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Abstract

The Levenberg-Marquardt algorithm (LM) is one of the most popular algorithms for

the solution of nonlinear least squares problems. Motivated by the problem structure in

data assimilation, we consider in this thesis the extension of the LM algorithm to the

scenarios where the linearized least squares subproblems, of the form min
x∈Rn

‖Ax−b‖2, are

solved inexactly and/or the gradient model is noisy and accurate only within a certain

probability.

Under appropriate assumptions, we show that the modified algorithm converges globally

and almost surely to a first order stationary point. Our approach is applied to an instance

in variational data assimilation where stochastic models of the gradient are computed by

the so-called ensemble Kalman smoother (EnKS). A convergence proof in Lp of EnKS

in the limit for large ensembles to the Kalman smoother is given. We also show the

convergence of LM-EnKS approach, which is a variant of the LM algorithm with EnKS

as a linear solver, to the classical LM algorithm where the linearized subproblem is

solved exactly.

The sensitivity of the trucated sigular value decomposition method to solve the linearized

subproblem is studied. We formulate an explicit expression for the condition number of

the truncated least squares solution. This expression is given in terms of the singular

values of A and the Fourier coefficients of b.

Keywords: Levenberg-Marquardt algorithm, least squares, random models, variational

data assimilation, Kalman filter/smoother, ensemble Kalman filter/smoother, truncated

singular value decomposition, condition number, perturbation theory.





Résumé

L’algorithme de Levenberg-Marquardt (LM) est parmi les algorithmes les plus popu-

laire pour la résolution des problèmes des moindres carrés non linéaire. Motivés par la

structure des problémes de l’assimilation de données, nous considérons dans cette thèse

l’extension de l’algorithme LM aux situations dans lesquelles le sous problème linéarisé,

qui a la forme min
x∈Rn

‖Ax− b‖2, est résolu de façon approximative, et/ou les données sont

bruitées et précises qu’avec une certaine probabilité.

Sous des hypothèses appropriées, on montre que le nouvel algorithme converge presque

sûrement vers un point stationnaire du premier ordre. Notre approche est appliquée

à une instance dans l’assimilation de données variationnelles où les modèles aléatoires

du gradient sont calculés par le lisseur de Kalman d’ensemble (EnKS). On montre la

convergence dans Lp de l’EnKS vers le lisseur de Kalman, quand le nombre d’ensemble

tend vers l’infini. On montre aussi la convergence de l’approche LM-EnKS, qui est une

variante de l’algorithme de LM avec l’EnKS comme solveur linéaire, vers l’algorithme

classique de LM où le sous problème est résolu de façon exacte.

La sensibilité de la méthode de décomposition en valeurs singulières tronquée est étudiée.

Nous formulons une expression explicite pour le conditionnement de la solution des

moindres carrés tronqués. Cette expression est donnée en termes de valeurs singulières

de A et les coefficients de Fourier de b.

Mots clés: L’algorithme de Levenberg-Marquardt, Moindres carrés, modèles aléatoires,

assimilation de données variationnelles, filtre/lisseur de Kalman, filtre/lisseur de Kalman

d’ensemble, décomposition en valeurs singulières, conditionnement, théorie de perturba-

tion.
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Chapter 1

Introduction

There has been long interest in understanding random phenomena, and quantifying

uncertainties in various scientific areas. For example, in meteorology, to predict the

weather, Lewis F. Richardson in 1922 has proposed that it is possible by solving nu-

merically the equations of the physical laws that govern the atmospheric motion [104].

In 1950 the first successful numerical prediction of the weather was performed by [23].

Since then, with the advent of electronic computers, the accuracy of numerical weather

prediction models has improved steadily [102].

Uncertainties and randomness arise because models for real-world phenomena are too

complicated to be described accurately. Therefore, it is necessary to make simplifica-

tions, and assumptions to find models which explain the main dynamical processes of

the real-world phenomena. Once a simplified model is constructed, a random system

state can be estimated by using techniques from estimation theory.

Estimation theory [48, 74, 108] is concerned with the determination of the best estimate

of an unknown parameter vector of a random system, using the observations and the

prior knowledge [28, 49] about the behavior of the system. An estimator takes a set of

noisy observations, and uses a dynamical model (e.g. a linear predictive model) of the

process (the models explaining the system motion) [122, 124] to estimate the unknown

parameters. The estimation accuracy depends on the available information and on the

efficiency of the estimator.

Usually the vector of unknowns to be estimated contains many parameters. The most

usual ones concern the initial condition, parametric forcing, and functions modeling the

errors on the model. In many fields such as geophysics and meteorology, the knowledge

of an accurate initial condition is crucial for forecasting [98, 100]. The initial condi-

tion can not be fixed only using observations, because the measurements are generally

1



Chapter 1. Introduction 2

incomplete, sparse and local, and often only indirectly related to the model variables

[83, 95]. Furthermore, each observation source has different error characteristics that

depend on the properties of each instrument. Also a direct integration of the initial

conditions using only the model may lead to a fast divergence [4, 57, 80]. Consequently,

we can say that usually the observations alone, without a model, are not sufficient to

characterize the system, whereas a model without any observations, does not provide

sufficient information on the system. Thus, the best answer lies in combining both the

observations and a model.

One of the methods to combine the information from the model and observations (to

estimate the unknowns) is the Bayesian estimation [21, 89]. It is a framework for the

formulation of statistical inference problems. In the prediction or estimation of a random

process from a related observation signal, the Bayesian philosophy is based on combining

the evidence contained in the signal with prior knowledge about the process by mini-

mizing the so-called Bayes’ risk function. Bayesian methodology includes the classical

estimators such as maximum a posteriori (MAP) [51] , maximum-likelihood (ML) [32]

and minimum mean square error (MMSE) [116].

The estimation process (the process used for combining the prior information and the

observations) in meteorology and oceanography, is known as data assimilation [9, 20, 73].

This problem is often posed in one of these two ways: (i) Variational methods, such as

3 dimensional variational method (3DVAR) [19] and 4 dimensional variational method

(4DVAR) [19, 114], construct least square estimates using two norms weighted by the

inverse of the covariance matrices. The square error produced by the deviation from

the original model state and observations is minimized using an iterative method. (ii)

Sequential methods, such as Kalman filter/smoother [69, 120], extended Kalman filter

[70], ensemble Kalman filter/smoother [42, 76] and particle filters [37, 53, 121]. These

techniques solve the problem of assimilation sequentially, in the sense that they give an

estimator at each time when new observations become available. These techniques use

Bayesian inference.

Nowadays, 4DVAR is a worldwide dominant data assimilation method used in weather

forecasting centers [36, 50, 62, 67, 101, 103]. 4DVAR attempts to reconcile model

and observations variationally, by solving a weighted nonlinear least squares problem.

The minimized objective function is the sum of the squares of the differences of the

initial state from a known background state at the initial time and the differences of

the values of observation operator and the observations at every given time point. In

the weak-constraint 4DVAR [114], the model error is accounted by allowing the ending

and starting state of the model at every given time point to be different, and adding

to the least squares also the sums of the squares of those differences. The sums of the
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squares are weighted by the inverses of the appropriate error covariance matrices, and a

lot of work in the applications of 4DVAR goes into modeling those covariance matrices

[26, 30, 34, 45, 96].

A widely used algorithm to solve 4DVAR problem, or more generally to solve any non-

linear least squares problem, is the Gauss-Newton algorithm [16], known in the data

assimilation community under the name of incremental four dimensional variational

method (Incremental 4DVAR) [27]. The Gauss-Newton algorithm relies on the approx-

imate solution of a sequence of linear least squares subproblems in which the nonlinear

least squares objective function is approximated by a quadratic function in the neigh-

borhood of the current nonlinear iterate. However, it is well known that this simple

variant of the Gauss-Newton algorithm does not ensure a monotonic decrease of the

objective function. These problems arise, for example, in the case of highly nonlinear

or very large residual problems [33, p. 225]. Hence the convergence of Gauss-Newton

algorithm is not guaranteed [33, p. 225]. Handling this difficulty is typically achieved by

using either line-search [33], trust-region [25], or Levenberg-Marquardt [79, 88, 92, 94]

(also known as Levenberg-Morrison-Marquardt [25]) methods , which under appropriate

assumptions, ensure global convergence to first order critical points. We consider the

latter method in this thesis.

The Levenberg-Marquardt algorithm can be seen as a regularization of the Gauss-

Newton algorithm. A regularization parameter is updated at every iteration and in-

directly controls the size of the step, making Gauss-Newton globally convergent, i.e.,

convergent to stationarity independently of the starting point. We found that the reg-

ularization term added to Gauss-Newton maintains the structure of the linearized least

squares subproblems arising in data assimilation, enabling us to use techniques like

ensemble methods while simultaneously providing a globally convergent approach (see

Chapters 4 and 5).

However, the use of ensemble methods, such as ensemble Kalman filter/smoother in data

assimilation poses difficulties since it makes random approximations to the gradient. We

thus propose and analyze a variant of the Levenberg-Marquardt method to deal with

probabilistic gradient models (see Chapter 4). It is assumed that an approximation

to the gradient is provided but it is only accurate with a certain probability. The

knowledge of the probability of the error between the exact gradient and the model

one can be used in our favor in the update of the regularization parameter. We show

that using ensemble methods to solve 4DVAR linearized subproblem is equivalent to use

the Levenberg-Marquardt method based on probabilistic models. Then, we illustrate
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numerically our approach using as forecast models Lorenz 63 model [84], and the quasi-

geostrophic model [44] (see Chapters 5 and 6). We investigate also in this thesis the

asymptotic behavior of the new methods in the limit for large ensembles (see Chapter 7).

Having in mind the approximations and the errors in data, we consider as inexact the

solution of the linearized least squares subproblem coming from each iteration of the

Gauss-Newton or Levenberg-Marquardt methods. When the problem is ill-conditioned,

a better solution of the subproblem, in the sense that it is less sensitive than the original

one (the exact solution of the subproblem) to errors in data is obtained by truncating the

original least squares solution. The Truncated Singular Value Decomposition (TSVD)

[16] method is well known for these kind of problems. In this thesis we will study

the sensitivity of the solution of a given subproblem (linear least squares problem) to

perturbations in the data by computing the condition number of the truncated least

squares solution (see Chapter 3).

This thesis is organized as follows: In Chapter 2, we present fundamental informa-

tion that will be used as a reference for the other chapters. We start by giving an

overview about some sequential methods for estimation theory, in particular Kalman

filter/smoother, ensemble Kalman filter/smoother. Next, we present some methods for

solving linear least squares problems, in particular, conjugate gradient method and the

truncated singular value decomposition method. Finally, methods for solving nonlinear

least squares problems will be presented, especially the Gauss-Newton and Levenberg-

Marquardt methods.

In Chapter 3, a sensitivity analysis of the TSVD method will be studied. We will

investigate an explicit expression of the condition number of the truncated least squares

solution of Ax = b. The expression is given in terms of the singular values of A and the

Fourier coefficient of b.

Chapter 4 gives an extension of the Levenberg-Marquardt method to the scenarios where

the linearized least squares subproblems are solved inexactly and/or the gradient model

is noisy and accurate only within a certain probability. We call this latter extension a

Levenberg-Marquardt method based on probabilistic models. A proof of convergence to

first order stationary point of new approach is given.

Chapter 5 presents the application of the approach proposed in Chapter 4 to data

assimilation problems. We show that solving 4DVAR problem using ensemble Kalman

smoother as linear solver is equivalent to approximating the gradients by random models.

Moreover we illustrate numerically our approach using Lorenz 63 equations as a forecast

model in 4DVAR problem.
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In Chapter 6, we analyze the Levenberg-Marquardt method using ensemble Kalman

smoother as linear solver to the filtering problems. We study the impact of different

parameters on the iterations progress. We use two different forecast models in our

experiments, namely Lorenz 63 model and quasi-geostropic model.

Chapter 7 studies the asymptotic behavior of some algorithms based on ensemble meth-

ods. We show the convergence of ensemble Kalman smoother in the limit for large

ensembles to the Kalman smoother, and we show also the convergence of LM-EnKS

Algorithm, which is a variant of the Levenberg-Marquardt algorithm with ensemble

Kalman smoother as linear solver to the classical Levenberg-Marquart algorithm, where

the linearized subproblem is solved exactly.

Finally, conclusions are drawn in Chapter 8, and future directions are discussed.

Contributions

The main contributions of this thesis are:

• to prove the global convergence of the Levenberg-Marquardt method with a fixed

regularization parameter (see Theorem 2.1, in Chapter 2).

• to compute explicitly the condition number of the TSVD method (see Chapter 3).

This work has been published in SIAM Journal on Matrix Analysis and Applica-

tions (SIMAX) [11].

• to derive an extension of the Levenberg-Marquardt method, to deal with the least

squares problems where derivatives are random. We give an application of this

new approach in data assimilation (see Chapters 4 and 5). This work is under

revision at SIAM/ASA Journal on Uncertainty Quantification (JUQ) [12, 86].

• to illustrate numerically the new approaches and investigate the impact of different

parameters on the iterations progress (see Chapters 4, 5 and 6) [86].

• to investigate the asymptotic behaviors of some ensemble based methods presented

in Chapter 5 (see Chapter 7). This work is submitted for publication in SIAM/ASA

Journal on Uncertainty Quantification (JUQ) [13].



Chapter 2

Background Material

This chapter consists of fundamental information that will be a reference for the follow-

ing chapters. We give an overview about the estimation theory in Bayesian framework,

and then we formulate the estimation problem as a least squares problem. After, solu-

tion methodologies are discussed, in particular the Newton and Gauss-Newton methods.

We focus on the Gauss-Newton method as a solution algorithm, in which one solves a

sequence of linear least squares subproblems. The Gauss-Newton method can be im-

proved in terms of its convergence behavior by using trust-region strategies that we also

outline in this chapter, by focusing especially on the well-known Levenberg-Marquardt

method.

The solution of the linear least-squares subproblems arising in Gauss-Newton or Levenberg-

Marquardt iteration can be found by solving the corresponding linear systems. Here,

we present the singular value decomposition method, we give a small summary of the

iterative methods, and present the conjugate gradient to solve those linear systems.

The reminder of this chapter is organized as follows, we begin by an overview about

estimation theory, where we present the well known Kalman filter/smoother, ensemble

Kalman filter/smoother methods. Next, we present a class of methods to solve linear

least squares problem, especially singular value decomposition and the conjugate gradi-

ent methods. Finally, we present methods for solving nonlinear least squares problems,

especially Gauss-Newton and Levenberg-Marquardt methods.

2.1 Estimation theory

Estimation theory is a branch of statistics that deals with the estimation of the values

of an unknown parameter vector of a random system. These estimation is based on

6
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the observations and the prior knowledge about the behavior of the system that have a

random component. Bayesian theory is a framework for the formulation of estimation

problems. It is based on combining the information contained in the observation with

prior knowledge by minimizing the Bayes’ risk function.

2.1.1 Concepts, notations and assumptions

This section presents the fundamental concepts, notations and assumptions that will be

used in the dissertation:

• True state, or truth will refer to the unknown real (true) state of a given random

system, which is usually random. We often look for models which somehow explain

the physics, and behavior of the real problems.

• The prior, or the background will refer to the prior knowledge about the true

state of a given random system, which contains the previous knowledge about the

system (the knowledge about the behavior of the true state in the past).

• Dynamical model, or forecast model represents the physical laws that govern the

system motion, it is imperfect, with errors arising from the approximate physics,

parameterizations, and the discretization of an infinite dimensional dynamics into

a numerical model.

• The observations, or data will refer to the information gathered while observing

the behavior of the true state, obtained from measurements by instruments. These

observations are generally incomplete and attached with errors coming from the

instruments and the approximations.

The true state vector of a given system (or the vector of the unknowns of a given system)

is denoted by x. The vector xb denotes the prior about x and vb is the error on the

prior. We assume that the error on the prior is additive, i.e., x is related to xb by:

x = xb + vb. (2.1)

The error on the prior (vb) is unknown because we do not know x. We assume that the

prior is unbiased, i.e., the mean of the background error is equal to zero (E(vb) = 0).

We denote by B the error covariance matrix
(
B = E

(
vbv
>
b

))
. We assume moreover that

vb is normally distributed, hence the probability density function of the random vector

x is:

P(x) =
1

(2π)n/2|B|1/2 exp
(
−1

2
(x− xb)>B−1(x− xb)

)
, (2.2)



Chapter 2. Background Material 8

where n is the size of x, and |B| is the determinant of the matrix B.

The observations in x are gathered into an observation vector, which we denote by

y. These data are sometimes not directly related to the true state. The observation

operator provides the link between x and the observations [83, 95]. We denote this

operator by H:

H : Rn → Rm.

This operator generates the values H(x) that the observations y would take in the

absence of any error. In practice H is a nonlinear collection of interpolation operators

from the model discretization to the observation points (the observation space), and

conversions from model variables to the observed parameters.

