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Résumé 
L'auxine est une hormone végétale qui coordonne plusieurs processus de 

développement des plantes à travers la régulation d'un ensemble spécifique de gènes. 

Les Auxin Response Factors (ARF) sont des régulateurs transcriptionnels qui 

modulent l'expression de gènes de réponse à l’auxine. Des données récentes montrent 

que les membres de la famille des ARF sont impliqués dans la régulation du 

développement des fruits de la nouaison à la maturation. Alors qu’il est établi que les 

ARF agissent de concert avec les Aux/IAA pour contrôler l'activité transcriptionnelle 

dépendant de l’auxine, notre connaissances des mécanismes et des partenaires des 

ARF demeurent très icomplètes. L'objectif principal de la thèse est d’étudier la part 

qui revient aux ARF dans le contrôle du développement et de la maturation des fruits 

et d’en comprendre les mécanismes d’action. L’analyse des données d’expression 

disponibles dans les bases de données a révélé que, parmi tous les ARF de tomates, 

SlARF2 affiche le plu haut niveau d'expression dans le fruit avec un profil distinctif 

d’expression associé à la maturation. Nous avons alors entrepris la caractérisation 

fonctionnelle de SlARF2 afin d’explorer son rôle dans le développement et la 

maturation des fruits. Deux paralogues, SlARF2A et SlARF2B, ont été identifiés dans 

le génome de la tomate et des expériences de transactivation ont montré que les deux 

protéines SlARF2 sont localisées dans le noyau où elles agissent comme des 

répresseurs transcriptionnels des gènes de réponse à l'auxine. De plus, l’expression de 

SlARF2A dans le fruit est régulée par l'éthylène tandis que celle de SlARF2B est 

induite par l'auxine. La sous-expression de SlARF2A, comme celle de SlARF2B, 

entraine un retard de maturation alors que l’inhibition simultanée des deux paralogues 

conduit à une inhibition plus sévère de la maturation suggérant une redondance 

fonctionnelle entre les deux paralogues lors de la maturation des fruits. Les fruits 

présentant une sous-expression des gènes SlARF2 produisent de faibles quantités 

d'éthylène, montrent une faible accumulation de pigments et une plus grande fermeté. 

Le traitement avec de l'éthylène exogène ne peut pas inverser les phénotypes de 

défaut de maturation suggérant que SlARF2 pourrait agir en aval de la voie de 
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signalisation de l'éthylène. L'expression des gènes clés de biosynthèse et de 

signalisation de l'éthylène est fortement perturbée dans les lignées sous-exprimant 

SlARF2 et les gènes majeurs qui contrôlent le processus de maturation (RIN, CNR, 

NOR, TAGL1) sont sensiblement sous-régulés. Les données suggèrent que SlARF2 est 

essentiel pour la maturation des fruits et qu’il pourrait agir au croisement des voies de 

signalisation de l'auxine et de l'éthylène. Alors que l'éthylène est reconnu comme 

l’hormone clé de la maturation des fruits climactériques, les phénotypes de défaut de 

maturation chez les lignées sou-exprimant le gène SlARF2 apportent des preuves 

tangibles soutenant le rôle de l'auxine dans le contrôle du processus de maturation. 

Dans le but de mieux comprendre les mécanismes moléculaires par lesquels les ARF 

régulent l'expression des gènes de réponse à l'auxine, nous avons étudié l'interaction 

des SlARFs avec des partenaires protéiques ciblés, principalement les co-répresseurs 

de type Aux/IAA et Topless (TPL) décrits comme les acteurs clés dans la répression des 

gènes dépendant de la signalisation auxinique. Une fois les gènes codant pour les 

membres de la famille TPL de tomate isolés, une approche double hybride dans la 

levure a permis d’établir des cartes exhaustives d'interactions protéine-protéine entre 

les membres des ARFs et des Aux/IAA d’une part et les ARFs et les TPL d’autre part. 

L'étude a révélé que les Aux/IAA interagissent préférentiellement avec les SlARF 

activateurs et qu’à l’inverse les Sl-TPL interagissent uniquement avec les SlARF 

répresseurs. Les données favorisent l'hypothèse que les ARF activateurs recrutent les 

Sl-TPL via leur interaction avec les Aux/IAA, tandis que les ARF répresseurs peuvent 

interagir directement avec les Sl-TPL. Les études d’interactions ont permis également 

d’identifier de nouveaux partenaires comme les protéines VRN5 et LHP1, 

composantes des complexes Polycomb PRC impliqués dans la repression par voie  

épigénétique de la transcription par modification de l'état de méthylation des histones. 

Ces données établissent un lien potentiel entre les ARFs et la régulation épigénétique 

et ouvrent de ce fait de perspectives nouvelles quant à la compréhension du mode 

d’action des ARFs. Au total, le travail de thèse apporte un nouvel éclairage sur le rôle et 

les mécanismes d'action des ARF et identifie SlARF2 comme un nouvel élément du 

réseau de régulation contrôlant le processus de maturation des fruits chez la tomate. 
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Abstract 
 

The plant hormone auxin coordinates plant development through the regulation of a 

specific set of auxin-regulated genes and Auxin Response Factors (ARFs) are 

transcriptional regulators modulating the expression of auxin-response genes. Recent 

data demonstrated that members of this gene family are able to regulate fruit set and 

fruit ripening. ARFs are known to act in concert with Aux/IAA to control 

auxin-dependent transcriptional activity of target genes. However, little is known about 

other partners of ARFs. The main objective of the thesis research project was to gain 

more insight on the involvement of ARFs in fruit development and ripening and to 

uncover their interaction with other protein partners beside Aux/IAAs. Mining the 

tomato expression databases publicly available revealed that among all tomato ARFs, 

SlARF2 displays the highest expression levels in fruit with a marked 

ripening-associated pattern of expression. This prompted us to uncover the 

physiological significance of SlARF2 and in particular to investigate its role in fruit 

development and ripening. Two paralogs, SlARF2A and SlARF2B, were identified in 

the tomato genome and transactivation assay in a single cell system revealed that the 

two SlARF2 proteins are nuclear localized and act as repressors of auxin-responsive 

genes. In fruit tissues, SlARF2A is ethylene-regulated while SlARF2B is auxin-induced. 

Knock-down of SlARF2A or SlARF2B results in altered ripening with spiky fruit 

phenotype, whereas simultaneous down-regulation of SlARF2A and SlARF2B leads to 

more severe ripening inhibition suggesting a functional redundancy among the two 

SlARF2 paralogs during fruit ripening. Double knock-down fruits produce less 

climacteric ethylene and show delayed pigment accumulation and higher firmness. 

Exogenous ethylene treatment cannot reverse the ripening defect phenotypes 

suggesting that SlARF2 may act downstream of ethylene signaling. The expression of 

key ethylene biosynthesis and signaling genes is dramatically disturbed in SlARF2 

down-regulated fruit and major regulators of the ripening process, like RIN, CNR, 
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NOR, TAGL1, are under-expressed. The data support the notion that SlARF2 is 

instrumental to fruit ripening and may act at the crossroads of auxin and ethylene 

signaling. Altogether, while ethylene is known as a key hormone of climacteric fruit 

ripening, the ripening phenotypes associated with SlARF2 down-regulation bring 

unprecedented evidence supporting the role of auxin in the control of this 

developmental process. To further extend our knowledge of the molecular mechanism 

by which ARFs regulate the expression of auxin-responsive genes we sought to 

investigate interactions SlARF and putative partners, mainly Aux/IAAs and Topless 

co-reppressors (TPLs) reported to be key players in gene repression dependent on auxin 

signaling. To this end, genes encoding all members of the tomato TPL family were 

isolated and using a yeast-two-hybrid approach comprehensive protein-protein 

interaction maps were constructed. The study revealed that Aux/IAA interact 

preferentially with activator SlARFs while Sl-TPLs interact only with repressor 

SlARFs. The data support the hypothesis that activator ARFs recruit Sl-TPLs 

co-repressors via Aux/IAAs as intermediates, while repressor ARFs can physically 

interact with Sl-TPLs. Further investigation indicated that SlARFs and Sl-TPLs can 

interact with polycomb complex PRC1&PRC2 components, VRN5 and LHP1, known 

to be essential players of epigenetic repression of gene transcription through the 

modification of histones methylation status. These data establish a potential link 

between ARFs and epigenetic regulation and thereby open new and original 

perspectives in understanding the mode of action of ARFs. Altogether, the thesis work 

provides new insight on the role of ARFs and their underlying action mechanisms, and 

defines SlARF2 as a new component of the regulatory network controlling the ripening 

process in tomato. 
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ACC: Acide 1-AminoCyclopropane-1-Carboxilique  
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EAR: Ethylene-responsive element binding factor-associated Amphiphilic Repression 
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ERF: Ethylene response factor 
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P. patens: Physcomitrella patens 
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P. trichocarpa: Populus trichocarpa 
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Objectives of the study 

 

Auxin regulates many aspects of developmental processes including fruit set, 

growth and ripening. In the last decades, important progress has been made to 

understand how auxin is synthesized, transported and perceived. Similarly, substantial 

progress has been achieved regarding the auxin-related downstream transcription 

factors that modulate the expression of auxin-responsive genes through the binding to 

Auxin Response Elements (AUXRE) present in the promoter region of these gene 

targets. Yet, the intricate mechanisms by which these transcription factors activate or 

repress the transcriptional activity of auxin responsive genes in a coordinated manner 

remain largely unclear. 

Auxin response mediators play a primary role in controlling plant developmental 

processes. Three gene families encoding AuxIAAs, Topless (TPLs) and Auxin 

Response Factors (ARFs) have been so far identified as the main players involved in 

auxin-dependent transcriptional regulation (Hagen and Guilfoyle, 2002; Guilfoyle et 

al., 1998; Causier et al., 2012a). While most of our knowledge on these auxin 

response regulators came from the plant model Arabidopsis thaliana, the Genomics 

and Biotechnology of Fruits (GBF) group performed a pioneering work towards 

genome-wide identification and subsequent isolation all members of ARF and 

Aux/IAA genes in the tomato, the reference species for fleshy fruit research (Zouine et 

al., 2014; Audran-Delalande et al., 2012).  

In the last period, an increasing number of studies provided molecular clues on 

how Aux/IAAs and ARFs contribute to the control of specific biological processes 

and especially fruit development and ripening (Sagar et al., 2013; Jones et al., 2002; 

De Jong et al., 2011; de Jong et al., 2009; Hendelman et al., 2012; Bassa et al., 2012; 

Wang et al., 2005, 2009; Deng et al., 2012, 2012). In this regard, the GBF group made 

a substantial contribution in deciphering the role of Sl-IAA9 in fruit set (Wang et al., 

2005a, 2009). The GBF group also reported recently that down-regulation of an ARF 

gene member, SlARF4, leads to dark green and blotchy ripening in tomato indicating 



General introduction to the thesis 

3 
 

that this gene plays a role in fruit development and ripening (Sagar et al., 2013). On 

the other hand, down-regulation of SlARF7 or over-expression of SlARF8 result in 

parthenocarpic fruit development indicating that these two ARFs are involved in fruit 

set (De Jong et al., 2011; De Jong et al., 2009; YongYao 2013 Thesis manuscript). 

However, functional characterization of most ARF genes in the tomato is still lacking 

and the mechanisms by which they control gene expression remain poorly understood. 

The thesis research project builds on the achievement made by the GBF group on 

tomato ARF genes to better uncover their role in fruit development and to elucidate 

the molecular mechanism underlying their action using the most advanced genomic, 

proteomic and reverse genetics methodologies. 

The study targets SlARF2 based on its high expression during fruit development 

and ripening. The first part of the thesis project is to decipher the physiological 

significance of SlARF2 in fruit development and ripening using reverse genetics 

approaches. The second part deals with the identification of the main protein partners 

of ARFs in the tomato in order to gain new insight on their mode of action. 

Overall, the work addresses the putative role of auxin signaling in fruit ripening 

and the involvement of ARFs in this process. Within this context, the thesis study 

focus on the following main questions: 

- Do SlARF2 regulates fruit development and ripening in the tomato and if so by 

which mechanism? 

- What are the protein partners beside Aux/IAAs that are required for the 

ARF-mediated tuning of gene expression? In particular, considering that ARFs can 

function either as repressors or activators of gene transcription, the aim is also to 

uncover whether these two ARF types interact with the same partners.   

 

The outcome of the work is expected to bring new contribution regarding our 

knowledge of the involvement of auxin signaling in fruit development and to provide 

clues on the mechanisms by which ARFs mediate auxin responses. 
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Main components of the thesis 
 

Fleshy fruit share common steps for development and ripening including fruit set, 

fruit growth, maturation, and ripening/senescence. Fruit set normally initiates the fruit 

development and is dependent on the successful pollination and fertilization of the 

ovary. After fruit set, the fruit undergoes the growth phase via cell division and cell 

expansion. When the fruit reaches the final size and is mature, it is ready to 

ripen/senesce. The plant hormone auxin is thought to regulate to various extend these 

steps of fruit development even though its most prominent role has been demonstrated 

unambigously only in fruit setting and early growth. Auxin coordinates developmental 

processes through the regulation of a specific set of auxin-regulated genes. In a widely 

accepted scheme, auxin is first perceived by the TIR1/AFB receptors and then 

converted into a signal resulting in the transcriptional control of auxin-responsive 

genes. The auxin response is mediated by three main players in the auxin signaling 

pathway: the repressors (Aux/IAAs); the transcriptional factors (ARFs) and the 

co-repressors (TPLs). The objective of the thesis project is, (i) to investigate the role 

of auxin in fleshy fruit development and ripening, (ii) to uncover the components that 

mediate auxin response, and (iii) to uncover the mechanisms by which these 

components mediate the auxin-dependent regulation of gene expression.  

 

The thesis manuscript comprises four main chapters. The first section (Chapter I) is 

dedicated to bibliographic reviews providing the state of the art on the role of 

phytohormones in driving fruit development and ripening. An important part is 

devoted to ethylene due to its primary role in triggering and coordinating climacteric 

fruit ripening. An important part of this section deals with transcription factors (RIN, 

NOR, CNR) shown to function as master regulators of fleshy fruit ripening like the 

tomato. The introduction provides a description of the tomato as reference species for 

fleshy fruit research and explains why it was chosen in our study as model species. 

Given the main focus of the thesis research project on auxin, the last part of the 

general introduction section is devoted to the components of auxin signaling and their 
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known role in fruit development. It also addresses the interactions between auxin 

other hormone signaling. Because the role of auxin in fleshy fruit development is 

rather poorly covered in the literature, it was decided to differenciate this part of the 

introduction into a manuscript that will be submitted for publication. This manuscript 

review describes components of auxin signaling and response mechanisms that are the 

main material of the thesis research project.  

The second section (Chapter II) is dedicated to the functional characterization of 

SlARF2 and addresses its particular role in fruit ripening using reverse genetics 

approaches. This part deals with phenotypic, physiological and molecular 

charactrization of the tomato lines altered in the expression of Sl-ARF2. It proposes a 

new regulation mechanism model for climacteric fruit ripening that includes Sl-ARF2    

in the loop.  

The third section (Chapter III) addresses the mechanisms by which tomato ARFs 

modulate auxin-dependent gene expression. It comprises the search for the main 

protein partners of ARFs. The work mainly focuses on the tomato TOPLESS (TPL) 

family members known to be recruited by Aux/IAAs, the main partners of ARFs. This 

section first describes the isolation of all TPL family members in the tomato and the 

generation of a comprehensive interactome map between Aux/IAAs and TPLs 

established via the use of yeast two-hybrid approaches. This section is presented 

under the form of a published paper.  

The fourth section (Chapter IV), summarizes the main scientific outcome of the 

thesis work and outlines the new prospects and avenues open by the findings. It 

mainly stresses the potential link between auxin signaling and components of the 

epigenetic regulation of gene expression.  

The thesis manuscript also comprises additional sections dealing with the 

following items: (i) the list of References cited, (ii) supplemental data, (iii) a 

published paper describing the physiological significance of Sl-ARF4 to which I made 

a significant contribution.  
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Fruit development and ripening: the prominent role of 

ethylene  

 
Tomato, the reference species for fleshy fruit ripening 

 
Tomato anatomy 

The tomato fruit is a berry, which develops from ovary. Upon fertilization, the 

ovary wall is transformed into pericarp, which consists of three distinct layers: 

exocarp, mesocarp, and endocarp (Fig 1). The external exocarp consists of a cuticle 

layer which includes an epidermal cell layer and three to four layer of a 

collenchymatous tissue where starch accumulates and few plastids are retained. The 

cuticle becomes thicker as the fruit develops (Joubès et al., 2000; Lemaire-Chamley et 

al., 2005; Mintz-Oron et al., 2008). The mesocarp, the intermediate layer, is a 

parenchymatous tissue formed by big cells with large vacuoles (Joubès et al., 2000; 

Lemaire-Chamley et al., 2005; Mintz-Oron et al., 2008). Finally, the endocarp, the 

innermost structure, consists of a single cell layer adjacent to the locular region (De 

Jong et al., 2009; Xiao et al., 2009; Mintz-Oron et al., 2008). The ovary is divided into 

two or more locules by the septa of the carpels, so the fruit can be bi- or multilocular. 

The placenta is a parenchymatous tissue, where the seeds are developed. The placenta 

will become gelatious and fill the locular cavities duiring fruit development and 

ripening. 

 

Tomato Fruit development and ripening 

Tomato fruit development can be divided into four stages sequencially 

corresponding to fruit set, cell division, cell expansion and ripening/senescence (Fig 

1). At stage 1, fruit setting normally initiates the development the fruit organ. Fruit set 

is dependent on successful fertilization which initiates from the pollen germination, 

pollen tube penetration and growth in the stylar tissue towards the ovule. When the 
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pollen reaches the embryo sac, the pollen tube fuses with the egg cell and fertilization 

occurs which triggers the fruit set (Picken, 1984; Gillaspy et al., 1993). Stage 2, 

starting immediately after fertilization, is characterized by the activation of cell 

division. The high cell division activity is first found in the outer and inner pericarp, 

columellar and placental tissue and peripheral integument layers of the developing 

seeds (Gillaspy et al., 1993), then is confined to the vascular tissues, outer layer of the 

pericarp and in the cell layers peripheral to the seeds, at last, is restricted to the cells in 

the outer pericarp, the outer placenta, the vascular tissue and aslo the developing 

embryo (Gillaspy et al., 1993). Around two weeks after pollination, when the fruit is 

about 0.8-1.0 cm in diameter, the sharp fall in the rate of cell division indicates the 

end of this development step (Harborne, 1971; Nitsch et al., 1960). During stage 3, 

fruit growth relies maily on cell expansion and leads to a significant increase in 

weight (Bergervoet et al., 1996). Although the number and timing of cell divisions 

contributes to the determination of final fruit size, cell expansion makes the greatest 

contribution to this trait. Cells comprising the placenta, locular tissue, and mesocarp 

can increase by more than ten-fold during this stage (Gillaspy et al., 1993) and by the 

end of this step fruits have a diameter of around 2 cm (Giovannoni, 2004; Czerednik 

et al., 2012). Once cell expansion is complete, fruit reaches stage 4, at the beginning 

of which fruit enters the maturity phase leading to the mature green (MG) stage and 

attains its final size (Giovannoni, 2004; Czerednik et al., 2012). About two days after 

reaching the MG stage, and depending on the genotype, the tomato is ready to 

undergo the dramatic developmental process associated with ripening 

(http://link.springer.com/chapter/10.1007%2F978-94-009-3137-4_5). The ripening 

process can be distinguished into two mian phases: the breaking (BR) and the ripening 

(RR) stages (Fig 1). At the beginning of the breaking stage, chloroplasts convert into 

chromoplasts and subsequently the green color changes into yellow-orange, as a result 

of the carotenoid accumulation and chlorophyII degradation (Gray et al., 1992). In 

addition to the events described above, tomato fruit ripening is also accompanied by 

the accumulation of the monomeric sugars, glucose and fructose, organic acids in the 

vacuoles, and the production of aroma volatiles (Harborne, 1971). Finally, due to the 
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changes in the cell wall constituents: cellulose, hemicellulose and pectin, there are 

also substantial changes in the texture of the fruit (Brady, 1987). At the end of the 

ripening process, the abscission zone (AZ) is formed in the pedicel (Szymkowiak and 

Irish, 1999; Mao et al., 2000) to allow fruit to fall when it is fully mature. AZs 

differentiate at predetermined positions and contain a group of small cells lacking 

large vacuoles (Szymkowiak and Irish, 1999; Mao et al., 2000). 

 

 

 

Figure 1. Different stages of tomato fruit development and anatomical details. (A) 

Tomato fruit development can be divided into different stages: IG, immature green; MG, 

mature green; BR, orange-breaker; and RR, red ripening stages are shown.(B) Transverse 

sections of fruits corresponding to the developmental stages shown in (A). p, pedicel; s, seed. 

Scale bar: 2 cm (Pesaresi et al., 2014) 

 

Ethylene and tomato fruit ripening 

Fruit development and maturation is tightly controlled by hormone homeostasis 

(Pandolfini, 2009). Indeed, several findings indicate that manipulation of hormone 
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homeostasis is able to induce fruit development and ripening (Pesaresi et al., 2014). 

According to the presence or absence of autocatalytic ethylene production, fruit can 

be divided into two types: climacteric and non-climacteric fruit (Bouzayen et al., 

2010). Gaseous plant hormone ethylene plays a major role in the ripening of 

climacteric fruits. Tomato is a climacteric fruit and its ripening is dependent on 

ethylene burst. There are two systems of ethylene production in plants. System 1 is 

characterized by a negative feedback regulation by ethylene itself (auto-inhibition). 

System 1 acts during vegetative growth and during stress responses but also in young 

fruit at immature green stages. In system 1, exogenous ethylene inhibits synthesis and 

inhibitors of ethylene perception can stimulate ethylene production. In contrast, 

System2 is characterized by a positive feedback regulation by ethylene. System 2 

functions during floral senescence and fruit ripening where it can stimulate the 

ethylene synthesis and where inhibitors of ethylene perception inhibit ethylene 

production (McMurchie et al., 1972). 

 

 
Figure 2. Genetic interactions and biochemical identities of the ethylene signal 

transduction pathway components. (from Bleecker and Kende, 2000). 

