for the temporal period T and the phase speeds Cx
and Cz. The implementation of these conditions, used e.g. by Viswanath (2007) and Duguet et al.
(2008a), is detailed in §B.3.

Initial guess for finding TW and RPO solutions. One of the main difficulties inherent to the
computation of travelling waves or relative periodic solutions is to provide a suitable initial guess
which is sufficiently close to the solution. When looking for ‘lower branch’ solutions (TW or
RPO) a good idea is to converge to a genuine edge state or to an edge state within a particular
symmetric subspace of the solutions (Duguet et al. (2008b)). This is the approach we mainly use in
the following. A second technique, which in practice is almost equivalent, is the one introduced
by Waleffe (1998, 2001, 2003) and then widely used in other flows is to artificially force streamwise
vortices which induce streamwise streaks which become unstable at a critical forcing amplitude.
The streak instability coincides with the bifurcation to a TW which can then be tracked down to
zero forcing amplitude, where it is self-sustained. The TW found this way is typically a lower
branch solution, which can then be continued in Reynolds or in the forcing amplitude in order to
find the corresponding upper branch solutions. Finally, another technique based on the analysis
of the solution correlations in the chaotic regime, can be used to provide upper branch TW or
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RPO solutions. In this method a reference velocity field u(t) is initially selected in order to plot the
relative ‘distance’ from solutions at other times using the function

d(Cx,Cz, t, τ) =
‖u(x + Cxτ, y, z + Czτ, t + τ) − u(x, y, z, t)‖

‖u(x, y, z, t)‖
.

Typically the function d(Cx,Cz, t, τ) is first minimized with respect to the phase speeds to give the
function dopt(t, τ) which is then plotted in the t, τ plane (see figure 2.4). The minima of this function
are used as initial guesses for Newton-based iteration to look for TW or RPO solutions, depending
on the structure of dopt in the neighbourhood of the considered minimum.



Chapter 3

Self-sustained large and very large-scale
motions in turbulent Couette flow

In this chapter we investigate the nature of coherent large (LSM) and very large-scale motions
(VLSM) in plane Couette flow. The main goal here is to understand if these motions are forced
by motions at smaller scales or if they self-sustain by an intrinsic mechanism. To this end we first
summarize the main results previously obtained by other groups using direct numerical simula-
tions. Some of these results are reproduced by LES with a suitable Smagorinsky constant. We
then investigate, following the method of Hwang & Cossu (2010c), if large and very large-scale
motions survive when the near-wall cycle is artificially quenched by increasing Cs. We finally
briefly summarize the main results.

3.1 Previous results on LSM and VLSM in plane Couette flow

Lee & Kim (1991), in an early direct numerical simulation of fully developed turbulent Couette
flow, discovered quasi-steady vortical structures at the centre of the channel. They used a com-
putational box of 4πh × 8πh/3, at Re = 3000. They reported that these structures are uniform in
streamwise direction and contribute about 30% of the turbulent kinectic energy.

Bech & Andersson (1994), who performed a DNS in a domain of 4πh × 2πh, found large-scale
structures similar to those of Lee & Kim (1991). They also investigated the effect of box size and
found by increasing the spanwise domain by 2 the structure have a non-zero inclination to the
mean flow direction.

Tillmark & Alfredsson (1994) used particle image velocimetry to show the existence of large-
scale structures in Couette flow. They observed that these structures have spanwise spacing of
more than twice the channel height.

Komminaho et al. (1996) investigated the effect of an increase of the computational domain on
these large-scale structures. They used a domain of 28πh×8πh and argued that the computational
domain of Lee & Kim (1991) and Bech & Andersson (1994) was too small, which results in the
overprediction of the two-point correlation for large streamwise separation. They examined in
detail the effect of box length on the two-point velocity correlation with streamwise and spanwise
separation. They reported that due to the symmetry properties of the correlation function Ruu(∆x)
its value is always overpredicted at half box length. They further pointed out that they needed
sufficiently long simulation time to obtain a fairly converged statistics. The flow visualisation and
the correlations showed that the large-scale structure have streaky nature with a weak streamwise
vorticity. In accordance with Tillmark & Alfredsson (1994) they also observed that the vortical
structures fill the entire gap but in contrast to Lee & Kim (1991), who found out that vortex struc-
tures are stationary in time and fixed in space, they concluded that neither of this holds in larger

23



24

Reference Lx Lz Nx Nz Ny Re Reτ ∆x+ ∆z+

Lee & Kim (1991) 12.56 8.38 128 129 192 3000 170 16.6 7.41
Komminaho et al. (1996) 31.4 12.56 125 85 55 750 52 19 15.6
Tsukahara et al. (2006), Reτ = 52 89.6 24.0 1024 512 96 750 52 4.54 2.60
Tsukahara et al. (2006), Reτ = 127 130 12.0 2048 256 96 2150 127 8.015 5.90
VLSM-Box, Reτ = 52 130 12.5 650 64 48 750 52 10.4 10.1
VLSM-Box, Reτ = 127 130 12.5 650 64 48 2150 127 25 24

Table 3.1: Computational domains and discretization parameters used in previous investigations
compared to the ones used in the present chapter (VLSM-Box).

domains. If a Gaussian filter is applied to the fluctuating field, the large-scale structure is seen
to qualitatively follow the break-up regeneration cycle as reported by Hamilton et al. (1995) for
minimal domains.

More recently Tsukahara et al. (2006) argued that most of the previous DNS used too small
domains due to the computational constraints and, as a consequence, the two-point correlation
seldom drops to zero. Tsukahara et al. (2006) therefore used very long and wide domains, such
as e.g. 124h × 16h at Reynolds numbers as high as 2150 which corresponds to Reτ = 127. They
analyse the pre-multiplied spectra and two-point correlation and marked out a peak at λx ≈ 64h
and λz ≈ 4.2 − 5 h, suggesting the scale of very large-scale structures. They also implied that
these structure influence the near wall structures and noticed that near-wall low-speed streaks are
located below the large-scale low-speed structure in the core region. In the present study we use
the Tsukahara et al. (2006) results as reference case.

3.2 Validation of reference large eddy simulations

Reference simulations. As a first step, we tried to reproduce the results of Tsukahara et al. (2006)
in very large and wide numerical domains using large eddy simulations with a static Smagorinsky
filter. The Tsukahara et al. (2006) data are posted online and are an excellent source for testing the
LES algorithm. The numerical parameters considered are reported in Tab. 3.1, from which it can
be seen that at the two Reynolds numbers considered the grid spacing in the LES is such that the
near wall cycle, with characteristic lengths λ+

z ≈ 100 and λ+
x ≈ 600 can be roughly captured. This

will be important in the following, where the near wall cycle will be artificially quenched.
Kim & Menon (1999) have shown that setting the Smagorinsky constant to Cs ≈ 0.055 − 0.06

along with the use of a wall-damping damping function (see §2.1 and §B.2) gives LES results in
agreement with DNS data. We followed their approach and performed a fairly long simulation to
gather converged statistics. The simulation is initialized with a random initial condition with ar-
bitrary phase. The effect of initial transients are removed while calculating the turbulent statistics.
Komminaho et al. (1996) explained that the time scales for integral quantities are longer than the
instantaneous ones and that therefore long simulation times are needed to get converged statis-
tics for correlation quantities. The simulations are stopped when the mean flow and rms velocity
profiles change by less than 0.1%.

Mean and rms velocity profiles. Figure 3.1 shows the mean velocity profile and turbulent fluc-
tuation for the present case compared against the direct numerical simulation of Tsukahara et al.
(2006) at Reτ = 52 and Reτ = 127. The mean velocity profile U+(y) is in excellent agreement with
the DNS data for both Reynolds numbers, while the turbulent fluctuation are in good agreement



25

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

U

y

DNS Tsukahara

Cs 0.05

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.8 -0.6 -0.4 -0.2  0

u
rm

s+
,v

rm
s+

,w
rm

s+

y

urms
+

vrms
+

wrms
+

DNS Tsukahara

Cs 0.05

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

U

y

DNS Tsukahara

Cs 0.05

 0

 0.5

 1

 1.5

 2

 2.5

 3

-1 -0.8 -0.6 -0.4 -0.2  0

u
rm

s+
,v

rm
s+

,w
rm

s+

y

urms
+

vrms
+

wrms
+

DNS Tsukahara

Cs 0.05

Figure 3.1: LES-DNS comparison in a VLSM-Box for Reτ = 52 (top row) and Reτ = 127 (bottom
row). Panels on the left compare the mean flow profiles U+(y), while the panels on the right
show the variance of the three velocity components u′+, v′+ and w′+ as a function of wall-normal
coordinate (y). The data of our LES is compared to the data of the DNS of Tsukahara et al. (2006).

at Reτ = 52 and in acceptable agreement at Reτ = 127. This is probably due to the fact that, in
addition to a coarser grid, a static Smagorinsky model is used which is known for avoiding energy
backscatter from unresolved to resolved scales. We therefore probably loose a part of the energy
of the near-wall cycle, but this is exactly what we want to do next.

Premultiplied spectra. We now verify if the essential features of large-scale and very large-scale
motions are captured by computing the one-dimensional streamwise and spanwise energy spectra
at several selected wall-normal locations y for the three velocity components. We denote by Euu,
Evv and Eww the streamwise, wall normal and spanwise velocity energy spectra respectively, and
plot them in premultiplied form (see §2.3 and Bullock et al., 1978; Jiménez, 1998). The positions of
maxima in the pre-multiplied spectra indicate the wavelengths containing significant energy.

Let us begin by considering the streamwise velocity spectra, which denote the character-
istic size of streaky structures. From figure 3.2a and figure 3.3a, corresponding to Reτ = 52
and Reτ = 127 respectively, two well defined peaks can be observed in the spanwise premul-
tiplied spectra kzEuu. The first, obtained near the wall, scales in wall units and corresponds to
λ+

z = 80 ∼ 100, while the second, which scales in outer units, is obtained at λz/h = 4.2. These
two peaks correspond to streaky motions of the near wall cycle and to the large-scale motions and
are in very good agreement with the values found in all previous investigations and in particular
that of Tsukahara et al. (2006). The corresponding streamwise premultiplied spectra kxEuu are re-
ported in figure 3.2b and figure 3.3b and are associated to the length of the streaky structures and
are in very good agreement with those reported by Tsukahara et al. (2006). At Reτ = 52, a single
peak is found for λx/h ≈ 11, corresponding to λ+

x ≈ 600. At Reτ = 127, three peaks of kxEuu have
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Figure 3.2: One-dimensional premultiplied spectra at Reτ = 52: Left panel shows spanwise spectra
kzEuu, kzEvv and kzEww (top to bottom) as a function of λz. Right panel shows streamwise spectra
kxEuu, kxEvv and kxEww (top to bottom) as a function of λx.
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Figure 3.3: One-dimensional premultiplied spectra at Reτ = 127: Left panel shows spanwise spec-
tra kzEuu, kzEvv and kzEww (top to bottom) as a function of λz. Right panel shows streamwise
spectra kxEuu, kxEvv and kxEww (top to bottom) as a function of λx.
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appeared, the one near the wall at λ+
x ≈ 600, and two others in the outer region respectively at

λx ≈ 10h (large-scale motion) and λx ≈ 66h (very large-scale motions or superstructures).
The premultiplied spectra pertaining to the two other velocity components are also in good

agreement with those found by Tsukahara et al. (2006). In particular, the wall-normal velocity
spanwise premultiplied spectra (kzEvv) near the wall has a peak at λ+

z ≈ 50, which is half the
wavelength of other two components, exactly as for the second peak, at λz/h ≈ 2 which also
corresponds to half of the length associated to the streamwise velocity (see Kim et al., 1987, for an
interpretation of this).

Discussion. Our LES reproduce the essential features isolated in previous DNS. In particular,
in addition to finding the well-known near wall cycle, we also reproduce the same bimodal be-
havior of spectra found in boundary layers (Hites (1997), Marusic (2001), Hutchins & Marusic
(2007a)), channel flow (Jiménez (2007), del Álamo & Jiménez (2003), Jiménez et al. (2004), Hwang
& Cossu (2010b)) and turbulent pipe flow (Bullock et al. (1978) and Guala et al. (2006)) with large
and very large-scale motions of spanwise size λz ≈ 4.2−5h and respective length λx ≈ 10 and ≈ 66
respectively.