The error on the observations is denoted by the vector wo. These error is introduced by

the interpolation operator, by the finite resolution of the model fields, and the instru-

mental errors. We assume that these error is additive, i.e., x is related to y by:

y = H(x) + wo. (2.3)

We assume that the mean of the error wo is equal to zero (E(wo) = 0), and its covariance

matrix is given by the symmetric positive definite matrix R = E
(
wow

>
o

)
. In most cases

the observation error covariance matrix is block-diagonal, or even diagonal, because

usually it is assumed that there is no observation error correlations between independent

observational networks, platforms or stations, and instruments, except in some special

cases. We assume also that wo is normally distributed, hence the probability density

function of the observation knowing the real state x is:

P(y|x) =
1

(2π)m/2|R|1/2 exp
(
−1

2
(y −H(x))>R−1 (y −H(x))

)
, (2.4)

where m is the size of y, and |R| is the determinant of the matrix R.

2.1.2 Bayesian approach

Bayesian probability theory provides a mathematical framework for the computation of

the probability of the state x knowing the data y, using probability. The foundations of

Bayesian probability theory was laid down some 200 years ago based on the studies of

Bayes, Price, and Laplace [14]. Bayes’ rule state that the probability of x for given y is

given by:

P(x|y) =
P(y|x)P(x)

P(y)
. (2.5)
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In (2.5), the term P(x) is the probability density function of the true state x prior.

The term P(y|x) is called the likelihood function and it provides the probability of the

observation y for a given true state x.

Different estimators produce different results depending on the estimation method, the

observations and the influence of the prior information. Obviously, due to randomness

of the observations, the same estimator would produce different results with different

observations from the same process. Therefore an estimate is itself a random variable, it

has a mean and a covariance, and it may be described by a probability density function.

However, for most cases, an estimator is characterized in terms of its mean and its

covariance matrix.

2.1.3 Best linear unbiased estimator (BLUE)

Best linear unbiased estimator gives the best linear guess to the value of x given the

observed value y [1, 5]. We assume that the observation operator H is linear, in which

case we denote it by the matrix H. We assume also that the errors vb and wo are

independent. The mean xblue of this estimator is a linear combination of the background

and the observation:

xblue = Lxb +Ky, (2.6)

where L and K are two matrices in Rn×n and Rn×m respectively. For completeness,

major points in the development of the mean and covariance of the BLUE are derived

here. From equations (2.1)-(2.3)-(2.6) we conclude that

vblue = x− xblue = Lvb −Kwo + (I − L−KH)x. (2.7)

The BLUE is unbiased hence I−L−KH = 0, i.e., L = I−KH. The covariance matrix

of vblue can be obtained from equation (2.7) and the fact that the random vectors vb and

wo are independent as follows:

Pblue = E
(
vbluev

>
blue

)
= LBL> +KRK>

= (I −KH)B(I −KH)> +KRK>. (2.8)

For the BLUE, the matrix K is chosen such that matrix Pblue has a minimum trace

(which correspond to minimum of square of vblue). We have

δtrace(Pblue) = trace
(
−(δKH)B(I −KH)> − (I −KH)B(δKH)> + δKRK> +KRδK>

)
.
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SinceB andR are symmetric matrices, and the trace is invariant by matrix transposition,

we have:

δtrace(Pblue) = 2trace
((
−(I −KH)BH> +KR

)
δK>

)
.

δtrace(Pblue) = 0 for any δK 6= 0, if and only if:

K = BH>
(
R+HBH>

)−1
. (2.9)

This matrix is know in literature by Kalman gain or optimal gain. Substituting this K

into the equation (2.8) gives:

Pblue = (I −KH)B, (2.10)

and into equation (2.6) gives:

xblue = xb +K(y −Hxb). (2.11)

Note that, in the Gaussian case (when vb and wo are normally distributed), we can find

the same values for xblue and Pblue, using Bayes’ rule (2.5) as follows: In this case xblue
coincide with the mean of P(x|y)

xblue = E(x|y) =
∫
xP(x|y)dx.

From (2.2) and (2.4) we have:

P(x) ∝ exp
(
−1

2
(x− xb)>B−1(x− xb)

)
,

P(y|x) ∝ exp
(
−1

2
(y −H(x))>R−1 (y −H(x))

)
.

From one hand, Bayes’ rule tells us:

P(x|y) ∝ exp
(
−1

2

(
(x− xb)>B−1(x− xb) + (y −Hx)>R−1 (y −Hx)

))
.

On the other hand we have:

P(x|y) ∝ exp
(
−1

2

(
(x− xblue)>(Pblue)−1(x− xblue)

))
,
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therefore, we obtain ∀x ∈ Rn that:

(x− xblue)>(Pblue)−1(x− xblue) = (x− xb)>B−1(x− xb)
+ (y −Hx)>R−1 (y −Hx) ,

x>(Pblue)−1x− 2x>(Pblue)−1xblue + cst = x>
(
B−1 +H>R−1H

)
x

− 2x>
(
B−1xb +H>R−1y

)
+ cst.

From the latter equality, we obtain the system{
(Pblue)−1 = B−1 +H>R−1H,

(Pblue)−1xblue = B−1xb +H>R−1y.
(2.12)

From (2.12) and using Sherman–Morrison–Woodbury formula (see in the Appendix B)

we obtain that:

Pblue =
(
B−1 +H>R−1H

)−1

= B −BH>(HBH> +R)−1HB

= (I −KH)B, (the same value as in equation (2.10)) (2.13)

where

K = BH>
(
R+HBH>

)−1
=
(
B−1 +H>R−1H

)−1
H>R−1, (2.14)

which is the same as in equation (2.9). Substituting equation (2.13) into equation (2.12)

leads to:

xblue = (I −KH)B
(
B−1xb +H>R−1Hy

)
= (I −KH)xb + (I −KH)BH>R−1y. (2.15)

We have

(I −KH)BH>R−1 =
(
B−1 +H>R−1H

)−1
H>R−1 = K, (2.16)

thus, reporting (2.16) in (2.15) yields:

xblue = xb +K(y −Hxb), (we obtain the same value as in equation (2.11)).

2.2 Estimation using sequential techniques

In the previous section, we merely focused on the static case estimator (BLUE), in the

sense that the evolution of x in time is not considered. We have derived the mean of
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the BLUE, as well as its covariance, given some prior information (the background) and

an observation. But for real system, our objective is to track the true state x over time.

Hence we are interested in sequential estimators.

Sequential estimation methods introduce a new ingredient in the problem compared to

static estimation: the dynamical model for the system state typically defined between

two consecutive instants. These methods, as it is the case for the BLUE, use a proba-

bilistic framework. Moreover they give estimates of the whole system state sequentially

by propagating information in time. Let’s consider a set of observations distributed over

a given time interval. The subscripts will denote the quantities at any given observation

time. The quantities xk, yk, wk, Hk and Rk will denote the true state, the observation

in xk, the error on the observation, the observation operator and the covariance of the

observation error respectively, at time k. We denote by p the number of time steps.

Therefore:

yk = Hk(xk) + wk, wk ∼ N(0, Rk), k = 0, . . . , p (2.17)

x0 = xb + v0, v0 ∼ N(0, B), (2.18)

where the background is only defined at initial time. It is common to assume that the

state xk+1 depends only on the state xk but not on the previous ones, and observation

yk depends only on the state xk according to the following scheme:

x0 → . . . → xk → xk+1 → . . .
↓ ↓
yk yk+1

The objective of sequential filtering is to find the probability density function of x0, . . . , xk

knowing the data set y0, . . . , yk (or at least to find the most likely state trajectories

x0, . . . , xk knowing the data up to time k). The marginal density of xk knowing the data

set y0, . . . , yk is the known filtering density, and is often used for prediction purposes.

Sequential methods estimate the latter density recursively in two steps: first the prop-

agation step uses the dynamical model to determine the prior distribution which is the

distribution of xk knowing the data up to time k−1 (density of xk knowing y0, . . . , yk−1).

Then a statistical analysis of the observation yk enables to update the prior distribution

and provides the posterior distribution (density of xk knowing y0, . . . , yk).

Since the state is changing over time, we will represent its evolution by assuming that

there exists a model which represents the time evolution of x between time k and k− 1.

We denote this model by Mk.
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The errors in the model are denoted by vk. These errors are introduced essentially by

modelization of the system motion and the descritization. The state xk is related to

xk−1 by:

xk =Mk(xk−1) +mk + vk, k = 1, . . . , p, (2.19)

where mk is a deterministic vector. We assume that the error vk has 0 mean (E(vk) = 0),

and that its covariance matrix is given by the symmetric positive definite matrix Qk =

E
(
vkvk

>). Moreover we assume that the random vectors [vk]
p
k=1 are uncorrelated in

time, i.e., E
(
vkv
>
l

)
= 0,∀k 6= l. We assume also that the observation error vectors

[wk]
p
k=0 are uncorrelated in time, i.e., E

(
wkw

>
l

)
= 0, ∀k 6= 0, and that E

(
wkv

>
l

)
=

0,∀k, l.

2.2.1 Kalman filter (KF)

First described by [71, 72], the KF is a simple recursive formula that implements the

sequential estimation of xk knowing the data y0, . . . , yk, when the initial state and data

distributions are independent, and the model and observation operators are linear. In

the case of Gaussian errors (which is the case in this dissertation), the distributions of

xk knowing the data up to time k − 1 or k are also Gaussian, therefore they can be

represented uniquely by their means and covariances. The KF formula gives recursively

the expectation of xk knowing y0, . . . , yk, E (xk|y0, . . . , yk) and its covariance matrix

P (xk|y0, . . . , yk).

We denote by xi|j the expectation of xi knowing y0, . . . , yj , and by Pi|j its covariance.

For k = 0, if there is no observation in x0 then x0|0 = xb, and P0|0 = B. Otherwise

x0|0 = xb+K0(y0−H0xb), and P0|0 = (I−K0H0)B, where K0 = BH>0 (R0+H0BH
>
0 )−1.

For k = 1, . . . , p,

xk|k−1 = Mkxk−1|k−1 +mk is the mean of xk given y0, . . . , yk−1,

Pk|k−1 = MkPk−1|k−1M
>
k +Qk is the covariance of xk given y0, . . . , yk−1,

Kk = Pk|k−1H
>
k

(
Rk +HkPk|k−1H

>
k

)−1
is the Kalman gain at time k,

xk|k = xk|k−1 +Kk(yk −Hkxk|k−1),

Pk|k = (I −KkHk)Pk|k−1.

We summarize the different steps of KF in Algorithm 2.1.

If the dimension of the state xk is large, the covariance matrices Pk|k−1 and Pk|k are

very large symmetric matrices, hence storing and computing such matrices may be out

of reach. To solve these problems, the idea is to use the ensemble methods.
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Algorithm 2.1: Kalman filter algorithm

Initialization
Compute x0|0 and B0|0.

For k = 1, 2, . . . , p,

1. Compute the prior mean and covariance at time k:

xk|k−1 = Mkxk−1|k−1 +mk

Pk|k−1 = MkPk−1|k−1M
>
k +Qk

2. Compute Kalman gain:

Kk = Pk|k−1H
>
k

(
Rk +HkPk|k−1H

>
k

)−1
.

3. Compute the posterior mean and covariance at time k:

xk|k = xk|k−1 +Kk(yk −HkXk|k−1),

Pk|k = (I −KkHk)Pk|k−1.

2.2.2 Ensemble Kalman filter (EnKF)

The idea behind the EnKF is to use Monte Carlo samples and to use the correspond-
ing empirical covariance matrix instead of the prediction covariance matrix Pk|k−1 [39–
42, 76]. It was proposed by [39], and later amended by [22, 41, 42, 65]. The EnKF
has proven to be very efficient on a large number of academic and operational prob-
lems. The EnKF is based on the concept of particles, a collection of state vectors, the
members of the ensemble. Rather than propagating huge covariance matrices, the er-
rors are emulated by scattered particles, a collection of state vectors whose variability
is meant to be representative of the uncertainty of the system’s state. The ensemble
members index is denoted by l, it runs over l = 1, . . . , N . In practice, given an ensemble
x1
k−1|k−1, . . . , x

N
k−1|k−1 at time k − 1, we build the ensemble at time k as follows:

xlk|k−1 = Mkx
l
k−1|k−1 +mk + vlk, v

l
k ∼ N (0, Qk) , (2.20)

xlk|k = xlk|k−1 + PNk|k−1H
>
k

(
Rk +HkP

N
k|k−1H

>
k

)−1 (
yk − wlk −Hkx

l
k|k−1

)
, wlk ∼ N (0, Rk) .

(2.21)

In this above expression, PNk|k−1 is the covariance estimate from the ensemble
[
xlk|k−1

]N
l=1

,

PNk|k−1 =
1

N − 1

N∑
l=1

(
xlk|k−1 −

1
N

N∑
l=1

xlk|k−1

)(
xlk|k−1 −

1
N

N∑
l=1

xlk|k−1

)>
=

1
N − 1

EkE
>
k , (2.22)
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where

Ek =
[
e1
k, . . . , e

N
k

]
, elk = xlk|k−1 −

1
N

N∑
i=1

xik|k−1, l = 1, . . . , N.

Defining the matrix Zk as:

Zk =
[
z1
k, . . . , z

N
k

]
, zlk = Hkx

l
k|k−1 −

1
N

N∑
i=1

Hkx
i
k|k−1, l = 1, . . . , N. (2.23)

Substituting equations (2.22) and (2.23) into equation (2.21) leads to:

xlk|k = xlk|k−1 +
EkZ

>
k

N − 1

(
Rk +

ZkZ
>
k

N − 1

)−1 (
yk − wlk −Hkx

l
k|k−1

)
.

Using Sherman–Morrison–Woodbury formula we have that:

(
Rk +

ZkZ
>
k

N − 1

)−1

= R−1
k −

R−1
k Zk
N − 1

(
I +

Z>k R
−1
k Zk

N − 1

)−1

Z>k R
−1
k , (2.24)

and consequently,

xlk|k = xlk|k−1 +
EkZ

>
k R
−1
k

N − 1

[
I − Zk

N − 1

(
I +

Z>k R
−1
k Zk

N − 1

)−1

Z>k R
−1
k

](
yk − wlk −Hkx

l
k|k−1

)
.

The pseudo-code for the EnKF is given in Algorithm 2.2.

Notice that the i.i.d. random vectors [vlk]Nl=1 are simulated here with the same statistics as the

additive Gaussian noise vk in the original state equation (2.19). The i.i.d. random vectors [wlk]Nl=1

are simulated here with the same statistics as the additive Gaussian noise wk in the original state

equation (2.17). In the absence of observation in x0, the initial ensemble
[
xl0|0

]N
l=1

is simulated

as i.i.d. Gaussian random vectors with mean xb and covariance B i.e., with the same statistics

as the initial state x0.

2.2.3 Kalman smoother (KS)

The KS [43, 90], is the recursion algorithm which gives the mean and covariance matrix of

the joint state x0, . . . , xk, knowing the complete set of observations y0, . . . , yk in the linear

case. Denote by x0:k the joint state of x0, . . . , xk, by x0:k|j the expectation of the joint state of

x0, . . . , xk knowing the observations y0, . . . , yj , and by P0:k,0:k|j its corresponding covariance. In
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Algorithm 2.2: Ensemble Kalman filter algorithm

Initialization
Generate the initial ensemble

[
x1

0|−1, . . . , x
N
0|−1

]
=
[
xl0|−1

]N
l=1

, by sampling

xl0|−1 ∼ N (xb, B), where l = 1, . . . , N is the ensemble member index.

For k = 0, 1, . . . , p

1. With
[
xlk|k−1

]N
l=1

already computed, Bayesian update for the observation:

Compute the following quantities:

Ek =
[
e1
k, . . . , e

N
k

]
, elk = xlk|k−1 −

1
N

N∑
i=1

xik|k−1, l = 1, . . . , N.

Zk =
[
z1
k, . . . , z

N
k

]
, zlk = Hkx

l
k|k−1 −

1
N

N∑
i=1

Hkx
i
k|k−1, l = 1, . . . , N

Update step (correction step of the ensemble):

xlk|k = xlk|k−1 +
EkZ

>
k R
−1
k

N − 1

I − Zk
N − 1

(
I +

Z>k R
−1
k Zk

N − 1

)−1

Z>k R
−1
k


(
yk − wlk −Hkx

l
k|k−1

)
, wlk ∼ N (0, Rk) . (2.25)

2. While k ≤ p− 1, advance the ensemble members in time by applying the
model Mk+1 and sampling the model error:

xlk+1|k = Mk+1x
l
k|k +mk+1 + vlk+1, v

l
k+1 ∼ N (0, Qk+1) (2.26)

(2.25) is evaluated as successive multiplications of a column vector by matrices
and solving a system of the size equal to the number of ensemble members,
rather than multiplying or inverting any large matrices.

the linear case the system of equations (2.17)-(2.18)-(2.19) is equivalent to the following system:

x0:k =



In 0n . . . 0n

0n In
...

...
...