 

Ethylene regulation of fruit ripening has been described for more than fifty years. 

So far, direct evidences demonstrating that ethylene mediates fruit ripening at the 

physiological, biochemical and molecular levels have been accumulated. These 

include ethylene biosynthesis, ethylene perception by the receptors (ETRs), signal 
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transduction cascade involving both positive and negative regulators (CTR, 

EIN2,EIN3 etc.) and finally regulation of target gene expression by transcription 

factors such as ethylene response factors (ERFs) (Fig 2) (Bapat et al., 2010).  

 

Ethylene synthesis 

During ethylene biosynthesis, S-adenosylm ethionine (SAM) is converted to 

1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase, and then, ACC is 

converted to ethylene by ACC oxidase (ACO) (Fig 3). There are at least 12 ACS and 7 

ACO genes in the tomato genome, with temporal and tissue-specific patterns of 

expression (Klee and Giovannoni, 2011).  

 

 

Figure 3. The ethylene biosynthetic pathway. (from Arc et al., 2013) 

 

Some studies show that system 1 relies on the expression of LeACS6 and 

LeACS1A. Expression of LeACS6 decreases rapidly at the onset of ripening during 

the transition from system1 to system 2. (Barry et al., 2000; Nakatsuka et al., 1998). 

LeACS1A is induced during the transition from system1 to system 2 (Barry et al., 

2000). LeACS2 and LeACS4 are responsible for the activation of system 2 (Barry et 

al., 2000; Nakatsuka et al., 1998), since both ACS genes are not expressed in green 

fruit but are induced at the onset of ripening (Barry et al., 2000; Nakatsuka et al., 

1998). In addition, LeACO1, LeACO3, and LeACO4 are expressed at low levels in 
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green fruit (System 1), but the transcripts of both genes increase at the onset of 

ripening as the fruit transition to system 2. During ripening, LeACO1 and LeACO4 

dispaly sustained expression, whereas the increase in LEACO3 expression is transient 

(Barry et al., 2000; Nakatsuka et al., 1998). So during ethylene biosynthesis, ACS and 

ACO are key genes for the control of ethylene production in fruits. Previous studies 

showed that down-regulation of ACS2 or ACO1 results in inhibited or delayed 

ripening in tomato ( Hamilton et al., 1990; Oeller et al., 1991; Gray et al., 1992). 

 
Ethylene perception 

Ethylene is perceived by a specific receptor (ETR1) identified for the first time in  

Arabidopsis, and it was by that time the first receptor of a plant hormone to be 

isolated (Bleecker et al., 1988; Guzmán and Ecker, 1990; Chang et al., 1993). 

Subsequently, all members of the ethylene receptor gene family were isolated in 

Arabidpsis and then in other plant species like the tomato. Based on structural 

similarity, the ethylene receptors have been classified into two subfamilies (Guo and 

Ecker, 2004). In tomato, subfamily 1 comprises LeETR1, LeETR2 and NR (LeETR3) 

that share three N-terminal membrane-spanning domains and a conserved carboxy 

terminus histidine (His) kinase domain. Subfamily 2 lacks a complete His kinase 

domain and possesses an additional transmembrane-spanning domain at the N 

terminus (Klee, 2004; Cara and Giovannoni, 2008). In addition, all the tomato 

receptors possess a receiver domain at the carboxy terminus except NR (O’Malley et 

al., 2005; Barry and Giovannoni, 2007). The tomato ethylene receptors are 

differentially expressed in organs and tissues at various stages of development, but 

none of them seem to have strict organ-specificity (Pech et al., 2012; Barry and 

Giovannoni, 2007). Exogenous application of ethylene to fruit didn’t induce the 

transcript levels of LeETR1, LeETR2 and LeETR5, but the mRNA levels of 

LeETR3/Nr, LeETR4 and LeETR6 increased during ripening (Kevany et al., 2007; 

Tieman and Klee, 1999; Wilkinson et al., 1995). Characterization of the individual 

functions of members of the ethylene receptor genes family was attempted via 

down-regulation of specific receptor isoforms using antisense suppression (Hackett et 
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al., 2000; Tieman et al., 2000; Whitelaw et al., 2002). Suppression of LeETR1 gene 

resulted in plants with shorter internodes and reduced rates of floral abscission 

(Whitelaw et al., 2002). Down regulation of NR resulted in slightly delayed fruit 

ripening with reduced rates of ethylene synthesis and slower carotenoid accumulation 

(Tieman et al., 2000). Meanwhile, the expression of the LeETR4 was induced in the 

NR antisense lines, suggesting that LeETR4 compensates for loss of NR. In contrary, 

down-regulation of LeETR4 lead to enhanced ethylene sensitivity, exaggerated triple 

response, increased floral abscission, and accelerated fruit ripening (Tieman et al., 

2000). Interestingly, these phenotypes of LeETR4 antisense lines could be recovered 

by overexpression of a NR transgene, indicating that these two receptors are 

functionally redundant. In addition, suppression of LeETR4 and LeETR6 expression 

also leads to accelerated fruit ripening but severely affected plant growth (Kevany et 

al., 2007), while fruit-specific suppression of LeETR4 resulted in early-ripening fruit 

without affecting plant growth (Kevany et al., 2008). Interestingly, it is well admitted 

that the ethylene receptors act as negative regulators of ethylene action, since the 

antisense inhibition of NR gene was able to restore normal ripening to the tomato Nr 

mutant (Hackett et al., 2000). 

Besides post-translational regulation, the ethylene perception is also controlled by 

the Arabidopsis RTE1 who acts as a negative regulator of the ethylene response. 

RTE1 promotes ETR1 receptor signaling, facilitating the ability of ETR1 to suppress 

ethylene responses in the absence of ethylene. Green-Ripe (GR) protein, a tomato 

homologue of RTE1, is identified in tomato. The Gr mutant fails to ripen as a 

consequence of inhibition of ethylene responsiveness due to overexpression of GR in 

this mutant (Fig 4) (Barry et al., 2005b). The GR protein is proposed to interact with 

and regulate the ethylene receptor(s) possibly via receptor-copper interaction (Zhou et 

al., 2007; Kendrick and Chang, 2008). 

 

Interaction of Ethylene Receptors with CTR proteins 

The Arabidopsis CTR1 protein is similar to the mammalian RAF serine/threonine 

MAP kinase kinas kinase (MAP3K) and acts as a negative regulator of ethylene 
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response (Kieber et al., 1993). In Arabidopsis, the CTR1 interacts with ethylene 

receptors ETR1 and ERS2 through the C-terminal domains of ethylene receptors and 

the N-terminus of CTR1. CTR1 is co-localized with the receptors to the ER 

membrane (Clark et al., 1998; Gao et al., 2003). This interaction between the 

receptors and CTR1 is essential for CTR1 function in repressing the downstream 

ethylene response (Gao et al., 2003; Zhong et al., 2008). In Arabidopsis, kinase 

activity is important for negative regulation in the absence of ethylene, as loss of 

CTR1 kinase activity leads to constitutive ethylene responses. So far, four CTR1 

homologs are identified from tomato: tCTR1 (also known as ER50), tCTR2, tCTR3, 

and tCTR4 ( Zegzouti et al., 1999; Leclercq et al., 2002; Adams-Phillips et al., 2004b, 

2004a). The evidences for functional conservation between Arabidopsis and tomato 

CTR genes are: (i) Phylogenetic analysis indicates that tCTR1, tCTR3, and tCTR4 are 

closely related to Arabidopsis CTR1, (ii) three different tomato CTR genes can 

partially or completely complement the Arabidopsis ctr1 mutant ( Leclercq et al., 

2002; Adams-Phillips et al., 2004b), (iii) CTR1, 3, and 4 show differential expression 

in various plant tissues (Adams-Phillips et al., 2004a, 2004b; Leclercq et al., 2002) 

and these tomato CTRs display ability to bind one or more of the tomato ethylene 

receptors in model experiments (Zhong et al., 2008). Among the tomato CTR proteins, 

the more divergent is tCTR2 shown to be implicated in disease resistance, stress 

responses that are known to be mediated by ethylene (Lin et al., 2009). 

 

Ethylene signaling downstream of CTR 

EIN2 (ETHYLENE INSENSITIVE2) is a membrane protein that functions 

downstream of CTR1 (Solano et al., 1998). When ethylene binds to the ethylene 

receptors, the inhibitory signal from CTR1 is switched off allowing EIN2 to activate 

the ethylene response through downstream transcription factors such as EIN3 and 

other EIN3-like proteins (EILs). EIN3 proteins subsequently regulate other 

ethylene-responsive genes in the transcription cascade. There are four EIL genes in 

tomato and only LeEIL4 is up-regulated during tomato fruit ripening (Tieman et al., 

2001a; Yokotani et al., 2003). Furthermore, it has been suggested that these four 
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LeEILs function redundantly, as down-regulation of a single LeEIL did not result in 

changes in ethylene responses (Tieman et al., 2001b; Chen et al., 2004).  

EILs and EIN3 proteins are post-transcriptionally regulated in response to the 

ethylene signaling pathway (Chao et al., 1997; Kendrick and Chang, 2008). In 

Arabidopsis, EBF (EIN3-binding F-box) proteins are proved to negatively regulate 

ethylene signaling via mediating the degradation of EIN3/EIL proteins through 26S 

proteasome (Potuschak et al., 2003; Guo and Ecker, 2003). In tomato, two F-box 

proteins SlEBF1 and SlEBF2 are identified and found to be regulated by both 

ethylene and auxin (Yang et al., 2010). Silencing of SlEBF1and SlEBF2 expression 

causes a constitutive ethylene response phenotype and accelerates fruit ripening (Yang 

et al., 2010). In addition, EIN3 protein stability can be further regulated by MAPK 

phosphorylation (Yoo et al., 2008). Previous studies suggested that the simultaneous 

activation of the MAPKK9 cascade and the inhibition of the CTR1 pathway control 

EIN3 levels (Yoo et al., 2009). 

 

Ethylene Response Factors 

Ethylene Response Factors (ERFs) are the last components of the ethylene 

transduction pathway and are responsible of the installation of the secondary response 

(Pirrello et al., 2012). ERFs are part of AP2 (APETALA2)/ERF super-family which 

also contains AP2 and RAV family genes (Riechmann et al., 2000; Riechmann and 

Meyerowitz, 1998; Sakuma et al., 2002). In Arabidopsis the ERF subfamily contains 

65 members and is divided into 5 subclasses based on the conservation of the AP2 

domain (Nakano et al., 2006). In tomato the ERF subfamily comprises 9 subclasses 

(Pirrello et al., 2012). Based on functional analysis of 28 tomato ERFs and through 

testing their ability to activate or repress transcriptional activity of target genes, it was 

suggested that functional activity is conserved among ERF proteins sharing the same 

structural features (Pirrello et al., 2012). The ERFs show tissue-specific expression 

patterns and bind the GCC box, a conserved motif of the Cis-acting element found in 

the promoters of ethylene-responsive genes (Ohme-Takagi and Shinshi, 1995; Solano 

et al., 1998), though some ERFs were shown to also bind other types of cis-elements 
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(Tournier et al., 2003). Using a dominant repressor strategy, it was recently shown that  

Sl-ERF.B3, a member of the ERF gene family in tomato, is involved in mediating 

fruit ripening and ethylene response (Liu et al., 2014a). Besides ripening, ERFs 

proteins are involved in a wide range of plant processes, including response to 

wounding, biotic stress, salt stress. ERFs have been also associated with the 

brassinosteroids, jasmonic acid, and salicylic acid signaling pathways (Pan et al., 2010, 

2012; Park et al., 2001; Sasaki et al., 2007; Taketa et al., 2008; Oñate-Sánchez et al., 

2007; Lorenzo et al., 2003; Chen et al., 2002; Brown et al., 2003; Zhang et al., 2005; 

Pirrello et al., 2012, 2006). 

 

Ripening is driven by key transcriptional regulators in the tomato 
 

A major breakthrough in dissecting the transcriptional control of tomato ripening 

was the identification of three pleiotropic non-ripening mutants, ripening-inhibitor 

(rin), non-ripening (nor), and Colorless non-ripening (Cnr) (Barry and Giovannoni, 

2007). These mutant loci all harbor transcription factors (Thompson and others 1999). 

These three ripening transcriptional factors mutants severely block the ripening 

process and the fruit fail to produce elevated ethylene (Fig 4). The fruits remain firm 

and green for an extended period and do not ripen by application of exogenous 

ethylene (Vrebalov et al., 2002; Eriksson et al., 2004).  
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Figure 4. Normal and mutant tomato fruit. ( from Giovannoni, 2004, 2007) 

 

RIN is encoded by a member of the SEPALLATA4 (SEP4) clade of MADS-box 

genes. The rin mutation disrupts the function of RIN-MADS (Vrebalov et al., 2002). 

In addition, RIN-MADS lies very close to another MADS-box gene, Macrocalyx (MC), 

which is also silenced in rin plants. Antisense repression of RIN-MADS and MC 

confirmed that only RIN-MADS is necessary for tomato ripening. Several 

independent groups have described a plethora of direct targets for RIN-MADS (Ito et 

al., 2008; Fujisawa et al., 2011; Martel et al., 2011). Chromatin immune-precipitation 

experiments also show that MADS-RIN directly controls the expression of a wide 

range of other ripening-related genes, targeting the promoters of genes involved in the 

biosynthesis and perception of ethylene, such as (i) LeACS2, LeACS4, NR and E8; (ii) 

cell wall metabolism, such as polygalacturonase (PG), galactanase (TBG4), 

Endo-(1,4)-β-mannanase 4, LeMAN4; and expansins (LeEXP1); (iii) carotenoid 

formation, such as phytoene syn-thase (PSY1); (iv) aroma biosynthesis, such as 

lipoxygenase (Tomlox C), alcohol dehydroge-nase (ADH2 ), and hydroperoxidelyase 

( HPL); and (v) the generation of ATP, such as phos-phoglycerate kinase (PGK) and 

the promoter of MADS-RIN gene itself (Fujisawa et al., 2011; Martel et al., 2011; Qin 

et al., 2012). MADS-RIN is also involved in suppressing the expression of most ARF 

genes (Kumar et al., 2011) and therefore auxin-related gene expression. NOR is a 

member of the NAC-domain transcription factor family (Giovannoni, 2007), and nor 

mutant causes retardation of tomato fruit ripening with a phenotype similar to the rin 

mutant (Giovannoni, 2004). The promoter of NOR is also a target for MADS-RIN. 

CNR is encoded by an SBP-box gene, targets of which are likely to include the 

promoters of the SQUAMOSA clade of MADS-box genes (Thompson et al., 1999; 

Cardon et al., 1999; Manning et al., 2006; Vogel et al., 2010). The transcription of 

CNR can be positively stimulated by RIN-MADS. The demethylation of the CNR 

promoter is necessary for RIN-MADS binding. In cnr mutants the promoter remains 

hypermethylated preventing RIN-MADS from binding to it (Zhong et al., 2013). 

Transcriptomic studies suggested that many more transcription factors are 
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potentially involved in the regulation of ripening (Vriezen et al., 2008; Pascual et al., 

2009). In tomato, ACO1, encoding the enzyme performing the conversion of ACC 

into ethylene, is regulated by LeHB1, a tomato homeobox protein. LeHB1 can 

stimulate ethylene synthesis by activating ACO1 expression. LeHB1 is highly 

expressed in developing fruits and decreased at the onset of ripening (Lin et al., 2008). 

Suppression of LeHB1 inhibits fruit ripening and greatly reduces ACO1 expression 

levels. The promoter of LeHB1 gene is also targeted by MADS-RIN. FUL1 (TDR4) 

and FUL2 (MBP7) are MADS-box transcription factors of SQUAMOSA clade 

(Hileman et al., 2006; Bemer et al., 2012). The FUL1 is up-regulated during fruit 

ripening, while FUL2 only shows a minor increase during fruit ripening. The FUL1 

and FUL2 function redundantly. The down-regulation of both FUL1 and FUL2 results 

in ripening phenotype, and this is independent of ethylene (Bemer et al., 2012). The 

promoter of FUL1 is targeted by MADS-RIN and FUL1 protein can form 

heterodimers with MADS-RIN. TAGL1 is a member of AGAMOUS (AG) clade of 

MADS-box transcription factors. TAG1 is up-regulated during tomato fruit ripening. 

TAGL1 can activate the promoter of ACS2. Down-regulation of TAGL1 results in 

yellow-orange fruits and lower ethylene levels which due to the depression of ACS2. 

TAGL1 can form heterodimers with MADS-RIN. TAGL1 regulate lycopene 

accumulation in a RIN-dependent manner, while it regulates cell wall modification in 

a RIN-independent manner (Itkin et al., 2009; Vrebalov et al., 2009). AP2A belongs to 

the AP2/ETHYLENE RESPONSE FAC-TOR (ERF) family of transcription factors 

(Karlova et al., 2011; Chung et al., 2010). AP2A functions as a negative regulator of 

fruit ripening in tomato. Tomato APETALA2a gene (Karlova et al., 2011) controls fruit 

ripening by regulating genes involved in ethylene and auxin signaling pathway and 

down-regulation of AP2A results in rapid softening with incerased ethylene 

production and early ripening (Chung et al., 2010). Moreover, AP2A RNAi fruits 

show elevated levels of GH3 transcripts indicating a link between AP2A and 

auxin-related gene expression (Karlova et al., 2011). In addition, AP2A can form a 

negative-feedback loop with CNR based on the following observations: (1) expression 

of CNR is induced in the AP2A RNAi fruit, and (2) CNR can bind to the promoter of 
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AP2 in vitro.  

 

 

The role of other hormones in fruit ripening 

While the prominent role of ethylene in regulating climacteric fruit ripening is now 

largely accepted, it has long been considered that other plant hormones, mainly Auxin, 

Abscissic Acid (ABA), Jasmonic Acid and Cytokines, are likely required for both the 

attainment of competence to ripen and the coordination of subsequent steps of fruit 

ripening ( Abdel-Kader et al., 1966; Sun et al., 2012; Jiang et al., 2000; Jia et al., 2011; 

Zhang et al., 2009; Vendrell, 1985; Manning, 1994; Cohen Jerry, 1996; Davies et al., 

1997; Aharoni, 2002; Davey and Van Staden, 1978). Depending on the fruit type, 

these phytohormones can have either agonistic or antagonistic effects on ripening. 

Auxin is among the first to be assigned a role in the ripening of fleshy fruits based on 

the observation that exogenous auxin treatment delays fruit ripening (Vendrell, 1985; 

Manning, 1994; Cohen Jerry, 1996; Davies et al., 1997; Aharoni et al., 2002). In 

tomato, crosstalk between indole-3-acetic acid (IAA) and ethylene during ripening has 

been reported. Ethylene production can be concomitant with an increase of IAA and 

auxin-signaling components can be up-regulated by ethylene and vice versa (Jones et 

al., 2002; Trainotti et al., 2007). In the tomato, 22 ARFs have been identified (Zouine 

et al., 2014) and the accumulation of some ARF transcripts has been reported to be 

under ethylene regulation during tomato fruit development suggesting that auxin 

signaling may influence the control of climacteric fruit ripening (Jones et al., 2002). 

More direct evidence for the involvement of auxin came later with approaches based 

on reverse genetics strategies (Jones et al., 2002; Liu et al., 2005; Sagar et al., 2013). 

For instance, SlARF4 plays a role in fruit development and ripening mainly by 

controlling sugar metabolism and the down-regulation of this ARF member results in 

ripening phenotypes such as enhanced firmness and chlorophyll content leading to 

dark green fruit and blotchy ripening (Jones et al., 2002; Guillon et al., 2008; Sagar et 

al., 2013). Nevertheless, the role of auxin in fruit ripening remains poorly understood 

and the underlying mechanisms and contribuiting factors are unknown.  
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Considering that literature reports reviewing the role of auxin in fruit 

development and ripening are scarce, it was decided to dedicate a specific section of 

the introduction to this topic. This review covers auxin signaling and response 

mechanisms that are the main issues dealt with in Chapter II and Chapter III of the 

thesis manuscript. It also addresses the interactions between auxin and components of 

other hormone signling. The last part deals with the role of auxin in fruit development. 

Moreover, given the originality of its content and considering that critical reviews on 

this topic is still missing, we decided to transform this part of the introduction section 

into a manuscript that will be submitted for publication in a refereed journal. 
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The plant hormone auxin regulates many aspects of fruit development including fruit 

set, growth and ripening. Auxin coordinates plant development through the regulation 

of a specific set of auxin-regulated genes that are appropriate for the desired 

developmental process. Auxin is first perceived by the TIR1/AFB receptors and then 

converted into a signal leading to the transcriptional control of auxin-responsive genes. 

The auxin response is mediated by three main players: (i) Aux/IAAs which act both as 

part of the hormone perception complex and as transcriptional repressors, (ii) Auxin 

Response Factors (ARFs) that modulate auxin-dependent gene transcription through 

the binding to target promoters, and (iii) the Topless which works as co-repressors. 