3.3 Artificial quenching of the small-scale structures

In the previous section we have shown that ‘reference’ large eddy simulations in very large and
wide boxes are able to capture the spectral energy peaks associated with the three important types
of motions observed in turbulent Couette flow: the near-wall cycle (λ+

z ≈ 100, λ+
x ≈ 600), the large-

scale motions (LSM, λz ≈ 4 − 5h, λx ≈ 10h) and the very large-scale motions (VLSM, λz ≈ 4 − 5h,
λx ≈ 65h). It is important to understand the relation between these different motions.

It is now well accepted that the near-wall cycle is ‘autonomous’ because it also exists in min-
imal flow units, in the absence of motions at larger scale (Jiménez & Moin, 1991). It is however
currently unclear if the motions at larger scales are forced by the near-wall cycle or if they could
be sustained in the absence of these other motions. To ascertain if motions at large scale are or are
not forced by those at smaller scales we use the method introduced by Hwang & Cossu (2010c,
2011) in turbulent channels. The idea is to quench motions at small scales by artificially increasing
their dissipation by means of a LES filter. This is in practice realized by increasing the value of
the Smagorinsky constant Cs in the static Smagorinsky model. The static Smagorinsky model is
used because it avoids any positive energy flux from unresolved (small) to resolved (large) scales.
When this model is used, one is therefore sure that large-scale motions are not forced by unre-
solved small-scale motions.

Results are obtained for Reτ = 127 where the separation of scales is clear and therefore the
intepretation of the results is straightforward. The velocity field obtained for a given Cs is used
to initialize the simulation at higher value of Cs. The ‘adaptation’ transients are then removed to
compute the flow statistics and to analyze instantaneous fields. The increase in Cs has little effect
on the friction Reynolds number eg Reτ ≈ 127 at Cs = 0.05, Reτ ≈ 125 at Cs = 0.10 and Reτ ≈ 121 at
Cs = 0.14.

Instantaneous flow fields. The instantaneous velocity fields obtained in the converged reference
LES with Cs = 0.05 display an abundance of different scales characteristic of turbulent flows.
Figure 3.4a shows an instantaneous flow field arbitrarily selected from the simulation data. We
report, in particular, slightly negative levels of streamwise perturbation velocity (where the mean
flow is removed) in half of the simulated numerical box. From the figure, two large-scale low
speed streaks and small-scale motions are very evident. From figure 3.4 it is clearly seen that
when the Smagorinsky constant is gradually increased (Cs = 0.10 in panel b, and Cs = 0.14 in
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Figure 3.4: Iso-surface of instantaneous streamwise velocity fluctuations (u+ = −2.5) at Reτ = 127
at Cs = 0.05, Cs = 0.10 and Cs = 0.14 (from top to bottom).
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Figure 3.5: One-dimensional premultiplied spectra at Reτ = 127: Left panel shows spanwise spec-
tra kzEuu as a function of λz for increasing values of the Smagorinsky constant (Cs = 0.05,Cs = 0.1
and Cs = 0.14 top to bottom). Right panels shows the corresponding streamwise spectra kxEuu as
a function of λx. The selected values of the Smagorinsky constant are the same as in figure 3.4.
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panel c), small-scale structures are gradually quenched while the structure (spacing, wavelength)
of the large-scale streaks is essentially unaffected and becomes more clear.

Spanwise pre-multiplied energy spectra. The effects observed in flow snapshots are confirmed
by the analysis of spanwise one-dimensional premultiplied spectra of the streamwise velocity
shown in the left panels of figure 3.5. As Cs is increased from its reference value the peak at
λz ≈ 100 starts shifting towards larger wavelengths but, at the same time, the outer peak remains
unchanged at λz ≈ 4.2h. At Cs = 0.14 the near-wall cycle is suppressed and only the outer peak
corresponding to the large and possibly very large-scale structures survives.

Streamwise premultiplied spectra. Streamwise premultiplied spectra corresponding to increas-
ing values of Cs are reported in the panels on the right in figure 3.5. In the reference simulation
(Cs = 0.05, panel b) peaks corresponding to LSM and VLSM are respectively visible at λx ≈ 10
and λx ≈ 66 while the one corresponding to the near wall cycle is at λ+

x ≈ 600, corresponding to
λx ≈ 5h at the Reynolds number considered. When Cs is increased the near wall cycle peak mi-
grates towards higher wavelengths finally merging with the LSM peak at λx ≈ 10. This essentially
confirms what was already visible in the spanwise spectra: motions at large scale survive even
when the near-wall cycle is suppressed, so that they must rely on a self-sustained mechanism.
However, the more interesting effect detected from streamwise spectra is that the VLSM peak at
λx ≈ 66 is gradually quenched as Cs is increased. However, for Cs = 0.14, we observe a slight
increase of the energy contained in the longest available wavelength λx = 130. It may therefore be
possible that the VLSM peak is shifting to higher λx.

3.4 Discussion

Previous investigations have revealed the existence of large and very large-scale motions (LSM &
VLSM) in turbulent plane Couette flow in addition to the well understood near-wall cycle. Here
we have used the approach introduced by Hwang & Cossu (2010c) to show that:

- Large eddy simulations in very large and wide boxes at moderate Reynolds numbers are
able to capture the most important features of turbulent Couette flow, namely the near-wall
cycle and the large and very large-scale motions (LSM & VLSM).

- When the near-wall cycle is artificially quenched, the large-scale motions (LSM) do survive
but not the very large-scale motions (VLSM).

As far as large-scale motions (LSM) are concerned, these results confirm those obtained by Hwang
& Cossu (2010c) in the turbulent channel. The motions at large scale sustain also in the absence of
the near-wall cycle. This further confirms that a self-sustained mechanism must be at work also at
large scale. This mechanism is probably based on the non-modal amplification of large-scale co-
herent structures (del Álamo & Jiménez, 2006; Pujals et al., 2009; Cossu et al., 2009; Hwang & Cossu,
2010a,b; Willis et al., 2010) and on the instability of large-scale coherent streaks of sufficiently large
amplitude (Park et al., 2011).

As for the very large-scale motions (VLSM), our results suggest that they are unable to self-
sustain when motions at smaller scales are artificially quenched, implying that these motions
probably receive some energy from smaller-scale motions. However, it is also possible that the
VLSM characteristic scale moves to longer wavelengths in overdamped simulations. Additional
investigations in longer numerical domains are therefore needed to clarify this issue.

In the next chapter, we focus on the self-sustained mechanism of large-scale motions, leaving
the question of VLSM for future work.
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Chapter 4

Nontrivial steady solutions and
large-scale coherent motions in
turbulent Couette flow

4.1 Scope of this chapter

In chapter 3 it has been shown that large-scale motions (LSM) with the characteristic size λz ≈ 4−5h
and λx ≈ 10 − 12h are self-sustained, while the much longer very large-scale motions, having
λx ≈ 60h are not self-sustained. The primary focus of this chapter is the analysis of the nature of the
self-sustained mechanism supporting large-scale motions (LSM). We therefore consider a domain,
that we label LSM-Box whose size Lx × Lz = 10.9h × 5.3h roughly corresponds to the fundamental
wavelength of LSM. This domain is also the ’optimum’ domain considered by Waleffe (2003), as
detailed in table 4.1. First, we analyze the turbulent dynamics in this domain and compare the
results of reference large eddy-simulations to those of direct numerical simulations in the same
domain and in larger domains. Then we verify that large-scale motions survive in these domains
when the near wall motions are artificially quenched. Finally, and this is the main novelty of
this chapter, we look for coherent large-scale steady solutions in the LSM-Box. These solutions
are exact solutions of the filtered (LES) equations and not of the Navier-Stokes equations. The
small-scale motions are not directly included in the solutions but only their averaged dissipative
effect is included in the wave. This is important because it allows to capture the coherent part of
large-scale motions without the need to solve the details of small-scale structures. As mentioned,
the domain sizes we consider are very similar to the optimum domain sizes in which ‘transitional’
exact solutions have been found by Nagata (1990); Clever & Busse (1992) and Waleffe (2003) (see
table 4.1). We will see in the following that this is not a mere coincidence and that those solutions
are indeed much more related to self-sustained LSM motions than to near-wall cycles as initially
believed.

4.2 Turbulent dynamics in a LSM-Box

Reference LES simulations. As a first step we performed direct numerical simulations and large
eddy simulations at Cs = 0.05 and compared the turbulent mean and rms velocity profiles against
those of Tsukahara et al. (2006) pertaining to DNS conducted in larger domains. Results obtained
at Re=750 (Reτ = 52) and Re=2150 (Reτ = 127) are reported in figure 4.1 (top panels and bottom
panels respectively).
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Reference Lx Lz Nx Ny Nz Re Reτ ∆x+ ∆z+

Nagata (1990) 7.9 4.2 - - - 300 27 - -
Clever & Busse (1992) 8.4 4.0 - - - 400 33 - -
Waleffe (2003), Reτ = 33 10.9 5.5 31 32 32 400 33 11.6 5.8
DNS LSM-Box, Reτ = 52 10.9 5.3 48 81 48 750 52 11.8 5.8
LES LSM-Box, Reτ = 52 10.9 5.3 32 61 32 750 52 17.7 8.2
DNS LSM-Box, Reτ = 127 10.9 5.3 96 81 96 2150 127 14.3 7.0
LES LSM-Box, Reτ = 127 10.9 5.3 32 61 32 2150 127 43.2 21.0

Table 4.1: Computational domains and discretization parameters used in previous investigations where
TW were computed compared to the parameters used in the present study. The highest Reynolds number at
which results have been presented by Nagata (1990), Clever & Busse (1992) and Waleffe (2003) is reported.
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Figure 4.1: Mean flow (panels on the left) and turbulent fluctuations (panels on the right) profiles com-
puted for Reτ = 52 (top row) and Reτ = 127 (bottom row) in a LES box. The reference LES data (C = 0.05)
are compared to DNS in the same LSM-Box and to the DNS data of Tsukahara et al. (2006) obtained in very
wide and long domains.
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Mean and rms velocity profiles of reference simulations. The mean velocity profiles are in
good agreement between the LES, the DNS and the DNS in large domains. The agreement of
the rms profiles is good at Re = 52 but deteriorates at Reτ = 127 especially for the LES results
which are probably too dissipative with the chosen static Smagorinsky model and the large grid
spacing. Indeed, at Reτ = 127 the grid spacing used in the LES fails to accurately resolve the
energy-producing near-wall motions and the static Smagorinsy model filters out the ‘physical’
energy backscatter and at the reference value Cs = 0.05.

Premultiplied spectra of reference simulations. The streamwise (kxEuu) and spanwise (kzEuu)
pre-multiplied spectra of streamwise velocity are reported in the top row of figure 4.2 and fig-
ure 4.3 at Reτ = 52 and Reτ = 127, respectively. The peaks associated to the near wall cycle are
well captured even in this LSM-Box and correspond to those observed in the VLSM-Box (see fig-
ures 3.2 and 3.3). The peaks corresponding to LSM correspond, in the LSM-Box, to the largest
length observable in the box and are therefore locked to the box size λx = 5.3h and λx = 10.88h for
both Reynolds numbers. Of course, the VLSM peak is out of the picture in this box.