. . . . . . 0n

0n . . .
. . . In

0n . . . 0n Mk


x0:k−1 +


0
...

mk

+


0
...

vk

 vk ∼ N(0, Qk), k = 1, . . . , p

(2.27)

=

[
In(k−1)

M̃k

]
x0:k−1 +


0
...

mk

+


0
...

vk

 ,
yk = [0, . . . ,Hk]x0:k + wk wk ∼ N(0, Rk), k = 0, . . . , p (2.28)

= H̃kx0:k + wk,
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where n is the size of xk. The matrices In, and 0n are respectively the identity matrix, and

the null matrix of Rn,n. The augmented matrices H̃k = [0, . . . ,Hk], and M̃k = [0, . . . ,Mk] are

defined to maintain the correspondence with the filter equations. From these equations, we can

derive the KS the same way as the KF:

x0:k|k−1 =

[
In(k−1)

M̃k

]
x0:k−1|k−1 +


0
...

mk


=

[
x0:k−1|k−1

Mkxk−1,k−1 +mk

]
,

P0:k,0:k|k−1 =

[
In(k−1)

M̃k

]
P0:k−1,0:k−1|k−1

[
In(k−1)

M̃k

]>
+

[
0n(k−1) 0

0 Qk

]

=

[
P0:k−1,0:k−1|k−1 P0:k−1,0:k−1|k−1M̃

>
k

M̃kP0:k−1,0:k−1|k−1 M̃kP0:k−1,0:k−1|k−1M̃
>
k +Qk

]
,

Kk = P0:k,0:k|k−1H̃
>
k (Rk + H̃kP0:k,0:k|k−1H̃

>
k )−1

= P0:k,0:k|k−1H̃
>
k (Rk +HkPk,k|k−1H

>
k )−1,

x0:k|k = x0:k|k−1 +Kk(yk − H̃kx0:k|k−1) = x0:k|k−1 +Kk(yk −Hkxk|k−1),

P0:k,0:k|k = (Ink −KkH̃k)P0:k,0:k|k−1.

Algorithm 2.3 summarizes the steps of the KS.

Algorithm 2.3: Kalman smoother algorithm

Initialization
Compute x0|0 and B0|0.

For k = 1, 2, . . . , p,

1. Compute the prior mean and covaraince at time k:

x0:k|k−1 =
[

x0:k−1|k−1

Mkxk−1,k−1 +mk

]
,

P0:k,0:k|k−1 =
[

P0:k−1,0:k−1|k−1 P0:k−1,0:k−1|k−1M̃
>
k

M̃kP0:k−1,0:k−1|k−1 M̃kP0:k−1,0:k−1|k−1M̃
>
k +Qk

]
.

2. Compute Kalman gain:

Kk = P0:k,0:k|k−1H̃
>
k

(
Rk +HkPk,k|k−1H

>
k

)−1
.

3. Compute the posterior mean and covariance at time k:

x0:k|k = x0:k|k−1 +Kk(yk −Hkxk|k−1),

P0:k,0:k|k =
(
Ink −KkH̃k

)
P0:k,0:k|k−1.
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2.2.4 Ensemble Kalman smoother (EnKS)

In the EnKS [42], the covariances are replaced by their approximations from the ensemble. Let

X0:k−1|k−1 =




x1
0|k−1

...

x1
k−1|k−1

 , . . . ,


xN0|k−1

...

xNk−1|k−1


 =

[
x1

0:k−1|k−1, . . . , x
N
0:k−1|k−1

]

be an ensemble of N states over time up to k− 1, conditioned on observations up to time k− 1.

Here, l is the ensemble member index. For k = 0, in the absence of observation in x0, the

ensemble [xl0|0]Nl=1 are an i.i.d Gaussian random variables with the mean xb and the covariance

B. For k = 1, . . . , p, we advance the model to time k by:

xlk|k−1 = Mkx
l
k−1|k−1 +mk + vlk, v

l
k ∼ N (0, Qk) , n = 1, . . . , N,

we get the ensemble X0:k|k−1 up to time k conditioned to observations up to time k − 1,

X0:k|k−1 =



x1

0|k−1

...

x1
k|k−1

 , . . . ,

xN0|k−1

...

xNk|k−1


 =

[
x1

0:k|k−1, . . . , x
N
0:k|k−1

]
.

Then, we incorporate the observation at time k, yk = H̃kxk + wk, wk ∼ N (0, Rk) into the

composite state the same way as for EnKF update:
xl0|k

...

xlk|k

 =


xl0|k−1

...

xlk|k−1

+ PN0:k,0:k|k−1H̃
>
k

(
Rk + H̃kP

N
0:k,0:k|k−1H̃

>
k

)−1 (
yk − wlk −Hkx

l
k|k−1

)
,

(2.29)

where PN0:k,0:k|k−1 is a covariance estimate from the ensemble X0:k|k−1 and wlk ∼ N (0, Rk) is a

random perturbation. The blocks of the sample covariance are: for `,m = 0, . . . , k

PN`,m|k−1 =
1

N − 1

N∑
l=1

(
xl`|k−1 −

1
N

N∑
i=1

xi`|k−1

)(
xlm|k−1 −

1
N

N∑
i=1

xim|k−1

)>
=

1
N − 1

E`E
>
m, (2.30)

where

E` =
[
e1
` , . . . , e

N
`

]
, el` = xl`|k−1 −

1
N

N∑
i=1

xi`|k−1, l = 1, . . . , N.
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Substituting equations (2.30) and (2.23) into equation (2.29) leads to:
xl0|k

...

xlk|k

 =


xl0|k−1

...

xlk|k−1

 (2.31)

+


E0

...

Ek

 Z>k
N − 1

(
Rk +

ZkZ
>
k

N − 1

)−1 (
yk − wlk −Hkx

l
k|k−1

)
.

Reporting (2.24) in the latter equality yields:
xl0|k

...

xlk|k

 =


xl0|k−1

...

xlk|k−1



+


E0

...

Ek

 Z>k R−1
k

N − 1

[
I − 1

N − 1
Zk

(
I +

Z>k R
−1
k Zk

N − 1

)−1

Z>k R
−1
k

]
(
yk − wlk −Hkx

l
k|k−1

)
.

The pseudo-code for the EnKS is given in Algorithm 2.4.

The (ensemble) Kalman filter (smoother) is originally based on a linear assumptions, meaning

that the observation and the model operators are required to be linear. However, in some

systems, these operators can be nonlinear. In this case there is variants of Kalman filter/smoother

proposed to handle these problems such as extended and unscented Kalman filters [69, 70].

2.3 Estimation using optimization techniques

In the previous section, we presented the sequential method for the estimation. We presented,

in particular the Kalman filter/smoother and their ensemble variants, which are derived under

linearity assumption. But for real systems, these assumption is not always verified. In this case,

usually the estimation problem is formulated as an optimization problem.

2.3.1 Maximum a posteriori estimator (MAP)

The maximum a posteriori estimator of the system of equations (2.17)-(2.18)-(2.19) is the max-

imum of the probability density function of x0:k knowing the data set y0:k. Using Bayes rule
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Algorithm 2.4: Ensemble Kalman smoother algorithm

Initialization
Generate the initial ensemble

[
x1

0|−1, . . . , x
N
0|−1

]
=
[
xl0|−1

]N
l=1

, by sampling

xl0|−1 ∼ N (xb, B), where l = 1, . . . , N is the ensemble member index.

For k = 0, 1, . . . , p

1. With
[
xl0:k|k−1

]N
l=1

already computed, Bayesian update for the observation:

Compute the following quantities:

E` =
[
e1
` , . . . , e

N
`

]
, el` = xl`|k−1 −

1
N

N∑
i=1

xi`|k−1, ` = 1, . . . , k, l = 1, . . . , N,

Zk =
[
z1
k, . . . , z

N
k

]
, zlk = Hkx

l
k|k−1 −

1
N

N∑
i=1

Hkx
i
k|k−1, l = 1, . . . , N,

yk
l = yk − wlk −Hkx

l
k|k−1, w

l
k ∼ N (0, Rk) , l = 1, . . . , N.

Update step (correction step of the ensemble): xl0|k
...

xlk|k

 =

 xl0|k−1

...
xlk|k−1

 (2.32)

+

 E0

...
Ek

 Z>k R−1
k

N − 1

[
I − 1

N − 1
Zk

(
I +

Z>k R
−1
k Zk

N − 1

)−1

Z>k R
−1
k

]
ylk.

2. While k ≤ p− 1, advance the ensemble members in time by applying the model
Mk+1 and sampling the model error:

xlk+1|k = Mk+1x
l
k|k +mk+1 + vlk+1, v

l
k+1 ∼ N (0, Qk+1) , (2.33)

(2.5), and the independence of the errors yield:

P (x0:p|y0:p) = P (x0) P (y0|x0)
p∏
k=1

P (xk|xk−1, yk)

∝ P (x0)
p∏
k=0

P (yk|xk)
p∏
k=1

P (xk|xk−1)

∝ e− 1
2‖x0−xb‖2B−1︸ ︷︷ ︸
∝ P(x0)

p∏
k=0

e
− 1

2‖Hk(xk)−yk‖2
R
−1
k︸ ︷︷ ︸

∝ P(yk |xk)

p∏
k=1

e
− 1

2‖xk−Mk(xk−1)−mk‖2
Q
−1
k︸ ︷︷ ︸

∝ P(xk|xk−1)

∝ e−
1
2‖x0−xb‖2B−1− 1

2

Pp
k=0‖Hk(xk)−yk‖2

R
−1
k

− 1
2

Pp
k=1‖xk−Mk(xk−1)−mk‖2

Q
−1
k .
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Therefore, it can be easily seen that the MAP estimator is the solution of the following least

squares problem:

min
x0,...,xp∈Rn

1
2

(
‖x0 − xb‖2B−1 +

p∑
k=0

‖Hk(xk)− yk‖2R−1
k

+
p∑
k=1

‖xk −Mk(xk−1)−mk‖2Q−1
k

)
.

(2.34)

The nonlinear least squares problem (2.34) is known as weak-constraint four dimensional varia-

tional problem (4DVAR). Originally in 4DVAR, xk =Mk (xk−1) i.e., the modelMk is supposed

to be perfect; in this case (2.34) becomes:

min
x0:p

1
2

(
‖x0 − xb‖2B−1 +

p∑
k=0

‖Hk(xk)− yk‖2R−1
k

)
(2.35)

subject to xk =Mk(xk−1) ∀k = 1, . . . , p.

This latter problem is known as strong-constraint 4DVAR. In the case when p = 0 (no evolution

in time of the state), the problem (2.35) becomes:

min
x0∈Rn

1
2

(
‖x0 − xb‖2B−1 + ‖H0(x0)− y0‖2R−1

0

)
. (2.36)

This problem is known as three dimensional variational problem (3DVAR).

Note that, since the distributions of the errors are Gaussian, hence in the linear case the maximum

of P (x0:p|y0:p) coincide with its mean. In this case (the observations and model operators are

linear, and the errors are Gaussian) the MAP estimator is equal to the KS mean:

E(x0:p|y0:p) = arg min
x0,...,xp

1
2

(
‖x0 − xb‖2B−1 +

p∑
k=0

‖Hkxk − yk‖2R−1
k

+
p∑
k=1

‖xk −Mkxk−1 −mk‖2Q−1
k

)
.

(2.37)

2.3.2 The least squares problems

The main idea of least squares problem is to find the best model fit to the observed data in

the sense that the sum of squared errors between the observed data and the model prediction is

minimized. As in the case of MAP estimator, the aim is to find an estimate of the true state

vector x that minimizes the sum of squares of errors (residuals). Therefore the least squares

method seeks the solution by solving an optimization problem of the following form:

min
x∈Rn

f(x) =
1
2
‖F (x)‖2, (2.38)

where F : Rn → Rq is the residual function. Usually the squares of the residuals are weighted

by the inverse of the corresponding covariance matrices [112].
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In the case of the system of equations (2.17)-(2.18)-(2.19), the residuals are:

v0 = x0 − xb,
vk = xk −Mk(xk−1)−mk, for k = 1, . . . p,

wk = yk −Hk(xk), for k = 0, . . . p.

For simplicity reasons from now on, unless we mention the contrary, it is assumed that the model

Mk is perfect i.e., the residual vk = 0, and we assume also that mk = 0. The reader is invited to

look for the case when this hypothesis alleviated in the Appendix A. Minimizing the sum of the

squares of the residual vectors, weighted by the inverse of the corresponding covariance matrices,

leads to the following nonlinear least squares problem:

min
x0:p

1
2

(
‖x0 − xb‖2B−1 +

p∑
k=0

‖Hk(xk)− yk‖2R−1
k

)
(2.39)

subject to xk =Mk(xk−1) ∀k = 1, . . . , p.

This problem is the same as the problem (2.35) (strong-constraint 4DVAR). For convenience and

simplicity, we will re-write the latter optimization problem as a non constraint problem and in

a compact way. From xk =Mk(xk−1) we obtain that:

xk =MkoMk−1o . . . oM1(x0) =Mk←0(x0),

where o denotes the composition operator, andMk←0 is the composition function ofMk, . . . ,M1.

By using this notation, let us define:

y =


y0

y1
...
yp

 , R =


R0 0m . . . 0m
0m R1 0m . . .
... 0m

. . . 0m
0m . . . 0m Rp

 , and

H(x0) =


H0(x0)

H1(M1←0(x0))
...

Hp(Mp←0(x0))

 .

By using these definitions, the optimization problem (2.39) can be rewritten as:

min
x0

f(x0) =
1
2
‖F (x0)‖2 =

1
2
(‖x0 − xb‖2B−1 + ‖y −H(x0)‖2R−1

)
, (2.40)

where the control variable is only x0. When there is no confusion, the index of x0 is dropped.

The residual function for the problem (2.40) is:

F (x) =

(
B−1/2(x− xb)
R−1/2(H(x)− y)

)
, (2.41)
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which is a function from Rn → Rq, where q = m(p+ 1) + n.

2.3.3 Solving linear least squares problems

In the case when the function F in (2.38) is linear, there is a matrix A ∈ Rq×n and a vector

b ∈ Rq such that F (x) = Ax− b. Hence, in this case the problem (2.38) can be defined as:

min
x∈Rn

‖Ax− b‖2. (2.42)

Let us denote the solution of the latter problem by x∗.

There are two basic classes of methods to find x∗. The first class is called direct methods.

They theoretically give an exact solution to the problem up to round-of errors [16]. There are

several direct methods for the resolution of (2.42) based on the matrix A>A or A decomposition

[29] such as (i) Cholesky decomposition which is suitable to the cases where the matrix A>A

is definite, (ii) for general matrix A ones of the most used methods are the QR decomposition

which is known to be numerically stable, and the truncated singular value decomposition, which is

suitable for the ill-conditioned problems. In this dissertation, we present the truncated singular

value decomposition method (TSVD) (see section 2.3.3.1). The second class is represented

by fixed point methods; and sometime, called iterative methods, which construct a series of

approximations for the solution that (under some assumptions) converges to the solution of the

problem (2.42) [16, 75, 106, 118]. These methods do not need to store the matrix A, but they

need only the action of A and/or A> on vectors (their product with a given vector). This makes

these methods attractive for problems where A and/or A> are only available by their action on

vectors. In this thesis, we only give a brief overview of fixed point methods (see section 2.3.3.2).

Finally, there is some methods on the borderline between the two classes; for example, projection

methods based on Krylov subspaces [10, 105]. These methods are, sometime, considered as a

class of iterative methods [106]. In this dissertation we focus on the known conjugate gradient

method (see section 2.3.3.3).

2.3.3.1 Singular value decomposition method (SVD)

The singular value decomposition (SVD) method is based on a factorization of the matrix A [77,

pages 18-22] [16, page 15]. Let us, assume that rank(A) = r∗ ≤ n, then there are two orthogonal

matrices U = [u1, . . . , uq] ∈ Rq×q and V = [v1, . . . , vn] ∈ Rn×n, and a matrix

Σ =

(
Σn

0q−n

)
∈ Rq×n, where Σn = diag(σ1, . . . , σn),

such that:

A = UΣV >,
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is the full singular value decomposition of A. The nonnegative numbers σk, k = 1, ..., n, are the

singular values of A given in descending order as:{
σ1 ≥ . . . ≥ σr∗ > σr∗+1 = . . . σn = 0, if r∗ < n

σ1 ≥ σ2 ≥ . . . ≥ σn > 0, if r∗ = n.

The column vectors u1, ..., uq, and v1, ..., vn, are called the left and the right singular vectors of

A, respectively.

If r∗ = n, the least squares problem (2.42) has a unique solution:

x∗ = V Σ−1
n U>n b,

where Un is formed from the first n columns of U . If r∗ < n, the least squares problem (2.42)

may have several solutions. In this case, it has the minimum 2-norm solution:

x∗ = Vr∗Σ−1
r∗ U

>
r∗b,

where Σr∗ is the diagonal matrix consisting of the first r∗ singular values of A in descending

order, and Ur∗ and Vr∗ are formed from the first r∗ columns of U and V , respectively. In some

applications (e.g., problems arising from the discretization of an ill-posed problem), a better

solution, in the sense that it is less sensitive than the original one to errors in the data (A, b), is

obtained by a truncated least squares solution [16, page 100-103] of the form:

xr = VrΣ−1
r U>r b,

for some r < r∗, and where Vr, Σr, and Ur are defined as before but with r replacing r∗.

2.3.3.2 Fixed point methods

In this section, the subscript k denotes the iteration when using a fixed point method to solve

the linear problem (2.42). To solve this problem at each iteration k > 0 an approximate solution

of x∗ is recurrently sought as:

xk+1 = xk − F (A>Axk −A>b), (2.43)

[16, pages 269-286] where F is a prescribed matrix related to the matrix A. F should be an

approximation of the matrix (A>A)−1. Using the fact that A>Ax∗ = A>b (x∗ is a solution of

the corresponding normal equation of (2.42)), we found:

xk+1 = xk − F (A>Axk −A>Ax∗)
= xk − FA>A(xk − x∗).