The expression of ARFs and TIR1/AFBs genes is also regulated at the 

post-transcriptional level by small RNAs (miRNAs or tasi-RNAs). The precise spatial 

and temporal expression of all these factors is critical to the coordination of fruit 

development and ripening. The present paper aims at reviewing the most recent 

knowledge on auxin signaling components and their involvement in the process of 

fruit development and ripening. It also highlights how these components interact with 

other plant hormones signaling in the context of fruit development. 
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Introduction 

Fruit is a typical organ of the angiosperms and derives from specific tissues of the 

flower, often ovaries and in some cases accessory tissues. Based on their mature 

morphology, fruits can be fleshy or dry (Pabón-Mora and Litt, 2011). Dry fruits are 

characterized by harden pericarp constituting a coat that becomes dry at maturity and  

in many cases splits to release the mature seeds. By contrast, in fleshy fruit the wall 

becomes soft and fleshy as it matures. Ripe fleshy fruits become attractive for animals 

which play an essential role for seed dispersal. Evolutionary studies show that plant 

species bearing fleshy fruit evolved from ancestral dry fruit bearing species, 

suggesting common development and ripening mechanisms between the two fruit 

types (Knapp, 2002) such as  fruit set, fruit growth, maturation, and 

ripening/senescence (Gillaspy et al., 1993; Picken, 1984; Harborne, 1971; Nitsch et al., 

1960; Bergervoet et al., 1996; Czerednik et al., 2012; Gray et al., 1992; Mao et al., 

2000; Szymkowiak and Irish, 1999; Adams-Phillips et al., 2004). Fruit set initiates the 

fruit development and is dependent on the successful pollination and fertilization of 

the ovary. Subsequently, the fruit enters the growth phase which includes cell division 

and cell expansion. When the fruit reaches its final size and becomes mature, it 

undergoes the ripening/senescence process (Seymour et al., 2013). The plant hormone 

auxin regulates these last steps of fruit development (de Jong et al., 2009; De Jong et 

al., 2009; Ruan et al., 2012). Exogenous auxin is able to induce fruit set, stimulate 

fruit growth and inhibit fruit ripening (Aharoni et al., 2002a; Davies et al., 1997; 

Manning et al., 2006; Vendrell, 1985). Auxin coordinates these processes through the 

regulation of a specific set of auxin-regulated genes. In order to be converted into a 

signal resulting in the transcriptional control of auxin-responsive genes, auxin is first 

perceived by the TIR1/AFB receptors. As depicted in Figure 1, the auxin response is 

known to be mediated in its downstream part by three types of transcriptional 

regulators: (i) the repressors Aux/IAAs, (ii) the transcriptional factors ARFs, and (iii) 

the co-repressors Topless (Pierre-Jerome et al., 2013; Quint and Gray, 2006; Weijers 

and Friml, 2009). Moreover, the expression of ARFs and TIR1/AFBs genes is also 
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regulated at the post-transcriptional level by small ARNs (miRNAs or tasi-RNAs) 

(Zouine et al., 2014; Xing et al., 2011; Si-Ammour et al., 2011; Chen et al., 2011, 

Vidal et al., 2010;). The present review aims at providing an overview of auxin 

signaling components and their involvement in the process of fruit development and 

ripening. It also highlights how these components interact with other plant hormones 

signaling in the context of fruit development. 

 
Figure 1. The TIR1 auxin signaling pathway. In the absence of auxin, Aux/IAA proteins 

form dimers with ARFs to inhibit their activity by recruiting the TPL co-repressors. In the 

presence of auxin, Aux/IAAs bind to the SCF-TIR1 complex and get subsequently 

ubiquitinated and degraded by the 26 S proteasome. The ARF is then released and can  

regulate the transcription of its target auxin responsive genes. 

 

The TIR1/AFB receptor family in fruit development 

Auxin perception results in the degradation of Aux/IAA transcriptional repressors 

(Mockaitis and Estelle, 2008). Auxin binds a hydrophobic pocket within the F-box 

protein of the SCF and acts as a molecular glue to promote high-affinity binding of an 

Aux/IAA protein, thus inducing its ubiquitination and degradation (Yu et al., 2013; 

Kepinski and Leyser, 2005; Dharmasiri et al., 2005b, 2005a; Tan et al., 2007). The 
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auxin receptor TIR1 contains a leucine-rich-repeat (LRR) motif that is responsible for 

the properties of SCFTIR1.  The D170E and M473L mutations in the LRR motif 

increase the affinity between TIR1 and Aux/IAAs and enhance the activity of the 

SCFTIR1 complex (Yu et al., 2013). TIR1 also contains a highly conserved F-box 

domain that interacts with CUL1, ASK1 or ASK2, and RBX1 to form SCFTIR1 

(Ruegger et al., 1998; Gray et al., 2001). In Japanese plum (Prunus salicina L.), 

substitution of the conserved amino acid residue Pro61 to a Ser in the F-box domain 

of the TIR1-like auxin-receptor results in a reduced percption of the hormone 

(El-Sharkawy et al., 2014).  

In Arabidopsis, besides TIR1, there are five other auxin signaling F-box proteins 

(AFB1-5). TIR1 and AFB1-3 function redundantly, as single mutations do not cause 

dramatic development defects while combing tir1 and afb1-3 mutations results in a 

severely reduced auxin response (Parry et al., 2009a; Kepinski and Leyser, 2005; 

Dharmasiri et al., 2005b, 2005a). AFB4 appears to be a negative regulator of auxin 

signaling, since AFB4 loss-of-function leads to growth defects consistent with auxin 

hypersensitivity (Hu et al., 2012; Greenham et al., 2011). AFB5 binds picloram, an 

auxin mimicking compound, with much higher affinity than TIR1, probably as a result 

of amino acid substitutions within the auxin-binding pocket (Irina et al., 2012; Walsh 

et al., 2006). These six auxin receoptors have overlapping functions and are essential 

for Arabidopsis growth and development (Dharmasiri et al., 2005b). Reducing the 

number of TIR1/AFB proteins in the plant results in increasing resistance to 

exogenous auxin. In the tir1/afb triple and quadruple mutants, anther dehiscence and 

pollen maturation occur earlier than in wild type, causing the release of mature pollen 

grains before the completion of filament elongation (Cecchetti et al., 2008). TIR1 

functions during fruit development and ripening have been reported in flesh fruit 

producing plants. In tomato, there are at least three TIR1/AFB genes (Ben-Gera et al., 

2012) and mining RNAseq expression data indicates that SlTIR1 displays constant 

high expression levels from flower to ripe fruit while SlAFB1 and SlAFB2 show very 

low expression level during flower throughout fruit ripening (Figure 2). In tomato, 

SlTIR1 plays an important role in flower-to-fruit transition and its overexpression 
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results in parthenocarpic fruit formation and altered transcript levels of a number of 

auxin-responsive genes (Ren et al., 2011). Three TIR1/AFB genes have been reported 

in plum where the TIR1-like auxin-receptors (AFB) are thought to be involved in the 

regulation of plum fruit development since the contrasted fruit development and 

ripening of two plum cultivars depends on their differential sensitivity to auxin 

termined by the allelic forms of the TIR1-like auxin receptor gene (El-Sharkawy et al., 

2014). 

Auxin signaling is also regulated by miR393 which targets TIR1 transcripts 

(Si-Ammour et al., 2011; Vidal et al., 2010; Chen et al., 2011). The miR393 is 

encoded by MIR393a and MIR393b in Arabidopsis and Rice (Chen et al., 2011; Bian 

et al., 2012) and post-transcriptionally regulates TIR1/AFB (Parry et al., 2009b; Bian 

et al., 2012). The expression of miR393 can be induced by exogenous IAA treatment 

and over-expression of miR393 leads to auxin resistant phenotypes (Bian et al., 2012; 

Xia et al., 2012; Chen et al., 2011; Parry et al., 2009b). Loss of miR393 expression 

results in abnormalities in leaves and cotyledons and also in elevated expression of the 

primary Aux/IAA genes in Arabidopsis (Windels et al., 2014). Overexpression of a 

miR393-resistant form of TIR1 ( mTIR1 ) in Arabidopsis, enhanced auxin sensitivity 

and led to pleiotropic effects on plant development including inhibition of primary 

root growth, overproduction of lateral roots, altered leaf phenotype and delayed 

flowering (Chen et al., 2011). In rice, over-expression of OsmiR393 results in 

increased tillers and early flowering (Xia et al., 2012). 
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Figure 2. The expression profile of auxin signaling components in tomato from fruit 

initiation to ripening. The heatmap data shows that the auxin signaling components can be 

divided into three groups. Group I: genes exhibiting very high expression levels from flower 

to ripe fruit. Group II contains two subgroups, (i) IIa group genes showing constantly 

moderate expression levels from flower to ripe fruit, and (ii) IIb group genes displaying 

moderate expression levels from flower to mature green fruit that largely decreases during 

fruit ripening. Finally, group III contain genes with very low expression levels from flower to 

ripe fruit. W: whole flower; P: fruit pericarp; T: top section of the fruit; M: middle section of 

the fruit; B: bottom section of the fruit. F: flower; IMG-10: immature green fruit at 10 days 

post-pollination; IMG-20: immature green fruit at 20 days post-pollination; MG: mature green 

fruit; Br: breaker fruit; Br+5: breaker plus 5 days fruit; Br+10: breaker plus 10 days fruit. 

 

The Aux/IAA co-repressor family in fruit development 

Aux/IAAs function as transcriptional repressors of auxin-regulated genes and regulate 

the early response of the auxin signaling (Hagen and Guilfoyle, 2002; Liscum and 

Reed, 2002; Tiwari et al., 2001, 2004). Typical Aux/IAA proteins are short-lived, 

nuclear-localized and have four conserved motifs named Domains I, II, III and IV 

(Audran-Delalande et al., 2012; Reed, 2001; Liscum and Reed, 2002). Domain I is the 

repressor domain responsible for recruiting the co-repressor Topless to inhibit the 

activity of ARFs. Mutation in domain I results in auxin-related phenotypes 
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(Szemenyei et al., 2008; Causier et al., 2012a; Tiwari et al., 2004; Li et al., 2011b; 

Lokerse and Weijers, 2009). Domain II contributes to the protein instability through 

interacting with F-box protein TIR1 (Dharmasiri et al., 2005b; Kepinski and Leyser, 

2005; Tan et al., 2007). Mutations in domain II lead to elevated Aux/IAA 

accumulation and auxin-related phenotypes (Liscum and Reed, 2002; Reed, 2001; 

Uehara et al., 2008). Domains III and IV are required for protein-protein interaction 

with ARFs (Ulmasov et al., 1997b; Kim et al., 1997; Muto et al., 2006; Okushima et 

al., 2005b; Remington et al., 2004; Ulmasov et al., 1999c). Some predicted proteins 

lack one or more of these domains and the localization of some ARFs is not restricted 

to the nucleus (Wu et al., 2014; Gan et al., 2013; Nigam and Sawant, 2013; Ludwig et 

al., 2013; Audran-Delalande et al., 2012; Song et al., 2009; Jain et al., 2006; Reed, 

2001; Ainleysq et al., 1988). For example, in tomato, Sl-IAA32 lacks domain II and 

Sl-IAA33 only contains a weakly conserved domain III. The repression activity of 

Sl-IAA32 is not affected by the lack of domain II and Sl-IAA32 protein is localized in  

nucleus and also in other compartments of the cell (Audran-Delalande et al., 2012; 

Wu et al., 2012). 

Aux/IAAs belong to a large multigenic family and are found in all plants. In 

Arabidopsis, this gene family comprises 29 members (Liscum and Reed, 2002) while 

it contains 31 in rice (Jain et al., 2006) and maize (Wang et al., 2010) , 29 in cucumber 

(Wu et al., 2014), 9 in Gossypium hirsutum (Han et al., 2012), 25 in Tomato 

(Audran-Delalande et al., 2012). Aux/IAAs regulate many aspects of plant 

development as well as fruit development and ripening (Wang, 2005, 2009; Liu et al., 

2011; Bassa et al., 2012; Deng et al., 2012a, 2012b; Tatsuki et al., 2013). Aux/IAA 

genes show a specific expression pattern during fruit development and ripening. In 

Gossypium hirsutum, GhAux4, GhAux5, GhAux6, GhAux 7 and GhAux8 show 

higher expression in ovules while GhAux 9 and GhAux 16 display highest expression 

during fibers development (Nigam and Sawant, 2013). In cucumber, CsIAA3 and 

CsIAA6 mRNAs accumulate during ovary and young fruit development in contrast to 

CsIAA17 and CsIAA23 that show a relative high expression during whole fruit 

development (Wu et al., 2014). In tomato, SlAux/IAA3, SlAux/IAA 4, SlAux/IAA 9, 
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SlAux/IAA15 show the highest expression levels from flower to ripe fruit process. 

SlAux/IAA 27, SlAux/IAA8 exhibit a constantly moderate expression level through 

out this proecss, while other SlAux/IAAs genes show very low levels of expression 

during fruit development and ripening (figure 2) (Wu et al., 2012; Audran-Delalande 

et al., 2012). In addition, SlAux/IAAs can be responsive to both auxin and ethylene 

two hormones important for fruit development and ripening (Audran-Delalande et al., 

2012). The FaAux/IAA1 and FaAux/IAA2 from strawberry show high levels of 

transcripts accumulation at the green and early stages of fruit development and then 

decline at the turning and ripe stages. Auxin treatment on the late white fruits induces 

the expression of FaAux/IAA1 and FaAux/IAA2 (Liu et al., 2011). LcAux/IAA1 from 

litchi is induced in the abscission zone (AZ) after the  treatment of girdling plus 

defoliation which promotes litchi fruitlet abscission implying its role in abscission 

(Kuang et al., 2012). Aux/IAA mutants exhibit multiple reduced auxin response 

phenotypes on seed, flower and fruit. Tomato Sl-IAA9 antisense lines exhibit early 

fruit initiation resulting in parthenocarpy fruit (Wang et al., 2005 and 2009). SlIAA15 

down-regulated lines show decreased flower number and reduced fruit set efficiency 

(Deng et al., 2012a). Under-expression of Sl-IAA27 results in altered fruit shape and 

smaller fruit with reduced seed number and fruit set efficiency (Bassa et al., 2012). 

Aux/IAAs function redundantly in Arabidopsis so only gain-of-function mutants 

display altered auxin response phenotypes (Fukaki et al., 2002, 2005, 2006, 2007; 

Uehara et al., 2008; Overvoorde et al., 2005). Some At-Aux/IAA gain of function 

mutants display phenotypes related to fruit development. The stamen of AtIAA16-1 

mutant is unable to reach the stigma before  dehiscence resulting in the absence of 

seeds in mutant fruits (Enders et al., 2013). The pIAA8::GFP-mIAA8 mutant shows 

abnormal flower phenotypes with short petal, sepal, stamen and bent stigma as a result 

of mutated domain II of IAA8 (Wang et al., 2013).  

 

The Auxin Response Factor (ARFs) family in fruit development 

The Auxin Response Factors (ARFs) are transcription factors that regulate auxin 

signaling through binding to the promoter of auxin-responsive genes and interacting 
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with repressor Aux/IAAs (Guilfoyle et al., 1998; Tiwari et al., 2003). The first 

Arabidopsis ARF is originally identified by a yeast one-hybrid screen using the 

auxin-responsive element TGTCTC as a bait sequence (Ulmasov et al., 1997a, 1995). 

Typically ARFs possess three domains, an N-terminal DNA binding domain (DBD), a 

variable middle region (MR) and a C-terminal dimerization domain (CTD) (Guilfoyle 

et al., 1998; Tiwari et al., 2003; Zouine et al., 2014). The DBD domain is a plant 

specific B3 type domain found in many types of plant transcription factors (Guilfoyle 

et al., 1998). The ARF DBD domain has been shown to bind the TGTCTC Auxin 

Response Elements (AuxREs) on the promoter of auxin-regulated genes to allow 

activation or repression of the transcription of these target genes (Ulmasov et al., 

1999a). The activity of ARF as activator or repressor is determined by the 

composition of the ARF middle region. ARFs with AD type middle region are rich in 

glutamine(Q), serine (S), and leucine (L) residues and function as activators whereas 

ARFs with RD type middle region that are rich in proline (P), serine (S), threonine (T), 

and glycine (G) residues function as repressors (Guilfoyle et al., 1998; Tiwari et al., 

2003; Ulmasov et al., 1999a). The ARF C-terminal dimerization domain (CTD) is also 

found in Aux/IAA proteins referred to as domain III and IV. The ARF CTD domain is 

responsible for forming ARF homodimers or Aux/IAA-ARF heterodimers (Ulmasov 

et al., 1999c; Guilfoyle and Hagen, 2007).  

There are 23 ARFs in Arabidopsis, 25 in rice (Oryza sativa), 39 in Populus trichocarpa, 

24 in sorghum (Sorghum vulgare), 31 in Brassica rapa and Maize, 51 in Soybean and 

22 in tomato (Kalluri et al., 2008; Wang et al., 2007; Xing et al., 2011; Shen et al., 

2010; Wu et al., 2011; Sato et al., 2001; Mun et al., 2012; Wang et al., 2012; Ha et al., 

2013; Zouine et al., 2014). So far, all the ARFs studied in different species are shown 

to be targeted to the nucleus (Kalluri et al., 2008; Wang et al., 2007; Xing et al., 2011; 

Shen et al., 2010; Wu et al., 2011; Sato et al., 2001; Mun et al., 2012; Wang et al., 

2012; Ha et al., 2013; Zouine et al., 2014). Atypical ARF contains the canonical 

domains (B3, MR, and CTD) though some ARFs lack the CTD domain whereas some 

others contain only the DBD domain but whether or not these ARFs are functionally 

active remains to be elucidated (Kalluri et al., 2008; Wang et al., 2007; Xing et al., 
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2011; Shen et al., 2010; Wu et al., 2011; Sato et al., 2001; Mun et al., 2012; Wang et 

al., 2012; Ha et al., 2013; Zouine et al., 2014). The repression and activation activities 

of tomato ARFs were asessed using a single cell system co-transfected with a reporter 

construct harboring the synthetic DR5 auxin-responsive promoter fused to the GFP 

coding sequence and an effector construct allowing the expression of an ARF protein 

(Zouine et al., 2014). Interactions between ARFs and Aux/IAAs was performed by  

yeast two hybrid system indicating that activator ARFs show strong ability to interact 

with most Aux/IAA proteins in contrast to repressor ARFs which display weak or no 

affinity to Aux/IAAs (Shen et al., 2010). The ARFs lacking the CTD domain do not 

interact with Aux/IAAs but they are still capable to repress or activate transcription on 

the DR5 promoter (Zouine et al., 2014). ARF genes encoding proteins with only the 

DBD domain are predicted to be pseudogenes (Wang et al., 2007; Zouine et al., 2014). 

The expression of ARFs can be induced or repressed by exogenous auxin and ethylene 

consistent with the presence in many ARF promoters of auxin and ethylene 

cis-regulatory elements, which suggests that ARFs possess the ability to mediate both 

auxin and ethylene responses (Zouine et al., 2014). Several ARFs are found to be 

post-transcriptionally regulated by microRNAs or transacting small interfering RNAs, 

siRNAs (Zouine et al., 2014; Xing et al., 2011). A single small RNA can potentially 

regulate different ARFs. That is, in Arabidopsis and tomato, ARF10, ARF16 and 

ARF17 are negatively regulated by mir160 (Liu et al., 2007; Mallory et al., 2005; 

Wang et al., 2005b) and overexpression of miR160 in Arabidopsis leads to root tip 

defects similar to that displayed by arf10 / arf16 double mutant (Wang et al., 2005b). 

Overexpression of an ARF10 gene resistant to mir160 in tomato results in narrow 

leaflet blades, sepals and petals, and abnormally shaped fruit (Hendelman et al., 2012). 

ARF6 and ARF8 are targeted by mir167 (Nagpal et al., 2005; Wu et al., 2006). And 

inhibition of mir167 results in impaired organogenesis throughout the plant (Gutierrez 

et al., 2009). Mutations in the miR167 target sites of ARF6 and ARF8 leads to 

overaccumulation of transcripts corresponding to these two genes and results in 

arrested ovule growth and defective anthers unable to release pollen (Wu et al., 2006). 

Overexpression of miR167 leads to floral development defects and female sterility in 
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tomato which may give rise to parthenocarpic fruit (Liu et al., 2014b). ARF2, ARF3 

and ARF4 are post-transcriptionally regulated by TAS3 ta-siRNA, whose formation 

involves miR390 (Williams et al., 2005). The repression of TAS3 drastically impairs 

the normal development of flowers and leaves (Fahlgren et al., 2006; Garcia et al., 

2006; Hunter et al., 2006). 

 

In the last period, an increasing number of studies pointed to the role of ARFs in 

regulating fruit development and ripening. ARFs are shown to regulate dry fruit 

development in Arabidopsis (Ellis et al., 2005; Rensing et al., 2008; Lim et al., 2010b; 

Okushima et al., 2005; Schruff et al., 2006; Sessions and Zambryski, 1995; 

Tantikanjana and Nasrallah, 2012; Liu et al., 2014), and fleshy fruit in tomato ( Jones 

et al., 2002; Guillon et al., 2008; De Jong et al., 2009; de Jong et al., 2011; 

Hendelman et al., 2012; Sagar et al., 2013). ARF genes show specific expression 

patterns during flower and fruit development (Kalluri et al., 2008; Wang et al., 2007; 

Xing et al., 2011; Shen et al., 2010; Wu et al., 2011; Sato et al., 2001; Mun et al., 2012; 

Wang et al., 2012; Ha et al., 2013; Zouine et al., 2014). In Arabidopsis, some ARF 

loss-of-function mutants shows phenotypes on both flowers and fruit. At-ARF2 

mutants display abnormal flower morphology, delayed development related to aging 

including initiation of flowering, rosette leaf senescence, floral organ abscission and 

silique ripening, and also seeds with increased size and weight (Ellis et al., 2005a; 

Hughes et al., 2008; Lim et al., 2010; Okushima et al., 2005a; Schruff et al., 2006). 

The At-ARF2 homologue in maize, ZmARF25, affects cell proliferation and its 

down-regulation results in reduced organ size in Arabidopsis (Li et al., 2014). 

At-ARF3 mutant shows impaired gynoecium and floral development (Sessions and 

Zambryski, 1995; Tantikanjana and Nasrallah, 2012) whereas At-ARF6 and At-ARF8 

were shown to regulate both stamen and gynoecium development (Liu et al., 2014; 

Glazińska et al., 2014). Arabidopsis arf6 / arf8 double mutant display infertile closed 

buds with short petals, short stamen filament and undehisced anthers that do not 

release pollen (Goetz et al., 2007; Jay et al., 2011; Nagpal et al., 2005). Mutations in 

At-ARF8 result in the formation of seedless perthenocarpic fruit and Sl-ARF8 may 
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control tomato fruit initiation in a similar manner than At-ARF8 (Liu et al., 2014; 

Goetz et al., 2007). In addition, At-ARF8 can interact with BREp to affect petal 

growth. At-ARF8 mutant (arf8-3) produces larger petals than wild type due to 

increased cell number and expansion (Varaud et al., 2011). In tomato, SlARF2A 

shows a very high expression level from flower to ripe fruit process. With the 

exception of SlARF9A and SlARF16B, all other tomato ARFs display a constantly 

moderate expression level during fruit development and ripening (figure 2). In tomato, 

SlARF7 shows high levels expression in mature flowers and unpollinated mature 

ovaries. It is down-regulated within 48 hours after pollination. Down-regulation of 

SlARF7 causes parthenocarpic fruit with heart-shaped and a rather thick pericarp that 

can be interpreted as an auxin response phenotype (de Jong et al., 2011; De Jong et al., 

2009). SlARF10 is important for early fruit development and outgrowth of 

auxin-mediated blade, because increasing mSlARF10 levels in tomato results in 

narrow leaflet blades, sepals and petals, and abnormally shaped fruit (Hendelman et 

al., 2012). SlARF4 plays a role in fruit development and ripening, fruit tissue 

architecture and also sugar metabolism. Down-regulation of SlARF4 enhances fruit 

firmness as a result of the pectin fine structure, increases chlorophy II content 

associated with a higher number of chloroplasts leading to dark green fruit and 

blotchy ripening, and also increases sugar content in the fruit (Guillon et al., 2008; 

Jones et al., 2002; Sagar et al., 2013). Down-regulation of ARF6 and ARF8 by 

miRNA 167 in tomato leads to floral development defects and female sterility (Liu et 

al., 2014).  