Quenching the near wall cycle. Similarly to what was already done in the VLSM-Box, as dis-
cussed in section 3.3, we verify if the large-scale motions survive when the near-wall cycle is
artificially quenched by increasing the Smagorinsky constant Cs. We investigate the issue at both
Re=750 (Reτ = 52) and Re=2150 (Reτ = 127) by increasing Cs from its reference value Cs = 0.05
to Cs = 0.10 and finally to Cs = 0.14. The streamwise (kxEuu) and spanwise (kzEuu) pre-multiplied
spectra of streamwise velocity are reported in figure 4.2 and figure 4.3 for Reτ = 52 and Reτ = 127,
respectively. Following the usual trend, the λ+

z ≈ 100 peak in kzEuu corresponding to the near
wall cycle is quenched for increasing Cs, while the peak corresponding to LSM, λz = 5.3h in this
box, survives the quenching of the near wall cycle. Similarly, at Reτ = 127, the λ+

x ≈ 600 peak in
kxEuu corresponding to the near wall cycle is quenched when Cs is increased, while the peak corre-
sponding to LSM, λx = 10.8h in this box, survives the quenching of the near wall cycle. This is not
observed at Reτ = 52 because the two streamwise peaks are not separated at this low Reynolds
number, exactly like what observed in the VLSM-Box. These results confirm that the restriction to
a LSM box does not affect qualitatively the LSM self-sustained process.

4.3 Coherent large-scale steady solutions at Re=750

Motivation. We now turn to one of the most important questions motivating this thesis: is there
a ‘skeleton’ of large-scale invariant coherent solutions associated to the large-scale motions? In
other words, is it possible to compute e.g. steady solutions for the resolved motions in the LES
equations similarly to what has been done for the Navier-Stokes equations in the transitional
regime?

Finding the edge state in the overdamped simulations (Cs = 0.14). It is observed from the one-
dimensional premultiplied spectra that for Cs = 0.14 the near-wall cycle is damped and only the
large-scale dynamics survives. In the transitional case (Re = 400), using the Navier-Stokes equa-
tions Viswanath (2007) and Schneider et al. (2008) had shown that the edge state of plane Couette
flow is a nonlinear-steady states, which corresponds to the lower branch of the Nagata-Clever-
Busse-Waleffe solutions. The edge was found using a standard ‘edge-tracking’ technique based
on bisections. We therefore apply the same technique to find the edge state in the overdamped
LES simulations at Cs = 0.14 and at a Reynolds number in the low-turbulent regime at Re=750
(Reτ = 52). The initial condition given to the LES simulations consists of the mean turbulent
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Figure 4.2: One-dimensional premultiplied spectra at Re=750 (Reτ = 52). Left panels: spanwise pre-
multiplied spectra kzEuu(λz). Right panels: streamwise premultiplied spectra kxEuu(λx). The values of the
Smagorinsky are (top to bottom): Cs = 0.05, Cs = 0.10 and Cs = 0.14.
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Figure 4.3: One-dimensional premultiplied spectra at Re=2150 (Reτ = 127). Left panels: spanwise pre-
multiplied spectra kzEuu(λz). Right panels: streamwise premultiplied spectra kxEuu(λx). The values of the
Smagorinsky are (top to bottom): Cs = 0.05, Cs = 0.10 and Cs = 0.14.



38

 1e-05

 0.001

 0.01

 0.1

 0  400  800  1200  1600

||
v
||

t

 0.001

 0.01

 0.1

 0.1  1

||
v
||

||u||

Figure 4.4: Edge tracking at Re=750 (Reτ = 52) and Cs = 0.14. Two initial conditions (triangle symbol)
lying almost on the edge of chaos surface initially remains near the surface while being attracted to the TW
edge state (square symbol). The solution lying on the laminar side of the edge is then quickly attracted to
the laminar solution (solid, red line) while the other one goes to the non-trivial state (green line, dotted).
The trajectories are shown in both the ‖v‖− t (top panel) and in the ‖u‖−‖v‖ plane (bottom panel) displaying
the streaks-vortices dynamics.



39

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

U

y

C
s
 0.0

C
s
 0.05

C
s
 0.14

 0

 2

 4

 6

 8

-1 -0.8 -0.6 -0.4 -0.2  0

u
rm

s

+
y

C
s
 0.0

C
s
 0.05

C
s
 0.14

 0

 0.2

-1 -0.8 -0.6 -0.4 -0.2  0

v
rm

s

+
,w

rm
s

+

y

w
rms

+

v
rms

+

Figure 4.5: Lower branch steady solutions in the LSM-Box at Reτ = 52: mean flow (panel a), streamwise
(panel(b) and cross-stream (panel c) rms velocity profiles corresponding to the cases Cs = 0.14, for which
the initial guess was obtained from edge-tracking), Cs = 0.05 corresponding to a reference LES and Cs = 0
corresponding to the Navier-Stokes steady solution. The last two solutions where obtained by continuation
in Cs.

flow to which is added a pair of streamwise uniform counter-rotating rolls along with a sinuous
perturbation of the spanwise velocity, which is similar to the one used by Cossu et al. (2011):

v0 =
{
U(y), 0, 0

}
+ A0

{
0,
∂ψ0

∂z
,−
∂ψ0

∂y

}
+ 0.1 A0 {0, 0,wsin} (4.1)

where

ψ0(y, z) =
(
1 − y2

)
sin

(2πz
Lz

)
; wsin(x, y) =

(
1 − y2

)
sin

(2πx
Lx

)
. (4.2)

with Lz = 5.3 and Lx = 10.88. The bisection is performed by adjusting the amplitude A0 of the
perturbations. After an initial transient, the solution on the edge converges to a non-trivial steady
state, as shown in figure 4.4. The pseudo-periodic oscillations of the weakly ‘turbulent’ solution do
not correspond to a cycle, as can be seen from the blue line in the figure. We have confirmed that
the edge state found is a nonlinear-steady solution by converging it by means of Newton-Krylov
iterations with Peanuts initialized with the edge state. The solution has zero phase speed and is
therefore a steady solution of the Navier-Stokes equations. The mean and rms velocity profiles of
the lower branch solution are reported in figure 4.5, from where it is seen that this is a typical lower
branch solution with most of the energy concentrated in the streaky motions which are forced by
low-amplitude quasi-streamwise vortices.

Relation between the lower branch LSM-TW and the corresponding Navier-Stokes solution.
The ‘coherent’ lower branch LSM solution is very similar to the lower branch Nagata-Clever-
Busse-Waleffe solutions found in similar boxes using the Navier-Stokes equations. It is therefore
interesting to investigate the relation between these solutions. This is done by continuing the
steady solution in Cs by first decreasing from Cs = 0.14 to the reference value Cs = 0.05 and by then
reducing it to Cs = 0.0 which corresponds to the Navier-Stokes equation as clear from eq. (2.4).
The continuation is performed by reducing Cs in small steps1 using an automatic continuation
method as explained in §A.1. The mean and rms velocity profiles corresponding to Cs = 0.14,
Cs = 0.05 and Cs = 0 are shown in figure 4.5. From this figure it is seen that these three solutions
are very similar.

1Five intermediate steps have been used to go from Cs = 0.14 to Cs = 0.05 and 3 steps to go from Cs = 0.05 to Cs = 0
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Figure 4.6: Upper branch TW in the LSM-Box at Re=750 (Reτ = 52): mean flow (panel a), streamwise and
cross-stream rms velocity profiles (panel b) corresponding to the cases Cs = 0.14, Cs = 0.05 corresponding to
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lines correspond to non-symmetric branches. The symbols denote the solutions found at Cs = 0 (Navier-
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Continuation to larger Cs. Having found that lower branch LSM solutions are essentially a con-
tinuation of the Navier-Stokes solutions into the coherent turbulent regime, we now investigate if
the same happens for upper branch solutions. This is done by first recomputing the Navier-Stokes
upper branch steady solutions (Cs = 0) in the LSM-Box and by then continuing these solutions to
higher Cs using pseudo arc-length continuations (as described in §A.1). This is very important
because the vast literature on the Navier-Stokes transitional regime indeed shows that upper (and
not lower) branch solutions are the ones around which the turbulent state is organized (Waleffe,
2003; Kerswell, 2005; Eckhardt et al., 2007).

As for the lower branch, the solutions found for the mean and rms velocity profiles corre-
sponding to Cs = 0.14, Cs = 0.05 and Cs = 0, shown in figure 4.6 are very similar. Pushing the
continuation of the upper and lower branches to higher values of Cs we find that the upper and
lower branch are connected in Cs through a saddle-node bifurcation, as shown in figure 4.7. This
means that the turbulent coherent self-sustained states are based on essentially the same process
of the transitional structures which appear at low Reynolds number. The main effect of small-scale
motions is essentially to provide additional (spatially non-uniform) dissipation and not to sustain
the LSM motions.

Mathematically, the continuation to larger Cs is a well-suited procedure to obtain e.g. upper
branch solutions from lower branch ones which can be obtained starting from edge-tracking sim-
ulations. Physically, however, it should be kept in mind that while solutions at moderate values
of Cs (e.g. Cs = 0.14) still have some resemblance to the ‘real’ large scale motions because the
unphysical overdamping of small-scale motions does not affect too much the solution, solutions
at larger Cs, such as the one in the saddle-node bifurcation point, are too overdamped to be com-
pared to real motions. This is why we do not discuss in details these solutions in the high Cs
regime, despite their mathematical convenience.

Non-symmetric additional upper branch steady solutions While continuing the solutions from
the upper to the lower branch, if no symmetry conditions are enforced, the continuation algorithm
may capture non-symmetric solutions, shown as dashed-dotted (magenta) lines in figure 4.7. The
continuation of these additional solutions to lower, more ‘realistic’ values of Cs, has however been
impossible and we therefore do not discuss them in details.

4.4 Reynolds continuation of large-scale steady solutions

Continuation to lower Reynolds numbers and relation to the Nagata-Clever-Busse-Waleffe so-
lutions In the previous section we have seen that the large-scale steady solutions obtained
using a LES modelling of subgrid scales can be continued to Navier-Stokes solutions at the
same Reynolds number and that these solutions are very similar to the Nagata-Clever-Busse-
Waleffe solutions. As a first additional step we have therefore continued our steady Navier-
Stokes solutions (Cs = 0) obtained at Re=750 to lower Reynolds numbers. As shown in figure 4.8,
we find the well-known saddle-node bifurcation at Re = 127 already found by (Nagata, 1990) and
Waleffe (2003) and the solutions at Re=400 are identical to those computed in these previous inves-
tigations. This definitively confirms that the large-scale steady solutions found with LES subgrid
scale modelling are continuously linked to the transitional Nagata-Clever-Busse-Waleffe solutions
of the Navier-Stokes equations.

Continuation to higher Reynolds numbers The steady solutions described in §4.3 have been
computed at Re=750 (Reτ ≈ 52), which, while larger than the transitional value Re ≈ 350, is not
sufficiently large to display a well-defined scale separation between the near-wall and large-scale
structures (see also all the discussion in chapter 3). It therefore would be desirable to compute
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Figure 4.9: Upper branch steady solutions obtained for increasing Reynolds numbers for Cs = 0.05 in the
LSM-Box. (a) mean flow, (b) rms velocity profiles and (c) rms eddy viscosity associated to subgrid scale
motions.

steady solutions at higher Reynolds numbers, e.g. Reτ = 127 corresponding to Re=2150. We
concentrate on solutions on the upper branch which are relevant for the turbulent dynamics. So-
lutions on the lower branch are related to the transition problem which is probably less relevant
at these high Reynolds numbers. A continuation in Reynolds numbers at Cs = 0 and Cs = 0.05
fails to converge for Reynolds numbers larger than Re ≈ 1164 (Reτ ≈ 74) when Cs = 0.05. For
the Reynolds numbers where the solutions converge (up to Reτ ≈ 74) the two solutions are very
similar. To circumvent this blockage point we followed an alternate path in the parameter space,
as shown in figure 4.8. In particular, we were successful in continuing the Cs = 0.1 solution up to
Re ≈ 2500. We have then reduced Cs up to Cs = 0.05 at selected Reynolds numbers ranging up to
Re = 2187. For this last Reynolds number, corresponding to Reτ ≈ 128, however we were able to
reduce Cs only to Cs = 0.06. With the chosen resolution we were unable to continue the solutions
to even larger values of the Reynolds numbers. We have not attempted to increase the numerical
resolution for essentially two reasons. The first is merely computational. The dimension of our
state vector is already larger than 60 000, which is at the upper end of what we can computation-
ally afford in Newton-Krylov methods. Also, if the resolution is changed, so is the eddy viscosity,
so that the branch computation should be probably restarted from scratch, which was not afford-
able in the limited time of this PhD. We therefore leave the very high Reynolds number issue to
future study.