Hence

xk+1 − x∗ =
(
I − FA>A) (xk − x∗). (2.44)
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Therefore if we choose the matrix F such that:

‖I − FA>A‖ < a,

where a is some constant in the interval [0, 1), then we will have:

‖xk − x∗‖ ≤ ak‖x0 − x∗‖,

hence the sequence xk will converges to x∗.

There are many ways to construct the matrix F , and this leads to different resolution algorithms

[16, 75, 106, 125]. Note that for F = (A>A)−1, the solution is reached in one single iteration

(x1 = x∗).

2.3.3.3 Conjugate gradient method

Solving the problem (2.42) is equivalent to solving the corresponding normal equation:

A>Ax = A>b. (2.45)

Krylov subspace methods have become a very useful tool for solving a linear equations of the

form (2.45). These methods search for an approximate solution for a linear system (2.45) in a

subspace x0 +Kl where x0 is the initial guess, and Kl is the Krylov subspace defined as follows:

Kl = span{r0, A
>Ar0, . . . , (A>A)l−1r0},

where r0 = A>b − A>Ax0 and l ∈ N∗. The subspace Kl is of dimension at most l. Moreover

these methods seek an approximation by imposing the condition:

rl = A>b−A>Axl ⊥ Ll,

where Ll is a subspace of dimension l. The different versions of Krylov subspace methods arise

from different choices of the subspace Ll and from the ways in which the system is preconditioned.

When the matrix A>A is definite positive one of the most prominent Krylov method for solving

the linear systems of the form (2.45) is the so called conjugate gradient method. It was originally

proposed by [60]. The CG method converges in at most n iterations in exact arithmetic. CG

method seeks x∗ the solution of the linear system (2.45) by minimizing the following quadratic

function:

φ(x) =
1
2
x>A>Ax− x>A>b, (2.46)

since ∇φ(x) = A>Ax − A>b and ∇2φ(x) = A>A is symmetric positive definite, hence the

solution x∗ of the linear system (2.45) is equal to:

arg min
x∈Rn

φ(x).
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The CG method is a line search method with a special choice of directions. Given a current

step approximation xk to the minimum x∗ and a direction pk, then CG seeks xk+1 = xk +αkpk,

where

αk = arg min
α∈R

φ(xk + αpk).

It is easy to show that:

αk =
p>k rk

p>k A>Apk
, where, rk = A>b−A>Axk.

The directions pk are chosen recursively as follows:

p0 = r0 = A>b−A>Ax0 = −∇φ(x0).

pk = rk + βkpk−1,

where βk is chosen such that pk and the previous directions are conjugate with respect to A>A,

i.e.,

p>k A
>Api = 0,∀i ≤ k − 1. (2.47)

βk that satisfies the property given in (2.47) can be given as:

βk =
r>k rk

r>k−1rk−1
=
‖rk‖2
‖rk−1‖2 ,∀k ≥ 1.

Algorithm 2.5 gives the pseudo-code for the CG method.

Algorithm 2.5: Conjugate gradient algorithm

Initialization
Select x0, the initial guess.

Compute r0 = A>b−A>Ax0, ρ0 = r>0 r0, p0 = r0

For k = 1, 2, . . . , n:

1. qk = A>Apk
2. αk = ρk

q>k pk

3. xk+1 = xk + αkpk

4. rk+1 = rk − αkqk
5. ρk+1 = r>k+1rk+1

6. βk+1 = ρk+1

ρk

7. pk+1 = rk+1 + βk+1pk



Chapter 2. Background Material 27

2.3.4 Solving nonlinear least squares problems

The nonlinear least squares are typically solved by the well-known line-search [33, p. 227]

and trust-region strategies [25]. These methods are based on the Newton and quasi-Newton

approaches with modifications that consider the special structure of the objective function f and

of its derivatives [93, p. 247].

In this thesis we only present methods for solving the problem of finding a local minimizer for

the function f . Several methods for nonlinear optimization are iterative: from a starting point

x0 the method produces a series of vectors x1, x2,. . . which converges to a local minimizer for the

given function. In the case of several minimizers the result will depend on the starting point.

For each method, one step from the current iterate consists in finding a descent direction, and

a step length giving the amount of the function decreasing. In this thesis we will present only

some of this methods, especially those which are suitable to solve the nonlinear least squares

problems. We will define each method in terms of the transition from a current iteration xj to

a new one xj+1.

Before giving details of these methods, we first calculate the first and second order derivatives

of the objective function in (2.40) which are needed by solution methods.

2.3.4.1 Computation of the derivatives

The optimization problem (2.40) can be viewed as a special case of an unconstrained optimization

problem. It requires for its solution the computation of the values of objective function f and

sometimes of its derivatives, in particular its gradient ∇f(x) (the first derivative) and its Hessian

∇2f(x) (the second derivative). We start this section by the computation of the first and second

order derivatives of the objective function f defined in the problem (2.38), as a function of the

vector function F and its derivatives. Then we compute explicitly the function in the least

squares problem (2.40) derivatives.

Let us start with the gradient of f which is given by:

∇f(x) = J>F (x)F (x),

where JF (x) ∈ Rq×n is the Jacobian of the function F on x defined as:

JF (x) =


δF1(x)
δx1

. . . δF1(x)
δxn

...
. . .

...
δFq(x)
δx1

. . .
δFq(x)
δxn

 =


∇F1(x)>

...

∇Fq(x)>

 .

Hence

∇f(x) =
q∑
i=1

Fi(x)∇Fi(x). (2.48)
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The Jacobian of the function defined in (2.41) is:

JF (x) =

(
B−1/2

R−1/2H′(x)

)
. (2.49)

Therefore the gradient of the objective function defined in (2.40) is

∇f(x) =
(
B−1(x− xb) +H′(x)>R−1(H(x)− y)

)
. (2.50)

Now, we compute the expression of the Hessian of the function f . From (2.48), we have ∇f(x) =∑q
i=1 Fi(x)∇Fi(x), hence

∇2f(x) =
q∑
i=1

∇Fi(x)∇Fi(x)> + Fi(x)∇2Fi(x)

= JF (x)>JF (x) +
q∑
i=1

Fi(x)∇2Fi(x)

= B−1 +H′(x)>R−1H′(x) + S(x), (2.51)

where S(x) =
∑q
i=1 Fi(x)∇2Fi(x). Note that, in the expression of ∇2f(x), only S(x) is depend-

ing on the second derivative of the function F .

2.3.4.2 Newton method

The Newton method finds the roots of a given nonlinear equation [123]. We know from the first

optimization necessary condition that the minimizer of the problem (2.40) is a solution of the

equation:

∇f(x) = 0. (2.52)

To find a solution of the equation (2.52), the Newton method solves at each iteration the following

subproblem:

∇f(xj) +∇2f(xj)(xj+1 − xj) = 0. (2.53)

In the case when ∇2f(xj) is positive definite, which is the case that we will assume here, the

solution of the latter equation can be found by minimizing the quadratic function:

m(xj+1) = f(xj) + (xj+1 − xj)>∇f(xj) +
1
2

(xj+1 − xj)>∇2f(xj)(xj+1 − xj). (2.54)

The quadratic function m is the second order Taylor approximation of the function f in the

neighborhood of the iterate xj . Minimizing the model m (or equivalently solving the equation

(2.53)) gives

xj+1 = xj − (∇2f(xj))−1∇f(xj). (2.55)

Usually, xj+1 is not computed by inverting the matrix ∇2f(xj). Rather, given xj , ∇f(xj) is

computed and the linear equation:

∇2f(xj)s = −∇f(xj), (2.56)
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is solved for the step sj . Then (2.55) simply says that xj+1 = xj + sj . In the case when ∇2f(xj)

is not definite positive, the Newton method alone may not work. Under the assumption that the

Hessian of the function f is Lipchitz continuous in a neighborhood of a solution x∗, the Newton

method works well, and converge quadratically when the starting point (x0) is close enough to

a local minimum [93].

For the nonlinear least squares (2.40), substituting the objective function, its gradient and its

Hessian values in (2.54) and (2.55) leads to:

m(xj+1) =
1
2

(
‖sjb‖2B−1 + ‖dj‖2R−1

)
− (xj+1 − xj)>B−1sjb

− (xj+1 − xj)>HjR
−1dj

+
1
2

(xj+1 − xj)>(B−1 + Hj
>R−1Hj + S(xj))(xj+1 − xj).

xj+1 = xj + (B−1 + Hj
>R−1Hj + S(xj))−1B−1sjb

+ (B−1 + Hj
>R−1Hj + S(xj))−1H>j R

−1dj ,

and the substitution in (2.56) gives:

(B−1 + Hj
>R−1Hj + S(xj))s = B−1sjb + Hj

>R−1dj , (2.57)

where Hj = H′(xj) is the linear tangent of the operatorH on xj , dj = y−H(xj), and sjb = xb−xj
(this quantity is the background on the step at iteration j). The pseudo-code for the Newton

method is given in Algorithm 2.6.

Algorithm 2.6: Newton algorithm

Initialization
Select x0, the initial iterate.

For j = 0, 1, 2, . . .

1. Solve the linear system (2.56), and let sj denote such a solution.

2. Compute xj+1 = xj + sj .

2.3.4.3 Gauss-Newton method

The Gauss–Newton algorithm is the same as Newton one where the second-order term in ∇2f(x)

(in equation 2.51) is discarded, i.e., the term S(x) is set to zero. Therefore the Gauss-Newton

step sj is defined to be the solution of the following linear system:

JF (xj)
>
JF (xj)s = −∇f(xj) = −JF (xj)

>
F (xj) (2.58)

and correspondingly, the Gauss–Newton iterate is xj+1 = xj+sj . One motivation for the Gauss-

Newton approach is the fact that the term S(x) vanishes for zero residual problems (the case
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when the function F is equal to zero at the minimum) and therefore might be negligible for small

residual problems.

Another interpretation of the Gauss-Newton method is that, it is an iterative procedure where

at each point xj , a step is computed as a solution of the linearized least squares subproblem:

min
s∈Rn

1
2
‖F (xj) + JF (xj)s‖2.

The subproblem has a unique solution if JF (xj) has full column rank, (in this case this solution

is equal to the solution of the linear system in (2.58)).

For the nonlinear least squares (2.40), by linearization we consider the following subproblem:

min
s∈Rn

m(xj + s) =
1
2

(
‖s− sjb‖2B−1 + ‖dj −Hjs‖2R−1

)
. (2.59)

The gradient, and the Hessian of the function m defined on the previous subproblem are:

∇m(xj + s) = B−1(s− sjb) + H>j R
−1(Hjs− dj), (2.60)

∇2m(xj + s) = B−1 + H>j R
−1Hj . (2.61)

Since ∇2m(xj + s) is definite positive (because B−1 is definite positive and H>j R
−1Hj is semi

definite positive), the solution of the equation ∇m(xj + s) = 0 is a solution of the subproblem

(2.59), and is equal to:

sj = (B−1 + H>j R
−1Hj)−1

(
B−1(xb − xj) + H>j R

−1dj
)
. (2.62)

Once again to compute sj , usually we solve the following equation:

(B−1 + H>j R
−1Hj)s =

(
B−1sjb + H>j R

−1dj

)
. (2.63)

Solving the latter problem using the conjugate gradient method is known as the primal approach.

For some problems, like those solved daily in weather prediction systems, the state dimension n

is larger then the observations dimension m, typically n ∼ 107 and m ∼ 105 [19]. In this case,

a significant reduction in the computational cost is possible by rewriting the problem (2.63) in

the m-dimentional space related to the observations as follows: From (2.13) we have:

(B−1 + H>j R
−1Hj)−1 = (I −KHj)B,

where K = BH>j (R+ HjBH>j )−1 hence

sj = (I −KHj)B
(
B−1sjb + H>j R

−1dj

)
(2.64)

= (I −KHj)s
j
b + (I −KHj)BH>j R

−1dj , (2.65)

from (2.16) we have (I −KHj)BH>j R
−1 = K, hence

sj = sjb +K
(
dj −Hjs

j
b

)
.
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We can rewrite the latter equality as:

sj = sjb +BH>j w
j , (2.66)

where wj is the solution of:

(R+ HjBH>j )wj = (dj −Hjs
j
b). (2.67)

Note that the dimension of the vector wj is m. Solving the problem (2.67) using conjugate

gradient method and then retrieve sj using the equation (2.66), is the so-called dual approach

[2, 109]. In practice one of the most important methods to solve the dual problem is the RPCG

method [56].

Algorithm 2.7: Gauss-Newton algorithm

Initialization
Select x0, the initial iterate.

For j = 0, 1, 2, . . .

1. Solve the linear system (2.63), and let sj denote such a solution.

2. Compute xj+1 = xj + sj .

2.3.4.4 Globalization methods

The algorithms discussed above are locally convergent, in the sense that the convergence holds

only if the starting point is near to a local minimum, [93]. The algorithms may fail when the

initial iterate is not near the minimum. The reasons for this failure, are that (i) the directions,

sometimes are not a descent directions for the function f and that even when a search direction

is a direction of decrease of f , (ii) the length of the step is not controlled and can be too

long or too small over iterations. Hence, taking a Newton, or Gauss-Newton step can lead to an

increase in the function which causes the divergence of the iterations. The globalization methods

address this problem, and ensure the convergence to a stationary point of the considered problem,

independently from the starting point. This is done by controlling the length of the step at each

iteration. Note that, these methods are not algorithms for global optimization (to find the global

minimum). When these algorithms are applied to problems with many local minima, the results

of the iteration (the local minimum found) may depend in the starting point.

Damped Gauss-Newton method

The damped Gauss-Newton method [16, p. 343], [33, p. 227] uses a line search strategy in

the Gauss-Newton method. It can be shown that whenever the Jacobian of F , JF (xj) has full



Chapter 2. Background Material 32

column rank and the gradient of f , ∇f(xj) is nonzero, the Gauss-Newton step sj is in a descent

direction [93, p. 254] for the objective function f .

A line search strategy in a Gauss-Newton method leads to the damped Gauss-Newton method

which generates the iterates as follows:

xj+1 = xj + αjs
j

where αj > 0 is the step length, the optimal αj is the one which verifies the solution of:

min
α∈R+

f(xj + αsj) =
1
2
‖F (xj + αsj)‖2. (2.68)

For some functions, it may be expensive to find the solution of the latter problem. In this

situations an inexact line search method is used, and the length step is asked to verifies only

some conditions. For more details on the line search strategy we refer to [93, Chapter 3] [16, p.

344-346], and [33, p. 116-129].

Under suitable assumptions, the damped Gauss-Newton method is convergent even on large-

residual problems or highly nonlinear problems [16, 33].

Levenberg-Marquardt method

The Levenberg-Marquardt algorithm [79, 88, 92, 94] is a regularization of the Gauss-Newton

method. A regularization parameter is updated at every iteration and indirectly controls the

size of the step, making Gauss-Newton globally convergent.

The Levenberg-Marquardt method was developed especially to deal with the rank deficiency

of JF (xj) and to provide a globalization strategy for Gauss-Newton. It solves at each iteration

a subproblem of the following form:

min
s∈Rn

mj(xj + s) =
1
2
‖F (xj) + JF (xj)s‖2 +

1
2
γ2
j ‖s‖2, (2.69)

=
1
2

∥∥∥∥∥
(
F (xj)

0

)
+

(
JF (xj)

γjI

)
s

∥∥∥∥∥
2

,

where γj is an appropriately chosen regularization parameter. Several strategies were developed

to update γj . The latter subproblem, is the same as the Gauss-Newton subproblem for which

we add a regularization term 1
2γ

2
j ‖s‖2. This term controls the direction of minimization and the

step length.

∇mj(xj + s) = (JF (xj)>JF (xj) + γ2
j I)s+ JF (xj)>F (xj),

∇2mj(xj + s) = JF (xj)>JF (xj) + γ2
j I.
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If γj > 0 then ∇2mj(xj + s) is definite positive, hence the unique solution of the subproblem

(2.69) is the solution of:

(JF (xj)>JF (xj) + γ2
j I)s = −JF (xj)>F (xj), (2.70)

The Levenberg-Marquardt method can be seen as precursor of the trust-region method in the

sense that it seeks to determine when the Gauss-Newton step is applicable (in which case the

regularization parameter is set to zero) or when it should be replaced by a slower but safer

gradient or steepest descent step (corresponding to a sufficiently large regularization parame-

ter). The comparison with trust regions can also be drawn by looking at the square of the

regularization parameter as the Lagrange multiplier of a trust-region subproblem of the form

mins∈Rn (1/2)‖F (xj) + JF (xj)s‖2 s.t. ‖s‖ ≤ δj , and in fact it was suggested by [91] to update

the regularization parameter γj similarly to trust-region radius δj . For this purpose, one consid-

ers the ratio between the actual reduction f(xj)− f(xj + sj) attained in the objective function

and the reduction mj(xj)−mj(xj + sj) predicted by the model, given by:

ρj =
f(xj)− f(xj + sj)

mj(xj)−mj(xj + sj)
.

Then, if ρj is larger than a given small constant, the step is accepted and γj is possibly decreased

(corresponding to ’δj is possibly increased’). Otherwise the step is rejected and γj is increased

(corresponding to ’δj is decreased’). Algorithm 2.8 gives the pseudo-code of the Levenberg-

Marquardt method.