 

The transcriptional co-repressors topless (TPLs) in fruit development 

Topless (TPLs) is a transcriptional regulator co-repressors of the GROUCHO family 

(Liu and Karmarkar, 2008). Canonical TPL proteins possess three conserved domains: 

Lissencephaly (LisH) domain, C-terminal to LisH (CTLH) domain and two 

WD40-repeat domains (Kieffer et al., 2006; Liu and Karmarkar, 2008). LisH domain 

and CTLH domain are responsible for the interaction between the TPL/TPR 

co-repressors and partner transcription factors (Gallavotti et al., 2010; Szemenyei et 
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al., 2008). In Arabidopsis, the first TPL gene is identified as responsible for the 

semi-dominant tpl-1 embryo development mutation resulting in altered polarity, 

ranging from fused cotyledons to complete replacement of the shoot with a second 

root (Long et al., 2006, 2002). Subsequently, 5 TPL/TPR family members were 

isolated (TPL, TPR1, TPR2, TPR3, TPR4). As a quintuple loss of function, in which 

all five TPL/TPR genes are inactivated by mutation or RNA interference, is required 

to phenocopy the tpl-1 phenotype, it was concluded that the five TPL/TPR genes 

function redundantly (Long et al., 2006). So far, the characterization of topless family 

members in plant species carrying fleshy fruit only occured in tomato. Six SlTPLs 

genes were isolated all encoding proteins that localize to nucleus with the exception of 

Sl-TPL6. Tomato TPL genes show different expression patterns (figure 2) with 

SlTPL3 and SlTPL4 displaying constant and high expression levels during fruit 

development and ripening suggesting their putative role in these proceses (Hao et al., 

2014). 

Topless is also reported to be related to meristem maintenance, floral induction, biotic 

stress, and circadian oscillator mechanism (Causier et al., 2012a; Liu and Karmarkar, 

2008; Pauwels et al., 2010a; Szemenyei et al., 2008; Zhu et al., 2010). In maize, the 

transcription factor RAMOSA1 (RA1) controls the development of inflorescences, 

branches, tassel and ear by regulating the axillary meristems. The ra1 and ra2 mutants 

display an increasing long branches formation in ears leading to lower yield. The 

REL2 gene, which encodes a topless protein, is strongly expressed in inflorescence, 

branch and spikelet-pair meristems and floral organs. REL2 interacts with RA1 

protein. Rel2 mutants enhance the phenotypes of the ra1 and ra2 mutant (Gallavotti et 

al., 2010). OsREL2, the REL2 homologue in rice, exhibits a relatively low expression 

through the rice inflorescence development. The rel2 rice mutant shows shorter and 

decreased number of branches resulting in reduced grains yield (Kwon et al., 2012). 

In rice, the genes giving high grains yield elevate the numbers of branches and 

spikelet (Ikeda-Kawakatsu et al., 2009; Miura et al., 2010; Jiao et al., 2010; Ookawa 

et al., 2010). ASP1, a TPL-related protein, shows a strong expression in the branches 

and spikelet meristems and the lateral organ primordia of the spikelet. Moreover, the 
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asp1 mutant produces lower number of normal spikelet and shorter, bleached 

abnormal branches leading to a lower grains yield (Yoshida et al., 2012). The 

WUSCHEL gene is responsible for floral meristem integrity in Arabidopsis (Laux et 

al., 1996). The interaction between WUS and TPLs is essential for the WUS function. 

TOE1 and TOE2, repressors of the flowering-time gene interact with all five 

TPL/TPRs. The flowering delay in the 35S::TOE1 lines is abolished in the tpl-1 

mutant background. TPLs also interact with other repressors of the flowering-time 

gene such as: TEM1, AP2, AGL15 (Causier et al., 2012).  

TPL/TPR proteins can use multiple chromatin-remodeling mechanisms to induce 

transcriptional repression (Causier et al., 2012). In particular, they induce local 

chromatin compaction at target sites through association with chromatin remodelers 

such as histone deacetylases (HDACs). Histone acetylation is largely correlated with 

gene expression (Figure 3); therefore, removal of these modifications by HDACs 

generally leads to repression of transcription (Shahbazian and Grunstein, 2007). In 

Arabidopsis, TPL acts through HDA19 and interactions between TPR1 and HDA19 

can be observed in pull-down experiments from plant extracts. Mutations in HDA19 

increase the penetrance of tpl-1 and display similar apical defects (Gonzalez et al., 

2007; Long et al., 2006; Sridhar et al., 2004). Besides histone deacetylases, large 

interactome studies in Arabidopsis show that TPL/TPR proteins interact with some 

histone methyltransferases such as SDG19 (SUVH3); PKR1; EMF1, VRN5(Causier 

et al., 2012). SDG19 also called SUVH3 is a SET domain protein catalyzing the 

methylation of histone H3 Lys residue 9 resulting in nucleosome compaction and gene 

silencing (Pontvianne et al., 2010; Zhao and Shen, 2004). PKR1 is a protein related to 

the PICKLE (PKL) CHD3/Mi-2-like chromatin remodeler (Ogas et al., 1999; Zhang 

et al., 2008), which represses the expression of seed-associated genes during 

germination by promoting the methylation of histone H3 Lys residue 27 (Ogas et al., 

1999; Zhang et al., 2008). EMF1 is a component of Polycomb Repressive Complex 1 

PRC1 (Calonje et al., 2008), while VRN5 is a component of Polycomb Repressive 

Complex 2 PRC2 (Greb et al., 2007). PRC2 catalyzes the trimethylation of histone H3 

on lysine 27 (H3K27 trimeth) (Cao et al., 2002). PRC1 binds to this mark through its 
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subunit POLYCOMB (PC) and catalyzes the mono-ubiquitylation of lysine 118 of 

histone H2A (H2AK118ub) (Wang et al., 2004) (Figure 3). The sequence of these 

events finally leads to gene silencing through the mechanisms involving chromatin 

compaction (Figure 3).  

 

Figure 3. Gene silencing through the mechanisms involving chromatin compaction. 

PRC2 induces H3K27me3. H3K27me3 recruits PRC1 that ubiquitylates H2AK119 promoting 

chromatin compaction and gene silencing. Deacetylation of the target gene by HDACs 

generally leads to chromatin compaction. PRC2 associates with histone deacetylases, 

reinforcing transcriptional repression and providing functional synergy to stable silencing of 

target genes. 

 

So far, these interaction data are only described in Arabidopsis which produces dry 

fruit. However, studies on the components of PRC2 complex homologues in tomato 

showed that mutation in some of these components lead to fruit phenotypes that are 

related to auxin. SlEZ1 is one component of PRC2 and SlEZ1 RNAi plants exhibit 

abnormal flower morphology and fruits with small size and fewer seeds and increased 

number of locules (How Kit et al., 2010). SlFIE, another component of PRC2, 
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interacts with EZ2 and its down-regulation results in flowers with increased sepal and 

petal numbers, fused ovule and pistil and parthenocarpic fruit (Liu et al., 2012).  

 

Auxin signaling components affect other plant hormone responses  

It well known that fruit development and ripening rely not only on auxin (Figure 4) 

but also on the combined action of other plant hormones such as gibberellin, abscisic 

acid, ethylene and brassinosteroid (Ziosi et al., 2009; Kondo and Fukuda, 2001; Ziosi 

et al., 2008; Carbonell-Bejerano et al., 2011; Serrani et al., 2007; Jia et al., 2011a; 

Chai et al., 2012; Symons et al., 2006; Motyka et al., 2003; Li et al., 2011a; Jia et al., 

2011b; Zaharah et al., 2013; Jiang et al., 2000). Most likely, from flower initiation to 

fruit ripening, auxin functions through cooperating with these plant hormones (Ziosi 

et al., 2009; Kondo and Fukuda, 2001; Ziosi et al., 2008; Carbonell-Bejerano et al., 

2011; Serrani et al., 2007; Jia et al., 2011a; Chai et al., 2012; Symons et al., 2006; 

Motyka et al., 2003; Li et al., 2011a; Jia et al., 2011b; Zaharah et al., 2013; Jiang et al., 

2000). As described above, auxin signaling components have been reported to be 

involved in these hormones signaling pathway. The Aux/IAAs and ARFs can be 

induced or reduced by auxin and by other phytohormones such as gibberellin (GA) 

(de Jong et al., 2011; De Jong et al., 2009), ethylene (Zouine et al., 2014; 

Audran-Delalande et al., 2012), jasmonate acid (JA) (Nagpal et al., 2005), abscise 

acid (ABA) (Wang et al., 2011) and brassinosteroid (BR) (Walcher et al., 2008). Fruit 

set can be triggered by application of auxin and gibberellin (Ruiz-rivero et al., 2007; 

McAtee et al., 2013; Jong et al., 2009) and auxin appears to act at least partly through 

gibberellin, as it can induce gibberellin biosynthesis early during fruit development 

(Ruiz-rivero et al., 2007). SlARF7, acts as a modifier of both auxin and gibberellin 

responses, and regulates part of the auxin and GA signaling pathways. 

Down-regulation of SlARF7 results in parthenocarpic fruit as a result of both 

increased auxin and gibberellin response during fruit growth (de Jong et al., 2011; De 

Jong et al., 2009) (Figure 4). Abscisic acid ( ABA) is thought to be related to the 

expansion phase in tomato (Gillaspy et al., 1993; McAtee et al., 2013) and the  

ABA-deficient mutants produce smaller fruit (Nitsch et al., 2012). Application of 
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exogenous ABA promotes starch hydrolysis (Sun et al., 2012), enhances the onset of 

breaker stage and accelerates tomato ripening (Zhang et al., 2009a).  In the dry 

dehiscent fruit Arabidopsis, increased ABA levels promotes silique maturation and 

dehiscence (Kanno et al., 2010; Kou et al., 2012). The mutation of domain II in 

At-IAA16 results in reduced response to auxin and ABA and also in impaired plant 

growth and fertility (Enders et al., 2013). The expression of At-ARF2 can be induced 

by ABA and At-ARF2 mutant shows enhanced ABA sensitivity indicating that 

At-ARF2 links ABA and auxin signaling (Wang et al., 2011). At-ARF10 and 

At-ARF16 are required to control the expression of Abscisic Acid Insensitive3 (ABI3) 

which is a major downstream component of ABA signaling regulating seed dormancy 

and ABA inhibition of seed germination. The over-expression of miR160 leads to 

plants with enhanced seed dormancy (Liu et al., 2013) (Figure 4).  

The gasous plant hormone ethylene is a crucial component of normal ripening in 

climacteric fruit (Gapper et al., 2013) and exogenous ethylene can accelerate fruit 

ripening and silique abscission (Lelievre et al. 1997) . In Arabidopsis, ARF19 is 

induced by ethylene and contributes to ethylene sensitivity through a cross-talk 

between auxin and ethylene signaling (Li et al., 2006). At-ARF2 and SlARF2 are 

reported to regulate hook curvature, a typical ethylene response of etiolated seedling 

(Chaabouni et al., 2009a and 2009b; Li et al., 2004). In the developing siliques of 

arf2-6 mutant, the expression of the ethylene synthesis genes ACS2, ACS6 and ACS8 

is impaired suggesting that At-ARF2 might play a role in connecting auxin and 

ethylene signaling (Okushima et al., 2005) (Figure 4).  

Brassinosteroids have a role in fruit ripening of strawberry and grape (Chervin et al., 

2004; Carbonell-Bejerano et al., 2011; Zaharah et al., 2013; Chai et al., 2012; Symons 

et al., 2006). Brassinosteroids have also been reported to affect cell expansion during 

fruit growth and may have a role in fruit set (Fu et al., 2008). The homone 

cis-regulatory elements Up at Dawn (HUD)-type E-box and AuxRE-related TGTCT 

are both necessary for auxin and brassinosteroids response and treatment with both 

hormones enhances the binding of At-ARF5 and brassinosteroid insentitivel-EMS 

suppressors target promoters (Walcher et al., 2012). At-ARF2 interacts with the 
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brassinosteroid regulated BIN2 Kinase and At-ARF2 are supposed to integrate the 

auxin and brassinosteroid pathway (Walcher et al., 2008). The key transcription 

factors in the BR signaling pathway BZR1 can bind to the promoter of both IAA19 

and ARF7. The BR regulates the growth of Arabidopsis hypocotyles through auxin 

signaling components IAA19 and ARF7 (Zhou et al., 2013). In rice, BR and auxin are 

implicated in grain yield. OsARF19 is induced by auxin and BR and can direct the 

expression of OsCH3-5 and OsBRI1 by binding to their promoters. OsARF19 

overexpressing lines are sensitive to BR treatment and alter the expression of genes 

related to BR signaling (Zhang et al., 2014) (Figure 4).  

The plant hormone Jasmonate (JA) modulates anther dehiscent, fruit ripening and 

plant resistance to insect (McAtee et al., 2013; Ziosi et al., 2008, 2009). The 

Arabidiosis double mutant of arf6 arf8 shows delay in the elongation of floral organs 

and inhibition of the opening of flower buds with a decreased levels of JA indicating 

that At-ARF6 and At-ARF8 modulate flower development through mediating JA 

levels (Nagpal et al., 2005). The At-ARF6 and At-ARF8 interact with At-IAA8 and 

the pIAA8::GFP-mIAA8 mutant also shows similar abnormal flower phenotypes with 

decreased JA levels indicating that the At-IAA8 regulate floral organ development by 

changing JA levels via its interaction with ARF6/8 proteins (Wang et al., 2013) 

(Figure 4). 

Though there is not enough data supporting that the TOPLESS (TPL) transcriptional 

co-repressor is involved in fruit development and ripening, the screening for Topless 

interacting partners indicated that TPL proteins might be involved in multiple plant 

hormones signaling pathways (Figure 4). Aux/IAAs interact with TPL to form a 

complex that represses the transcriptional function of ARFs (Peer, 2013). In 

Arabidopsis, there are 5 TPL/TPR family members interacting with 20 out of the 29 

AtIAA proteins (Causier et al., 2012). Some repressor ARFs, like ARF2 and ARF9, 

can also interact directly with TPL/TPRs (Causier et al., 2012b). In the moss 

Physcomitrella patens, there are 2 PpTPL members. The moss Aux/IAAs interact with 

all the TPL/TPRs but only with repressor ARFs (Causier et al., 2012). In tomato, 6 

TPLs members are isolated and shown to interact with most of the Sl-Aux/IAAs.  
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Figure 4. Auxin signaling components affect other plant hormone responses. Auxin can 

affect Jasmonic Acid responses via ARF6, ARF8, IAA8 and TPL which can interact with JAZ 

to modulate transcription of JA regulated genes. Auxin can potentially affect Etylene 

responses via ARF2, ARF19, and TPL which is able to interact with ERFs. Auxin may also 

affect Gibberellic Acid responses via ARF7 and TPL which interacts with GAF1. Auxin 

affects Abscisic Acid responses via ARF16, ARF10, ARF2, IAA16 and TPL which interacts 

with AFP. Finally, Auxin can affect responses to Brassinosteroids by ARF2, ARF5, ARF7, 

ARF19 and IAA9. 

 

Topless seem to be a central component of hormone-dependent inhibition of gene 

transcription. Indeed, in Arabidopsis, JAZ, the transcriptional regulators of JA 

signaling pathway interact with TPLs through an adapter protein NINJA indicating 

that JAZ represses gene expression by recruiting TPLs (Santner and Estelle, 2007; 

Pauwels et al., 2010) On the other hand,  AFPs, the negative regulators of ABA 

signaling, interact with TPLs indicating that TPLs are involved in ABA signaling 

pathway (Lopez-molina et al., 2003; Causier et al., 2012). Ethylene response factors 

ERFs which are  induced by ethylene, high-salt conditions, drought stress, and 

pathogen attack interact with TPLs. Finally, DELLAs are negative regulators of GA 

signaling and GAF1, the DELLA binding transcription factor, interacts with TPLs to 

modulate gene expression (Fukazawa et al., 2014; Causier et al., 2012). All of these 

plant hormones are important for the fruit from initiation to ripening. Taking together 
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these data support the idea that Topless is a common player mediating multiple 

hormone signaling and resposes. Moreover, given the role of the above described 

hormones in fruit development and ripening, it is likely Topless is also a major player 

in fruit development. 
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Introduction to Chapter II 

 

Apart from ethylene, auxin also plays a role during fruit ripening by interplay with 

ethylene or other hormones. Auxin response facotrs (ARFs), as one of the important 

components for auxin signaling, are well known for their involvement in the 

regulation of plant development processes, including the auxin signaling and crosstalk 

between auxin and ethylene. It has been reported that mRNA accumulation of ARF 

(auxin response factor) family genes were regulated by ethylene during tomato fruit 

development in a tissue-specific manner suggesting that auxin signaling may 

influence ripening control of climacteric fruits (Jones et al., 2002). The SlARF4 is one 

member of ARFs family. It plays a role in fruit development and ripening and also 

sugar metabolism, down-regulation of SlARF4 enhances fruit firmness, increases 

chlorophyll content associated with a higher number of chloroplasts leading to dark 

green fruit and blotchy ripening, and also increases sugar content in the fruit (Sagar et 

al., 2013). In tomato, 22 ARFs have been identified. Several ARFs can be regulated by 

both ethylene and auxin, which imply their potential contribution to the convergence 

mechanism between the signaling pathways of these two hormones (Zouine et al., 

2014). Among all ARFs, SlARF2 displays the most prominent transcript accumulation 

during fruit development and ripening (Zouine et al., 2014). It has also shown that 

SlARF2 can be modulated by auxin and ethylene via IAA3 and HLS protein to 

regulate hypocotyl bending (Chaabouni et al., 2009a,b) but the role of ARF2 during 

fruit ripening remains to be clearly established. To address the function of SlARF2 

homologs during fruit ripening, we generated transgenic lines that were either 

specifically silenced for SlARF2A or SlARF2B or silence for both. In my thesis, 

chapter II will describe the role of SlARF2 during fruit development and ripening 

through the following part: The identification, expression pattern, auxin and ethylene 

response, the physiological molecular analyses of the SlARF2 mutant. 
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ABSTRACT 

Ethylene is a major regulator of climacteric fruit ripening whereas the putative role of 

other phytohormones in this process remains poorly understood. The present study 

brings auxin into the mechanism regulating tomato fruit ripening via addressing the 

physiological significance of SlARF2 (Auxin Response Factor), encoding a 

downstream component of auxin signaling and responses. In the tomato, SlARF2 is 

encoded by two genes, SlARF2A and SlARF2B, both shown here to act as 

transcriptional repressors and to exhibit distinct responsiveness to ethylene and auxin 

and a marked ripening-associated pattern of expression. Specific down-regulation of 

either SlARF2A or SlARF2B resulted in ripening defects while simultaneous 

silencing of both genes led to more severe ripening inhibition phenotypes suggesting a 

functional redundancy among the two orthologs. SlARF2 under-expressing fruits 

produced less climacteric ethylene and the expression of key regulators of ripening, 

such as RIN, CNR, NOR and TAGL1 was dramatically down-regulated in SlARF2 

under-expressing lines. While exogenous ethylene treatment failed to reverse the 

non-ripening phenotype, molecular analysis revealed a disturbed pattern of expression 

of ethylene signaling and biosynthesis genes. Altogether, the data further extend our 

knowledge on the role of auxin in fleshy fruit development and set SlARF2 as a new 

component of the regulatory network controlling the ripening process in tomato.  
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INTRODUCTION 

Fruit ripening is a complex, genetically programmed process that is associated 

with dramatic metabolic and textural transformation including color changes, fruit 

softening, accumulation of sugar and production of flavor and aroma compounds 

(Alexander and Grierson, 2002; Adams-Phillips et al., 2004a; Giovannoni, 2004). 

Ultimately, the ripening process leads to fruit withering allowing dispersal of the 

seeds. Based on their type of ripening mechanism, fleshy fruits can be divided into 

climacteric and non-climacteric (Oeller et al., 1991; Theologis et al., 1993; Gray et al., 

1992; Ayub et al., 1996). Climacteric fruit ripening is characterized by autocatalytic 

increase in ethylene biosynthesis (Lelievre et al., 1997), and it is widely accepted that 

this hormone is the main trigger and coordinator of the ripening process. Accordingly, 

several genes involved in ethylene metabolism and signaling have been shown to be 

essential for fruit ripening in tomato and reducing ethylene production via suppression 

of ethylene biosynthesis genes, ACC synthase (ACS) and ACC oxidase (ACO), leads 

to the inhibition of fruit ripening (Hamilton et al., 1990; Oeller et al., 1991; Nakatsuka 

et al., 1998). Likewise, the tomato Never-ripe (Nr) mutant, bearing an altered allele of 

the ethylene receptor gene ETR3, also shows non-ripening phenotype due to reduced 

ethylene sensitivity (Rick and Butler, 1956; Lanahan et al., 1994). On the other hand, 

silencing of either LeETR4 or LeETR6 with a fruit-specific promoter causes enhanced 

ethylene sensitivity and early ripening phenotype (Kevany et al., 2008, 2007). 

EIN3-Binding Factors, EBF1and EBF2, are F-BOX proteins responsible for the 

degradation of EIN3 protein, a downstream component of ethylene signaling. 