Continuation of the upper branch solutions to higher Re The mean and rms velocity profiles
of the reference (Cs = 0.05 and Cs = 0.06) solutions obtained at these larger Reynolds numbers
are displayed in figure 4.9. The mean flow associated to these solutions remains similar to the
turbulent one also in its deformation associated to large Reynolds numbers. The streamwise ve-
locity rms profile displays a slight increase of the streak amplitude in wall units and a slight shift
of their maximum amplitude towards the wall. This shift towards the wall is consistent with what
is observed in the rms profiles of DNS of turbulent flows. The change of the wall-normal and
spanwise rms velocity profiles with the Reynolds number is however minor. From figure 4.10 we
see that the structure of the steady solutions does not change much when the Reynolds number
is increased. However, the eddy viscosity associated to the unresolved motions increases with the
Reynolds number and is located mainly on the flanks of the low speed streak. The absolute levels
of eddy viscosity are not huge even at Re = 2150 where the maximum of νt does not exceed 90%
of the molecular viscosity for those solutions but, in contrast to from the Navier-Stokes case, the
eddy viscosity is not spatially uniform.



44

Figure 4.10: Visualisation of the upper branch LSM ‘turbulent’ steady solutions obtained with Cs = 0.05
and for increasing values of the Reynolds number: Re=750 (corresponding to Reτ = 52, top row), Re=1636
(corresponding to Reτ = 99, middle row), Re=2150 (corresponding to Reτ = 127, bottom row). The panels
on the left represent the streaks and quasi-streamwise vortices: the green surface represents the values
where the streamwise velocity is 50% of its maximum value while the blue and red surfaces correspond
streamwise vorticity values equal to ±70% of the maximum. The panels on the right represent the streaks
and the relative eddy-viscosity associated to the filtered small-scale motions. The green surface is the same
as in the left panel, while the violet surfaces correspond to νt/ν = 40% and the yellow one to νt/ν = 10%.
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4.5 Scale separation: large-scale or near wall solutions?

In §4.4 it has been shown that large-scale steady solutions can be continued to higher Reynolds
numbers in the Lz × Lx = 5.3h × 11h LSM-Box, which has the dimensions of ‘real’ large-scale mo-
tions (LSM) observed in the turbulent regime. The upper branch solutions display features which
are consistent with the observed large-scale motions even if, as is the case of all steady solutions
found steady solutions, they do not capture alone the entire turbulent statistics except in the early
transitional regime, say at Re=400. Nagata-Clever-Busse-Waleffe steady solutions are, however,
often discussed with respect to the near-wall cycle. For instance, Waleffe (2003) emphasizes that
the optimum parameters, for which the saddle-node bifurcation appears at the lowest Reynolds
number, correspond to λ+

z ≈ 100, which is characteristic of the wall cycle; Jiménez et al. (2005) and
Kawahara et al. (2012) also discuss these structures with respect to the near-wall cycle dynamics
despite the fact that the solutions are analyzed for Reynolds numbers lower than Re=600 at which
no scale separation exists between the scales of the near-wall cycle and those of large-scale mo-
tions. One interesting question therefore is: can the Nagata-Clever-Busse-Waleffe solutions be
continued into near-wall cycle structures in a way similar to what has been done in the LSM-Box?
We address this issue in the case of the Navier-Stokes equations (Cs = 0). Solutions describing
the near-wall cycle must scale in inner-units. Continuation of these solutions to higher Reynolds
numbers therefore should be done keeping the box dimension fixed in inner units. As L+

z = ReτLz,
when Reτ is increased, Lz must be decreased in order to keep constant L+

z , and similarly for Lx.
The size of the LSM-Box at Re=400, for which the original solution of Waleffe (2003) is available

is, in inner units, equivalent to L+
z ≈ 180 and L+

x ≈ 360. Therefore, we first continued the solution
at Re=400 in the parameters Lx and Lz to achieve L+

z ≈ 100 and L+
x ≈ 200 which in external units

corresponds to Lz = 2.6 and Lx = 5.51 (see also Gibson et al., 2008). Then we performed a series
of DNS to get an approximate relation between Reτ and Re, which in plane Couette flow is found
to be Reτ ≈ 0.054 Re + 11.22, for Re ∈ [400, 2150]. A function Reτ(Re) is indeed necessary in order
to convert L+

z and L+
x to Lz and Lx at a given Reynolds number Re (which is the actual parameter

of the continuation). Finally, a continuation in Re is started from the Re=400 solution. At the
n − th step of the continuation a converged solution u(n) has been obtained at Re = Re(n) where
we know the friction velocity u(n)

τ and the frictional Reynolds number Re(n)
τ . The dimensions L(n)

x

and spanwise length L(n)
z given in outer units are such that L+

z ≈ 100 and L+
x ≈ 250. The solution

procedure then proceeds as follows;

1. Choose an appropriate Reynolds number Ren+1, and compute an approximate Ren+1
τ .

2. Predict the approximate frictional velocity un+1
τ /Ure f = Re(n+1)

τ /Re(n+1)

3. Predict the solution un+1 at Re(n+1) as follows

un+1

un+1
τ

=
un

un
τ

(4.3)

This relation is based on the assumption that the near wall solution would probably scale in
inner units.

4. Compute the new box dimension in outer units such that:

Ln+1
z = Ln

z

(
Ren

τ

Ren+1
τ

)
; Ln+1

x = Ln
x

(
Ren

τ

Ren+1
τ

)
(4.4)

This relation explicitly keeps the domain size constant in inner units.
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Re Reτ L+
x L+

z Lx Lz u+
max y+

max

400 33.3 180 ∼ 190 80 ∼ 90 5.51 2.60 2.8 11.1
650 46.2 240 ∼ 250 103 ∼ 108 5.19 2.36 3.2 13.8
750 52.7 240 ∼ 250 105 ∼ 110 4.61 2.10 3.3 14.8
950 63.7 240 ∼ 250 98 ∼ 105 3.82 1.74 3.5 16.2

1100 71.2 240 ∼ 250 104 ∼ 110 3.51 1.60 3.7 18.2
1300 83.2 240 ∼ 250 98 ∼ 103 2.75 1.25 3.8 21.7
1600 99.1 240 ∼ 250 104 ∼ 110 2.44 1.11 3.9 23.4

Table 4.2: Computational domains fixed in inner units during continuation.
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Figure 4.11: rms velocity profiles u+
rms(y+), v+

rms(y+) and w+
rms(y+) for the set of data mentioned in table 4.2.

The arrow indicates the increase in Reynolds number and simultaneous decrease in box size in outer units.

This strategy gives a very good initial guess for both the velocity field and box dimension at
the selected Reynolds number, and the Newton-Krylov iterations converge in three to four itera-
tions. Typical domain sizes considered during this ‘near-wall cycle continuation’ are reported in
table 4.2 while the corresponding velocity profiles are reported in figure 4.11. From this figure it
is apparent that the solutions continued in these near-wall minimal flow units do not converge
to near-wall structures. For instance, the y+ position of the maximum of the rms velocity profiles
increases when Reτ is increased, while they should instead remain constant as found by Jiménez
& Moin (1991) in minimum flow unit simulations (see also Hwang, 2013). The Nagata-Clever-
Busse-Waleffe solutions, therefore, do not seem to be connected to near-wall structures, at least in
plane Couette flow, even if continued in periodic domains which remain constant in inner units
while increasing the Reynolds number.

4.6 Discussion

In this chapter we have studied the dynamics of large-scale motions in a LSM-Box periodic domain
with Lx×Lz = 10.9h×5.3h which is the ’optimum’ domain considered by Waleffe (2003) and has the
same dimensions as LSM motions. LSM survive the quenching of the near-wall cycle also in the
LSM-Box. We have then looked for the edge state of coherent (overdamped) large-scale motions
and have shown that:

- The edge state of LSM overdamped (Cs = 0.14) solutions of the LES is a steady solution (it is
computed as nonlinear travelling wave and found to have zero phase speed).
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- This lower branch solution can be connected by continuation in Cs to the Nagata-Clever-
Busse-Waleffe branch of steady solutions of the Navier-Stokes equations.

- It is possible to reach the corresponding upper branch steady solutions at the reference LES
parameter Cs = 0.05 by continuation in Cs, via a saddle-node bifurcation or by continuation
of the Nagata-Clever-Busse-Waleffe upper branch solutions.

- Upper branch solutions at Reynolds numbers up to Re = 2150, corresponding to Reτ = 127,
well into the turbulent regime, can be computed using specific paths in the Re − Cs plane.

- The continuation of the Nagata-Clever-Busse-Waleffe upper branch solutions to high
Reynolds numbers in minimal flow units with dimensions fixed in inner units to L+

x × L+
z ≈

250 × 100 does not result in structures with converging y+-structure.

The Nagata-Clever-Busse-Waleffe upper branch solutions, originally computed at low to transi-
tional (Re ≈ 400) Reynolds numbers,2 seem therefore more related to the dynamics of large-scale
motions and not to the near wall cycle in the fully developed turbulent regime.

The mean and rms velocity profiles of the coherent LSM steady solutions computed for the
LES equations are similar to those of the Nagata-Clever-Busse-Waleffe solutions computed for the
Navier-Stokes equations. One could be therefore tempted to interpret the LES solutions just as the
well known Navier-Stokes solutions (re)computed at a lower Reynolds number corresponding
to the increased viscosity due to the unresolved scales. However, such an interpretation would
neglect the fact that the eddy viscosity of the unresolved motions is non-uniform in space (see
figure 4.10) so that the effective Reynolds number Ree f f = Uwh/νt(x) depends on space. Therefore,
the resemblance of the Navier-Stokes and of the LES steady solution is not at all a priori obvious
and further investigation with enhanced grids is needed to understand if this resemblance persists
at higher Reynolds numbers.

2Slightly higher Reynolds numbers have been attained in successive studies. For instance Rincon et al. (2007b) have
continued the Nagata-Clever-Busse-Waleffe upper branch up to Re = 600.
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Chapter 5

Invariant structures at large scale in
plane Poiseuille flow

Hwang & Cossu (2010a) had isolated self-sustained large-scale motions in a plane channel. How-
ever, finding invariant solutions in this specific flow has proved much more difficult than in plane
Couette flow. In particular, straightforward edge tracking at Cs = 0.3 has not led to any simple
solution, and has displayed a probably chaotic dynamics, similarly to what has been found in pipe
flow by Schneider et al. (2007). We have therefore dedicated considerable effort to finding appro-
priate invariant solutions of the Navier-Stokes equations in this flow where travelling waves (TW)
solutions have been previously found by a limited number of investigators (Ehrenstein & Koch,
1991; Itano & Toh, 2001; Waleffe, 2003; Zammert & Eckhardt, 2013) and few relative periodic orbit
are currently known (Toh & Itano, 2003; Zammert & Eckhardt, 2013).

5.1 Relative periodic orbit in the Waleffe optimal domain

As a first step in our investigation we tried to (re)compute the TW Navier-Stokes solution (Cs = 0)
found by Waleffe (2003) following our usual method: use bisection to access the lower branch
solution and then use Newton-based pseudo-arclength continuation to access the whole lower and
upper branch solutions. We consider the Waleffe (2003) optimum domain of extension Lx × Lz =
2π × 2.416h, for which the travelling wave solutions appear at the lowest Reynolds number, and
Reynolds numbers ranging from Re = 3000 to 5000.