Algorithm 2.8: Levenberg-Marquardt algorithm

Initialization
Choose the constants η1 ∈ (0, 1), γmin > 0, and λ > 1. Select x0 and γ0 ≥ γmin.

For j = 0, 1, 2, . . .

1. Solve (or approximately solve) (2.69), and let sj denote such a solution.

2. Compute ρj = f(xj)−f(xj+sj)
mj(xj)−mj(xj+sj)

.

If ρj ≥ η1, then set xj+1 = xj + sj and
γj+1 = max (γj , γmin) .

Otherwise, set xj+1 = xj and
γj+1 = λγj .

This algorithm enables a global convergence disregarding the starting point of the iterations, at

the cost of one more function evaluation per iteration. This algorithm still globally convergent

when we maintain the regularization parameter γ fix over iterations and large enough. In this

latter case, Algorithm 2.8 becomes Algorithm 2.9.
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Algorithm 2.9: Levenberg-Marquardt algorithm with fixed regularization

Initialization
Choose the constants η1 ∈ (0, 1), and γ > 0. Select x0.

For j = 0, 1, 2, . . .

1. Solve (or approximately solve) (2.69), and let sj denote such a solution.

2. Compute xj+1 = xj + sj .

In the case when γ varies over iterations, by increasing it for unsuccessful iterations and decreas-

ing it for successful iterations (Algorithm 2.8), we refer for the proof of global convergence to

[94, Corollary 2.1 p.7]. In the case when γ is maintained constant over iterations i.e., the case of

Algorithm 2.9, we still have the global convergence for γ large enough. In the following theorem

we give the proof of Algorithm 2.9 global convergence.

Theorem 2.1. Under the assumption that the function f Hessian is bounded, i.e., it exist κH
such that:

‖∇2f(x)‖ ≤ κH ,∀x ∈ Rn,

then any finite limit point x∗ of the sequence (xj) generated by Algorithm 2.8 is a stationary

value of f .

Proof. The proof still the same as in [94], the only change is the proof of [94, Theorem 2.2 p.5].

To prove the latter theorem, it is enough to show that there exists γ∗ such that for any γ ≥ γ∗,
ρj ≥ η with 0 < η < 1.

Let

JF (xj) = U(xj)Σ(xj)V (xj)>

be the singular value decomposition of the function F Jacobian on xj ,

Σ(xj) = diag(σ1(xj), ..., σn(xj))

where σ1(xj) ≥ σ2(xj)... ≥ σn(xj) are the singular values of JF (xj). For the proof we will

assume in addition that there exist σ > 0 and ε > 0 such that ∀ xj , σ1(xj) ≤ σ, and σn(xj) ≥ ε.

For the following we omit the parameter xj , the index j of mj and the index F of JF . s∗ is a

solution of:

(J>J + γ2I)s = −J>F.

We have

m(x+ s∗)− f(x) =
1
2
s∗>(J>J + γ2I)s∗ + s∗>J>F

= −1
2
s∗>J>F + s∗>J>F =

1
2
s∗>J>F,
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and from Taylor expansion:

f(x+ s∗) = f(x) + s∗>J>F + s∗>Hfs
∗,

where Hf is the function f Hessian on some point s̄, hence

1− ρ

2
=

f(x) + f(x+ s∗)− 2m(x+ s∗)
2(f(x)−m(x+ s∗))

=
2f(x) + s∗>J>F + 1

2s
∗>Hfs

∗

−s∗>J>F
=

1
2s
∗>Hfs

∗

−s∗>J>F ,

therefore ∣∣∣1− ρ

2

∣∣∣ ≤ −κH‖s
∗‖2

s∗>J>F

=
κH‖V Σ2V > + γ2I)−1V ΣU>F‖2

F>UΣV >(V Σ2V > + γ2I)−1V ΣU>F

≤
κH

(
max

i∈{1,...,n}

(
σi

σ2
i + γ2

))2

min
i∈{1,...,n}

(
σ2
i

σ2
i + γ2

) ,

The two functions x → x2

x2+γ2 , and x → x
x2+γ2 are increasing on the domain [0, γ]. By taking

γ ≥ σ, we have:

∣∣∣1− ρ

2

∣∣∣ ≤ κH

(
σ1

σ2
1+γ2

)2

σ2
n

σ2
n+γ2

(2.71)

≤
κH( σ

σ2+γ2 )2

ε2

ε2+γ2

. (2.72)

From (2.72) follows that if:

κH

(
σ

σ2 + γ2

)2

≤
(

1− η

2

) ε2

ε2 + γ2
(2.73)

then we have |1− ρ
2 | ≤

(
1− η

2

)
which implies that ρ ≥ η. Furthermore (2.73) is equivalent to

0 ≤ γ4 +

(
2σ2 − σ2κH

ε2
(
1− η

2

)) γ2 + σ4 − σ2κH(
1− η

2

) .
Defining

∆ =

(
2σ2 − σ2κH

ε2
(
1− η

2

))2

− 4

(
σ4 − σ2κH(

1− η
2

)) ,
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if ∆ < 0, then (2.73) holds for any γ ≥ γ∗ = σ, if on the contrary ∆ ≥ 0, then (2.73) holds for

any

γ ≥ γ∗ = max

σ,
√√√√√
∣∣∣∣2σ2 − σ2κH

ε2(1− η2 )

∣∣∣∣+
√

∆

2

 .

In this chapter, we tried to give an overview about some sequential methods for estimation theory,

and some methods for solving least squares problems. A detailed description of these methods

can also be found in [16, 33, 41, 42]. This chapter was introduced as background material to

what comes next regarding our main contributions. The next chapter will detail our main first

contribution where we study the sensitivity of the TSVD method to perturbations in the data.



Chapter 3

Sensitivity of the truncated

singular value decomposition

method

Perturbation analysis is the study of the sensitivity of the solution of a given problem to per-

turbations in the data. The concept of condition number allows one to assess the sensitivity

of the solution. Sensitivity and conditioning theory has been applied to many fundamental

problems of linear algebra, such as linear systems, linear least squares, or eigenvalue prob-

lems [16, 52, 55, 61, 110]. In this chapter, we extend the approach to the truncated singular

value decomposition (TSVD) solution to linear least squares problems.

As presented in Section 2.3.3.1, the minimum 2-norm solution of the liner least squares problem

(2.42) is x∗ = Vr∗Σ−1
r∗ U

>
r∗b, where r∗ = rank(A) ≤ n, Σr∗ is the diagonal matrix consisting of

the first r∗ singular values of A in descending order, and Ur∗ and Vr∗ are formed from the first

r∗ columns of U and V , respectively. A better solution, in the sense that it is less sensitive than

the original one to errors in the data (A, b), is obtained by a truncated least squares solution of

the form:

xr = VrΣ−1
r U>r b, (3.1)

for some r < r∗, and where Vr, Σr, and Ur are defined as before but with r replacing r∗. It

turns out that, if Ûr and V̂r are any orthonormal bases for range (Ur) and range (Vr), then:

xr = V̂r(Û>r AV̂r)
−1Û>r b.

Now let A and b be perturbed to yield Ã = A+E and b̃ = b+ f , and let Ũr and Ṽr form a pair

of bases for the left and right singular subspaces associated with the r first singular values of Ã.

The corresponding truncated least squares solution of the perturbed problem is then:

x̃r = Ṽr(Ũ>r ÃṼr)
−1Ũ>r b. (3.2)

37
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Now it turns out that if the Fréchet derivative, x′r, of the function xr exists then we have:

x̃r = xr + x′r.(E, f) + o(‖(E, f)‖).

Here, x′r.(E, f) is the application of a linear operator to (E, f). Given a norm on (E, f), call

it ‖.‖(α,β), the condition number of xr is defined to be the operator norm:

‖|x′r‖|(α,β),2 = max
[αE, βf ] 6=0

‖x′r · (E, f)‖2
‖[E, f ]‖(α,β)

.

The particular norm we use in this chapter is defined by:

‖(E, f)‖(α,β) =
√
α2‖E‖2F + β2‖f‖2F ,

where ‖.‖F is the usual Frobenius norm and α ∈]0,+∞[, β ∈]0,+∞[. Note that the purpose of

the norm ‖.‖(α,β) is to tag the contributions of perturbations of A and b in the condition number,

see [54].

The purpose of this chapter is to exhibit the square of the condition number of xr as the 2-norm

of a symmetric nonnegative matrix ∆ that can be formed from the singular values of A, and

the Fourier coefficients given by the entries of U>b. This chapter is organized as follows. In

Section 3.1, we state preliminary results based on results from [111]. Section 3.2 is devoted to an

expression for the first-order expansion of xr with respect to the data (A, b). The main result of

this section is the matrix representation for the corresponding Fréchet derivative leading to the

formula for the condition number of xr using the singular values of A and the Fourier coefficients

of b. We give the upper and lower bounds of this quantity and perform some numerical tests to

validate our analysis by comparing it with results of a finite difference approach in Section 3.3.

3.1 Preliminary results

It will be worthwhile to define the following matrix partitions:

V = [Vr, V⊥] ∈ Rn×n, U = [Ur, U⊥] ∈ Rq×q, Σ =

[
Σr

Σ⊥

]
∈ Rq×n,

where

Vr ∈ Rn×r, V⊥ ∈ Rn×(n−r), Ur ∈ Rq×r, U⊥ ∈ Rq×(q−r),

Σr = diag(σ1, . . . , σr) ∈ Rr×r, Σ⊥ =

[
diag(σr+1, . . . , σn)

0

]
∈ R(q−r)×(n−r).

Furthermore, we define matrices Err = U>r EVr, Er⊥ = U>r EV⊥, E⊥r = U>⊥EVr, and E⊥⊥ =

U>⊥EV⊥, and vectors br = U>r b, b⊥ = U>⊥ b, and fr = U>r f . Finally, we shall denote by Ir, Iq−r
and In−r the identity matrices of order r, q − r, and n− r, respectively.
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The operator vec (·) and the Kronecker product ⊗ will be of a particular importance in the

sequel. The vec (·) operator stacks the columns of the matrix argument into one long vector.

For any matrices B and C, the matrix B ⊗ C = (bijC). It is enough for our purpose to recall

the following properties concerning these operators1. For any matrices B, X and C having

compatible dimensions with respect to the involved products, we have:

vec (BXC) = (C> ⊗B) vec(X), (3.3)

vec(X>) = Ψ(q,n)vec(X), for all X ∈ Rq×n, (3.4)

where Ψ(q,n) ∈ Rqn×qn is the permutation matrix defined by:

Ψ(q,n) =
q∑
i=1

n∑
j=1

Lij ⊗ L>ij .

Here each Lij ∈ Rq×n has entry 1 in position (i, j) and all other entries are zero.

The following assumption will be of a particular importance in what follows.

Assumption 3.1.1. Let

γ = ‖(E>⊥r, Er⊥)‖F .

suppose that:

δ = |σr − σr+1| − ‖Err‖2 − ‖E⊥⊥‖2 > 0,

and assume that:

γ/δ < 1/2.

Roughly speaking, the statement of Assumption 3.1.1 is that the existence of a gap between σr

and σr+1 > 0 is required and that ‖E‖2 must be small enough compared to this gap.

Now, we state and adapt results from [111] to our context in the following two theorems.

Theorem 3.1. [111, Theorem 6.4]. Let an q × n perturbation matrix E be given and partition

U>EV with respect to U = [Ur, U⊥] and V = [Vr, V⊥] in the form:

U>EV =

(
Err Er⊥
E⊥r E⊥⊥

)
.

Then under Assumption 3.1.1, there are matrices Q ∈ R(q−r)×r and P ∈ R(n−r)×r satisfying:

‖(Q>, P>)‖F < 2
γ

δ
< 1

such that: range(Vr+V⊥P ) and range(Ur−U⊥Q) form a pair of singular subspaces for Ã = A+E.

1We refer to [64, Chapter 4] for further properties of these operators.
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Among other things, the theorem above tells us that Q and P approach 0 as E approaches 0.

Other useful results related to the ones above are given in the following theorem (See again [111]

and [110, p. 266]).

Theorem 3.2. Suppose Assumption 3.1.1 holds. Then there exist matrices Q ∈ R(q−r)×r and

P ∈ R(n−r)×r such that:

Ũr = (Ur − U⊥Q)(I +Q>Q)−1/2, Ũ⊥ = (UrQ> + U⊥)(I +QQ>)−1/2, (3.5)

Ṽr = (Vr + V⊥P )(I + P>P )−1/2, Ṽ⊥ = (−VrP> + V⊥)(I + PP>)−1/2, (3.6)

with Ũ>r ÃṼ⊥ = 0 and Ũ>⊥ ÃṼr = 0. Furthermore, Ũ = [Ũr, Ũ⊥] ∈ Rq×q and Ṽ = [Ṽr, Ṽ⊥] ∈ Rn×n

are orthogonal matrices.

Since the overall aim of this investigation is to derive the condition number as the norm of the

Fréchet derivative of xr, our intermediate goal will be to write a first-order expansion of (3.2) in

terms of quantities in (3.5) and (3.6) and then replace Q and P with their respective first-order

expansions with respect to E. The next theorem exploits (3.5) and (3.6) together with properties

of singular decomposition to establish these expansions.

Theorem 3.3. Suppose that σr − σr+1 > 0. Then the first-order expansions for Q and P are

given by:

vec (Q>) =

− (Iq−r ⊗ Σ 2
r − (Σ⊥Σ>⊥ )⊗ Ir

)−1
[Iq−r ⊗ Σr,Σ⊥ ⊗ Ir]

[
Ψ(q−r,r)(V >r ⊗ U>⊥ )

V >⊥ ⊗ U>r

]
vec(E)

+ o(‖E‖), (3.7)

vec (P) =(
Σ 2
r ⊗ In−r − Ir ⊗ (Σ>⊥Σ⊥)

)−1 [
Ir ⊗ Σ>⊥ ,Σr ⊗ In−r

] [ V >r ⊗ U>⊥
Ψ(r,n−r) (V >⊥ ⊗ U>r )

]
vec(E)

+ o(‖E‖). (3.8)

Proof. In agreement with:

U>AV =

[
U>r AVr U>r AV⊥
U>⊥AVr U>⊥AV⊥

]
=

[
Σr 0

0 Σ⊥

]
∈ Rq×n, (3.9)

together with the results of Theorem 3.2, we have:

U>ÃV =

[
U>r (A+ E)Vr U>r (A+ E)V⊥
U>⊥ (A+ E)Vr U>⊥ (A+ E)V⊥

]
def=

[
Σr + Err Er⊥
E⊥r Σ⊥ + E⊥⊥

]
, (3.10)

Ũ>ÃṼ =

[
Ũ>r ÃṼr Ũ>r ÃṼ⊥
Ũ>⊥ ÃṼr Ũ>⊥ ÃṼ⊥

]
=

[
? 0

0 ?

]
. (3.11)
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If we substitute (3.5)-(3.6) into the extra-diagonal blocks of (3.11) (that are zero), we obtain:

−(QU>r AVr +QU>r AV⊥P +QU>r EVr +QU>r EV⊥P

−U>⊥AVr − U>⊥AV⊥P − U>⊥EVr − U>⊥EV⊥P ) = 0,

−(U>r AVrP
> − U>r AV⊥ + U>r EVrP

> − U>r EV⊥
+U>⊥AVrP

> −Q>U>⊥AV⊥ +Q>U>⊥EVrP
> −Q>U>⊥EV⊥) = 0.

Furthermore, using relations (3.9) and (3.10) and after rearranging terms, we obtain (see also

[111, equation 6.2]) the pair of quadratic matrix equations:

Q(Σr + Err) + (Σ⊥ + E⊥⊥)P = −E⊥r −QEr⊥P, (3.12)

P (Σr + E>rr) + (Σ>⊥ + E>⊥⊥)Q = E>r⊥ + PE>⊥rQ, (3.13)

where unknowns are Q and P . We retain only first-order terms2 in ‖E‖ in (3.12) and (3.13)

leading to:

QΣr + Σ⊥P = −E⊥r + o(‖E‖), (3.14)

PΣr + Σ>⊥Q = E>r⊥ + o(‖E‖), (3.15)

from which we obtain the system

Q = −Σ⊥PΣ−1
r − E⊥rΣ−1

r + o(‖E‖), (3.16)

P = −Σ>⊥QΣ−1
r + E>r⊥Σ−1

r + o(‖E‖), (3.17)

by a post-multiplication of both equations (3.14) and (3.15) by Σr (which exists because σ1 ≥
, . . . ,≥ σr > σr+1 ≥ 0). Replacing P in (3.16) by the right hand side of (3.17), and conversely,

replacing Q in (3.17) by the right hand side of (3.16) we have:

Q = −Σ⊥(−Σ>⊥QΣ−1
r + E>r⊥Σ−1

r )Σ−1
r − E⊥rΣ−1

r + o(‖E‖), (3.18)

P = −Σ>⊥ (−Σ⊥PΣ−1
r − E⊥rΣ−1

r )Σ−1
r + E>r⊥Σ−1

r + o(‖E‖). (3.19)

Post-multiplying (3.18) and (3.19) by Σ 2
r , and rearranging terms yields:

Σ 2
rQ
> −Q>Σ⊥Σ>⊥ = −Er⊥Σ>⊥ − ΣrE>⊥r + o(‖E‖), (3.20)

PΣ 2
r − Σ>⊥Σ⊥P = Σ>⊥E⊥r + E>r⊥Σr + o(‖E‖). (3.21)

According to property (3.3), equations (3.20) and (3.21) may be rewritten as:

(
Iq−r ⊗ Σ 2

r − (Σ⊥Σ>⊥ )⊗ Ir
)

vec(Q>) = −vec
(
Er⊥Σ>⊥ + ΣrE>⊥r

)
+ o(‖E‖)

= − [Iq−r ⊗ Σr,Σ⊥ ⊗ Ir]
[

vec (E>⊥r)

vec (Er⊥)

]
+ o(‖E‖),

2This is why the terms PE>rr, E>⊥⊥Q, PE>⊥rQ, QErr, E⊥⊥P and QEr⊥P do no longer appear.
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(
Σ 2
r ⊗ In−r − Ir ⊗ (Σ>⊥Σ⊥)

)
vec(P ) = vec

(
Σ>⊥E⊥r + E>r⊥Σr

)
+ o(‖E‖)

=
[
Ir ⊗ Σ>⊥ ,Σr ⊗ In−r

] [ vec (E⊥r)

vec (E>r⊥)

]
+ o(‖E‖).