Repression of tomato SlEBF1/SlEBF2 causes constitutive ethylene responses and 

early fruit ripening (Yang et al., 2010). In concert with ethylene, the control of fruit 

ripening also involves other key regulators, some of which have been functionally 

characterized. For example, silencing of the homeobox protein LeHB1 results in 

delayed ripening (Lin et al., 2008) and MADS-box genes like RIPENING-INHIBITOR 

(RIN) and TOMATO AGAMOUS-LIKE 1 (TAGL1) are proved to dramatically affect 
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fruit ripening (Vrebalov et al., 2002; Ito et al., 2008; Itkin et al., 2009; Vrebalov et al., 

2009). COLORLESS NON-RIPENING (CNR), a SQUA-MOSA promoter binding 

protein (SBP), is shown to directly influence the expression of RIN or other 

MADS-box genes during fruit ripening (Manning et al., 2006; Pech et al., 2012). The 

rin and cnr mutants produce fruits that remain firm and green for an extended period, 

deficient in ethylene production and unable to ripen upon exogenous ethylene 

(Tigchelaar and McGlasson, 1978; Manning et al., 2006). 

Without minimizing the role of ethylene, it has long been considered that other 

plant hormones are likely required for both the attainment of competence to ripen and 

the coordination of subsequent steps of fruit ripening. In this regard, old physiologists 

used to mention that the control of such a highly coordinated and complex process is 

driven by a subtle hormonal balance. Auxin is among the first to be assigned a role in 

the ripening of fleshy fruits as adding auxin to mature fruit has been shown to delay 

ripening (Vendrell, 1985; Manning, 1994; Davies et al., 1997; Cohen Jerry, 1996; 

Aharoni et al., 2002b). More direct evidence for the involvement of auxin came later 

with approaches based on reverse genetics strategies (Davey and Van Staden, 1978; 

Rolle and Chism, 1989; Jones et al., 2002; Liu et al., 2005; Wang et al., 2005, 2009; 

Ireland et al., 2013; Sagar et al., 2013). Auxin signaling is known to regulate the 

expression of target genes mainly through two types of transcriptional regulators, 

namely, Aux/IAA and Auxin Response Factors (ARF). ARFs can be either 

transcriptional activators or repressors through direct binding to the promoter of 

auxin-responsive genes (Ulmasov et al., 1997b; Guilfoyle et al., 1998; Ulmasov et al., 

1999b; Guilfoyle and Hagen, 2007; Ulmasov et al., 1999d; Audran-Delalande et al., 

2012; Li et al., 2012; Zouine et al., 2014). In the tomato, 22 ARFs have been 

identified (Zouine et al., 2014) and the accumulation of some ARF transcripts has 

been reported to be under ethylene regulation during tomato fruit development 

suggesting that auxin signaling may influence the control of climacteric fruit ripening 

(Jones et al., 2002). Recently, it was shown that SlARF4 plays a role in fruit 

development and ripening mainly by controlling sugar metabolism and the 

down-regulation of this ARF member resulted in ripening phenotypes such as 
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enhanced firmness and chlorophyll content leading to dark green fruit and blotchy 

ripening ( Jones et al., 2002; Guillon et al., 2008; Sagar et al., 2013).  

To further extend our knowledge on the role of ARFs in fleshy fruit development 

and ripening the present work addresses the physiological significance of SlARF2 

which displays a marked ripening associated pattern of expression. Because SlARF2 

is encoded by two genes in the tomato, SlARF2A and SlARF2B, transgenic lines either 

specifically silenced in one of the two orthlogs or simultaneously for both genes were 

generated. In both SlARF2A and SlARF2B down-regulated lines, fruits produced less 

ethylene than wild type and failed to ripen normally. The expression of key regulators 

of fruit ripening, such as RIN, CNR, NOR and TAGL1 was down-regulated in SlARF2 

under-expressing lines suggesting that this ARF gene is a new component of the 

regulatory network controlling the ripening process in tomato. 

 

METHODS  

Plant materials and growth conditions 

Tomato (Solanum lycopersicum L. cv MicroTom) seeds were sterilized, washed by 

sterile water 5 times, and sown in Magenta vessels containing 50ml of 50% 

Murashige and Skoog (MS) medium added 0.8% (w/v) agar, pH 5.9. The transgenetic 

plant were transferred to soil and grown under standard greenhouse conditions (Sagar 

et al., 2013). Conditions in the culture chamber room were set as follows: 

14-h-day/10-h-night cycle, 25/20 °C day/night temperature, 80% relative humidity, 

250 mol.m-2.s-1 intense light (Liu et al., 2014a). 

 

Plant transformation 

Three cDNA fragments specific to SlARF2A or SlARF2B or both were cloned into 

pHellsgate 12 vector independently, with primers in the Supplemental Table 

1.Transgenic plants were generated by Agrobacterium-mediated transformation 

according to Bird (Bird et al., 1988) with minor changes: 6 days old cotyledons were 

used for the transformation; the duration of subcultures for shoot formation was 
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reduced to 15 days; and the kanamycin concentration was 70 mgL-1. The constructs 

were under the transcriptional control of the CamV 35S and the Nos terminator (Sagar 

et al., 2013) . 

 

Sequence structure and promoter Analysis   

The structure of the SlARF2A and SlARF2B were determinate using in silico 

approaches (software: Fancy Gene V1.4). Protein domains were first predicted on the 

prosite database protein (http://prosite.expasy.org/) (Hao et al., 2014). Promoter 

sequences of SlARF2A and SlARF2B genes were analyzed using PLACE signal scan 

search software (http://www.dna.affrc.go.jp/PLACE/signal scan.html). 

 

Flower emasculation and cross assay  

Flower buds of DR5:GUS transgenic plants were emasculated before dehiscence of 

anthers (closed flowers) to avoid accidental self-pollination. Cross-pollination was 

performed on DR5:GUS emasculated flowers with pollen from wild type, SlARF2A 

RNAi, SlARF2B RNAi, and SlARF2AB RNAi plants independently. 

 

Subcellular localization of SlARF2A and SlARF2B 

For localization of SlARF2A and SlARF2B proteins, two CDS sequences were cloned 

by Gateway technology as a C-terminal fusion in frame with green fluorescent protein 

(GFP) into the pGreen-GFP vector, and expressed under the control of the 35S CaMV 

promoter. The pGreen-GFP empty vector was used as the control. Protoplasts were 

obtained from tobacco suspension-cultured (Nicotiana tabacum) BY-2-cells and 

transfected according to the method described previously (Leclercq et al., 2005). GFP 

localization by confocal microscopy was performed as described previously 

(Audran-Delalande et al., 2012). 

 

Transient expression using a single cell system  

For co-transfection assays, the coding sequence of SlARF2A and SlARF2B were 

seperately cloned into the pGreen vector and expressed under the control of the 35S 
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CaMV promoter. The synthetic DR5 promoter containing AuxRE and the promoter of 

SlARF2B were cloned in frame with GFP reporter gene in pGreen vector 

independently. Protoplasts were obtained from suspension-cultured tobacco 

(Nicotiana tabacum) BY-2-cells and transfected according to the method described 

previously (Leclercq et al., 2005). After 16 h of incubation in the presence or absence 

of 2.4-D (50 µM), GFP expression was analyzed and quantified by flow cytometry 

(FACS Calibur II instrument, BD Biosciences, San Jose, CA, USA) as indicated in 

Hagenbeek and Rock (2001). All transient expression assays were repeated at least 

three times. 

 

Gus staining and analysis 

To visualize GUS activity, transgenic lines bearing the promoter of DR5 fused with 

GUS constructs were incubated with GUS staining solution (0.1% Triton X-Gluc, 

pH7.2, 10 mM EDTA) at 37°C overnight. After GUS staining, samples were 

decolorized using several washes of graded ethanol series (Sagar et al., 2013). 

 

Auxin, ethylene, and 1-MCP treatment 

For auxin treatment on light grown seedlings, 21-day-old DR5::GUS seedlings were 

soaked in liquid MS medium with or without (mock treatment) 20 µM IAA for 2 

hours. For auxin treatment on fruit, mature green fruits were injected with 20 µM IAA 

and kept for 6 hours at room temperature. For ethylene treatment on fruit, mature 

green fruits were treated with air or ethylene gas (50 µL.L-1) for 5 hours. For 1-MCP 

treatment, 1.0 mg.L-1 1-MCP was applied into the breaker stage fruits for 16 hours. 

For qPCR expression analysis, the tissues were immediately frozen in liquid nitrogen 

and stored at -80°C until RNA extraction.  

 

Ethylene production and ethylene response  

Fruits from different developmental stages were harvested and incubated in opened 

125-ml jars for 3 hours to remove the wound ethylene production caused by picking. 

Jars were then sealed and incubated at room temperature for 2 hours, and1 ml of 
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headspace gas was injected into an Agilent 7820A gas chromatograph equipped with a 

flame ionization detector (Agilent, Santa Clara, CA, USA). Samples were compared 

with 1 ml L-1 ethylene standard and normalized for fruit weight. For ethylene response 

assay, mature green fruits from wild-type and SlARF2AB RNAi lines were treated by 

10 ml L-1 ethylene for 3 days, 2 hours and 3 times per day. 

 

Firmness measurement 

Fifteen fruits from each line of the SlARF2AB RNAi and wild type were harvested at 

the Breaker (Br) stage. The firmness was then assessed using Harpenden calipers 

(British Indicators Ltd, Burgess Hill, UK) as described by Ecarnot et al., (2013).After 

the first measurement, these fruits were kept at the room temperature for measuring 

the firmness day by day. 

 

Color measurement 

Twenty fruits for each line of the SlARF2AB RNAi and wild type were harvested at the 

Br stage. The hue angle values were calculated according to the methods previously 

described (Sagar et al., 2013). After measurement, these fruit were kept at the room 

temperature and were measured day by day until fruits got fully red.  

 

RNA Extraction and Quantitative RT-PCR 

Different stage fruits were harvested, the pericarp were frozen in the liquid nitrogen, 

stored in the -80 °C. Total RNA extraction, DNA contamination removing, cDNA 

generation of tomato tissues (root, stem, leaves, bud, flower, mature green fruit, 

breaker fruit, and red fruit) and qRT-PCR were performed according to methods 

previously described (Audran-Delalande et al., 2012; Pirrello et al., 2006). The primer 

sequences are listed in the Supplemental Table 3. Actin was used as the internal 

reference. Three independent RNA isolations were used for cDNA synthesis and each 

cDNA sample was subjected to real-time PCR analysis in triplicate. 

 

Accession number 
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The sequences of genes used for the qPCR can be found in the website 

(http://solgenomics.net/) under the following solyc numbers: Sl-ERF.A1 

(Solyc08g078180), Sl-ERF.A2 (Solyc03g093610), Sl-ERF.A3 (Solyc06g063070), 

Sl-ERF.B1 (Solyc05g052040), Sl-ERF.B2 (Solyc02g077360), Sl-ERF.B3 

(Solyc05g052030), Sl-ERF.C1 (Solyc05g051200), Sl-ERF.C2 (Solyc04g014530), 

Sl-ERF.C3 (Solyc09g066360), Sl-ERF.C6 (Solyc03g093560), Sl-ERF.D1 

(Solyc04g051360), Sl-ERF.D2 (Solyc12g056590), Sl-ERF.D3 (Solyc01g108240), 

Sl-ERF.D4 (Solyc10g050970), Sl-ERF.E1 (Solyc09g075420), Sl-ERF.E2 

(Solyc09g089930), Sl-ERF.E3 (Solyc06g082590), Sl-ERF.E4 (Solyc01g065980), 

Sl-ERF.F1 (Solyc10g006130), Sl-ERF.F2 (Solyc07g064890), Sl-ERF.F3 

(Solyc07g049490), Sl-ERF.F4 (Solyc07g053740), Sl-ERF.F5 (Solyc10g009110), 

Sl-ERF.G1 (Solyc01g095500), Sl-ERF.G2 (Solyc06g082590), Sl-ERF.H1 

(Solyc06g065820), PSY1 (Solyc03g031860), PDS (Solyc03g123760), ZDS 

(Solyc01g097810), β-LCY1 (Solyc04g040190), β-LCY2 (Solyc10g079480), CYC-β 

(Solyc06g074240), ACS2 (Solyc01g095080), ACS4 (Solyc05g050010), ACO1 

(Solyc07g049530), E4 (Solyc03g111720), E8 (Solyc09g089580), PG2a 

(Solyc10g080210), RIN (Solyc05g012020), CNR (Solyc02g077850), NOR 

(Solyc10g006880), HB1 (Solyc02g086930), TAGL1 (Solyc07g055920), AP2a 

(Solyc03g044300), EIN2 (Solyc09g007870), EIL2 (Solyc01g009170), EIL3 

(Solyc01g096810), ETR1 (Solyc12g011330), ETR2 (Solyc07g056580), ETR3 (NR) 

(Solyc09g075440), ETR4 (Solyc06g053710), ETR5 (Solyc11g006180), ETR6 

(Solyc09g089610), CTR1 (Solyc10g083610), ACS1 (Solyc08g081550), ACS3 

(Solyc02g091990), ACS6 (Solyc08g008100), FUL1 (Solyc06g069430), FUL2 

(Solyc03g114830), SGR1 (Solyc08g080090), ACO2 (Solyc12g005940), ACO3 

(Solyc07g049550), ACO4 (Solyc02g081190). The solyc number of Sl-ARFs can be 

found in the publication of Zouine (Zouine et al., 2014). 

 

RESULTS 

 

Sl-ARF2 is encoded by two genes in the tomato with distinct expression patterns 
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It was recently shown that some members of the ARF gene family, encoding auxin 

transcriptional mediators, can play a critical role in regulating the ripening of tomato 

fruit (Jones et al., 2002; Sagar et al., 2013). To gain better insight on the putative 

involvement of members of the ARF family in the ripening process of fleshy fruits, in 

silico mining of the available tomato expression databases was performed revealing 

that among all ARFs, SlARF2 displays the most prominent transcript accumulation 

during fruit development and ripening (Zouine et al., 2014). This prompted a more 

thorough molecular and functional characterization of this ARF member. In contrast 

to Arabidopsis, ARF2 is encoded by two genes in the tomato named SlARF2A 

(Solyc03g118290.2.1) and SlARF2B (Solyc12g042070.1.1) and located in 

chromosome 3 and 12, respectively (Zouine et al., 2014). The two genomic clones 

share similar structural organization with, however, 14 exons in SlARF2A but only 13 

in SlARF2B. The full-length cDNAs of the two SlARF2 genes were isolated by 

RT-PCR amplification indicating that the corresponding coding sequences (CDS) are 

2541 bp and 2490 bp long with deduced protein sizes of 847 amino acids and 830 

amino acids, respectively (Table 1). Pairwise comparison of the two SlARF2 protein 

sequences revealed 83.3% amino acid identity. Search for protein domains in Expasy 

database (http://prosite.expasy.org/) indicated the presence of highly conserved 

domains typical of ARFs in the two proteins: DBD domain (DNA Binding Domain) 

and dimerization domain (protein/protein domain III and IV) (Figure 1A). Analysis of 

a 2 kb promoter sequence using PLACE/signal search tool 

(http://www.dna.affrc.go.jp/PLACE/signalscan.html) revealed the presence of putative 

Ethylene Response (ERE) and Auxin Response (AuxRE) elements in both SlARF2A 

and SlARF2B promoters (Figure 1A). 

Assessing transcript accumulation by quantitative-RT-PCR confirmed that the two 

SlARF2 genes show distinctive ripening-associated patterns of expression (Figure 1B). 

SlARF2A and SlARF2B are expressed in all plant tissues tested including root, leaf, 

stem, flower and fruit with a higher transcript accumulation for SlARF2A in both 

vegetative and reproductive tissues. Noteworthy, the transcript levels corresponding to 

the two ARF2 genes undergo a net up-regulation at the onset of fruit ripening (Figure 
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1B). The expression studies suggested that the tomato SlARF2A and SlARF2B are 

likely to play an active role in flower and fruit development especially as related to 

ripening. 

 

Table 1. Main structural features of the tomato SlARF2A and SlARF2B. 

 

 

 

Figure 1 Structural features and expression patterns of tomato SlARF2A and SlARF2B 

genes. (A) Genomic structure analysis of SlARF2A and SlARF2B Gene were performed by 

using Fancy gene V1.4. The pink portion represents the promoter region; the strandlines 

represent the introns; the gray boxes indicate the exons; the yellow boxes are the dimerization 

regions; blue box means the DBD domain; ERE, ethylene responsive element; Aux RE, auxin 

regulation element. (B) Expression pattern of SlARF2A/2B was monitored by (Quantitative 

Real-Time RT-PCR) qPCR. Total RNA was extracted from leaf (Le), stem (St), root (Rt), 

flower (Fl), fruit (Fr), mature green fruit (MG), breaker fruit (Br) and red fruit (Re). The 

relative mRNA levels of SlARF2A in root and at the mature green (MG) stage were 

standardized to 1.0, referring to the Sl-Actin gene as an internal control. The error bars 

represent ±SE of three independent trials.  

Nomenclature                 Gene Predicted Protein Domains 

SlARF2 iTAG Gene ID Exons Introns Length MW (kDa) DBD Dimerization 

domain 

SlARF2A Solyc03g118290.2.1 15 14 847 aa 94.01358 146-248 721-803 

SlARF2B Solyc12g042070.1.1 14 13 830 aa 92.46828 128-230 704-785 
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SlARF2A and SlARF2B are differentially regulated by auxin and ethylene. 

The presence of conserved AuxRE and ERE cis-regulatory elements in the promoter 

region of both genes and the induced expression of SlARF2A and SlARF2B in 

developmental processes known to be regulated by both hormones prompted the 

investigation of their responsiveness to auxin and ethylene. Genes known to be 

ethylene (E4, E8) and auxin (GH3, SAUR) responsive were used as control to validate 

the efficiency of hormone treatment. Transcript accumulation assessed by RT-qPCR in 

mature green fruit indicated that SlARF2A but not SlARF2B is responsive to 

exogenous ethylene treatment (Figure 2A), and that this ethylene-induced expression 

is repressed by 1-MCP, the inhibitor of ethylene perception (Figure 2B). By contrast, 

SlARF2B expression was up-regulated by auxin in mature green fruit, while SlARF2A 

showed no responsiveness to auxin treatment (Figure 2C). 

 

 

Figure 2. Auxin and ethylene responsiveness of SlARF2A and SlARF2B genes. (A) 

Quantitative RT-PCR analysis of SlARF2A and SlARF2B after ethylene treatment. The 

wide-type mature green fruits were treated or untreated with 50 ml L-1 ethylene for 5 hours. 

(B) Quantitative RT-PCR analysis of SlARF2A and SlARF2B after 1-MCP treatment. The 

wide-type breaker fruits were treated or untreated with 1-MCP (1.0 mg L-1)for 16 hours. (C) 

Quantitative RT-PCR analysis of SlARF2A and SlARF2B after auxin treatment. The wide-type 

mature green fruits were treated with 20 μM IAA or buffer (control) for 6 hours. The relative 

mRNA levels of SlARF2A/SlARF2B in control were standardized to 1.0, referring to the 

Sl-Actin gene as an internal control. The error bars represent ±SE of three independent trials. 

*0.01 < P < 0.05, ** 0.001<P<0.01, ***P < 0.001 (Student’s t-test). E4, E8: ethylene 

response genes; GH3, SAUR: auxin response genes. 

SlARF2A and SlARF2B are targeted to the nucleus where they act as 

transcriptional repressor of auxin-responsive genes   

The subcellular localization of the SlARF2A and SlARF2B proteins was assessed 
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using translational fusion to the Green Fluorescent Protein (GFP) in a transient 

expression assay in tobacco protoplasts. Microscopy analysis clearly showed that 

SlARF2A/2B:GFP fusion proteins exclusively localized into the nucleus (Figure 3A), 

consistent with a putative role in transcriptional regulation activity. The ability of 

SlARF2A/2B proteins to regulate the activity of auxin-responsive promoters was then 

evaluated in a single cell system. A reporter construct, consisting of the synthetic 

auxin-responsive promoter DR5 fused to GFP (Ottenschläger et al., 2003), was 

co-transfected into tobacco protoplasts with an effector construct allowing the 

constitutive expression of SlARF2A or SlARF2B protein. As expected the 

DR5-driven GFP expression was strongly enhanced by auxin (2,4-D) treatment. 

However, the presence SlARF2A or SlARF2B proteins strongly inhibited this 

auxin-induced activity of DR5 promoter, clearly demonstrating that SlARF2A and 

SlARF2B act in vivo as a transcriptional repressor of auxin-dependent gene 

transcription (Figure 3B).  

 

 

Figure 3. Subcellular localization and functional analysis of SlARF2A and SlARF2B by 

signal cell system. (A) SlARF2A/2B-GFP fusion proteins were transiently expressed in BY-2 

tobacco protoplasts and subcellular localization was analyzed by confocal laser scanning 

microscopy. The merged pictures of the green fluorescence channel (left panels) and the 

corresponding bright field (middle panels) are shown in the right panels. The scale bar 

indicates 10 μm. The top is control cells expressing GFP alone. The middle is cells expressing 

the SlARF2A-GFP fusion protein. The bottom is cells expressing the SlARF2B-GFP fusion 
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protein. (B) SlARF2A/2B protein represses the activity of DR5 in vivo. Tobacco protoplasts 

were transformed either with the reporter construct (DR5::GFP) alone or with both the 

reporter and effector constructs (35S-SlARF2A/2B) and incubated in the presence or absence 

of 50 μM 2,4-D. GFP fluorescence was measured 16 h after transfection. A mock effector 

construct lacking SlARF2A/2B was used as a control for the co-transfection experiments. 

Transformations were performed in triplicate. Mean fluorescence is indicated in arbitrary unit 

(a.u.) ± standard error. 