The search for the lower branch TW initially proved unsuccessful, probably because this so-
lution, unlike in the Couette case, has multiple unstable modes and cannot therefore be accessed
by a standard one-parameter bisection. We therefore enforced the mid-plane reflection symme-
try {u, v,w}(x, y, z) = {u,−v,w}(x,−y, z) and tried again the bisection using as initial condition the
laminar Poiseuille solution perturbed by a pair of streamwise uniform counter-rotating vortices
of amplitude A1 and a sinuous perturbation of the spanwise velocity with amplitude A2:

u0 =
{
Ulam(y), 0, 0

}
+ A1

{
0,
∂ψ0

∂z
,−
∂ψ0

∂y

}
+ A2 {0, 0,wsin} (5.1)

where

ψ0(y, z) =
(
1 − y2

)
sin

(
πy

)
sin

(2πz
Lz

)
; wsin(x, y) =

(
1 − y2

)
sin

(2πx
Lx

)
. (5.2)

The stream-function ψ0(y, z) is associated to streamwise uniform vortices, while wsin provides the
(streamwise) sinuous perturbation. The initial velocity fields u0 are solenoidal, have the same
volume flux as the laminar Poiseuille solution Ulam = 1 − y2 and respect the enforced symmetry.
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Figure 5.1: Temporal dependence of the total perturbation kinetic energy K′ for selected iterations of the
bisection process at Re = 3000. The solution on the edge rapidly converges to a periodic solution.

Re 103σ1 103σ2 103σ3 103σ4 103σ5

3000 3.99 3.34 3.32 2.99 2.73
4000 3.39 1.34 1.16 1.06 1.03

Table 5.1: Real parts σ j of the j-th Floquet exponents of the unstable modes of the RPO solutions.

The bisection was operated on A1 with the ratio A2/A1 = 1/10 kept fixed to a relatively small
value allowing the subcritical development of the streak instability (Cossu et al., 2010, 2011). For
this part of the study the Navier-Stokes equations were integrated using the channelflow code
(Gibson et al., 2008). Typically, results were obtained with 16 × 41 × 16 points in the streamwise,
wall-normal and spanwise directions and enforcing a constant volume flux during the simulation.
We verified that the characteristics of the periodic solutions found by bisection on the coarse grid
do not change when the number of collocation points is increased to 32 × 65 × 32. The numerical
results were further tested by recomputing the same periodic solutions with the different code
diablo (Bewley, 2008). The convergence of the periodic solutions was validated and improved
using Newton-based iterative methods and then their linear stability was analyzed using the in
channelflow Viswanath (2007); Gibson et al. (2008) and Newton-Krylov Peanuts code, which
can also perform the Floquet stability analysis of nonlinear solutions (see appendix B).

The relative periodic orbits. Unexpectedly, instead of finding the TW solution we were looking
for, the edge tracking converged to a relative periodic orbit for all cases considered (see figure 5.1
for the Re = 3000 convergence) with a period which increases with Reynolds number (T = 739 for
Re = 3000, T = 1090 for Re = 4000 and T = 1418 for Re = 5000). The periodic solutions were found
to travel in the streamwise direction with a phase speed Cx = 0.98 for Re = 3000 and 0.985 for
the two other cases. This indicates that the active part of the process is located near the channel
centre. These periodic solutions are unstable. A Floquet linear stability analysis was performed
at Re = 3000 and 4000, once the convergence of the periodic solution was improved to sufficient
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Figure 5.2: Converged periodic solutions represented in the ‖v′‖-‖u′‖ plane for Re = 2000, 2500, 3000,
4000 and 5000 (top right to bottom left). The markers on the Re = 3000 cycle correspond to the snapshots
reported in figure 5.3.
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Figure 5.3: Snapshots of the converged periodic solution obtained at Re = 3000. Four snapshots are taken
in correspondence to the points reported on the cycle in figure 5.2 starting from the bottom left point and
then rotating counterclockwise. The snapshots are taken at respectively t = 0 (panel a), t = 120 (panel b),
t = 230 (panel c) and t = 310 (panel d). Only the top half of the channel is considered. In green is the surface
where the streamwise velocity is 75% of its maximum value in the whole channel. In colored blue and red
are reported the surfaces where the streamwise vorticity is ±60% of its maximum value in panel (a) with
the same value in all panels. In particular, no vortices are visible in panel (c) because they are of very low
amplitude.
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Figure 5.4: Rescaled rms amplitudes of the periodic velocity perturbations expressed in wall units and
averaged over one period. The streamwise, wall-normal and spanwise components are reported in panels
(a), (b) and (c), respectively. The solutions are rescaled using the value γ = 0.8.

accuracy using Newton iterations. If no symmetry is enforced, five unstable exponents are found,
but only one of these modes (the most unstable) has the same symmetries as the periodic orbit
solution. All the unstable Floquet exponents are real and their real part, reported in table 5.1,
decreases for increasing Reynolds numbers.

The periodic self-sustained process. In figure 5.2 the converged periodic solutions are shown
in the ‖v′‖-‖u′‖ plane, where ‖u′‖2 = (1/V)

∫
V

(u − Ulam)2 dV and ‖v′‖2 = (1/V)
∫
V

v2 dV. The
norm ‖u′‖ of the streamwise perturbation velocity is representative of the amplitude of stream-
wise streaks, while ‖v′‖ is representative of the amplitude of the quasi-streamwise vortices. The
solutions rotate counter-clockwise in the cycles reported in figure 5.2. Starting from a point on
the bottom-right of the cycle, where the amplitude of the vortices is maximum, the amplitude of
the vortices initially decays while that of the streaks increases, due to the lift-up mechanism. The
streaks then reach a maximum amplitude where they experience a breakdown during which their
amplitude decays fast, while regenerating the vortices, which closes the loop of the classical self-
sustained process (Hamilton et al., 1995). The solution travels quite fast in the lower part of the
cycle, as can be seen also in figure 5.1 where it is seen that the growth phase (lift-up) of K′ ≈ ‖u′‖2

is much slower than the decay phase (breakdown). The evolution of the flow structures during
the cycle can be seen in the snapshots of the flow-field displayed in figure 5.3, taken in correspon-
dence to the four points shown in figure 5.2. The converged periodic solutions have the shift and
reflect symmetry {u, v,w}(x, y, z) = {u, v,−w}(x + Lx/2, y,−z), which was not enforced on the initial
condition. From the snapshots at Re = 3000 it is seen how every half-period the low speed streak
and the quasi-streamwise vortices shift by half spanwise wavelength and then repeat the cycle ex-
actly in the same way due to the shift and reflect symmetry of the solutions. One period therefore
corresponds to two loops of the cycles reported in figure 5.2. This T/2 − λz/2 shift symmetry is
preserved at higher Reynolds numbers but is lost at lower ones, as can be seen in figure 5.2.

Rms-velocity profiles and their Reynolds number scaling. From figure 5.2 we see that the am-
plitude of the relative periodic solutions decreases for increasing Reynolds numbers, which is
typical of ‘lower branch’ solutions which live on the edge of chaos (see e.g. Kreilos et al. (2013) for
the asymptotic suction boundary layer case). An examination of the root-mean-square velocity
field perturbation, averaged over the horizontal planes and one temporal period, shows that most
of the perturbation rms kinetic energy resides in the streamwise velocity component (streaks) with
maximum amplitude located near y ≈ ±1/2. The wall-normal and spanwise velocity rms profiles
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are consistent with center-channel quasi-streamwise vortices. These periodic solutions, therefore,
unlike previously found periodic-like solutions Toh & Itano (2003), are not localized near a single
wall but in the bulk of the flow. When the Reynolds number is increased, the rms amplitude of
the velocity field perturbation is seen to decrease. The velocity rms profiles remain approximately
self-similar with amplitudes decreasing as Re−γ for the streamwise velocity and Re−2γ for the wall-
normal and the spanwise velocity components, with γ ≈ 0.8. The fact that the streaks amplitude is
always larger than the vortex amplitude and that the ratio of streak to vortex amplitudes is almost
proportional to the Reynolds number are additional indications that the non-normal amplifica-
tion of streaks from the vortices plays an important role in the self-sustainment of these periodic
solutions.

Another important point is that the self-similarity implies that the streaky structures associated
with the relative periodic orbits do not migrate to the near wall region as the Reynolds number is
increased. These structures which remain situated in the bulk of the flow for increasing Reynolds
numbers and which are associated to quite low frequencies of oscillation are therefore compatible
with large-scale motions.

5.2 Continuation in the spanwise box dimension Lz

We have been unable to continue the RPO solutions solutions discussed in §5.1 much below Re =
2000 and we have been therefore unable to find the ‘low-Re origin’ of these solutions . Similar
attempts to continue the solutions to Cs values larger than 0.02 have also failed. In plane Couette
flow, Kawahara & Kida (2001) obtained the ‘gentle’ periodic orbit by starting with Nagata (1990)
solution and by then decreasing their domain size. We have therefore continued the solution by
increasing the spanwise box size Lz in order to find if a TW solution could be reached in this way.
Using a similar approach in the asymptotic suction boundary, Kreilos et al. (2013) found that the
relative periodic orbit was transformed into a travelling wave via a saddle-node infinite period
bifurcation (see e.g. Strogatz, 2001) often abbreviated into ‘SNIPER bifurcation’ (see e.g. Kreilos
et al., 2013).

5.2.1 The birth of a TW via an infinite-period global bifurcation.

We expect the time period to grow to very large values if a global bifurcation of the RPO is ap-
proached. To keep the computations manageable we therefore performed the Lz continuation at
Re = 2000, where the period T is much smaller than for higher Reynolds numbers. The stream-
wise box dimension Lx = 2π is kept constant. The RPO solution was computed in the usual way
by edge tracking in the symmetric subspace for decreasing value of Lz. At Lz ≈ 3.6249, instead of
the RPO, the edge tracking converge to a travelling wave (TW) lying in the same symmetric sub-
space as the periodic orbits. In order to track the solution more accurately, we have continued the
TW solution in Lz using pseudo-arclength continuation. The continuation reveals a saddle node
bifurcation at LSNIPER

z = 3.55, as shown in figure 5.5.
When approaching the global bifurcation the RPO temporal period T strongly increases, as

shown in figure 5.6. From this is also seen that the increase of T is related to longer and longer
quiescent phases.

Kreilos et al. (2013) found very similar bursting orbits in the asymptotic suction boundary layer
(ASBL). They used an homotopy starting from plane Couette in the suction velocity parameter to
reach the ASBL. When their travelling wave is continued in suction velocity, a lower branch is
generated via a saddle node bifurcation, and slightly below the critical value of suction veloc-
ity they encountered bursting orbits with very large period. They showed that the edge state in
Couette flow is connected by a heteroclinic connection to the Lz/2 spanwise shifted copy of itself,
and these two are separated by a saddle in the same symmetric subspace. Therefore, there are
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Figure 5.5: Bifurcation diagram in Lz, with Lx = 2π and Re = 2000 where the RPO solution disappears
in a global SNIPER bifurcation originating a pair of travelling waves. The RPO solutions is denoted by its
maximum (empty symbols) and minimum (filled symbols) values of the spatially-averaged wall-normal
velocity. The point where the upper and lower branch TW solutions are generated is denoted by the X
symbol.
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Figure 5.6: Pertubation energy of the RPO solutions from the edge-tracking procedure for the selected
increasing (a to d panel) values of Lz corresponding to the symbols in figure 5.5. Remark the increasing
maximum time displayed in the plots.
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Figure 5.7: The variation of time period T close to the bifurcation point. The analytical fit (solid line) of
a SNIPER bifurcation, T ≈ 240/

√
µ agrees well with the computed data here. The four leftmost symbols

correspond to the signals reported in figure 5.6.

four fixed points: two stable (upper branch, heteroclinically connected) and two unstable (lower
branch, heteroclinically connected) which annihilate in a saddle-node infinite-period bifurcation
(SNIPER), when suction velocity is increased. Tuckerman & Barkley (1988) performed the sim-
ulation of full time-dependent Boussinesq equation for a cylinder in search of travelling waves.
They varied the Rayleigh number (R) and found that the periodic orbit encountered a bottleneck
at a critical value Rc, where their period shoots to very high values, beyond Rc, finite amplitude
travelling waves are produced via a global bifurcation (SNIPER).

To confirm that the bifurcation found is a SNIPER, we plot the time period T of the periodic
solutions against the parameter µ = (Lz − LSNIPER

z )/LSNIPER
z ) in figure 5.7. The hallmark of the

SNIPER bifurcation is that the amplitude of the cycle essentialy stays O(1) while the time period
diverges as µ−1/2 as the bifurcation point is approached point (see e.g. Strogatz, 2001). From fig-
ure 5.7 it is indeed seen that the period varies as 240/

√
µ close to the bifurcation point while the

RPO amplitude essentially remains constant, as shown in figure 5.5. We therefore confirm that the
global bifurcation scenario observed here is saddle-node infinite-period (SNIPER) bifurcation.