One can replace vec(E>⊥r) and vec(E>r⊥) by Ψ(q − r, r)vec(E⊥r) and Ψ(r, n − r)vec (Er⊥), re-

spectively, based on the property (3.4). Note that
(
Iq−r ⊗ Σ 2

r − (Σ⊥Σ>⊥ )⊗ Ir
)

and(
Σ 2
r ⊗ In−r − Ir ⊗ (Σ>⊥Σ⊥)

)
are diagonal matrices of order (q − r)r and (n − r)r, respectively.

In addition, their diagonal entries are strictly positive since σr > σr+1. Hence, their inverses

exist. To conclude the proof, observe that:

vec (E⊥r) = (V >r ⊗ U>⊥ ) vec (E), vec (Er⊥) = (V >⊥ ⊗ U>r ) vec (E),

vec (E⊥⊥) = (V >⊥ ⊗ U>⊥ ) vec (E), vec (Err) = (V >r ⊗ U>r ) vec (E).

In what follows, we use the results in Theorem 3.2 to introduce the first-order expansion for

xr around (A, b) in terms of the partitioned singular value decomposition matrices of A, the

perturbation matrix E, the vector b, and the perturbation vector f .

3.2 The condition number

The continuity and the differentiability of xr rely on the fact that one supposes that there is a

gap between σr and σr+1, that is σr − σr+1 > 0. Consider the following counter-example. Let

A =

(
1 0

0 1

)
, E =

(
ε2 sin( 1

ε ) 0

0 −ε2 sin( 1
ε )

)
, b =

(
1

1

)
, f =

(
0

0

)
.

We take r = 1. Thus

x̃r =


1

1+ε2 sin( 1
ε )
e1, if sin( 1

ε ) > 0,
1

1−ε2 sin( 1
ε )
e2, if sin( 1

ε ) < 0,

xr if sin( 1
ε ) = 0.

where e1 = (1, 0)> and e2 = (0, 1)> are the canonical vectors of R2. The above counter-example

shows that the unit-vector of x̃r fluctuates between e1 and e2 as ε tends to 0. In this case xr is

not continuous, and a fortiori not differentiable, around A. We know from Theorem 3.2 that the

singular values of Ã are the disjoint union of the singular values of Ũ>r ÃṼr and those of Ũ>⊥ ÃṼ⊥.

To define x̃r by (3.2) it is required that the r leading singular values of Ã be those of Ũ>r ÃṼr.

This is achieved if σr − σr+1 > 0 and E, sufficiently small3.

Now, let us state the following lemma.

3Observe that in the presence of a gap σr − σr+1 > 0, the bases of the involved singular subspaces of
Ã tend continuously to those of A as E tends 0.
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Lemma 3.4. Suppose σr −σr+1 > 0. Then the first-order expansion of xr can be written in the

form:

x̃r = xr + V

[
Ir

0

]
Σ−1
r fr − V

[
Ir

0

]
Σ−1
r Q>b⊥

+V

[
0

In−r

]
PΣ−1

r br − V
[
Ir

0

]
Σ−1
r ErrΣ−1

r br + o(‖[E, f ]‖). (3.22)

Proof. We insert Equations (3.5) and (3.6) in the expression (3.2) to yield:

x̃r = (Vr + V⊥P )((Ur − U⊥Q)>(A+ E)(Vr + V⊥P ))−1(Ur − U⊥Q)>b̃

= (Vr + V⊥P )(Σ−1
r − Σ−1

r U>r EVrΣ
−1
r )(Ur − U⊥Q)>b̃+ o(‖[E, f ]‖),

where we used the following result concerning a perturbation of the inverse of a matrix (F +

G)−1 = F−1 − F−1GF−1 + o(‖G‖), see [110, p. 131]. Developing this equation and recalling

that Err
def= U>r EVr gives, after rearranging terms,

x̃r = xr + VrΣ−1
r U>r f − VrΣ−1

r Q>U>⊥ b+ V⊥PΣ−1
r U>r b− VrΣ−1

r ErrΣ−1
r U>r b

+ o(‖[E, f ]‖)
= xr + VrΣ−1

r fr − VrΣ−1
r Q>b⊥ + V⊥PΣ−1

r br − VrΣ−1
r ErrΣ−1

r br + o(‖[E, f ]‖).

From the properties

V V > = I, V >Vr =

[
Ir

0

]
and V >V⊥ =

[
0

In−r

]
,

we have:

x̃r = xr + V V >VrΣ−1
r fr − V V >VrΣ−1

r Q>b⊥

+V V >V⊥PΣ−1
r br − V V >VrΣ−1

r ErrΣ−1
r br + o(‖[E, f ]‖),

which implies (3.22).

Now, we are ready to give the expression of the matrix x′r that represents the Fréchet derivative

of xr, with respect to the data (A, b). The expression is given in terms of the singular value

decomposition information of A and the vector b. For that, we simply use results in Theorem

3.3 to einate Q and P from (3.22).

Proposition 3.5. Suppose that σr − σr+1 > 0. Then the application

xr :
(
Rq×n,Rq

) −→ Rn : (A, b) −→ xr

is a differentiable function of (A, b). In addition, we have

x̃r = xr + x′r

[
α vec(E)

β f

]
+ o(‖[E, f ]‖),
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with

x′r = V

[
1
α
M,

1
β

(
Σ−1
r

0

)]
W ∈ Rq×(qn+q). (3.23)

Here, W is an orthogonal matrix defined by

W =



V >r ⊗ U>⊥ 0

V >⊥ ⊗ U>r 0

V >r ⊗ U>r 0

V >⊥ ⊗ U>⊥ 0

0 U>


∈ R(qn+q)×(qn+q),

and M is the partitioned matrix given by:

M =

[
Rr Sr −Tr 0

R⊥ S⊥ 0 0

]
∈ Rn×(qn),

with

Rr = (b>⊥ ⊗ Σ−1
r )

(
Iq−r ⊗ Σ 2

r − (Σ⊥Σ>⊥ )⊗ Ir
)−1

(Iq−r ⊗ Σr)Ψ(q−r,r), (3.24)

Sr = (b>⊥ ⊗ Σ−1
r )

(
Iq−r ⊗ Σ 2

r − (Σ⊥Σ>⊥ )⊗ Ir
)−1

(Σ⊥ ⊗ Ir), (3.25)

R⊥ =
(
(b>r Σ−1

r )⊗ In−r
) (

Σ 2
r ⊗ In−r − Ir ⊗ (Σ>⊥Σ⊥)

)−1
(Ir ⊗ Σ>⊥ ), (3.26)

S⊥ =
(
(b>r Σ−1

r )⊗ In−r
) (

Σ 2
r ⊗ In−r − Ir ⊗ (Σ>⊥Σ⊥)

)−1
(Σr ⊗ In−r)Ψ(r,n−r), (3.27)

Tr =
(
b>r Σ−1

r

)⊗ Σ−1
r . (3.28)

The dimensions of these matrices are given in the following:

Rr, Sr ∈ Rr×(q−r)r, R⊥ , S⊥ ∈ R(n−r)×(q−r)r, and Tr ∈ Rr×r2 .

Proof. Consider the quantities in (3.22). Using the properties of the vec operator applied to a

vector, we obtain:[
Ir

0

]
Σ−1
r ErrΣ−1

r br =

[
(b>r Σ−1

r )⊗ Σ−1
r

0

]
vec (Err) =

[
Tr

0

]
(V >r ⊗ U>r ) vec (E).

Taking the expressions for vec(Q>) and vec(P ) given in (3.7) and (3.8), we have:[
Ir

0

]
Σ−1
r Q>b⊥ =

[
b>⊥ ⊗ Σ−1

r

0

]
vec (Q>)

= −
[
Rr Sr

0 0

][
V >r ⊗ U>⊥
V >⊥ ⊗ U>r

]
vec (E) + o(‖[E, f ]‖),
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[
0

In−r

]
PΣ−1

r br =

[
0

(b>r Σ−1
r )⊗ In−r

]
vec (P )

=

[
0 0

R⊥ S⊥

][
V >r ⊗ U>⊥
V >⊥ ⊗ U>r

]
vec (E) + o(‖[E, f ]‖).

Injecting these quantities in (3.22) results in:

x̃r = xr + V

[
Σ−1
r

0

]
U>f + V

[
Rr Sr −Tr 0

R⊥ S⊥ 0 0

]
V >r ⊗ U>⊥
V >⊥ ⊗ U>r
V >r ⊗ U>r
V >⊥ ⊗ U>⊥

 vec (E)

+o(‖[E, f ]‖),

from which the results are derived.

We can now establish the expression of the xr condition number. We know by definition that:

‖|x′r|‖(α,β),2 = max
[αE, βf ] 6=0

‖x′r · (E, f)‖2
‖vec [E, f ]‖(α,β)

.

Thus, from (3.23) we conclude that the exact condition number of xr is

‖|x′r|‖(α,β),2 = λ1/2
max (∆) , (3.29)

where

∆ def= V >x′r(x
′
r)
>V =

1
α2
MM> +

1
β2

(
Σ−2
r 0

0 0

)
∈ Rn×n.

It remains to show how ∆ can be expressed with the singular values of A and the Fourier

coefficients given by the elements of U>b.

Proposition 3.6. Assume that the singular values of the matrix A are such that:

σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn ≥ 0.

Then

∆ =

 1
α2 ∆rr + 1

β2 Σ−2
r

1
α2 Γ>⊥r

1
α2 Γ⊥r 1

α2 ∆⊥⊥

 ,

where

∆rr = diag

(
r∑

k=1

θ2
k

σ2
kσ

2
t

+
n∑

k=r+1

(π(t)
k )2σ

2
k + σ2

t

σ2
t

θ2
k +

q∑
k=n+1

θ2
k

σ4
t

)
, 1 ≤ t ≤ r,

∆⊥⊥ = diag

(
r∑

k=1

(π(t)
k )2σ

2
k + σ2

t

σ2
k

θ2
k

)
, r + 1 ≤ t ≤ n,
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Γ⊥r = R⊥R>r + S⊥S>r

= 2


(π(1)
r+1)2 σr+1

σ1
θ1θr+1 (π(2)

r+1)2 σr+1
σ2

θ2θr+1 · · · (π(r)
r+1)2 σr+1

σr
θrθr+1

(π(1)
r+2)2 σr+2

σ1
θ1θr+2 (π(2)

r+2)2 σr+2
σ2

θ2θr+2 · · · (π(r)
r+2)2 σr+2

σr
θrθr+2

...
...

. . .
...

(π(1)
n )2 σn

σ1
θ1θn (π(2)

n )2 σn
σ2
θ2θn · · · (π(r)

n )2 σn
σr
θrθn

 ,

with (θ1, . . . , θq) = b>U , and π
(t)
k = 1

σ2
t−σ2

k
, with either t = 1, . . . , r and k = r + 1, . . . , n or

k = 1, . . . , r and t = r + 1, . . . , n.

Moreover, the quantity π(t)
k is well defined, since whenever it appears, σ2

t − σ2
k 6= 0 holds.

Proof. First we consider the n× n symmetric matrix

MM> =

[
RrR

>
r + SrS

>
r + TrT

>
r −RrR>⊥ − SrS>⊥

−R⊥R>r − S⊥S>r R⊥R>⊥ + S⊥S>⊥

]
def=

[
∆rr Γ⊥r
Γr⊥ ∆⊥⊥

]
.

Exploiting their structure, we can write the matrices (3.24)-(3.28) as:

Rr =
[
θr+1(Σ 2

r − σ2
r+1Ir)

−1, . . . , θn(Σ 2
r − σ2

nIr)
−1, θn+1Σ−2

r , . . . , θqΣ−2
r

]
Ψ(q−r,r), (3.30)

Sr =
[
θr+1σr+1Σ−1

r (Σ 2
r − σ2

r+1Ir)
−1, . . . , θnσnΣ−1

r (Σ 2
r − σ2

nIr)
−1, 0, . . . , 0

]
, (3.31)

R⊥ =
[
θ1σ
−1
1 (σ2

1In−r − Σ>⊥Σ⊥)−1Σ>⊥ , . . . , θrσ
−1
r (σ2

rIn−r − Σ>⊥Σ⊥)−1Σ>⊥
]
, (3.32)

S⊥ =
[
θ1(σ2

1In−r − Σ>⊥Σ⊥)−1, . . . , θr(σ2
rIn−r − Σ>⊥Σ⊥)−1

]
Ψ(r,n−r), (3.33)

Tr =
[
θ1σ
−1
1 Σ−1

r , . . . , θrσ
−1
r Σ−1

r

]
. (3.34)

In (3.30), the first of the two factors,

[
θr+1(Σ 2

r − σ2
r+1Ir)

−1, . . . , θn(Σ 2
r − σ2

nIr)
−1, θn+1Σ−2

r , . . . , θqΣ−2
r

]
, (3.35)

is a 1 × (q − r) partitioned matrix. Its blocks consist of r-order diagonal matrices. Recall that

the second factor in (3.30) is:

Ψ(q−r,r) =
q−r∑
i=1

r∑
j=1

Lij ⊗ L>ij , (3.36)

where Lij = eie
>
j ∈ R(q−r)r with ei ∈ R(q−r) and ej ∈ Rr. Observe that Lij⊗L>ij is an (q−r)×r

partitioned matrix where each block has r rows and q−r columns. Furthermore, it has the block

L>ij in position i, j and 0 in the remaining blocks. The multiplication of the partitioned matrices

(3.35) and (3.36) results in the 1× r partitioned matrix

Rr =
q−r∑
i=1

r∑
j=1

[
θr+1(Σ 2

r − σ2
r+1Ir)

−1, . . . , θn(Σ 2
r − σ2

nIr)
−1, θn+1Σ−2

r , . . . , θqΣ−2
r

]
Lij ⊗ L>ij ,
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whose block j can be written as:

n−r∑
i=1

θr+i(Σ 2
r − σ2

r+iIr)
−1L>ij +

q−r∑
i=n−r+1

θr+iΣ−2
r L>ij .

Consequently, multiplying R⊥ and Rr block by block yields:

R⊥R>r =
r∑
j=1

θjσ
−1
j (σ2

j In−r − Σ>⊥Σ⊥)−1Σ>⊥
n−r∑
i=1

Lijθr+i(Σ 2
r − σr+iIr)−1

+
r∑
j=1

θjσ
−1
j (σ2

j In−r − Σ>⊥Σ⊥)−1Σ>⊥

q−r∑
i=n−r+1

Lijθr+iΣ−2
r . (3.37)

Since Σ>⊥
∑q−r
i=n−r+1 ei = 0, one has Σ>⊥

∑q−r
i=n−r+1 Lij = Σ>⊥

∑q−r
i=n−r+1 eiej

> = 0 and hence the

last term in (3.37) vanishes. Thus

R⊥R>r =
n−r∑
i=1

r∑
j=1

θr+iθjσ
−1
j (σ2

j In−r − Σ>⊥Σ⊥)−1Σ>⊥ eie
>
j (Σ 2

r − σ2
r+iIr)

−1.

A direct computation gives:

θr+iθjσ
−1
j (σ2

j In−r − Σ>⊥Σ⊥)−1Σ>⊥ ei =


θr+iθjσr+i
σj(σ2

j−σ2
r+i)

ei i = 1, . . . , n− r,
0 i = n− r + 1, . . . , q − r,

where ei ∈ R(q−r) in the left-hand side and ei ∈ R(n−r) on the right-hand side. Then from

e>j (Σ 2
r − σ2

r+iIr)
−1 =

1
(σ2
j − σ2

r+i)
e>j ,

where ej ∈ Rr on both of the equation sides, we deduce that:

R⊥R>r =
n−r∑
i=1

r∑
j=1

1
(σ2
j − σ2

r+i)2

σr+i
σj

θr+iθjeie
>
j ,

=
n−r∑
i=1

r∑
j=1

(π(j)
r+i)

2σr+i
σj

θr+iθjeie
>
j ∈ R(q−r)×r,

with π
(j)
r+i = 1

(σ2
j−σ2

r+i)
. In the same manner we can compute and show that S⊥S>r is equivalent

to R⊥R>r .