Generation of SlARF2A RNAi, SlARF2B RNAi, and SlARF2AB RNAi lines in 

tomato 

To gain insight on the physiological significance of SlARF2, transgenic lines 

under-expressing the two paralogs were generated in the MicroTom tomato genetic 

background. To this purpose, dedicated RNAi constructs were designed to selectively 

target either SlARF2A or SlARF2B allowing the generation of transgenic lines 

specifically silenced in only one the two SlARF2 genes (Figure 4A). Transgenic RNAi 

lines were also obtained where both paralogs are simultaneously silenced. Repression 

of SlARF2A and SlARF2B in the RNAi lines was confirmed by qPCR analyses in 

seedling tissues showing that the accumulation of SlARF2A or SlARF2B transcripts 

was selectively reduced in the appropriate silenced lines whereas in the SlARF2A/2B 

double knockdown lines both SlARF2 genes were significantly down-regulated 

(Figure 4B). Noteworthy, the down-regulation of SlARF2A in the RNAi lines is 

compensated by an increased expression of SlARF2B, while such a compensation 

mechanism does not occur in the SlARF2B RNAi lines. To check whether SlARF2A 

may be directly involved in the transcriptional regulation of SlARF2B, a GFP reporter 

construct driven by the SlARF2B promoter was co-transfected into tobacco protoplasts 

with an effector construct allowing constitutive expression of SlARF2A. The data 

(Figure 4C) show that the presence of SlARF2A inhibits the expression of the GFP 

reporter gene driven by the SlARF2B promoter, revealing the ability of SlARF2A to 

repress the transcriptional activity of SlARF2B in vivo. 
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Figure 4. Expression pattern of SlARF2A and SlARF2B in SlARF2 RNAi transgenetic 

lines. (A) SlARF2A RNAi, SlARF2B RNAi and SlARF2AB RNAi constructs. AB= specific 

fragment in the DBD binding domain for both SlARF2A and SlARF2B used for SlARF2AB 

RNAi construct. A= specific fragment in the middle region (RD) of SlARF2A used for 

SlARF2A RNAi construct, B= specific fragment in the middle region (RD) of SlARF2B used 

for SlARF2B RNAi construct. (B) Expression of SlARF2A and SlARF2B in RNAi transgenic 

lines analyzed by quantitative RT-PCR. Expression of SlARF2A/SlARF2B in wild type was 

taken as reference, the SlActin gene as an internal control. (C) SlARF2A represses the activity 

of SlARF2B promoter. Tobacco protoplasts were transformed either with the reporter 

construct (pSlARF2B::GFP) alone or with both the reporter and effector constructs 

(35S-SlARF2A) and GFP fluorescence was measured 16 h after transfection. A mock effector 

construct lacking SlARF2A was used as a control for the co-transfection experiments. 

Transformations were performed in triplicate. Mean fluorescence is indicated in arbitrary unit 

(a.u.) ± standard error. * p-value<0.05, ** p-value<0.01(Student’s t-test).  

Down-regulation of SlARF2 results in enhanced expression of auxin-responsive 

genes  

To address whether SlARF2A and SlARF2B are involved in auxin responses in planta, 

genetic crosses were performed between the three types of SlARF2 RNAi lines and a 

tomato line expressing the GUS reporter gene under the control of the 

auxin-responsive DR5 promoter. In the wild-type background, the basal expression of 

the DR5-driven GUS was low but displayed a net increase upon exogenous auxin 

treatment (Figure 5A). By contrast, the basal expression of the GUS reporter gene was 

dramatically high in the SlARF2AB RNAi background in the absence of auxin 
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treatment indicating that under-expression of SlARF2 results in enhanced expression 

of auxin-responsive genes. Interestingly, such an increase in GUS expression was not 

observed neither in the SlARF2A RNAi nor in SlARF2B RNAi background, 

suggesting that the two genes are functionally redundant and can compensate for each 

other (Figure 5A). Assessing GUS transcript accumulation by qPCR confirmed the 

higher expression of the DR5-driven GUS only in the SlARF2A/B RNAi background 

but not in the SlARF2A and SlARF2B RNAi lines (Figure 5B).  

 

Figure 5. Down-regulation of ARF2A and ARF2B affects auxin response in planta. (A) 

Expression of the GUS reporter gene under the control of the auxin-inducible DR5 promoter. 

(Upper panel) In planta expression of the GUS reporter gene driven by DR5 in WT genetic 

background in the absence (left) or presence (right) of auxin treatment. Seedlings were treated 

with auxin (IAA 20μM for 3 hours) or with a mock solution without auxin. Expression of the 

GUS reporter gene driven by DR5 in ARF2A (left), ARF2B (middle) and ARF2AB (right) 

genetic background. (B) Expression of GUS (Upper panel) and SlARF2A/2B (bellows) genes 

in crossed lines analyzed by quantitative RT-PCR in seedlings. The relative mRNA levels of 

GUS-1/GUS-2 (Upper panel) and SlARF2A/2B (bellows) in wild type were standardized to 

1.0, referring to the SlActin gene as an internal control. The error bars represent ±SE of three 

independent trials. *0.01 < P < 0.05. DR5-WT= DR5::GUS/WT; DR5-2A= 

DR5::GUS/ARF2A RNAi; DR5-2B= DR5::GUS/ARF2B RNAi; DR5-2AB = 

DR5::GUS/ARF2AB RNAi. GUS-1 and GUS-2 refer to the use of two pair of primers for the 

GUS gene. 

SlARF2 RNAi fruits display spiky and blotchy ripening phenotype  

Considering the high expression and ripening-associated pattern of both SlARF2A and 

SlARF2B, we sought to analyze the fruit phenotypes of SlARF2A and SlARF2B 
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single and double knockdown tomato lines. In both, SlARF2A and SlARF2B RNAi 

single knockdown lines the fruit exhibited dark green spots at immature and mature 

green stages, and then displayed a spiky pattern of ripening with yellow/orange spots 

on the skin which remain till the full mature stage (Figure 6A). The double silenced 

lines exhibited more severe ripening defects with yellow and orange patches never 

reaching the typical red color of the wild type or out-segregating lines, again 

suggesting that SlARF2A and SlARF2B may have a redundant function in fruit 

ripening (Figure 6A). We noted that fruit color of the SlARF2AB RNAi lines never get 

fully red. Assessing the time period from anthesis to breaker stage revealed no 

significant or little delay (2 to 3 days delay) in the onset of ripening between wild type 

and double knockdown lines (Figure 6B). So the delay most happened during the 

ripening stage (Figure 6C). Interestingly, full ripening cannot be recovered upon 

exogenous ethylene treatment of the SlARF2A/B RNAi double knockdown fruits 

which suggests a possible alteration in ethylene perception or response (Figure 6D).  

 

 

Figure 6. Altered ripening phenotypes of SlARF2 down-regulated mutant. (A) Ripening 

phenotype of SlARF2A RNAi; SlARF2B RNAi; SlARF2AB RNAi fruit at mature green stage 

and ripe stage. The SlARF2A/SlARF2B RNAi mutants show spiky phenotype at mature green 

stage and ripe stage fruits, SlARF2AB RNAi mutant displays blotchy phenotype only at ripe 

stage fruit. (B) The days of fruit from anthesis to breaker stage in wild type and SlARF2AB 
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RNAi lines. The SlARF2AB RNAi mutant displays similar days with wild type. (C) Different 

stages of fruit ripening of wild-type (WT) and SlARF2AB RNAi lines. Fruits from transgenic 

lines show delayed color development, never reaching a full red color. Br, breaker stage; 

Br+3, 3 days post-breaker stage; Br+5, 5 days post-breaker stage; Br+7, 7 days post-breaker 

stage. (D) Effect of ethylene treatment on wild type (WT) and SlARF2AB RNAi fruit. Mature 

green fruits from wild type and SlARF2AB RNAi mutant were treated or untreated (air) with 

10 ppm ethylene for 3 days, 2 hours and 3 times per day. 7 days after treatment, wild type 

fruits treated or untreated both reached full red, SlARF2AB RNAi fruits treated or untreated 

still keep orange sectors on the fruit surface.  

SlARF2A and SlARF2B affect ethylene production and perception on fruit. 

The ripening defect phenotype prompted us to assess the climacteric ethylene 

production in the SlARF2AB RNAi lines. Compared to wild type, ethylene production 

is significantly low throughout ripening and occurs with 2 to 3 days delay with regard 

to anthesis stage (Figure 7). Important to mention, the increase in ethylene production 

occurs at the breaker stage in both wild type and SlARF2 down-regulated lines. 

Assessing the expression of ethylene biosynthesis genes by qPCR revealed that 

reduced transcript levels corresponding to ACO1, ACS2, ACS3 and ACS4 in the 

SlARF2A/B RNAi lines at Breaker (Br), Breaker+2 (Br+2), and Breaker+8 (Br+8) 

stages (Figure 8A). Since exogenous ethylene treatment cannot reverse the phenotype 

(Figure 6D), the reduced ethylene production cannot account for the ripening defects, 

we therefore examined the expression of ethylene receptor genes. The data show that 

ETR3 (NR) and ETR4 transcript levels are dramatically lower in the transgenic lines 

compared to wild type at all stages of fruit ripening (Br, Br+2, and Br+8 ) and that the 

expression of other receptor genes (ETR1, ETR2, and ETR5) is down-regulated at the 

breaker+8 stage which may result in a defect in ethylene perception (Figure 8B). Also, 

the expression of EIN-like genes (EIN2, EIL2 and EIL3), which encode major 

components of ethylene transduction pathways, was also down-regulated during 

ripening of SlARF2A/B RNAi fruit. Noteworthy, the expression of a high number of 

ERF genes (Figure 9), which are known to mediate ethylene responses, was also 

altered showing either down-regulation (SlERF.A1, SlERF.A2, SlERF.A3, SlERF.C1, 

SlERF.C3, SlERF.C6, SlERF.D1, SlERF.D2, SlERF.D4, SlERF.E1, SlERF.E2, 

SlERF.E3, SlERF.E4) or up-regulated (SlERF.B1, SlERF.B2, SlERF.B3, SlERF.D3, 



Chapter II Auxin Response Factor SlARF2 
a new component of the regulatory mechanism controlling fruit ripening in tomato. 

75 
 

SlERF.F2). These data strongly suggest that ethylene responses are likely to be 

disturbed in the transgenic lines. 

 

Figure 7. Ethylene production of SlARF2AB RANi fruit. (A) Ethylene production of 

wild-type and SlARF2AB RNAi fruits was assessed at different ripening stages. Mg, mature 

green stage; Br, breaker stage; Br+1, 1 day post breaker stage; Br+2, 2 days post breaker stage; 

Br+3, 3 days post breaker stage. (B) Ethylene production of wild-type and SlARF2AB RNAi 

fruits were measured at different ripening stages indicated as days post mature green stage. 

Values represent means of at least 10 individual fruits. Vertical bars represent SD. AB1= 

SlARF2AB RNAi line 311; AB2= SlARF2AB RNAi line 223. 

 

Figure 8. The expression of some ethylene synthesis and ethylene perception genes is 

altered in SlARF2AB RNAi plants. (A) Relative expression of ethylene synthesis pathway 

gens in different stages of SlARF2AB RNAi fruit compared with wild type. Total RNA was 
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extracted from different developmental stages of fruit. The relative mRNA levels of each gene 

in WT at the breaker (Br) stage were standardized to 1.0, referring to the SlActin gene as an 

internal control. Error bar means ±SD of three biological replicates. Br= breaker stage; Br+2= 

2 days post breaker stage; Br+8= 8 days post breaker stage. * p-value<0.05, ** p-value<0.01. 

ABL1 is SlARF2AB RNAi line 311. ACO1, ACO2, ACO3, ACO4 

aminocyclopropane-1-carboxylic acid oxidase; ACS1, ACS2, ACS3, ACS4, ACS6 

aminocyclopropane-1-carboxylic acid synthases. (B) Relative expression of ethylene 

perception genes in different stages of SlARF2AB RNAi fruit compared with wild type. Total 

RNA was extracted from different developmental stages of fruit. The relative mRNA levels of 

each gene in WT at the breaker (Br) stage were standardized to 1.0, referring to the SlActin 

gene as an internal control. Error bar means ±SD of three biological replicates. Br= breaker 

stage; Br+2= 2 days post breaker stage; Br+8= 8 days post breaker stage. * p-value<0.05, ** 

p-value<0.01. ABL1 is SlARF2AB RNAi line 311. EIN2 ethylene signaling protein; EIL2, 

EIL3, EIL4 EIN3-like proteins; ETR1, ETR2, ETR3 (NR, never-ripe), ETR4, ETR5, ETR6 

ethylene receptors; CTR1 ethylene-responsive protein kinase. 

 

Figure 9. The expression of ERFs family genes in wild type and SlARF2AB RNAi plants. 

Relative expression of ERFs family genes in different stages of SlARF2AB RNAi fruit 

compared with wild type. Total RNA was extracted from different developmental stages of 

fruit. The relative mRNA levels of each gene in WT at the breaker (Br) stage were 

standardized to 1.0, referring to the SlActin gene as an internal control. Error bar means ±SD 

of three biological replicates. Br= breaker stage; Br+2= 2 days post breaker stage; Br+8= 8 

days post breaker stage. * p-value<0.05, ** p-value<0.01. ABL1 is SlARF2AB RNAi line 

311.  
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SlARF2AB RNAi fruit shows decreased color change and softening. 

The fruit color saturation assessed by Hue angle indicative of color intensity indicated 

that red pigment accumulation was reduced in SlARF2AB RNAi down-regulated lines 

compared to wild type (Figure 10A). Accordingly, the expression of genes involved 

the carotenoid pathway was altered. PSY1, a key regulator of flux through the 

carotenoid pathway was significantly down-regulated in the SlARF2AB RNAi 

knockdown fruits at all ripening stages from Breaker to Breaker+8 (Figure 10B). 

Lower levels of phytoene desaturase (PDS) and phytoene synthase (ZDS) transcripts 

was also observed at Br+2 stage in the SlARF2AB RNAi fruit. By contrast, 

transcripts corresponding to lycopene beta cyclase genes (β-LCY1, β-LCY2) displayed 

higher accumulation than in wild-type at all ripening stages tested and lycopene 

β-cyclases (CYCB) was also up-regulated at Br and Br+2 stages in SlARF2AB RANi 

fruit (Figure 10B). On the other hand, SlARF2AB RNAi fruits maintained higher 

firmness than wild type throughout ripening (Figure 11A). In line with the delayed 

softening phenotype, transcript accumulation of a major fruit polygalacturonase gene, 

PG2A, involved in ripening-related cell wall metabolism, was significantly reduced at 

Br, Br+2, and Br+8 stages in SlARF2AB RNAi fruits (Figure 11B).  
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Figure 10. Alter pigment accumulation in SlARF2AB RANi fruit. (A) Changes in hue 

angle in WT and SlARF2AB RNAi lines during different ripening stages. AB1= SlARF2AB 

RNAi line 311; AB2= SlARF2AB RNAi line 223. (B) Expression of carotenoid biosynthesis 

genes in wild-type (WT) and SlARF2AB RNAi tomato lines. Total RNA was extracted from 

different developmental stages of fruit. The relative mRNA levels of each gene in WT at the 

breaker (Br) stage were standardized to 1.0, referring to the SlActin gene as an internal 

control. Error bar means ±SD of three biological replicates. Br= breaker stage; Br+2= 2 days 

post breaker stage; Br+8 = 8 days post breaker stage. * p-value<0.05, ** p-value<0.01. ABL1 

is SlARF2AB RNAi line 311. PSY1 phytoene synthase; PDS phytoene desaturase; ZDS, 

carotenoid desaturases; ß-LCY1, ß-LCY2, CYC-ß lycopene b-cyclases. 

 

Figure 11. Altered Firmness in SlARF2AB RANi Fruit. (A) Fruit firmness of wild-type 

and SlARF2AB RNAi fruits. Fruits were harvested at the breaker stage, kept at room 

temperate and the firmness was measured day by day. A total of 15 fruits was used for each 

measurement and the error bars represent ±SD. AB1= SlARF2AB RNAi line 311; AB2= 

SlARF2AB RNAi line 223. (B) Relative expression of polygalacturonase gene PG2A in 

different stages of SlARF2AB RNAi fruit compared with wild type. Relative mRNA level in 

WT at the breaker (Br) stage was standardized to 1.0, referring to Sl-Actin gene as an internal 

control. Error bars represent ±SD of three biological replicates. Br = breaker stage fruit; Br+2 

= 2 days post breaker stage; Br+8 = 8 days post breaker stage. * p-value<0.05, ** 

p-value<0.01. ABL1 is SlARF2AB RNAi line 311.  

Expression of ripening-related and ripening regulator genes is altered in SlARF2 

down-regulated lines. 

The expression of key regulatory genes assessed at the transcript accumulation level 

was strongly reduced throughout ripening in the SlARF2 RNAi lines. Compared to 

wild type fruit, transcript levels of RIN and CNR genes were significantly lower at Br, 

Br+2 and Br+8 stages (Figure 12). Likewise, the NOR gene displayed reduced 

expression at Br and Br+8 stages, TAGL1 at Br and Br+2 stages and FUL1, FUL2 at 

Br+2 and Br+8 stages. The altered expression of these genes in the SlARF2AB RNAi 
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fruits is consistent with the dramatically altered ripening of transgenic fruits. Also, the 

low expression of E8 and E4, two ethylene-responsive and ripening associated genes, 

was consistent with the altered expression of ethylene biosynthesis and signaling 

genes. By contrast, mRNA levels of LeHB-1, another ripening regulator gene, did not 

display significant change in SlARF2AB RNAi fruits compared to wild type (Figure 

12). 

 

Figure 12. The expression of a number of ripening related genes is altered in SlARF2AB 

RNAi plants. Expression of ripening regulator genes in wild-type (WT) and SlARF2AB RNAi 

lines during tomato fruit ripening. Total RNA was extracted from the indicated developmental 

stages of fruit. The relative mRNA levels of each gene in WT at the breaker (Br) stage were 

standardized to 1.0, referring to the SlActin gene as an internal control. Error bar means ±SD 

of three biological replicates. Br = breaker stage; Br+2 = 2 days post breaker stage; Br+8 = 8 

days post breaker stage. * p-value<0.05, ** p-value<0.01. AP2a, APETALA2/ERF gene; 

CNR, colorless non-ripening; HB-1, HD-Zip homeobox; NOR, non-ripening; RIN, ripening 

inhibitor; TAGL1, tomato AGAMOUS-LIKE 1. FUL1, FUL2 MADS domain transcription 

factor; E4, E8 ethylene response genes. 

DISCUSSION 

 

While ethylene is known as the key hormone regulating climacteric fruit ripening, the 

impact of down-regulating SlARF2 described in the present study brings new evidence 

supporting the role of auxin in the control of this developmental process. In contrast to 
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Arabidopsis, in the tomato SlARF2 is encoded by two genes, SlARF2A and SlARF2B, 

both displaying a ripening-induced pattern of expression (Zouine et al., 2014). Single 

knockdown of either SlARF2A or SlARF2B resulted in spiky fruit phenotype, while 

simultaneous down-regulation of the two genes leads to a severe delay or almost 

complete inhibition of ripening, indicating that both genes contribute to tomato fruit 

ripening. Genetic crosses between SlARF2 RNAi tomato lines and line expressing the 

GUS reporter driven by the auxin-responsive DR5 promoter indicated that single 

repression of SlARF2A or SlARF2B did not induce significant increase in GUS 

expression while simultaneous down-regulation of both SlARF2 genes resulted in 

strongly enhanced expression of DR5:GUS similar to that observed upon exogenous 

auxin treatment (Figure 5A, B). These data indicate that in planta, SlARF2 acts as a 

repressor of auxin-dependent gene transcription and suggest that SlARF2A and 

SlARF2B are functionally redundant. Moreover, down-regulation of SlARF2A is 

compensated by an up-regulation of SlARF2B suggesting a coordinated expression of 

the two ARF genes. The transient expression assay in a single cell system revealed the 

ability of SlARF2A to repress the activity of SlARF2B promoter indicating therefore 

that this latter gene is under direct regulation by SlARF2A. 

Down-regulation of SlARF2 genes impairs normal fruit ripening likely via altering 

components of ethylene metabolism, signaling and response. In support of this idea, 

SlARF2A/B RNAi fruits produce less climacteric ethylene than wild type (Figure 7A, 

B), consistent with the lower expression of ACC oxidase (ACO) and ACC synthase 

(ACS) genes whose expression is instrumental for the triggering of the climacteric 

ripening (Nakatsuka et al., 1998; Barry et al., 2000). Indeed, transition from 

auto-inhibitory system1 to auto-catalytic system 2 is associated with an increased 

expression of LeACS1A, LeACS2, LeACS4, LeACO1, LeACO3, and LeACO4 genes 

(Lincoln et al., 1993; Nakatsuka et al., 1998; Barry et al., 2000). Moreover, repression 

of genes belonging to these two families blocked fruit ripening in tomato (Hamilton et 

al., 1990; Oeller et al., 1991; Gray et al., 1992; Nakatsuka et al., 1998). In line with 

the reduced ethylene production, the expression of ethylene responsive genes E4 and 

E8 is also reduced in the SlARF2AB RNAi fruit (Figure 12). Importantly, treatment 
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with exogenous ethylene was unable to restore normal fruit ripening suggesting that 

ethylene signaling and response is also impaired in SlARF2 knockdown lines. 

Consistent with this hypothesis, ethylene receptor genes such as Nr (SlETR3), 

SlETR4, and SlETR6 displayed altered expression pattern in the transgenic lines 

compared to wild type which may lead to the fruit insensitivity to exogenous ethylene. 

Importantly, down regulation of NR receptor results in slightly delayed fruit ripening 

with reduced rates of ethylene synthesis and slower carotenoid accumulation (Tieman 

et al., 2000). However, it has been reported that reducing NR expression via RNA 

antisense strategy results in up-regulation of LeETR4 as a compensation mechanism 

for the loss of NR (Tieman et al., 2000). In the SlARF2 under-expressing fruit, both 

SlETR3/NR and SlETR4 were down-regulated simultaneously (Figure 8B), which 

may explain the more sever delayed fruit ripening in SlARF2AB RNAi lines compared 

to NR antisense lines. It is now widely accepted that modulation of the expression of 

ethylene-regulated genes is mediated by ERFs (Ohme-Takagi and Shinshi, 1995; 

Fujimoto et al., 2000; Zhang et al., 2009b; Lee et al., 2012; Pirrello et al., 2012). In 

particular, it was shown that SlAP2a, a tomato APETALA2/ERF gene, is a negative 

regulator of fruit ripening (Chung et al., 2010; Karlova et al., 2011). More recently the 

expression of a dominant repression version of another tomato ERF gene, SlERF.B3, 

leads to a dramatic delay in fruit ripening (Liu et al., 2014a). Interestingly, the 

expression of a number of ERFs is disturbed in SlARF2AB RNAi fruits suggesting an 

altered ethylene response that may contribute to the ripening defect phenotype.  