5.2.2 Structure of the NTW

While the upper branch can be continued up to Lz ≈ 5.57 (two other turning points are encoun-
tered at Lz = 4.82 and Lz = 4.788), it has been possible to continue the lower branch up to a much
larger value of Lz (Lz ≈ 26 as shown in figure 5.8).

Upper branch solution: towards turbulent LSM solutions The flow structures of the TW at the
bifurcation (Lz ≈ LSNIPER

z ), reported in panel a of figure 5.9, consists of the usual low speed streak
flanked by positive and negative quasi-streamwise vortices. When these structures are continued
along the upper branch to larger Lz, the number of structures is seen to increase. Roughly, three
structures are present from just above the SNIPER point up to the maximum attained Lz. Indeed,
at Lz = 5.55 the upper branch solution, reported in figure 5.9(b), contains three low speed streaks
and three pair of quasi-streamwise vortices which correspond to a streak spacing λz ≈ 1.8 which
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Figure 5.8: TW bifurcation diagram in Lz, with Lx = 2π and Re = 2000. A part of this diagram is already
reported in the right part of figure 5.5. The saddle node where the upper and lower TW branches originate
is a SNIPER global bifurcation.

is in good agreement with the size of large-scale motions (LSM) in the turbulent channel (del
Álamo & Jiménez, 2003; del Álamo et al., 2004; Hwang & Cossu, 2010c). This spacing is confirmed
by the analysis of the spanwise premultiplied spectrum of the streamwise velocity reported in
figure 5.10. As seen from figure 5.11 the energy of the upper branch solutions increases for in-
creasing Lz. However the rms profiles preserve a similar shape, which is also similar to that of the
RPO solutions existing before the SNIPER bifurcation.

We have also continued the UB solutions from Cs = 0 to Cs = 0.05 using the same grid. This
corresponds to the introduction of dissipative small scales. Proceeding along these lines makes
sense because Re = 2000 is more than twice the value of the Reynolds number at which transition
is usually observed. As shown in figure 5.12, the introduction of small scale dissipation does
not significantly alter the solutions, except for a slight reduction of the maximum rms streamwise
velocity.

Lower branch solution: spanwise localized structures When the TW issued from the SNIPER
bifurcation is continued to larger Lz along the lower branch the number of structures (one at the
bifurcation) remains fixed, unlike what is observed along the upper branch. When Lz is increased,
the lower branch solution unique structure remains localized in the spanwise direction, leaving a
large portion of the domain almost unperturbed as can be seen in figure 5.9c. This solution has
been continued up to Lz = 25.5 without displaying any qualitative change during the continua-
tion. The localized structures here arise ‘naturally’ through continuation without the need of the
windowing function used e.g. by Gibson & Brand (2014).

The localized solutions of the lower branch are unstable (the unique unstable eigenvalue found
is 1.7×10−3). When the localized TW lower branch solution is perturbed along its unstable eigendi-
rection, the dynamics becomes turbulent, while it becomes laminar when perturbed in the oppo-
site direction as shown in figure 5.13. This indicates that the lower branch localized state (red cross
in the figure 5.8) sits on the edge of chaos.
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Figure 5.9: TW structures corresponding to: (a) saddle node Lz ≈ 3.55 (X symbol in figure 5.8). (b) and (c)
are, respectively, the upper (filled square symbol in figure 5.8) and lower branch (empty square symbol in
figure 5.8) solutions computed at Lz = 5.55. The iso-surfaces at u+ = −2 are plotted in green, while red and
blue surfaces correspond to positive and negative streamwise vorticity at ωx = ±0.5max(ωx)
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Figure 5.10: One-dimensional spanwise (left) and streamwise (right) premultiplied spectra of the stream-
wise velocity at Re = 2000 for the upper branch TW computed at Lz = 5.55 and displayed in figure 5.9(b).
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Figure 5.11: Comparison of the rms velocity profiles of the TW upper branch solutions for selected values
of Lz to the profiles of the RPO before the SNIPER bifurcation.
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Figure 5.12: Comparison of the rms velocity profiles of the TW upper branch solutions for Cs = 0 and
Cs = 0.05 (with Lz = 5.55 and Re = 2000).
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Figure 5.13: Trajectories initialized along the unstable eigendirection of the lower branch spanwise local-
ized travelling wave (Lx = 2π, Lz = 25, Re = 2000) and represented in the t − ‖u′‖ (left panel) and ‖u′‖ − ‖v′‖
(right panel) planes respectively. When initialized along one direction of the unstable manifold the flow
rapidly relaxes to the laminar Poiseuille solution (blue line). When initialized in the opposite direction, a
turbulent state is attained (green line). This indicates that the lower branch localized state (red cross in the
figure) sits on the edge of chaos.

5.3 Discussion

In this chapter we have discussed all the results obtained in plane Poiseuille flow. They can be
summarized as follows:

- A (lower) branch of relative periodic orbits solutions of the Navier-Stokes equation (Cs = 0)
has been found in plane Poiseuille flow at relatively large Reynolds numbers. It has not been
possible to continue these solutions much below Re ≈ 2000.

- We show that the RPO solutions found are connected to travelling wave (TW) solutions via
a global bifurcation (a saddle-node-infinite period bifurcation) when they are continued by
increasing the spanwise size Lz of the numerical domain.

- The lower branch TW solution branch evolves into a spanwise localized state when Lz is
further increased.

- The upper branch TW solutions develop multiple streaks with spanwise spacing consistent
with large-scale motions in the turbulent regime.

- These upper branch solutions do not change much when they are continued to Cs = 0.05 at
Re = 2000 where they represent turbulent coherent large-scale motions.

The dynamics of the RPO we have found (see also Rawat et al., 2013, 2014) bears some resemblance
to that of RPO solutions in the asymptotic boundary layer reported by Kreilos et al. (2013) for
instance in their T/2 − Lz/2 shift property and with their bursting behaviour. This could indicate
that this family of solutions is generic.

The saddle-node infinite period bifurcation found by increasing Lz is also of the same type
of the bifurcation found by Kreilos et al. (2013) by homotopy between the Couette flow and the
asymptotic suction boundary layer. This type of bifurcation has, however, already been detected
in previous investigations of invariant solutions in fluid systems (see e.g. Tuckerman & Barkley,
1988).

The spanwise localization of the lower branch solution is also in accordance with the results
of recent investigations that revealed the spanwise localization of other lower branch solutions
(Schneider et al., 2008; Duguet et al., 2009, 2012; Khapko et al., 2013; Gibson & Brand, 2014).
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The most important result here probably pertains to the structure of the TW upper branch
solution which is seen to develop multiple streaks in the spanwise direction and to preserve its
structure in the presence of small scale dissipation. The wall-normal structure of the upper branch,
just as the one of the found RPO, is reminiscent of large-scale motions in the outer region, and
probably of the ‘inactive’ motions defined by Townsend (1976). Further investigations are there-
fore needed to determine if other TW or RPO solutions can be continued to the fully turbulent
regime.



Chapter 6

Conclusions

It is useful to summarize here the main motivations and the main results of this thesis.

Summary of the motivations of this study. The main goal of this thesis was to compute invari-
ant solutions corresponding to large-scale motions and understand their relevance to a variety of
fully developed turbulent shear flows. The approach taken is the one of Hwang & Cossu (2010c,
2011) who have used a, possibly overdamped, static Smagorinsky model in large eddy simula-
tions in order to filter out small scale motions and therefore be able to investigate self-sustained
processes at large scales. The main results of the study are summarized below.

A self-sustained process at large scale in turbulent Couette flow (chapter 3). As a first step of
the investigation, we have applied the approach of Hwang & Cossu (2010c) to turbulent Couette
flow in very long and wide domains (Lx × Lz = 130h × 12.5h) at Reynolds numbers ranging from
Re = 750 to Re = 2150. We find that large eddy simulations in very large and wide boxes at mod-
erate Reynolds numbers are able to capture the most important features of turbulent Couette flow,
namely the near-wall cycle and the large and very large-scale motions (LSM & VLSM). When the
near-wall cycle is artificially quenched, the large-scale motions (LSM) do survive, exactly as found
by Hwang & Cossu (2010c) in the turbulent channel. This further confirms that a self-sustained
mechanism must be at work also at large scale and that it is probably based on the coherent lift-up
effect predicted by del Álamo & Jiménez (2006); Pujals et al. (2009); Cossu et al. (2009); Hwang &
Cossu (2010a,b); Willis et al. (2010) and observed by Pujals et al. (2010b). In what concerns the very
large-scale motions (VLSM), we find that their characteristic peak is suppressed when motions
at smaller scales are artificially quenched. This could imply either that their characteristic scale
moves to longer wavelengths in overdamped simulations or that those motions are forced by mo-
tions at smaller scale. Additional investigations in longer numerical domains are needed to clarify
this issue.

Coherent large-scale steady solutions in turbulent Couette flow (chapter 4). The second part
of the investigation has dealt with the nature of the dynamics of large-scale motions (LSM) in tur-
bulent Couette flow in a periodic domain of dimensions Lx × Lz = 10.9h× 5.3h. This domain is the
’optimum’ domain considered by Waleffe (2003) and has the same dimensions as LSM motions
which are characterised by λx ≈ 10 ∼ 12h and λz = 4.5 ∼ 5.5h. The considered Reynolds numbers
here range from Re = 127 (saddle node bifurcation of the Nagata-Clever-Busse-Waleffe solutions)
to Re = 2150, which is well into the turbulent regime. After showing that, also in the LSM-
Box, LSM also survive the quenching of the near-wall cycle, we have looked for the edge state
of coherent (overdamped) large-scale motions and have shown that the edge state found in over-
damped (Cs = 0.14) simulations is a non-trivial steady solution (it is found as a travelling with
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zero phase speed). Most importantly we have also shown that this lower branch solution can be
connected, by continuation in Cs, to the Nagata-Clever-Busse-Waleffe branch of TW solutions of
the Navier-Stokes equations and that it is possible to reach the corresponding upper branch TW
solutions at the reference LES parameter Cs = 0.05 through a saddle node bifurcation at large Cs
or a saddle-node bifurcation at low Reynolds number. We have been able to compute ’turbulent’
(Cs = 0.05) upper branch solutions at Reynolds numbers up to Re = 2150 using specific paths
in the Re − Cs plane. Finally, the continuation of the Nagata-Clever-Busse-Waleffe upper branch
solutions to high Reynolds numbers in minimal flow units with dimensions fixed in inner units to
L+

x × L+
z ≈ 250 × 100 does not result in structures consistent with near wall structures issued from

DNS in minimal flow units. The Nagata-Clever-Busse-Waleffe solutions seem therefore more re-
lated to the dynamics of large-scale motions and not to the near wall cycle in the fully developed
turbulent regime. The coherent steady solutions computed for the LES equations are similar to
the Nagata-Clever-Busse-Waleffe solutions computed for the Navier-Stokes equations but, con-
trary to the latter, they take into full account the fact the eddy viscosity of the unresolved motions
is non-uniform in space (see figure 4.10) and is dependent on the solution itself. Further investi-
gation with enhanced grids is needed to understand if the resemblance of Navier-Stokes and the
LES steady solutions persists at higher Reynolds numbers and for other types of solutions.

Large scale symmetric RPO in plane Poiseuille flow (chapter 5). The first part of the study of
plane Poiseuille flow has concerned relative periodic orbit (RPO) solutions of the Navier-Stokes
equations. A (lower) branch of relative periodic orbits solutions of the Navier-Stokes equation
(Cs = 0) has been found in plane Poiseuille flow at relatively large Reynolds numbers (up to
Re = 5000). It has not been possible to continue these solutions much below Re ≈ 2000 or to Cs =
0.05. The dynamics of these RPO is similar to that of RPO solutions in the asymptotic boundary
layer reported by Kreilos et al. (2013) with respect to their T/2 − Lz/2 shift property and with
their bursting behaviour. This could indicate that this family of solutions is generic. We have
also shown that the RPO solutions are connected to travelling wave (TW) solutions via a global
bifurcation (a saddle-node infinite period bifurcation) when they are continued by increasing the
spanwise size Lz of the numerical domain. The infinite period saddle-node bifurcation found by
increasing Lz is also of the same type of the bifurcation found by Kreilos et al. (2013) by homotopy
between the Couette flow and the asymptotic suction boundary layer. This type of bifurcation
has also been detected in previous investigations of invariant solutions in other fluid systems
(Tuckerman & Barkley, 1988).