The remaining blocks in MM> are computed by performing the block matrix-matrix multipli-

cations. So,

RrR
>
r =

n∑
k=r+1

θ2
k(Σ 2

r − σ2
kIr)

−2 +
q∑

k=n+1

θ2
kΣ−4

r = diag

(
n∑

k=r+1

(π(t)
k )2θ2

k +
q∑

k=r+1

θ2
k

σ4
t

)
,

SrS
>
r =

n∑
k=r+1

θ2
kσ

2
kΣ−2

r (Σ 2
r − σ2

kIr)
−2 = diag

(
n∑

k=r+1

(π(t)
k )2σ

2
k

σ2
t

θ2
k

)
,

TrT
>
r =

r∑
k=1

θ2
k

σ2
k

Σ−2
r = diag

(
r∑

k=1

θ2
k

σ2
kσ

2
t

)
,



Chapter 3. Sensitivity of the truncated singular value decomposition method 48

for t = 1, . . . , r.

R⊥R>⊥ =
r∑

k=1

θ2
k

σ2
k

Σ>⊥Σ⊥(σ2
kIn−r − Σ>⊥Σ⊥)−2 = diag

(
r∑

k=1

(π(t)
k )2 σ

2
t

σ2
k

θ2
k

)
,

S⊥S>⊥ =
r∑

k=1

θ2
k(σ2

kIn−r − Σ>⊥Σ⊥)−2 = diag

(
r∑

k=1

(π(t)
k )2θ2

k

)
,

for t = 1, . . . , n− r.

Putting the above results together yields the result.

Let us point out the fact that an early result in [54], when r = n, that is when we do not perform

truncation (i.e. we assume that A is a full rank matrix), is a particular case of the results above.

In fact, in this case, ∆ becomes diagonal and simplifies to:

∆rr = diag

(
n∑
k=1

θ2
k

σ2
kσ

2
t

+
q∑

k=n+1

θ2
k

σ4
t

)
= diag

(
1
σ2
t

(
n∑
k=1

θ2
k

σ2
k

+
q∑

k=n+1

θ2
k

σ2
t

))
,

for t = 1, . . . , n. This implies the result given in [54], that is:

‖|x′r‖|(α,β),2 =

√√√√ 1
α2

1
σ2
min

[
n∑
k=1

(
θk
σk

)2

+
1

σ2
min

q∑
k=n+1

θ2
k

]
+

1
β2

1
σ2
min

= ‖A†‖
√

1
α2

(‖x‖2 + ‖A†‖2‖r‖2) +
1
β2
,

where A† denotes the Moore-Penrose inverse (see [64, p. 421]) of A, and x denotes the solution

of the linear least squares problem associated with A and b.

Looking at the general result of Proposition 3.6, we see that the quantities (scalars) involved in

the computation of the xr condition number are nothing but the singular values σk of A and the

components θk of b along singular vectors uk. Finally, observe that the critical gap is σr − σr+1.

3.3 Upper and lower bounds for the condition number and

numerical illustrations

The matrix ∆ is of order n. Computing its largest eigenvalue may be achieved using standard

eigenvalue procedures like the power method [99] or the Lanczos algorithm [52]. We mention

here a possible use of the Gershgorin circle, see [64, Theorem 8.1.22], to obtain an estimate for

κφr (A, b) where n is large. We recall this theorem in the following:

Theorem 3.7. Assume C = [cij ] ∈ <n×n. Then

min
1≤i≤n

n∑
j=1

|cij | ≤ ρ(C) ≤ max
1≤i≤n

n∑
j=1

|cij |.
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Proof. See [63, Theorem 8.1.22] for the proof.

We now describe comparative numerical tests carried out in MATLAB. We took pairs (A, b)

from the regularization tools package4 by P. C. Hansen [59]. We arbitrarily choose values of q,

n and r. To validate the expression of the exact condition number, we use the numerical deriva-

tive code5 authored by John D’Errico and called ”jacobianest.m” of an analytically supplied

function f : z → x to estimate the corresponding Jacobian at a given particular point z. The

code ”jacobianest.m” uses a centered finite differences approach with Romberg extrapolation to

improve the estimates to sixth order. For our purpose, we have to formally recast φr(A,b) as

f : z = vec([A, b]) → xr prior the use of ”jacobianest.m”, and then compute the 2-norm of the

estimated Jacobian. In all tests we set α = β = 1.

Table 3.1 and figure 3.1 display the exact condition number, an estimate of the condition number

produced with ”jacobianest.m”, and an upper and a lower bounds. Values of q, n and r are also

supplied. The results show how the derived expression of the exact condition fits the finite

difference estimate. We also see that the upper bound is sharp for the selected pairs (A,b)

whereas the lower bound is very pessimistic.

problem cond(xr) fin. diff. upper bnd lower bnd q n r
from 3.6 estim. value

baart 7.156e+3 7.087e+3 7.157e+3 4.967e-5 20 20 5
blur 2.516e+1 2.516e+1 2.706e+1 7.898e+1 16 16 6
derive 1.698e+3 1.698e+3 1.764e+3 1.144e+1 12 12 10
foxgood 2.896e+1 2.896e+1 2.897e+1 3.415 20 20 2
heat 4.486e+1 4.478e+1 4.694e+1 3.306 12 12 10
i laplace 1.448e+4 1.367e+4 1.449e+4 2.457 20 20 7
parallax 1.412e+5 1.411e+5 1.417e+5 1.711e+1 26 12 10
phillips 5.731e+1 5.731e+1 5.734e+1 5.547e-5 12 12 10
shaw 1.044e+3 1.044e+3 1.045e+3 1.201 12 12 8
spikes 8.178e+2 8.178e+2 8.179e+2 0 12 12 4
full 1.032e+1 1.032e1 1.832e+1 1.627 16 12 8
ursell 3.716e+5 3.716e+5 3.724e+5 1.660e+2 20 20 3
wing 3.429e+6 3.010e+6 3.430e+6 2.549 20 20 5

Table 3.1: The exact value of cond(xr) using the expression in Proposition 3.6, the
finite difference estimate value using ”jacobianest” and the upper and lower bound of

cond(xr) for 13 problems.

The main contribution of this chapter was to study the sensitivity of the solution of a given linear

least squares problem to perturbations in the data, by computing the condition number of the

truncated least squares solution. We anticipate that the obtained formula for these condition

number will stimulate research in several directions. In the next chapter, we present a variant

of Levenberg-Marquardt algorithm to solve nonlinear least squares problems for which the exact

gradient is not available or expensive to compute, and replaced by a random models.

4see http://www2.imm.dtu.dk/˜pch/Regutools/
5see http://www.mathworks.com/matlabcentral/fileexchange/13490-automatic-numerical-

differentiation
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Figure 3.1: The exact value of cond(xr) using the expression in Proposition 3.6, the
finite difference estimate value using ”jacobianest” and the upper and lower bound of

cond(xr) for 13 problems.



Chapter 4

Probabilistic methods for least

squares problems

In this chapter, we are concerned with a class of nonlinear least squares problems for which

the exact gradient is not available or expensive to compute and replaced by a probabilistic or

random model. Problems of this nature arise in several important practical contexts. One

example is variational modeling for meteorology, such as 3DVAR and 4DVAR. Here, ensemble

methods, like EnKF and EnKS are used to approximate the data arising in the solution of the

corresponding linearized least squares subproblem in a way where the true gradient is replaced by

an approximated stochastic gradient model [126]. Other examples appear in the broad context

of derivative-free optimization problems [24] where models of the objective function evaluation

may result from, a possibly random, sampling procedure [6].

As explained in Section 2.3.4.4, the Levenberg-Marquardt algorithm is a regularization of the

Gauss-Newton method. A regularization parameter is updated at every iteration and indirectly

controls the size of the step, making Gauss-Newton globally convergent. The regularization

term added to Gauss-Newton maintains the structure of the linearized least squares subprob-

lems arising in data assimilation, enabling us to use techniques like ensemble methods while

simultaneously providing a globally convergent approach. But, the use of ensemble methods

makes random approximations to the gradient. We thus propose and analyze, in this chapter, a

variant of the Levenberg-Marquardt method to deal with probabilistic gradient models.

We organize this chapter as follows: the new Levenberg-Marquardt method based on probabilistic

gradient models is described in Section 4.1. Section 4.2 addresses the inexact solution of the

linearized least squares subproblems arising in Levenberg-Marquardt. We cover essentially two

possibilities: conjugate gradient and any generic inexact solution of the corresponding normal

equations. In Section 4.3, we show that the whole approach is globally convergent to first order

critical points, in the sense that a subsequence of the ”true” objective function gradients goes

to zero with probability one. The proposed approach is numerically illustrated in Section 4.4

with a simple problem, artificially modified to create (i) a scenario where the model gradient is

a Gaussian perturbation of the exact gradient, and (ii) a scenario case where to compute the

51
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model gradient both exact/approximated gradient routines are available but the exact one (seen

as expensive) is called only with a certain probability.

4.1 The Levenberg-Marquardt method based on proba-

bilistic gradient models

We have seen in Section 2.3.4.4 the classical version of Levenberg-Marquardt algorithm, where

it is supposed that the derivatives of the functions f and F are available. In this section we

are interested in the case where we do not have exact values for the Jacobian JF (xj) and the

gradient ∇f(xj) = JF (xj)>F (xj), (of the model defined in (2.69) mj(xj + s) at s = 0), but

rather approximations which we will denoted by Jmj and gmj . We are further interested in

the case where these model approximations are built in some random fashion. We will then

consider random models of the form Mj where gMj
and JMj

are random variables, and use the

notation mj = Mj(ωj), gmj = gMj
(ωj), and Jmj = JMj

(ωj) for their realizations. Note that

the randomness of the models turns also random the current point xj = Xj(ωj) and the current

regularization parameter γj = Γj(ωj) generated by the corresponding optimization algorithm.

Thus, the model:

mj(xj + s)−mj(xj) =
1
2
‖Fmj + Jmjs‖2 +

1
2
γ2
j ‖s‖2 −

1
2
‖Fmj‖2

= g>mjs+
1
2
s>
(
J>mjJmj + γ2

j I
)
s

is a realization of:

Mj(Xj + s)−Mj(Xj) = g>Mj
s+

1
2
s>
(
J>Mj

JMj + Γ2
jI
)
s.

Note that we subtracted the order zero term to the model to avoid unnecessary terminology.

Our subproblem becomes then just:

min
s∈Rn

mj(xj + s)−mj(xj) = g>mjs+
1
2
s>
(
J>mjJmj + γ2

j I
)
s. (4.1)

We will now impose that the gradient models gMj
are accurate with a certain probability regard-

less of the history M1, . . . ,Mj−1. The accuracy is defined in terms of a multiple of the inverse

of the square of regularization parameter (as it happens in [6] for trust-region methods based

on probabilistic models where it is defined in terms of a multiple of the trust-region radius).

As we will see later in the convergence analysis (since the regularization parameter is bounded

from below), one can demand less here and consider just the inverse of a positive power of the

regularization parameter.

Assumption 4.1.1. Given constants α ∈ (0, 2], κeg > 0, and p ∈ (0, 1], the sequence of ran-

dom gradient models {gMj
} is (p)-probabilistically κeg-first order accurate, for corresponding
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sequences {Xj}, {Γj}, if the events

Sj =

{
‖gMj

− J(Xj)>F (Xj)‖ ≤ κeg
Γαj

}

satisfy the following submartingale-like condition

p∗j = P(Sj |FMj−1) ≥ p, (4.2)

where FMj = σ(M0, . . . ,Mj−1) is the σ-algebra generated by M0, . . . ,Mj−1.

Correspondingly, a gradient model realization gmj is said to be κeg-first order accurate if:

‖gmj − J(xj)>F (xj)‖ ≤ κeg
γαj

.

The version of Levenberg-Marquardt that we will analyze and implement takes a successful step

if the ratio ρj between actual and predicted reductions is sufficiently positive (condition ρj ≥ η1

below). In such cases, and now deviating from classical Levenberg-Marquardt and following [6],

the regularization parameter γj is increased if the size of the gradient model is not of the order

of the inverse of γj (condition ‖gmj‖ < η2/γ
2
j below). Another relevant distinction is that we

necessarily decrease γj in successful iterations when ‖gmj‖ ≥ η2/γ
2
j . The algorithm is described

below and generates a sequence of realizations for the above mentioned random variables.

Algorithm 4.1: Levenberg-Marquardt based on probabilistic gradient models

Initialization
Choose the constants η1 ∈ (0, 1), η2, γmin > 0, λ > 1, and 0 < pmin ≤ pmax < 1.
Select x0 and γ0 ≥ γmin.

For j = 0, 1, 2, . . .

1. Solve (or approximately solve) (4.1), and let sj denote such a solution.

2. Compute ρj = f(xj)−f(xj+sj)
mj(xj)−mj(xj+sj)

.

3. Make a guess pj of the probability p∗j given in (4.2) such that
pmin ≤ pj ≤ pmax.
If ρj ≥ η1, then set xj+1 = xj + sj and

γj+1 =


λγj if ‖gmj‖ < η2/γ

2
j ,

max

{
γj

λ

1−pj
pj

, γmin

}
if ‖gmj‖ ≥ η2/γ

2
j .

Otherwise, set xj+1 = xj and γj+1 = λγj .
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If exact gradients are used (in other words, if gMj
= J(Xj)>F (Xj)), then one always has:

p∗j = P

(
0 ≤ κeg

Γαj

∣∣∣∣∣FMj−1

)
= 1,

and the update of γ in successful iterations reduces to γj+1 = max{γj , γmin} (when ‖gmj‖ ≥
η2/γ

2
j ), as in the more classical deterministic-type Levenberg-Marquardt methods. In general

one should guess pj based on the knowledge of the random error occurred in the application

context. It is however pertinent to stress that the algorithm runs for any guess of pj ∈ (0, 1]

such that pj ∈ [pmin, pmax].

4.2 Inexact solution of the linearized least squares sub-

problems

Step 1 of Algorithm 4.1 requires the approximate solution of subproblem (4.1). As in trust-

regions methods, there are different techniques to approximate the solution of this subproblem

yielding a globally convergent step, and we will discuss three of them in this section. For the

purposes of global convergence it is sufficient to compute a step sj that provides a reduction in

the model as good as the one produced by the so-called Cauchy step (defined as the minimizer

the model along the negative gradient or steepest descent direction −gmj ).

4.2.1 A Cauchy step

The Cauchy step is defined by minimizing φ(t) = mj(xj − tgmj ) when t > 0. We have:

φ(t) = mj(xj − tgmj ) = mj(xj)− t‖gmj‖2 +
t2

2
g>mj

(
J>mjJmj + γ2

j I
)
gmj ,

φ′(t) = −‖gmj‖2 + tg>mj
(
J>mjJmj + γ2

j I
)
gmj ,

φ′′(t) = g>mj
(
J>mjJmj + γ2

j I
)
gmj > 0

(
if gmj 6= 0

)
.

Therefore the minimizer of φ is:

tc =
‖gmj‖2

g>mj (J
>
mjJmj + γ2

j I)gmj
.

Thus the Cauchy step is equal to:

sj
c

= − ‖gmj‖2
g>mj (J

>
mjJmj + γ2

j I)gmj
gmj . (4.3)
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The corresponding Cauchy decrease on the model is:

mj(xj)−mj(xj + sj
c
) =

‖gmj‖2
g>mj (J

>
mjJmj + γ2

j I)gmj
‖gmj‖2 −

1
2

‖gmj‖4
g>mj (J

>
mjJmj + γ2

j I)gmj

=
1
2

‖gmj‖4
g>mj (J

>
mjJmj + γ2

j I)gmj
.

Since g>mj (J
>
mjJmj + γ2

j I)gmj ≤ ‖gmj‖2(‖Jmj‖2 + γ2
j ), we conclude that:

mj(xj)−mj(xj + sj
c
) ≥ 1

2
‖gmj‖2

‖Jmj‖2 + γ2
j

.

The Cauchy step (4.3) is cheap to calculate as it does not require any system solve. Moreover,

the Levenberg-Marquardt method will be globally convergent if it uses a step that attains a

reduction in the model as good as a multiple of the Cauchy decrease. Thus we will impose the

following assumption on the step calculation:

Assumption 4.2.1. For every step j and for all realizations mj of Mj ,

mj(xj)−mj(xj + sj) ≥ θfcd
2

‖gmj‖2
‖Jmj‖2 + γ2

j

for some constant θfcd > 0.

4.2.2 A truncated-CG step

Despite providing a sufficient reduction in the model and being cheap to compute, the Cauchy

step is a particular form of steepest descent, which can perform poorly regardless of the step

length. One can see that the Cauchy step depends on J>mjJmj only in the step length. Faster

convergence can be expected if the matrix J>mjJmj influences also the step direction.

Since the Cauchy step is the first step of the conjugate gradient method when applied to the

minimization of the quadratic mj(xj+s)−mj(xj), it is natural to propose to run CG further and

stop only when the residual becomes relatively small. Since CG generates iterates by minimizing

the quadratic over nested Krylov subspaces, and the first subspace is the one generated by gmj
(see, e.g., [93, Theorem 5.2]), the decrease attained at the first CG iteration (i.e., by the Cauchy

step) is kept by the remaining.