Tomato genes encoding ripening-inhibitor (RIN), non-ripening (NOR) and colorless 

non-ripening (CNR) are considered to be master regulators of the ripening process 

and mutation in the corresponding loci dramatically impairs fruit ripening (Vrebalov 

et al., 2002; Tigchelaar and McGlasson, 1978; Manning et al., 2006). Some of the 

main features of these non-ripening mutants are also observed in SlARF2 knockdown 

lines such as enhanced fruit firmness, low ethylene production and incapacity to ripen 

in response to exogenous ethylene. Interestingly, the expression RIN, NOR and CNR 

genes were significantly down-regulated during fruit ripening of SlARF2AB RNAi 

lines (Figure 12). Considering that RIN, NOR, and CNR, were reported to play a 
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crucial role for the attainment of competence to ripen by acting up-stream of ethylene 

in the ripening cascade, (Lincoln and Fischer, 1988; Yokotani et al., 2004; Barry et al., 

2000; Griffiths et al., 1999; Thompson et al., 1999; Yen et al., 1995; Yokotani et al., 

2009; Barry and Giovannoni, 2007), our data strongly suggest that SlARF2 affects 

fruit ripening through down-regulation of these master transcriptional regulators. 

SlARF2AB RNAi fruit showed yellow-orange fruits and low expression level of ACS2 

concomitant to a reduced expression of AGAMOUS-like 1 (TAGL1), FRUITFUL 

(FUL) orthologs FUL1 and FUL2 encoding ripening-related MADS domain 

transcription factors. Suppression of TAGL1 resulted in yellow-orange fruits and 

lower ethylene levels due to the down-regulation of ACS2 (Itkin et al., 2009; Vrebalov 

et al., 2009) and simultaneous suppression of FUL1 and FUL2 resulted in ripening 

defects (Bemer et al., 2012). These phenotypes strikingly recall those displayed by 

SlARF2 down-regulated lines. It has been reported that TAGL1, FUL1, and FUL2 

interact with RIN (Leseberg et al., 2008; Martel et al., 2011) forming higher order 

complexes that regulate tomato fruit ripening (Wang et al., 2014). The phenotypes and 

the associated gene expression patterns support the hypothesis that down-regulation of 

SlARF2 impairs ripening through interfering with the MADS-box regulatory network.  

So far, the function characterization of SlARF2 in tomato was limited to its putative 

role in apical hook formation thus suggesting its involvement in the interplay between 

auxin and ethylene (Salma et al., 2009; Chaabouni et al., 2009). This is in agreement 

with our data showing that the promoters of SlARF2A and SlARF2B harbor 

conserved motifs corresponding to auxin and ethylene responsive elements. The 

ethylene responsiveness of SlARF2B and SlARF2A is further supported by their 

induced expression by exogenous auxin and ethylene treatment in mature green fruit, 

and conversely by their repression by 1-MCP treatment in breaker fruit. 

Down-regulation of SlARF2 leads to altered expression of transcription factors known 

to mediate both ethylene (ERFs) and auxin (ARFs) responses and results in the 

changes in auxin responsive and ethylene responsive genes expression suggesting that 

SlARF2A and SlARF2B might be involved in the crosstalk between auxin and 

ethylene. 
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A typical feature of tomato fruit undergoing ripening is the accumulation of lycopene 

which accounts for the red color whereas b-carotene, conferring an orange color, does 

not accumulate at this stage (Fraser et al., 1994; Rosati et al., 2000). The SlARF2AB 

RNAi fruit displayed a yellow-orange sectors reflecting increased accumulation of 

b-carotene and degraded lycopene. The relative abundance of lycopene is caused by 

the up-regulation of the phytoene synthase gene (PSY1) and down-regulation of LCYB 

and CYCB (Fraser et al., 1994; Ronen et al., 1999, 2000; Alba et al., 2005). PSY1 is 

the first rate-limiting enzyme in the plant carotenoid biosynthetic pathway whose 

transcript accumulations is induced by ethylene (Vrebalov et al., 2002; Martel et al., 

2011; Barry et al., 2005; Adams-Phillips et al., 2004a; Bramley et al., 1992). 

Repression of PSY1 inhibit total carotenoid accumulation resulting in mature yellow 

fruit with little lycopene or b-carotene (Bramley et al., 1992). LCYB and CYCB are 

responsible for the conversion of lycopene into b-carotene, which turns the fruit 

orange (Ronen et al., 2000; Rosati et al., 2000). During fruit ripening, transcript 

accumulations of both genes is repressed by the elevated ethylene thus leading to the 

accumulation of lycopene and resulting in the red color of the ripe fruit (Vrebalov et 

al., 2009). The SlARF2AB RNAi fruit produced less ethylene than wild type and 

exhibited low levels of SlPSY1 transcripts and high levels of SlLCYB and SlCYCB, 

which promotes the accumulation of b-carotene rather than lycopene thus causing the 

orange-yellow sectors on SlARF2AB RNAi fruit.  

The altered ripening phenotypes associated with the under-expression of SlARF2 

genes are consistent with previous work showing that the coordinated expression of 

some ARF and Aux/IAA genes in the tomato is instrumental to normal fruit ripening 

(Jones et al., 2002; Guillon et al., 2008; Sagar et al., 2013). As depicted in the model 

proposed (Figure 13), in addition to the crucial role devoted to ethylene, the data 

support a higher order of complexity of the mechanism underlying the control of 

fleshy fruit ripening which, henceforth, should be seen as a multi-hormonal process. 

In particular, auxin seems to take an active part in the control of tomato fruit ripening 

and this action is mediated at least partly by ARF transcription factors. Given the 

severe ripening defects displayed by the under-expressing lines, SlARF2 likely acts at 
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the level of the master regulators of ripening like RIN, NOR and CNR or alternatively 

via the control of ethylene biosynthesis and response, even though it cannot be ruled 

out that it may impacts ripening at both levels of regulation. Overall, the work 

reinforces the concept where, beside ethylene, ripening relies most likely on the 

interplay between different hormones signaling. While an increasing number of 

evidence supports now the role of auxin in fleshy fruit ripening, there is little doubt 

that the involvement of other hormones signaling is required for a proper tuning of 

this complex developmental process. Moreover, ethylene and auxin regulation of 

SlARF2 points out to the interconnection between hormone signaling pathways and 

may give a hint on the complexity of the signaling networks underlying the big 

diversity of fruit ripening feature among different plant species. 

 

Figure 13. A synthetic model depicting the position of SlARF2 in the network regulatory 

mechanism controlling fruit ripening. SlARF2A and SlARF2B mediate tomato fruit 

ripening by positively regulating key ethylene biosynthesis genes (ACO1, ACS2/4 ) and 

through modulating the major regulators of fruit ripening such as RIN, NOR, and CNR 

transcription factors known to affect ripening by positively regulating ACO1 and ACS2/4. 

SlARF2A is up-regulated by ethylene while SlARF2B is up-regulated by auxin. SlARF2A 

negatively regulates the expression of SlARF2B, thus down-regulation of SlARF2A is 

compensated by an up-regulation of SlARF2B. SLARF2 also modulates the expression of 

FUL1/2 and TAGL1. It has been postulated that RIN forms a complex with FUL1/2 to 

regulate fruit ripening in an ethylene-independent manner. RIN binds to TAGL1 to regulate 

the fruit ripening in an ethylene-dependent way.  
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Introduction to Chapter III 

 

In plants, the transcriptional co-repressors play a very important role during plant 

development (Krogan and Long, 2009; Liu and Karmarkar, 2008). Co-repressors are 

transcriptional regulators that are incapable of independent DNA binding, being 

recruited directly or indirectly by DNA-binding transcription factors to repress target 

gene expression (Liu and Karmarkar, 2008). TOPLESS/TOPLESS-RELATED 

(TPL/TPR) is one of the co-repressors families (Liu and Karmarkar, 2008) which 

emerges as key players in gene repression in several mechanisms especially in auxin 

perception. More studies in Arabidopsis imply that TOPLESS family (TPLs) is 

recruited by some specific IAAs to repress the function of ARFs (Causier et al., 2012b; 

Szemenyei et al., 2008). 

Our lab has been studying the tomato fruit development for many years. Auxin is 

one of these important hormones involved in the fruit development. Topless as a 

co-repressor are predicted to regulate the auxin signaling pathway which suggests its 

role on fruit development. In order to check whether tomato SlTPLs is also involved 

in auxin signaling pathway and to further study its role on fruit development, we 

characterize the topless family genes in tomato, a model plant for fleshy fruit.  

The characterization results of the topless genes family in tomato have been 

published by the Journal of Experimental Botany. In the following chapter III I will 

present you the topless publication: Genome-wide identification, phylogenetic 

analysis, expression profiling, and protein-protein interaction properties of TOPLESS 

gene family members in tomato. In the complementary results to the chapter III we 

describe the potential interaction partners of ARF and TPL and propose a model for 

the transcription repression mechanism.
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Complementary results 

 

It is proposed that Aux/IAA recruits TPL to repress ARF activity. In Arabidopsis, 

it is proved that 20 of 29 Aux/IAAs interact with TPL/TPRs, ARFs activators interact 

with most of the Aux/IAAs while ARFs repressors show a very limit ability to interact 

with Aux/IAAs. But some ARF repressors can interact with topless directly such as 

ARF2 and ARF9. In order to check this interaction results are also conserved in 

tomato, we performed Y2H to check the interaction among topless, ARFs and 

Aux/IAAs. In addition, in Arabidopsis, it is reported that there are other topless 

interaction partners involved in histone methylation mediated by PRC1 and PRC2 

polycomb-complex. In this complementary results we also investigate the interactions 

between topless and PRC1 and PRC2 complex components. 

 

1. PPIs between whole Sl-ARFs and Sl-Aux/IAAs 
 

We used Y2H to check the interaction between whole Sl-ARFs and Sl-Aux/IAAs 

family members. The Sl-Aux/IAAs and Sl-ARFs members were cloned into pGAD 

vector and pGBD vector respectively. 

BD-IAA1, IAA 3, IAA 4, IAA 7, IAA 8, IAA 9, IAA 11, IAA 12, IAA 14, IAA 15, 

IAA 16, IAA 17, IAA 19, IAA 22, IAA 26, IAA 27, IAA 29 

AD-ARF1, ARF 2a, ARF 2b, ARF 3, ARF 4, ARF 5, ARF 6, ARF 7, ARF 8a, ARF 

9a, ARF 9b, ARF 10a, ARF 10b, ARF 16a, ARF 16b and ARF 17.  

Figure 7 is the interaction results between whole Sl-ARFs and Sl-Aux/IAAs 

family members. ARF activators (ARF5, 6, 7, 8) interact with most of the Aux/IAAs 

except Aux/IAA 11. ARF repressors (ARF1, 2a, 2b, 4, 16a) interact with few members 

Aux/IAAs. The other ARF repressors ARF (3, 9a, 9b, 10a, 10b, 16b, 17) do not 

interact with any other Aux/IAA. 
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Interaction                  No interaction 

Figure 7 The interaction map between whole Sl-ARFs and Sl-Aux/IAAs. The green grid 

meas there is interaction between the two proteins. The red grid presents on interaction 

between the two proteins. 

 

2. PPIs between whole Sl-ARFs and Sl-TPLs 
 

We used Y2H to check the interaction between whole Sl-ARFs and Sl-TPLs 

family members. The Sl-ARFs and Sl-TPLs members were cloned into pGAD vector 

and pGBD vector respectively. 

BD-TPL1, TPL2, TPL3, TPL4, TPL5, TPL6 

AD-ARF1, ARF 2a, ARF 2b, ARF 3, ARF 4, ARF 5, ARF 6, ARF 7, ARF 8a, ARF 

9a, ARF 9b, ARF 10a, ARF 10b, ARF 16a, ARF 16b and ARF 17. 

Figure 8 is the interaction results between whole Sl-ARFs and Sl-TPLs family 

members. ARF activators (ARF5, 6, 7, 8) do not interact with any of the Sl-TPLs. 

ARF repressors (ARF1, 3, 4, 9a, 9b, 10a, 10b, 16a, 16b, 17) at least interact with one 

of the Sl-TPL1, 2, 4. There is on interaction between any of the Sl-ARFs members 
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and Sl-TPL 3, 5, 6. 
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Figure 8. The interaction map between whole Sl-ARFs and Sl-TPLs. The green grid meas 

there is interaction between the two proteins. The red grid presents on interaction between the 

two proteins. 

 

3. PPs between Sl-TPL and different truncated ARF4 proteins. 
 

SlARF4 and truncated SlARF4 (ARF4-I; ARF4-I-II; ARF4-II; ARF4-III-IV; 

ARF4-II-III-IV; figure 9) were cloned into pGAD vector. Sl-TPLs members were 

cloned into pGBD vector. We performed Y2H to test the interaction between the 

Sl-ARF4, truncated SlARF4 and Sl-TPLs. 

BD-TPL1, 2, 3, 4, 5, 6 

AD-ARF4, ARF4-I, ARF4-I-II, ARF4-II, ARF4-III-IV, ARF4-II-III-IV. 

 

 

Figure 9. The construction of truncated ARF4. 

 

Figure 10 is the interaction results between SlARF4 and truncated SlARF4 and 

Sl-TPLs members. The truncated ARF4 only containing domain I and domain II show 

the similar interaction results with full length ARF4. They both interact with SlTPL2 
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and SlTPL4. The other truncated ARF4 did not interact with any of the Sl-TPLs. The 

ARF4 only containing DBD domain or RD domain did not interact with any of the 

Sl-TPLs. This result indicates that the DBD and RD domain are both necessary for the 

interaction between SlARFs and SlTPLs. 
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    Interaction                No interaction 

Figure 10. The interaction map between SlARF4, truncated SlARF4 Sl-TPLs. The green 

grid meas there is interaction between the two proteins. The red grid presents on interaction 

between the two proteins. 

 

4. PPs between Sl-TPL and PRC1 PRC2 polycomb complex components. 

In Arabidopsis, the PRC1 component EMF1 interact with TPL and TPR3, PRC2 

component VRN5 interact with TPL. In order to find whether there is interaction 

between PRC1 PRC2 components and topless in tomato, we isolated the homologues 

of the PRC1 PRC2 components (figure 11) in tomato and put them into the pGAD 

vector. Sl-TPLs family members were cloned into pGBD vector. Y2H was performed 

to test the interactions between the components of the polycomb complex and 

Sl-TPLs.  
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Figure 11. The components of PRC1 and PRC2 polycomb complex. 

BD-TPL1, TPL 2, TPL 3, TPL 4, TPL 5, TPL 6 

AD-EMF1, LHP1-1, LHP1-2, RING1, EZ1, EZ2, MIS1, EMF2, VRN5, FIE 

 

Figure 12 is the interaction result between the components of PRC1 and PRC2 and 

Sl-TPLs. The PRC1 component EMF1 interacts with SlTPL2 while LHP1-2 interacts 

with the TPL1, 2, 4. The PRC2 component VRN5 interacts with SlTPL2 and SlTPL4. 

There is on interaction between the other components of the polycomb complex and 

SlTPLs. 

 

EMF1 LHP1-1 LHP1-2 RING1 EZ1 EZ2 MIS1 EMF2 VRN5 FIE

TPL-1

TPL-2
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TPL-4
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Interaction                No interaction 

Figure 12. The interaction map between components of PRC1 and PRC2 and Sl-TPLs. 

The green grid meas there is interaction between the two proteins. The red grid presents on 

interaction between the two proteins. 

 

Complementary discussion 

Topless as co-repressors in TIR1-auxin-dependent and independent regulation of 
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ARFs. 

It is proposed that Aux/IAA recruits TPL to repress ARF activity in Arabidopsis 

(Szemenyei et al., 2008; Causier et al., 2012b). In order to test the hypothesis is also 

appeared in tomato; the interactions among these three components were performed 

by Y2H. The interaction results show that the ARF activators interact with most of the 

Aux/IAA which show similary results the Arabidopsis (Causier et al., 2012b). In 

tomato, TPLs interact with most of the Aux/IAAs, while TPLs do not interact with 

any of the ARF activators. These results indicate that for ARF activators, Aux/IAA 

recruits TPL to repress the ARF activity. For the ARF repressors, Some ARF 

repressors interact with few numbers of Aux/IAAs. Most ARF repressors can interact 

with TPLs directly. In Arabidopsis, some ARF repressors can also interact with 

TPL/TPR, such as At-ARF2 and At-ARF9 (Causier et al., 2012b). These results 

suggest that for ARF repressors, TPL can be recruited by Aux/IAA or ARF to repress 

ARF activity. All of these results may get a point to the repression mechanism of 

topless acts as co-repressors in TIR1-auxin-dependent and independent ARF-mediated 

repression.  

 

The ARF DBD domain and RD domain are both necessary for the interaction between 

ARFs and TPLs. 

In order to find out the crucial domain for the interaction between ARF and TPL, 

the ARF repressor SlARF4 was fist investigated (Zouine et al., 2014). A typical ARF 

possess four conserved domains: DBD domain, MR domain, CTD domain containing 

domain III and IV (Guilfoyle et al., 1998; Tiwari et al., 2003; Zouine et al., 2014). 

SlARF4 was divided into 5 different truncated proteins. The interaction results show 

that only the truncated ARF4 with the DBD and MR domain can interact with 

Sl-TPL2 and Sl-TPL4 the same interaction results with the full length ARF4. The 

DBD domain is responsible for recognizing and interacting with the auxin response 

element in the genomic DNA (Guilfoyle et al., 1998). The MR domain is deciding the 

ARF activation or repression ability. ARF with AD type middle region that is rich 

QSL is activator, while ARF with RD type middle regions that is rich in SPL is 
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repressors (Guilfoyle et al., 1998; Ouellet et al., 2001; Tiwari et al., 2003; Ulmasov et 

al., 1999). The ARF activators did not interact with TPLs while most of ARF 

repressors interact with SlTPL1, SlTPL2, SlTPL4 which suggest that this middle 

region may account for the no interaction between ARF activators and TPLs. 

Moreover, the truncated ARF4 only contains middle region did not interact with TPLs 

indicating that both the DBD and RD are necessary for the interaction. 

 

 

Topless represses the gene expression by multiple chromatin-remodeling mechanisms  

Topless acts as a co-repressor inhibits the gene expression by changing the 

chromatin state from active to inactive (Long et al., 2006; Liu and Karmarkar, 2008; 

Krogan and Long, 2009; Krogan et al., 2012). Histone acetylation is largely correlated 

with gene expression; therefore, removal of these modifications by HDACs generally 

leads to repression of transcription (Shahbazian and Grunstein, 2007). In Arabidopsis, 

TPL acts through HDA19, the interactions between TPR1 and HDA19 can be 

observed in pull-down experiment from plant extracts. Mutations in HDA19 increase 

the penetrance of tpl-1 and display similar apical defects (Gonzalez et al., 2007; 

Krogan et al., 2012; Long et al., 2006; Sridhar et al., 2004; Zhu et al., 2010). 

Besides histone deacetylases, large interactome studies in Arabidopsis show that 

TPL/TPR proteins interact with some histone methyltransferases such as EMF1, 

VRN5. EMF1 is a component of Polycomb Repressive Complex 1 (PRC1) (Calonje 

et al., 2008), while VRN5 is a component of Polycomb Repressive Complex 2 (Greb 

et al., 2007). PRC2 catalyze the trimethylation of histone H3 on lysine 27 (H3K27 

trimeth) (Cao et al., 2002). PRC1 binds to this mark through its subunit POLYCOMB 

(PC) and catalyzes mono-ubiquitylation of lysine 118 of histone H2A (H2AK118ub) 

(Wang et al., 2004). The sequence of these events finally leads to gene silencing 

through the mechanisms involving chromatin compaction. In the complementary 

results, the EMF1 and VRN5 homologues in tomato also interact with SlTPLs. 

Moreover, LHP1, another component of PRC1 complex, also interact with SlTPLs. In 

addition, in Arabidopsis, TPL/TPR proteins interact with some histone 
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methyltransferases such as SDG19 (SUVH3); PKR1. SDG19 also called SUVH3 is a 

SET domain protein catalyzing the methylation of histone H3 Lys residue 9 resulting 

in nucleosome compaction and gene silencing (Pontvianne et al., 2010; Zhao and 

Shen, 2004). PKR1 is a protein related to the PICKLE (PKL) CHD3/Mi-2-like 

chromatin remodeler (Ogas et al., 1999), which repressed the expression of 

seed-associated genes during germination by promoting the methylation of histone H3 

Lys residue 27 (Zhang et al., 2008).  

These results indicate that topless represses gene expression by recruiting 

chromatin-remodeling factors to induce local chromatin compaction at target sites so 

that the RNA polymerase II cannot bind to the target sites to start the gene 

transcription. 
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Auxin signaling and epigenetic control of gene expression: 

future prospect  

 
 

The data supporting the idea that, besides ethylene, auxin plays also a role in 

fleshy fruit ripening are the main outcome of the thesis research project. The study 

aims to better decipher the mechanisms underlying the auxin control of fruit ripening. 

To do so, the first task was dedicated to the characterization of components of auxin 

signaling such as ARFs, Aux/IAAs, and TPLs known to be essential in mediating the 

hormone action via the regulation of transcriptional activity of auxin-responsive genes. 

While a specific focus was made on the functional characterization of SlARF2 to 

uncover its role in tomato fruit ripening, an important part of the thesis work was also 

devoted to the isolation of the tomato topless genes to subsequently allow establishing 

their interaction map with members of the Aux/IAA family. Overall, the data bring 

new insight on the molecular players involved in auxin signaling and in the interplay 

between auxin and ethylene. In this regard, the outcome of the thesis opens new 

avenues towards a better understanding of the multi-hormonal control of fruit 

development.  

The work also provides original clues on the link between hormone signaling and 

epigenetic regulation of gene expression. This issue represents a challenging but 

promising perspective that is being now addressed in the GBF laboratory. The last 

section of my thesis report, entitled Conclusion and Perspectives, attempts to outline 

future developments of the topic related to the link between auxin signaling and 

chromatin remodeling components, building on the initial data generated within my 

thesis research project.  