Large scale non-symmetric TW solutions in plane Poiseuille flow (chapter 5). We have then
investigated the TW solutions issued from the saddle-node infinite period bifurcation. The lower
TW solution branch evolves into a spanwise localized state when Lz in further increased, similarly
to several recent studies on other wall-bounded shear flows (Schneider et al., 2008; Duguet et al.,
2009, 2012; Khapko et al., 2013; Gibson & Brand, 2014) in which spanwise localization of lower
branch solutions has also been reported. The upper branch TW solutions develop multiple streaks
which have a spanwise spacing consistent with the one of large-scale motions in the turbulent
regime. These upper branch solutions do not change much when they are continued to Cs = 0.05 at
Re = 2000 where they represent turbulent coherent large-scale motions. The wall-normal structure
of the upper branch, just as the one of the found RPO, is reminiscent of large-scale motions in
the outer region, and probably of the ‘inactive’ motions defined by Townsend (1976). Further
investigations are therefore needed to find if other TW or RPO solutions can be continued to the
fully turbulent regime.
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General conclusions and open questions. This study is a second step, after that of Hwang &
Cossu (2010c, 2011), towards a ‘dynamical systems’ understanding of the large-scale dynamics in
fully developed turbulent shear flows. The key ingredient is to model small-scale motions and
to only resolve large-scale motions in order to compute invariant TW or RPO solutions. Artifi-
cial over-damping has been used to quench an increasing range of small-scale motions and prove
that the motions at large scale are self-sustained. It has also been used as a continuation param-
eter useful to reach upper branch solutions. This approach would not have been possible if, as
conjectured in some previous investigations, large-scale motions in wall bounded shear flows are
forced by mechanisms based on the existence of active structures at smaller scale. Our results in-
dicate that Nagata-Clever-Busse-Waleffe upper branch solutions, computed for the Navier-Stokes
equations can be continued to higher Reynolds numbers (at least up to Re = 2150 in plane Cou-
ette flow) which are well in the turbulent regime. Less trivial upper branch solutions, computed
in plane Poiseuille flow, have also been continued in a similar way without any major difficulty.
However, at the time of writing of this manuscript, we have not yet been able to continue RPO
solutions from Navier-Stokes solutions to filtered motions in reference LES. An important open
question is therefore to know which other NTW or RPO Navier-Stokes solutions can be continued
in a similar way.

The interest of the invariant solutions obtained in the LES equations is that, contrary to the
Navier-Stokes solutions, they take into full account the spatial and Reynolds number dependence
of the eddy viscosity associated with unresolved small scale motions.

An interesting question, which is left for future work, is to know how much time is spent in
the neighbourhood of these solutions by the large-scale ‘filtered’ motions solutions of LES sim-
ulations. One could indeed hope that the increase in effective viscosity, i.e. the decrease of the
effective Reynolds number in fully developed turbulent large-scale flows, could bring back the
effective large-scale dynamics close to the transitional case where a few invariant solutions are
probably sufficient to capture essential features of the flow (see e.g. Kawahara & Kida, 2001).

Another important result is that very large-scale motions (VLSM), contrary to large-scale mo-
tions (LSM), do not survive a moderate over-damping. This would suggest that these motions are
not self-sustained and are not an aggregate of large-scale motions. The mechanism by which they
sustain must therefore involve also motions at much smaller scale. Future work could focus on
the identification of the precise mechanism by which VLSM sustain.

Finally, the method used in this thesis could help to shed light on the very large Reynolds
and magnetic Reynolds number behaviour of a magneto-hydrodynamic self-sustained process
active in Keplerian shear flows (Rincon et al., 2007b,a, 2008; Herault et al., 2011; Riols et al., 2013),
with possible practical implications for the understanding of the physics of astrophysical accretion
disks (Riols et al., 2014).
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Appendix A

Computing invariant solutions

A.1 Newton based iterative methods

The search for invariant solutions of Navier-Stokes equation such as travelling waves or a relative
periodic orbits, require us to solve nonlinear equations of the form F(Φ) = 0.

Newton iterations. A Taylor series expansion of F(Φ) around the current solutionΦi gives

F(Φi + δΦi) = F(Φi) + ∇F(Φi) · δΦi + H.O.T. (A.1)

if the left hand side is set to zero and higher-order terms are neglected we get

J(Φi) · δΦi = −F(Φi) ; Φi+1 =Φi + δΦi, (A.2)

where J = ∇F is the Jacobian matrix,Φi is the state vector and δΦi is the correction done at current
Newton step. Iterations are stopped when:

‖F(Φi)‖
‖Φi‖

≤ rtol. (A.3)

Krylov-subspace methods: Solving the linear system in A.2 can be prohibitively memory and
time consuming for the typical 3D states we consider in this thesis. Even simply forming the
Jacobian J explicitly, e.g. using finite difference, can be a challenge in itself. To solve this problem a
widely used approach is to recur to subspace reduction methods relying only on calls to a matrix-
vector multiplication, where the matrix is the one at hand (in our case the Jacobian operator).
Krylov-subspace is obtained by sequence of matrix-vector multiplication

K j = span(ri, Jri, J2ri, ......J j−1ri), (A.4)

where ri = −F(Φi) − JδΦi is the residual at ith Newton iteration. The Generalized minimum residual
method (GMRES) is a Krylov subspace method which composes δΦ from the subspace spanned
by Krylov vectors, such that it minimizes the residual ‖F(Φ) + JδΦ‖ in a least-square sense. At
every jth GMRES iteration new update can be approximated as

δΦj =

j−1∑
k=0

ck(J)kri. (A.5)

From A.5 it is clear that to compute new update all we need is the matrix-vector multiplication
(J)kri, which can be computed using a finite difference approximation

Jφ ≈
F(Φ + hφ) − F(Φ)

h
, (A.6)
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where h is a small pertubation parameter. The error in the Jacobian-vector multiplication is pro-
portional to h. If h is too big Jφ is poorly approximated and if too small the finite difference is not
reliable due to floating-point roundoff error. In the present study we have determined the optimal
range of values for h using trial and error. It is found to be in the range of 1e − 4 to 1e − 8. The
convergence criterion for the Krylov iteration is set by the relative decrease in the residual norm.
Suppose r0 is the residual vector at the starting of the Newton step and r j is the residual vector
after jth GMRES iteration then if

‖r j‖

‖r0‖
≤ gr. (A.7)

Line search algorithm: The main idea behind the Newton-Krylov subspace method is to de-
crease the residual norm ‖F(Φ)‖ to a sufficiently low value. Sometimes, taking the full Newton
update δΦ need not decrease the residual norm and we may go out of the ball of convergence of
Newton method. The direction of decrease of the residual is in the Newton direction δΦ, so we
can move in that direction in small substeps

Φi+1 =Φi + αδΦi. (A.8)

The aim of the line search algorithm is to find α in the range [0, 1] such that the new residual
‖F(Φi + αδΦi)‖ < ‖F(Φi)‖. We define a function

ψ(α) = ‖F(Φi + αδΦi)‖ ; ψ′(α) = ∇F · δΦ. (A.9)

The core of every line search techniques is to approximate ψ(α) with a polynomial and minimize
it with respect to α in the Newton direction. To start the minimization procedure we require an
initial guess α0 which in our case is 0.01. At the first step we construct a quadratic polynomial
with ψ(0) , ψ(α0) and ψ′(0) available to us.

ψ(α) =

ψ(α0) − ψ(0) − αψ′(0)

α2
0

α2 + ψ′(0)α + ψ(0). (A.10)

The new trial value α1 is the minimizer of this quadratic polynomial. In the subsequent steps a
cubic polynomial is constructed based on the information from the quadratic step

ψ(α) = aα3 + bα2 + ψ′(0)α + ψ(0). (A.11)

The value of a and b can be calculated by equating A.11 to ψ(α0) and ψ(α1). Minimization of this
cubic polynomial provides the new trial value α2. This process is repeated until ‖F(Φi + αδΦi)‖ <
‖F(Φi)‖.

A.2 Parameter Continuation

Solutions of Navier-Stokes equation are function of various parameters like Reynolds number,
size of the domain, forcing etc. Sometimes, we are interested in the effect of the variation of these
parameters on the solutions of N-S equation, on such occasions we need to expressΦ as a function
of parameter λ. For such problems general form of nonlinear function can be written as

F(Φ, λ) = 0. (A.12)

The basic tool behind most of the continuation techniques is the implicit function theorem, which
states that if A.12 is satisfied and the Jacobian J(Φ, λ) is non singular, thenΦ can be solved in terms
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of λ and dΦ/dλ can be found differentiating implicitly. In the case of numerical continuation, A.1
is restated as

J(Φi, λ) · δΦi = −F(Φi, λ) ; Φi+1 =Φi + δΦi. (A.13)

In the course of the present study we have implemented three types of numerical continuation

1. Euler-Newton continuation.

2. Quadratic-predictor-Newton continuation.

3. Quadratic-predictor-Keller continuation with some required modifications for tangent compu-
tations.

Euler-Newton continuation: Staring from the known solution (Φ0, λ0) we predict the next solu-
tion asΦ0 =Φ0 + (dΦ/dλ)δλ and use it in A.13 as an initial guess. The derivative (dΦ/dλ =Φλ)
can be computed using finite difference from the last two known solutions or by solving

J ·Φλ = −Fλ. (A.14)

This procedure allow us to take large steps in λwhen the solution is away from the turning points.
But, at the turning points the Jacobian J becomes singular and therefore A.14 becomes unsolvable.

Quadratic-predictor-Newton continuation: To circumvent the singularity encountered at turn-
ing points we parametrize bothΦ and λ as a function of arc-length parameter s instead of param-
eterizing the solution Φ by λ. Let s be the arc-length parameter and consider Φ(s) and λ(s) as a
function of s. Now to advance the solution in parameter space from s0 to s1 we use the arc-length
condition ∥∥∥∥∥∂Φ∂s

∥∥∥∥∥2

+

∥∥∥∥∥∂λ∂s

∥∥∥∥∥2

= 1, (A.15)

to compute a small increment ds =
√
‖dΦ‖2 + ‖dλ‖2 along the solution curve. To start the quadratic

predictor the first three initial solution points are obtained for three different but close values of
λ. Neville’s algorithm is used for polynomial interpolation, which gives a unique polynomial
of degree 2 for three initial guesses. This polynomial can interpolate or extrapolate the solution
along the solution branch. We predict the next point in the solution branch and use Newton-
Krylov subspace method as a corrector. In this method we do not have to calculate the tangent
vector along the branch and if started at some distance from the singular point this method can
easily pass through the singular points to capture other branches. However, we have encountered
some cases for which this method fails to work, specially during the continuation of large scale
traveling waves with respect to the Smagorinsky constant Cs.