 

The link between auxin signaling and epigenetic control of gene expression: 

TOPLESS, the missing part? 
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Topless gene family emerged as key players in gene repression in several 

mechanisms especially in auxin perception. In Arabidopsis, TPL is recruited by 

Aux/IAA to suppress the expression of auxin-responsives genes in the absence of 

auxin (Szemenyei et al., 2008). In order to better define the relationship between 

Sl-TPLs and Aux/IAA in tomato as a reference species for fruit research, we first 

sought to isolate all members of the topless family genes. Six Sl-TPL (Sl-TPL1, 2, 3, 

4, 5, 6) genes have identified in the tomato, all of them encode proteins bearing the 

TOPLESS canonical domains (LiSH, CTLH and two WD40 repeats). They display 

similar numbers of introns and exons except Sl-TPL6 who is longer than the 

remaining gene family members. Functional characterization revealed that, with the 

exception of Sl-TPL6, all Sl-TPLs proteins are nuclear localized, consistent with their 

transcriptional repression activity via interaction with Aux/IAAs. Expression profiling 

assessed at the transcript levels showed that Sl-TPL1, Sl-TPL3 and Sl-TPL4 display 

the highest expression, Sl-TPL2 is moderately expressed while Sl-TPL5 and Sl-TPL6 

are weakly expressed. This suggests that Sl-TPL1, 3, 4 are potentially the most active 

during plant development. Sl-TPL1 is highly expressed in vegetative organs (stems, 

roots) and flowers, while the expression of Sl-TPL3 and Sl-TPL4 is prevailing in fruit. 

This differential pattern of expression may suggest a functional specialization among 

Sl-TPL isoforms. Interactions studies between Sl-TPLs and Aux/IAA support the 

involvement of most Sl-TPLs in auxin signaling and a functional redundancy among 

family members. This is in line with the functional redundancy previously reported 

for Arabidopsis TPLs where single loss-of-function mutants of all five At-TPL/TPRs 

didn’t display obvious phenotypes (Long et al., 2006). However, this assumption is 

contrasting with the situation prevailing in rice and maize where genetic evidences 

seem to support a more specialized functionality for TPL genes. That is, in rice 

(Yoshida et al., 2012), a single recessive mutation in Asp1, a TPL-like gene close to 

Sl-TPL2, exhibited several pleiotropic phenotypes, such as altered phyllotaxy and 

spikelet morphology. Further evidence sustaining a diversified function for TPL 

proteins is provided by maize rel2 mutants affected in a TPL-like gene (Gallavotti et 

al., 2010). A better clarification of the putative specialized functionality among tomato 
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TPLs is now being addressed by the GBF group using a reverse genetics approach. 

Given the distinctive expression pattern of SlTPL3 in reproductive tissues, specific 

down-regulation of this gene would be of particular interest to unravel the role of TPL 

co-repressors in flower and fruit biology. 

So far, the most accepted paradigm states that Aux/IAAs recruit co-repressors 

TPLs to block ARF activity which leads to the transcriptional inhibition of 

auxin-responsive genes. Our study of the interactions between Aux/IAAs, ARFs and 

TPLs in tomato shows that TPLs interact with most of the Aux/IAAs, while they only 

interact with repressor ARFs. By contrast, activator ARFs directly interacts with 

Aux/IAAs but not with TPLs. In Arabidopsis, similar interaction results are reported 

(Causier et al., 2012b). These data suggest that TPLs may repress the ARF-dependent 

transcriptional activity either by binding directly to a repressor ARF or by binding to 

an Aux/IAA that is bound to an activator ARF (Figure 13).  

 

 

Figure 13. ARF activator and ARF repressor repression model. (A) ARF activators 

interact with Aux/IAA through domain III and domain IV, and Aux/IAA recruit TPLs via 

domain I. They form a complex to inhibit gene transcription. This modle is dependent of 

auxin. (B) ARF repressors interact with TPLs directly to from a complex to inhibit gene 

transcription. This modle is independent of auxin. 
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Previous studies suggested that TPL/TPR proteins can use multiple 

chromatin-remodeling mechanisms to induce transcriptional repression (Causier et al., 

2012b). TPL acts through the recruitment of histone deacetylases (HDACs) into 

transcription complexes (Figure 14), leading to a change in the chromatin state that 

shifts from active to inactive (Long et al., 2006; Liu and Karmarkar, 2008; Krogan 

and Long, 2009; Krogan et al., 2012). In particular, it has been postulated that TPLs 

induce local chromatin compaction at target sites through an association with histone 

deacetylases (HDACs). Histone acetylation is largely correlated with gene expression 

and removal of these modifications by HDACs generally leads to repression of 

transcription (Shahbazian and Grunstein, 2007) as depicted in Figure 15. It has been 

suggested that TPL acts in Arabidopsis through HDA19 and interactions between 

TPR1 because HDA19 can be observed in pull-down experiment from whole plant 

extracts. Furthermore, mutations in HDA19 increase the penetrance of tpl-1 and 

display similar apical defects (Gonzalez et al., 2007; Long et al., 2006; Sridhar et al., 

2004).  

In tomato, interaction between TPLs and HDACs could not be detected by 

yeast-2-hybrid (unpublished data from my colleague GUOJIAN HU). Accordingly, 

while the interaction between TPR1 and HDAC19 was found in pull-down 

experiment from Arabidopsis plant extracts, this interaction was not detected by 

Yeast-2-hybrid (Gonzalez et al., 2007; Long et al., 2006; Sridhar et al., 2004). It 

seems that the yeast-2-hybrid system is not suited for assessing the interaction 

between TPLs and HDACs which should be investigated by another approach such as 

pull-down assay or Bimolecular Fluorescence Complementation (BIFC).  
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Figure 14. Gene silencing through the mechanisms involving chromatin compaction. 

PRC2 induces H3K27me3 type methylation. H3K27me3 mark recruits PRC1 which 

ubiquitylates H2AK119 thus promoting chromatin compaction and gene silencing. 

Deacetylation of the target gene by HDACs generally leads to chromatin compaction and 

PRC2 associates with histone deacetylases, reinforcing transcriptional repression and 

providing functional synergy to stable silencing of target genes.  

 

Beside histone deacetylases, large interactome studies in Arabidopsis showed that 

TPL/TPR proteins can interact with some histone methyltransferases such as SDG19 

(SUVH3); PKR1; EMF1, VRN5 (Causier et al., 2012b). SDG19, also called SUVH3, 

is a SET domain protein catalyzing the methylation of histone H3 Lys at residue 9 

resulting in nucleosome compaction and gene silencing (Pontvianne et al., 2010; Zhao 

and Shen, 2004). PKR1 is a protein related to the PICKLE (PKL) CHD3/Mi-2-like 

chromatin remodeler (Ogas et al., 1999; Zhang et al., 2008), shown to repress 

seed-associated gene expression during germination through promoting the 

methylation of histone H3 Lys residue 27 (Ogas et al., 1999; Zhang et al., 2008). 

EMF1 is a component of Polycomb Repressive Complex 1 (PRC1) (Calonje et al., 
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2008), while VRN5 is a component of Polycomb Repressive Complex 2 (Greb et al., 

2007). As featured in Figure 14, PRC2 catalyzes the trimethylation of histone H3 on 

lysine 27 (H3K27 trimeth) (Cao et al., 2002) allowing PRC1 to bind to this mark 

through its subunit POLYCOMB (PC) and to catalyze mono-ubiquitylation of lysine 

118 of histone H2A (H2AK118ub) (Wang et al., 2004). The sequence of these events 

finally leads to gene silencing through the mechanisms involving chromatin 

compaction (Figure 14). In tomato, we isolated the components of PRC1 and PRC2 

and checked their interactions with TPLs. The results show that TPLs can interact 

with one component of PRC2 and two components of PRC1 (see complementary 

results). It seems that TPLs may recruit PRC1 and PRC2 to repress gene transcription. 

These preliminary data brings the first block for a study investigating the 

physiological significance of these interactions (Figure 14). 

 

SlARF2, a major regulator of fruit ripening: is it also linked to epigenetic control 

of gene expression? 

Among all ARF members in the tomato, Sl-ARF2 is the most highly expressed 

during fruit ripening and this feature provided the starting point towards addressing its 

putative role in fruit ripening. The data generated in my thesis work indicate that 

SlARF2 is encoded by two genes in the tomato, SlARF2A and SlARF2B, both 

encoding active transcriptional repressors. Furthermore, SlARF2A is shown to be 

ethylene-responsive while SlARF2B is up-regulated by auxin. To address, the role of 

Sl-ARF2 in fruit ripening, we generated transgenic lines that were either specifically 

silenced for SlARF2A or SlARF2B or simultaneously silenced for both genes. 

Suppression of either SlARF2A or SlARF2B alters ripening but the double repression 

led to dramatic inhibition of the ripening process. Ethylene synthesis and perception 

and pigment accumulation were altered in the down-regulated lines. Key genes 

encoding regulators of ripening (RIN, NOR, CNR), of ethylene signaling and 

carotenoid pathway are misexpressed in the Sl-ARF2 deficient lines. The expression 

patterns of a number of ERFs genes was also altered suggesting disturbed ethylene 

responses in the transgenic lines. Altogether, the data indicate that SlARF2 is a major 
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regulator of fruit ripening. 

 

 

 

Figure 15. Model of SlARF2 repress the auxin response gene transcription. SlARF2 

mediates epigenetic gene silencing by interacting at the protein level with the polycomb 

complex. 

 

To date, the mechanisms by which repressor ARFs inhibit the transcription of their 

target genes is unknown. It was recently shown (How Kit et al., 2010) that repression 

of SlEZ2 gene, a tomato enhancer of zeste, leads to a decrease in the trimethylation of 

lysine 27 on histone H3 and to pleiotropic effect on sporophyte development. In our 

SlARF2 down-regulated lines, we observed similar phenotypes, suggesting that 

SL-ARF2 and SlEZ2 might be involved in the same control mechanism of gene 

expression. EZ is one components of PRC2 complex, which is responsible for 

catalyzing the trimethylation of histone H3on lysine 27 (H3K27 trimeth). In 

Arabidopsis, large interactome studies showed that TPL/TPR proteins interact with 

EMF1 and VRN5 proteins which belong to PRC1 and PRC2 complexes, respectively. 

 

Considering that ARFs bind to Aux/IAAs which recruits TPL to suppress the 

expression of auxin-responsives genes in the absence of auxin (see above and 

Szemenyei et al., 2008), our working hypothesis is that SlARF2 could recruit PRC1 

and PRC2 complex through TPL proteins to repress gene expression (Figure 15). On 

the other hand, the interaction map established within my thesis work indicated that 

SlARF2 interacts with Sl-IAA26 and Sl-IAA29. Meanwhile, we also showed that 
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Sl-IAA 26 interacts with SlTPL1, 2, 3, 4, 5 in contrast to Sl-IAA 29 that displayed no 

interaction with any of the TPLs (Hao et al., 2014). The emerging question here is to 

know whether and how these components link to the main players of epigenetic 

modulation of gene expression. We cloned homologs of PRC1 and PRC2 components 

in tomato and preliminary data confirmed that some Topless protein can interact with 

PRC1 and PRC2 complex (complementary data Figure 12). The next step will be to 

assess whether SlARF2 can be part of a complex formed by PRC1, PRC2 and TPLs. 
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Table S1 List of primers used in the expression studies 

 

Gene Name Primer Sequence  

Sl-Actin 
F 5'-TGTCCCTATTTACGAGGGTTATGC-3' 

R 5'-CAGTTAAATCACGACCAGCAAGAT-3' 

SlARF2A 
F 5'-GCAAGGTCAAGAGTTATCGA-3' 

R 5'-CATTGGTTTCTGAGACAAGTC-3' 

SlARF2B 
F 5'-TTTAACGAGTATCCAACCTTCC-3' 

R 5'-GGGTTTAGGCATAATTTCTCCA-3' 

GUS-1 
F 5'-TACCGTACCTCGCATTACCC-3' 

R 5'-GCAGCAGTTTCATCAATCACC-3' 

GUS-2 
F 5'-ACCGATACCATCAGCGATCTC-3' 

R 5'-GTACCTTCTCTGCCGTTTCC-3' 

Sl-ERF.B3 
F 5'-CGGAGATAAGAGATCCAAGTCGAA-3' 

R 5'-CTTAAACGCTGCACAATCATAAGC-3' 

Sl-ERF.A1 
F 5'-ACCGGATCCTGTTAGAGTTGGA-3' 

R 5'-CGACGCCGATGAACAATG-3' 

Sl-ERF.A2 
F 5'-CGGTATCATCAGCTTCGGAAA-3' 

R 5'-TCTCAACTTCTAATTCGGCTTGCT-3' 

Sl-ERF.A3 
F 5'-GCGAAATGGATCAACAGTTACCA-3' 

R 5'-ATTAGACGACTGAAGCTTGAATTCC-3' 

Sl-ERF.B1 
F 5'-GAATGATGACGGAATTGTAATGAAGA-3' 

R 5'-TTCCACAATCCCAAATTGAAGA-3' 

Sl-ERF.B2 
F 5'-AGTTTGCAGCGGAGATTCGT-3' 

R 5'-TGCCCTGTCATATGCCTTTG-3' 

Sl-ERF.C1 
F 5'-TTCTTCGTGTCGAAAATACTAAGTTCAGT-3' 

R 5'-ACTCTAAATTCTTCAAGAAATCCAGAACA-3' 
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Sl-ERF.C2 
F 5'-ATCATTACCATGGAATGATCAACATT-3' 

R 5'-CCGTCTATAACTTTCTTTCGAGGTTAA-3' 

Sl-ERF.C3 
F 5'-CAAGAAGTTTCCTCAATCTCTCATGTAT-3' 

R 5'-CCGAGATGAATAATCCATTTGATTT-3' 

Sl-ERF.C6 
F 5'-GGGAAATACGCTGCGGAAA-3' 

R 5'-TTTCGAACGTACCTAGCCATACTCT-3' 

Sl-ERF.D1 
F 5'-GGCAGCTGAAATAAGAGATCCATATAA-3' 

R 5'-CTAGCAGCCCCTTCAGCAGTAT-3' 

Sl-ERF.D2 
F 5'-ACACAAGTAGCACCAGCACCACTA-3' 

R 5'-ACCCCAAAAAAAGCAAGAAAATT-3' 

Sl-ERF.D3 
F 5'-ATTCATTTTCGGGTTGTGCAGTA-3' 

R 5'-CGACTATAATGATTTCTGCCGAACT-3' 

Sl-ERF.D4 
F 5'-GTTGCTGCTTTAACCAATGTGATTAT-3' 

R 5'-CTTCCGGTACGCGAAACAAG-3' 

Sl-ERF.E1 
F 5'-GTTCCTCTCAACCCCAAACG-3' 

R 5'-TTCATCTGCTCACCACCTGTAGA-3' 

Sl-ERF.E2 
F 5'-ACTTCGTGAGGAAACCCTGAAC-3' 

R 5'-GTTACTAATATAAGTCATGTTGGGCTGAA-3' 

Sl-ERF.E3 
F 5'-GCATTTGCGATCTGAAGTTGTT-3' 

R 5'-CAAATGGCTTGACATCGACTTG-3' 

Sl-ERF.E4 
F 5'-AGGCCAAGGAAGAACAAGTACAGA-3' 

R 5'-CCAAGCCAAACGCGTACAC-3' 

Sl-ERF.F1 
F 5'-ACGAGCTTTCTTCTTTTCTCTCTCTAAA-3' 

R 5'-GAAACTCGATATCCTTCTGTAAAATCTTC-3' 

Sl-ERF.F2 
F 5'-TTGATACCACTGCTTACCTAGTTTTTCT-3' 

R 5'-TATCTTCTATGGCTCCTTCCTCTTCT-3' 

Sl-ERF.F3 
F 5'-AGTAGTAAGGTGACCCGGATGAAG-3' 

R 5'-CACCGATCATCCACCACAGA-3' 

Sl-ERF.F4 F 5'-GAGCTAATGGCTGATTTTTGTATATAAGTTC-3' 



Supplementary Data for Chapter II 
 

 146  
 

R 5'-AAATGGTAGAAACAGCACGAGAAAG-3' 

Sl-ERF.F5 
F 5'-TGGAGCGAAAGCGAAAACTAA-3' 

R 5'-GTCTGACTCGGACTCCGATTG-3' 

Sl-ERF.G1 
F 5'-GAAGAAAGCGATCGATTTGAAGA-3' 

R 5'-TTTTCCCCATGGCCTCTGT-3' 

Sl-ERF.G2 
F 5'-CGGTGGAGATAAAAGCGAAAAC-3' 

R 5'-CCACTTCGCAGAACCCTAGATT-3' 

Sl-ERF.H1 
F 5'-AGATGCAGCAAGAGCATATGATG-3' 

R 5'-TTGGGTTGTATGGGAAATTAGTTCT-3' 

PSY1 
F 5'-GGAAAGCAAACTAATAATGGACGG-3' 

R 5'-CCACATCATAGACCATCTGTTCC-3' 

PDS 
F 5'-GGTCACAAACCGATACTGCT-3' 

R 5'-AAACCAGTCTCGTACCAATCTC-3' 

ZDS 
F 5'-AGTGGTTTCTGTCTAAAGGTGG-3' 

R 5'-ACCGAGCACTCATGTTATCAC-3' 

β-LCY1 
F 5'-GTCCACTTCCAGTATTACCTCAG-3' 

R 5'-TGTCCTTGCCACCATATAACC-3' 

β-LCY2 
F 5'-CGGGTTATATGGTAGCAAGGA-3' 

R 5'-CAGATGCCGATAACTCATTACC-3' 

CYC-β 
F 5'-TGTTATTGAGGAAGAGAAATGTGTGAT-3' 

R 5'-TCCCACCAATAGCCATAACATTTT-3' 

ACS1 
F 5'-TCGTTTCGAAGATTGGATGA-3' 

R 5'-CAACAACAACAAATCTAAGCCATT-3' 

ACS3 
F 5'-CCCTTGTCCACAAATCCAGA-3' 

R 5'-ACAGAGTGCACCCTCTAACATTT-3' 

ACS6 
F 5'-CTCCTATGGTCCAAGCAAGG-3' 

R 5'-CGACATGTCCATAATTGAACG-3' 

ACS2 
F 5'-TGTTAGCGTATGTATTGACAACTGG-3' 

R 5'-TCATAACATAACTTCACTTTTGCATTC-3' 
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ACS4 
F 5'-CTCCTCAAATGGGGAGTACG-3' 

R 5'-TTTTGTTTGCTCGCACTACG-3' 

ACO1 
F 5'-GCCAAAGAGCCAAGATTTGA-3' 

R 5'-TTTTTAATTGAATTGGGATCTAAGC-3' 

ACO2 
F 5'-TTTATTACAAAGTGTGCGTCCCTA-3' 

R 5'-CTCATTTTTGGGTATTAAAATATGTGT-3' 

ACO3 
F 5'- GGAGCCTAGGTTTGAAGCAA-3' 

R 5'- AAACAAATTCCCCCTTGAAAA-3' 

ACO4 
F 5'- TGATCAAATTGCAAGTGCTTAAA-3' 

R 5'- ACCACACAACAATCACACACA-3' 

E4 
F 5'-GACCACTCTAAATCGCCAGG-3' 

R 5'-TTCCTGAGCGGTATTGCTTT-3' 

FUL1 
R 5'-GTTTTGCCACAACAACTGGACTC-3' 

R 5'-CTTGCTGCTGTGAAGAACTACC-3' 

FUL2 
R 5'-AATGGAGAAGTAGAAGGATCATCG-3' 

R 5'-GATAACATAATATTGTCCGCTTGC-3' 

SGR1 
R 5'-TGCCAAGAACATATACACTGAC-3' 

R 5'-GTTATACCAACCTTGCAACTGAG-3' 

E8 
F 5'-TGGCTCCGAATCCTCCCAGTCT-3' 

R 5'-GTCCGCCTCTGCCACTGAGC-3' 

PG2a 
F 5'-TCAAGGGCACAAGTGCAACAAAGG-3' 

R 5'-TGCACGTAGCCTCTGATGGTTT-3' 

RIN 
F 5'-ATGCAGCACCATCAACACAT-3' 

R 5'-CTCCAAATTCAAAGCATCCA-3' 

CNR 
F 5'-GCCAAATCAAGCAATGATGA-3' 

R 5'-TCGCAACCATACAGACCATT-3' 

NOR 
F 5'-AGAGAACGATGCATGGAGGTTTGT-3' 

R 5'-ACTGGCTCAGGAAATTGGCAATGG-3' 

HB-1 F 5'-CAATCGGAGGAAGATGATGG-3' 
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R 5'-TGTTCATGGTGCTGCTCTTC-3' 

TAGL1 
F 5'-ACTTTCTGTTCTTTGTGATGCT-3' 

R 5'-TTGGATGCTTCTTGCTGGTAG-3' 

AP2a 
F 5'-AACGGACCACAATCTTGAC-3' 

R 5'-CTGCTCGGAGTCTGAACC-3' 

EIN2 
F 5'-GTGTGCTGAATAAGTTTAGTGGAG-3' 

F 5'-TGCTGTACAATAGAAGAATGGAGG-3' 

EIL2 
F 5'-TGAAGATGATGGAAGTCTGTAAGG-3' 

F 5'-CCACTCCCTGAGATTATCCGA-3' 

EIL3 
F 5'-ACAGGACTTCAAGAAACAACCA-3' 

F 5'-GTGTTGTGCTCATAGTTGATCTG-3' 

ETR1 
F 5'-GGAAGAACATTGGCATTGGAAG-3' 

F 5'-CCAACTGGATTTTGGTGTCGT-3' 

ETR2 
F 5'-TTGGAGGAATCAATGAGGGC-3' 

F 5'-TCATTACGCGCACGAACAG-3' 

NR 
F 5'-TGCTGTTCGTGTACCGCTTT-3' 

F 5'-TCATCGGGAGAACCAGAACC-3' 

ETR4 
F 5'-ATGGCTGTCGTTCTTGGGC-3' 

F 5'-TGGAGGAGTGAGTGTGGATGC-3' 

ETR5 
F 5'-GTGCTCTGGGCCCTTCACTA-3' 

F 5'-GAACTTACGCACCCTCAATGC-3' 

ETR6 
F 5'-TCAAAAAGCCGGTGATCTCG-3' 

F 5'-GCACCCATTTGAACGGAAAA-3' 

CTR1 
F 5'-CGATTTGAACATGACAGGGAG-3' 

F 5'-AAGGGATTGAGATGGAAGATGG-3' 
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