Quadratic-predictor-Keller Continuation: This method is the combination of Quadratic-
predictor and Keller pseudo arc-length continuation (Chan & Keller (1982)). In this method, we
takeΦ(s) and λ(s) to be functions of the arc-length parameter s. Differentiation of F(Φ, λ) = 0 with
respect to s gives

FuΦ̇ + Fλλ̇ = 0. (A.16)

We define the arc-length constraint as∥∥∥∥∥∂Φ∂s

∥∥∥∥∥2

+

∥∥∥∥∥∂λ∂s

∥∥∥∥∥2

= 1, (A.17)
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which when linearized reduces to the equation of a plane

N ≡ (Φ(s) −Φ(s0)) · Φ̇(s0) + (λ(s) − λ(s0)) · λ̇(s0) − 4s = 0. (A.18)

This plane is perpendicular to the tangent (Φ̇(s0), λ̇(s0)) at a distance 4s from (Φ(s0), λ(s0)). Plane
N intersect the solution curve C(s) if the curvature of C is not too large and s is small enough.
Newton’s method is used to solve the following linear system at each iteration:

(
Fu Fλ
Φ̇(s0) λ̇(s0)

) (
4Φ
4λ

)
= −

(
F(Φ, λ)

(Φ̇(s) −Φ(s0)) · Φ̇(s0) + (λ(s) − λ(s0)) · λ̇(s0) − 4s

)
. (A.19)

To mix quadratic predictor with Keller method we modified both of them. LetΦ2 ,Φ1 andΦ0 be
the three initial solutions to start the quadratic interpolation and s2 , s1 and s0 are the correspond-
ing arc-length coordinates. LetΦnew be the quadratic extrapolate and assume Φ̇0 and Φ̈0 are the
first and second order derivatives atΦ0. We calculate derivatives using finite differences

Φ̇0 =
Φ0 −Φ1

s0 − s1
; Φ̈0 =

1
snew − s1

(
Φnew −Φ0

snew − s0
−
Φ0 −Φ1

s0 − s1

)
. (A.20)

Using the information we have about the derivatives we use the Taylor series expansion to update
the new initial guess as follows:

Φnew =Φ0 + Φ̇0ds +
1
2
Φ̈0(ds)2. (A.21)

Similarly initial guesses for λnew and λ̇0 can be obtained. We save tangent vectors and use them in
equation A.19 at each Newton iteration. Among the three continuation techniques mentioned
here, this method is found to be the most effective, as it apparently always passes smoothly
through the singular points.

A.3 Linear Stability Analysis of Invariant Solutions

Let us write the evolution equation of our dynamical system as

dΦ
dt

= F(Φ). (A.22)

Depending upon the type of invariant solution the linear stability investigation require certain
modifications, however, the fundamental idea remains unchanged.

Equilibrium solutions: An infinitesimal pertubation φ′ is added to the equilibrium solutionΦ0
and F is Taylor expanded nearΦ0.

d(Φ0 + φ′)
dt

= F(Φ0) +
dF
dΦ

∣∣∣
Φ0
φ′ + O(‖φ′‖2). (A.23)

Truncating at first order and considering that F and dΦ/dt are zero at equilibrium point Φ0, sub-
sequently A.23 is reduced to

dφ′

dt
=

dF
dΦ

∣∣∣
Φ0︸ ︷︷ ︸

A

φ′, (A.24)
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Figure A.1: Panel (a) : The Jacobian matrix J transform an infinitesimal neighborhood of Φ into
an ellipsoid, with the diameter stretched along the unstable eigen direction ψ( j) of J by Floquet
multiplier Λ( j). Panel (b): All the initial condition that are not confined to the center and stable
manifold are repelled by an unstable periodic orbit. (see Cvitanovic et al. (2012))

where A is known as the stability matrix. Whether the pertubation amplitude ‖φ′‖ grows or de-
cays with time depends upon the eigen spectrum ofA. Let us assume that c( j) are the eigenvalues
of A and ψ( j) are the eigenvectors. The pertubation state vector can be expanded over the eigen-
value basis as φ′(t) =

∑N
j=0 q( j)(t)ψ( j), where components q j(t) are the modal amplitudes. Using

modal expansion in A.24 and after some manipulation we get:

φ′(t) = eAt︸︷︷︸
J

φ′(0), (A.25)

where J is the Jacobian matrix also known as the propagator. The eigen values (Λ( j)) of the propa-
gator are called characteristic or Floquet multipliers and are related to the eigen values of stability

matrixA as Λ j = ec j
r+ic j

i .

Periodic orbits: Another important class of invariant solutions is that of periodic orbits of period
T : ∀t : Φ(t + T) = Φ(t). When linearized about an arbitrary point lying on the trajectory we get
φ′(t) = A(t)φ′, where the stability matrix A has T periodicity i.e. A(t + T) = A(t). Following a
similar path as described in last section for equilibrium solutions (see Cvitanovic et al. (2012) for a
detailed explanation.) φ′(t + T) is related to φ′(t) by :

φ′(t + T) = J(Φ)φ′(t). (A.26)

Floquet multipliers of the Jacobian matrix J(Φ) are independent of the starting point of the peri-
odic orbit. If the Floquet multipliers Λ( j) of the Jacobian J are all distinct we can by denote ψ( j) the
corresponding linearly independent Floquet vectors that satisfy:

Jψ( j) = Λ( j)ψ( j). (A.27)
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The pertubation state vector can be expanded over the basis of Floquet vectors like φ′(t) =∑N
j=0 q( j)(t)ψ( j), using this relation along with A.25 in A.24 gives:

q(t + T) = Λ( j)q(t). (A.28)

After m number of periods and taking the norm gives ‖q(t+mT)‖ = |Λ( j)
|
m
‖q(t)‖. Hence the solution

is linearly unstable if at least one Floquet multipliers |Λ( j)
| > 1, while linear stability requires that

|Λ( j)
| < 1, i.e. all the Floquet multipliers lie inside the unit circle.



Appendix B

Codes used for DNS, LES and to find
invariant solutions

B.1 CHANNELFLOW

Channelflow is a public domain code1 primarily developed by J.F Gibson (Gibson et al., 2008).
In channelflow the Navier-Stokes equations are solved in terms of perturbations for a known
laminar solution U(y)ix associated to the base pressure gradient Pxix. The total fields are therefore
given by u(x, t) = U(y)ix + u′(x, t) and p = P + p′ and the Navier-Stokes equations are solved in the
following form:

∂u′

∂t
+ u · ∇u = −∇p + ν∇2u′ +

[
ν
∂2U
∂y2 − Px

]
ix. (B.1)

These equations are spatially discretized using a Fourier-Chebyshev pseudospectral formulation.
Dealiasing is used in the periodic directions with the 3/2 rule. A third-order accurate semi implicit
scheme is used for time integration. We have verified that the same solutions are found with
2nd-order semi-implicit Crank-Nicolson, Runge-Kutta algorithm. During the simulations the CFL
number was maintained in the range [0.2 − 0.4].

Channelflow has its own subroutines to calculate invariant solutions and to perform their sta-
bility analysis and parameter continuation in plane Couette and Poiseuille flow. The routines im-
plement the algorithm used by Viswanath (2007) which is based on a globally convergent Newton-
Krylov subspace method which applies ’hookstep’ trust-region adjustment to Newton steps.

B.2 DIABLO

Diablo is a public domain code developed at UC San Diego (Bewley et al., 2001) which inte-
grates both the Navier-Stokes and the LES equations. We have used diablo mainly to perform
large-eddy simulations. A static Smagorinsky model is implemented in the LES module (see also
Hwang & Cossu, 2010c, 2011). The damping function D = 1 − exp(−(y+)2/(A+)2), with A+ = 25
is used to drive the eddy viscosity associated with the residual motions to zero at the wall. The
Navier-Stokes and LES equations are discretized in space by a pseudo-spectral Fourier method
in streamwise and spanwise directions and second-order accurate finite differences in the wall-
normal direction. The grid in the wall normal direction is stretched by a hyperbolic tangent ‘den-
sity’ function to sufficiently resolve the near-wall region. Dealiasing is used in the periodic direc-
tions with 2/3 rule. The solutions are advanced in time by a fractional-step algorithm where the

1See http://www.channelflow.org/dokuwiki/doku.php for details.
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nonlinear terms are explicit and integrated with a third-order Runge-Kutta method while the lin-
ear terms are implicit and are advanced using the second-order Crank-Nicolson method. During
integrations we have kept the CFL number in the range [0.3 − 0.5].

The ability of diablo to accurately search for invariant solutions was tested by recomputing
the travelling waves of Nagata (1990) and Waleffe (2003) in plane Couette flow and Itano & Toh
(2001) in Poiseuille flow by using an edge-tracking bisection technique.

B.3 PEANUTS

PEANUTS is a Newton solver based on Krylov subspace methods implemented via the PETSc and
Slepc libraries. These libraries make intensive use of parallel execution. A significant amount of
work during this thesis has been devoted to interfacing this code with the DNS/LES integrators
channelflow and diablo. In this process, we have kept PEANUTS separated from the DNS
and LES codes, and essentially called them as external functions. PEANUTS requires a one di-
mensional (real) state vector. However ChannelFlow and Diablo deal with multidimensional rep-
resentations of fields. Therefore, interfacing the codes requires the implementation of mapping
from a multidimensional field view to one dimensional state vector (and conversely). Given the
differences in representations used by the DNS/LES code, this turned out to be a rather difficult
and time-consuming task.

Let us describe the ‘state vector building’ process in the case of relative periodic orbits, where
we have three components of the velocity field, one scalar pressure field and four additional
scalars: the time period T, the spanwise and streamwise shift sz = CzT and sx = CxT and the
continuation parameter λ. The fields issued from DNS and LES can be stored in either physical
space on in terms of (spatial) Fourier modes. We prefer the use of the spectral representation
because of the fast convergence of higher harmonics. To start the DNS-LES simulation we need
three velocity components and the pressure field at all the grid points. The continuity equation
enables us to compute the third velocity component from the other two. The usual Poisson equa-
tion is used to compute the pressure field. Therefore we use only the streamwise (u) and spanwise
(w) velocity fields to form the state vector. Let us continue the discussion focusing on diablo.
Suppose Nx, Ny and Nz are the grid points in physical space and û, v̂, ŵ are the Fourier modes
of the three velocity components in streamwise (x), wall normal (y) and spanwise (z) direction
respectively. We save first the real part and then the imaginary part of the streamwise velocity
followed by the real and imaginary part of the spanwise velocity. As diablo used 2/3 dealiasing
rule the effective number of degrees of freedom (DOF) after dealiasing becomes (1 + Nx/3) and
(1 + 2Nz/3) in streamwise and spanwise direction respectively. The no-slip boundary condition
reduces the effective number of DOF in wall normal direction to (Ny − 2). Therefore, the total
number of modes becomes 4((1 + Nx/3)× (Ny− 2)× (1 + 2Nz/3)), where the multiple 4 accounts for
two velocity components and their real and imaginary part. In plane Couette and Poiseuille flow
the imaginary part of the zero-zero harmonic modes û(0, y, 0) and ŵ(0, y, 0) is zero, therefore the
effective size of the state vector reduces to: Nv = 4((1+Nx/3)×(Ny−2)×(1+2Nz/3))−2(Ny−2) The
additional four scalar unknowns are appended at the end of state vector Φ, making its effective
length equal to Nv + 4.

In order to fix the spatial and temporal phases of the solution, as discussed in §2.5, we use the
following three phase conditions stated by Viswanath (2007):〈

δΦi,
∂Φi

∂x

〉
= 0,

〈
δΦi,

∂Φi

∂z

〉
= 0,

〈
δΦi,

∂Φi

∂t

〉
= 0, (B.2)

where the angle brackets represent the usual inner product. The two first conditions imply that
the correction δΦi done at each Newton iteration must be such that it does not translate Φi in



73

  

Peanuts

Interface

PDE integrator

Figure B.1: Flowchart of PEANUTS integration with the PDE integrator

streamwise (x) and spanwise (z) direction. The third condition enforces that δΦi is orthogonal to
∂Φi/∂t to ensure that the Newton correction is not a simple translation in time along the targeted
periodic orbit.

Before attempting to use this code with the Navier-Stokes and LES solvers we have performed
some tests on simple model equations. In particular, we have recomputed the periodic solution of
Kuramoto-Sivashinsky equation reported by Lan & Cvitanovic (2008). The code has been further
tested on phase-winding solutions of the Complex Ginzburg-Landau equation.

Finally, in order to test the PEANUTS-diablo interface we interpolated the invariant solution
obtained by Gibson et al. (2008) to the diablo grid and sucessfully converged them. In the case of
periodic orbits, our test case was on the Viswanath (2007) and Kawahara & Kida (2001) solutions.
The stability analysis module of PEANUTS-diablowas also successfully tested against the already
documented Floquet exponents of the Viswanath (2007) periodic orbits and the Nagata (1990)
equilibrium solution.
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