4.2.3 A step from inexact solution of normal equations

Following the spirit of what was done by [31], where the authors propose to approximately

solve the linearized subproblem in the Newton method. We propose another possibility to

approximately solve subproblem (4.1) by applying some iterative solver (not necessarily CG) to

the solution of the normal equations:(
J>mjJmj + γ2

j I
)
sj = −gmj .
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An inexact solution sj
in is then computed such that:(

J>mjJmj + γ2
j I
)
sj
in

= −gmj + rj (4.4)

for a relatively small residual rj satisfying ‖rj‖ ≤ εj‖gmj‖. For such sufficiently small residuals

we can guarantee Cauchy decrease.

Assumption 4.2.2. For some constants βin ∈ (0, 1) and θin > 0, suppose that ‖rj‖ ≤ εj‖gmj‖
and

εj ≤ min

{
θin
γαj

,

√
βin

γ2
j

‖Jmj‖2 + γ2
j

}
.

Note that we only need the second above bound on εj to prove the desired Cauchy decrease.

The first above bound will be used later, in the convergence analysis.

Lemma 4.1. Under Assumption 4.2.2, an inexact step sjin of the form (4.4) achieves Cauchy

decrease and it satisfies Assumption 4.2.1 with θfcd = 2(1− βin).

Proof. In the proof we will omit the indices j. One has:

m(x)−m(x+ sin) = −g>msin −
1
2

(−gm + r)>sin = −1
2

(gm + r)>sin

=
1
2

(gm − r)>(J>mJm + γ2I)−1(gm + r).

Since J>mJm is positive semidefinite:

r>(J>mJm + γ2I)−1r ≤ ‖r‖
2

γ2
≤ ε2‖gm‖2

γ2

and

(gm)>(J>mJm + γ2I)−1gm ≥ ‖gm‖2
‖Jm‖2 + γ2

.

Thus, using Assumption 4.2.2, we conclude that:

m(x)−m(x+ sin) ≥
(

1
‖Jm‖2 + γ2

− ε2

γ2

)
‖gm‖2

≥ 2(1− βin)
2

‖gm‖2
‖Jm‖2 + γ2

.

4.3 Global convergence to first order critical points

We start by proving that two terms, that later will appear in the difference between the actual

and predicted decreases, have the right order accuracy in terms of γj .

Lemma 4.2. For the three steps proposed (Cauchy, truncated CG, and inexact normal equa-

tions), one has that:

‖sj‖ ≤ 2‖gmj‖
γ2
j
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and

|sj>(γ2
j s
j + gmj )| ≤

4‖Jmj‖2‖gmj‖2 + 2θin‖gmj‖2
min{1, γ2−α

min }γ2+α
j

.

(Assumption 4.2.2 is assumed for the inexact normal equations step sj = sj
in.)

Proof. We will omit the indices j again in the proof.

If s = sc is the Cauchy point, since J>mJm is positive semidefinite, ‖g>m(J>mJm + γ2I)gm‖ ≥
γ2‖gm‖2 and we have that ‖sc‖ ≤ ‖gm‖/γ2. To prove the second inequality:

(sc)>(γ2(sc) + gm) =
γ2‖gm‖6

((gm)>(J>mJm + γ2I)gm)2
− ‖gm‖4

(gm)>(J>mJm + γ2I)gm

= − ‖gm‖4(gm)>J>mJmgm
((gm)>(J>mJm + γ2I)gm)2

,

and then using a similar argument and γ ≥ γmin:

|(sc)>(γ2(sc) + gm)| ≤ ‖Jm‖
2‖gm‖2
γ4

≤ 4‖Jm‖2‖gm‖2 + 2θin‖gm‖2
min{1, γ2−α

min }γ2+α
.

If s = scg is obtained by truncated CG, then there exists an orthogonal matrix V with first

column given by −gm/‖gm‖ and such that:

scg = V
(
V >(J>mJm + γ2I)V

)−1
V >gm = V

(
V >J>mJmV + γ2I

)−1 ‖gm‖e1,

where e1 is the first vector of the canonical basis of Rn. From the positive semidefiniteness of

V >J>mJmV , we immediately obtain ‖scg‖ ≤ ‖gm‖/γ2. To prove the second inequality we apply

the Sherman–Morrisson–Woodbury formula, to obtain:

scg = V

(
1
γ2
I − 1

γ4
(JmV )>

(
I +

(JmV )(JmV )>

γ2

)−1

(JmV )

)
‖gm‖e1.

Since V e1 = −gm/‖gm‖,

γ2scg + gm = − 1
γ2
V (JmV )>

(
I +

(JmV )(JmV )>

γ2

)−1

(JmV )‖gm‖e1.

Now, from the fact that (JmV )(JmV )>/γ2 is positive semidefinite, the norm of the inverse of

I + (JmV )(JmV )>/γ2 is no greater than one, and thus (since V is orthogonal):

‖γ2scg + gm‖ ≤ ‖Jm‖
2‖gm‖
γ2

.

Finally (recalling γ ≥ γmin),

|(scg)>(γ2(scg) + gm)| ≤ ‖scg‖‖γ2scg + gm‖ ≤ ‖Jm‖2‖gm‖2
γ4

≤ 4‖Jm‖2‖gm‖2 + 2θin‖gm‖2
min{1, γ2−α

min }γ2+α
.
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If s = sin is an inexact solution of the normal equations, and the residual satisfies Assump-

tion 4.2.2, ‖sin‖ ≤ (‖gm‖+ ‖r‖)/γ2 ≤ 2‖gm‖/γ2. Applying the Sherman–Morrisson–Woodbury

formula:

sin =

(
1
γ2
I − 1

γ4
J>m

(
I +

JmJ
>
m

γ2

)−1

Jm

)
(−gm + r).

Thus,

γ2sin + gm = − 1
γ2
J>m

(
I +

JmJ
>
m

γ2

)−1

Jm(−gm + r) + r,

Using the fact that the norm of the inverse above is no greater than one, Assumption 4.2.2, and

γ ≥ γmin:

|(sin)>(γ2(sin) + gm)| ≤ ‖sin‖‖γ2sin + gm‖
≤ 4‖Jm‖2‖gm‖2

γ4
+

2θin‖gm‖2
γ2+α

≤ 4‖Jm‖2‖gm‖2 + 2θin‖gm‖2
min{1, γ2−α

min }γ2+α
.

We proceed by stating the conditions required for global convergence.

Assumption 4.3.1. The function f is continuously differentiable in an open set containing L(x0) =

{x ∈ Rn : f(x) ≤ f(x0)} with Lipschitz continuous gradient on L(x0) and corresponding

constant ν > 0.

The Jacobian model is uniformly bounded, i.e., there exists κJm > 0 such that ‖Jmj‖ ≤ κJm for

all j.

The next result is a classical one and essentially says that the actual and predicted reductions

match each other well for a value of the regularization parameter γj sufficiently large relatively to

the size of the gradient model (which would correspond to say for a sufficiently small trust-region

radius in trust-region methods).

Lemma 4.3. Let Assumption 4.3.1 hold. Let also Assumption 4.2.2 hold for the inexact normal

equations step sj = sj
in. If xj is not a critical point of f and the gradient model gmj is κeg-first

order accurate, and if:

γj ≥
(

κj
1− η1

) 1
α

with κj =
(

1 +
κ2
Jm

γ2
min

) 2ν + 2κeg
‖gmj ‖ + 2θin + 8κ2

Jm

min{1, γ2−α
min }θfcd

,

then ρj ≥ η1.
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Proof. Again we omit the indices j in the proof. Making a Taylor expansion:

1− ρ

2
=

m(x)− f(x) + f(x+ s)−m(x+ s) +m(x)−m(x+ s)
2[m(x)−m(x+ s)]

=
s>J(x)>F (x) +R− s>gm − s>(J>mJm + γ2I)s− s>gm

2[m(x)−m(x+ s)]

=
R+ (J(x)>F (x)− gm)>s− s>(J>mJm)s− s>(γ2s+ gm)

2[m(x)−m(x+ s)]
,

where R ≤ ν‖s‖2/2.

Now, using Lemma 4.2, Assumptions 4.2.1 and 4.3.1, and γ ≥ γmin:

1− ρ

2
≤

ν
2‖s‖2 + κeg

γα ‖s‖+ ‖Jm‖2‖s‖2 − s>(γ2s+ g)
θfcd‖gm‖2
‖Jm‖2+γ2

≤
2ν‖gm‖2

γ4 + 2κeg‖gm‖
γ2+α + 4κ2

Jm‖gm‖2
γ4 + 4κ2

Jm‖gm‖2+2‖gm‖2θin
min{1,γ2−α

min }γ2+α

θfcd‖gm‖2
γ2(‖Jm‖2/γ2

min+1)

≤
(

1 + κJm
γ2
min

)(
2ν + 2κeg

‖gm‖ + 2θin + 8κ2
Jm

)
min{1, γ2−α

min }θfcdγα
≤ κ

γα
≤ 1− η1.

We have thus proved that ρ ≥ 2η1 > η1.

One now establishes that the regularization parameter goes to infinity, which corresponds to say

in [6] that the trust-region radius goes to zero.

Lemma 4.4. Let the second part of Assumption 4.3.1 hold (the uniform bound on Jmj ). For

every realization of the Algorithm 4.1, lim
j→∞

γj =∞.

Proof. If the result is not true, then there exists a bound B > 0 such that the number of times

that γj < B happens is infinite. Because of the way γj is updated one must have an infinity of

iterations such γj+1 ≤ γj , and for these iterations one has ρj ≥ η1 and ‖gmj‖ ≥ η2/B
2. Thus,

f(xj)− f(xj + sj) ≥ η1[mj(xj)−mj(xj + sj)]

≥ η1

(
θfcd

2
1

‖Jm‖2 + γ2

)
‖gmj‖2

≥ η1θfcd
2(κ2

Jm +B2)

( η2

B2

)2

.

Since f is bounded from below by zero, the number of such iterations can not be infinite, and

hence we arrived at a contradiction.

Now, if we assume that the gradient models are (pj)-probabilistically κeg-first order accurate,

we can show our main global convergence result. First we will state an auxiliary result from the

literature that will be useful for the analysis (see [38, Theorem 5.3.1] and [38, Exercise 5.3.1]).

Lemma 4.5. Let Gj be a submartingale, in other words, a set of random variables which

are integrable (E(|Gj |) < ∞) and satisfy E(Gj |Fj−1) ≥ Gj−1, for every j, where Fj−1 =
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σ(G0, . . . , Gj−1) is the σ-algebra generated by G0, . . . , Gj−1 and E(Gj |Fj−1) denotes the condi-

tional expectation of Gj given the past history of events Fj−1.

Assume further that there exists M > 0 such that |Gj −Gj−1| ≤M <∞, for every j. Consider

the random events C = { lim
j→∞

Gj exists and is finite} and D = {lim sup
j→∞

Gj =∞}. Then P (C ∪
D) = 1.

Theorem 4.6. Let Assumption 4.3.1 hold. Let also Assumption 4.2.2 hold for the inexact

normal equations step sj = sj
in.

Suppose that the gradient model sequence {gMj
} is (pj)-probabilistically κeg-first order accurate

for some positive constant κeg (Assumption 4.1.1). Let {xj} be a sequence of random iterates

generated by Algorithm 4.1. Then almost surely:

lim inf
j→∞

‖∇f(xj)‖ = 0.

Proof. The proof follows the same lines as [6, Theorem 4.2]. Let

Wj =
j∑
i=0

(
1
pi

1Si − 1
)
,

where Si is as in Assumption 4.1.1. Recalling p∗j = P(Sj |FMj−1) ≥ pj , we start by showing that

{Wj} is a submartingale:

E(Wj |FMj−1) = Wj−1 +
1
pj

P(Sj |FMj−1)− 1 ≥ Wj−1.

Moreover, min{1, 1/pj − 1} ≤ |Wj − Wj−1| ≤ max{(1 − pj)/pj , 1} ≤ max{1/pj , 1} = 1/pj .

Since 0 < pmin ≤ pj ≤ pmax < 1, one has 0 < min{1, 1/pmax − 1} ≤ |Wj −Wj−1| ≤ 1/pmin.

Thus, from 0 < min{1, 1/pmax − 1} ≤ |Wj − Wj−1|, the event { lim
j→∞

Wj exists and is finite}
has probability zero, and using Lemma 4.5 and |Wj − Wj−1| ≤ 1/pmin, one concludes that

P(lim sup
j→∞

Wj =∞) = 1.

Suppose there exist ε > 0 and j1 such that, with positive probability, ‖∇f(xj)‖ ≥ ε for all j ≥ j1.

Let now {xj} and {γj} be any realization of {xj} and {Γj}, respectively, built by Algorithm 4.1.

By Lemma 4.4, there exists j2 such that: ∀j ≥ j2

γj > bε = max

{(
2κeg
ε

) 1
α

,

(
2η2

ε

) 1
2

, λ
p−1
p γmin,

(
κε

1− η1

) 1
α

}
(4.5)

where

κε =
(

1 +
κ2
Jm

γ2
min

)
2ν + 4κeg

ε + 2θin + 8κ2
Jm

min{1, γ2−α
min }θfcd

.

For any j ≥ j0 = max{j1, j2} two cases are possible.

If 1Sj = 1, then, from (4.5),

‖gmj − J(xj)>F (xj)‖ ≤ κeg
γαj

<
ε

2
,
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yielding ‖gmj‖ ≥ ε/2. From (4.5) we also have that ‖gmj‖ ≥ ε/2 ≥ η2/γ
2
j . On the other hand,

Lemma 4.3, (4.5), and ‖gmj‖ ≥ ε/2 together imply that ρj ≥ η1. Hence, from this and Step 3

of Algorithm 4.1, the iteration is successful. Also, from ‖gmj‖ ≥ η2/γ
2
j and (4.5) (note that

(1− x)/x is decreasing in (0, 1]), γ is updated in Step 3 as:

γj+1 =
γj

λ
1−pj
pj

.

Let now Bj be a random variable with realization bj = logλ(bε/γj). In the case 1Sj = 1,

bj+1 = bj +
1− pj
pj

.

If 1Sj = 0, then bj+1 ≥ bj − 1, because either γj+1 ≤ γj therefore bj+1 ≥ bj or γj+1 = λγj

therefore bj+1 ≥ bj − 1. Hence Bj − Bj0 ≥ Wj −Wj0 , and from P(lim sup
j→∞

Wj = ∞) = 1 one

obtains P(lim sup
j→∞

Bj =∞) = 1 which leads to a contradiction with the fact that Bj < 0 happens

for all j ≥ j0 with positive probability.

4.4 A numerical illustration

The main concern in the application of Algorithm 4.1 is to ensure that the gradient model is

(pj)-probabilistically accurate (i.e., p∗j ≥ pj , see Assumption 4.1.1) or at least to find a lower

bound pmin > 0 such that p∗j ≥ pmin. However, one can, in some situations, overcome these

difficulties such as in the cases where the model gradient (i) is a Gaussian perturbation of the

exact one, or (ii) results from using either the exact one (seen as expensive) or an approximation.

In the former case we will consider a run of the algorithm under a stopping criterion of the form

γj > γmax.

4.4.1 Gaussian noise

At each iteration of the algorithm, we consider an artificial random gradient model, by adding to

the exact gradient an independent Gaussian noise, more precisely we have gMj = J(xj)>∇F (xj)

+εj where (εj)i ∼ N(0, σ2
j,i), for i = 1, . . . , n. Let Σj be a diagonal matrix with diagonal

elements σj,i, i = 1, . . . , n. It is known that:

‖Σjεj‖2 =
n∑
i=1

(
(εj)i
σj,i

)2

∼ χ2(n),

where χ2(n) is the chi-2 distribution with n degrees of freedom. To be able to give an explicit

form of the probability of the model being κeg-first order accurate, for a chosen κeg > 0, we

assume also that the components of the noise are identically distributed, that is σj,i = σj ,

∀i ∈ {1, . . . , n}. Because of the way in which γj is updated in Algorithm 4.1, it is bounded by

λjγ0, and thus Γj ≤ min{λjγ0, γmax}, where γmax is the constant used in the stopping criterion.
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One therefore has:

p∗j = P

(
‖gMj

− J(xj)>F (xj)‖ ≤ κeg
Γαj

∣∣∣∣∣FMj−1

)

≥ P

(
‖Σjεj‖2 ≤

(
κeg

σj min{λjγ0, γmax}α
)2
∣∣∣∣∣FMj−1

)
.

Using the Gaussian nature of the noise εj and the fact that it is independent from the filtration

FMj−1, we obtain:

p∗j ≥ CDF−1
χ2(n)

((
κeg

σj min{λjγ0, γmax}α
)2
)

def= p̃j . (4.6)

where CDFχ2(n) is the cumulative density function of a chi-squared distribution with n degrees

of freedom.

The numerical illustration was done with the following nonlinear least squares problem defined

using the well-known Rosenbrock function:

f(x, y) =
1
2
(‖x− 1‖2 + 100‖y − x2‖2) =

1
2
‖F (x, y)‖2.

The minimizer of this problem is (x∗, y∗)> = (1, 1)>.

Algorithm 4.1 was initialized with x0 = (1.2, 0)> and γ0 = 1. The algorithmic parameters were

set to η1 = η2 = 10−3, γmin = 10−6, and λ = 2. The stopping criterion used is γj > γmax where

γmax = 106. We used α = 1/2, σj = σ = 10 ∀j, and κeg = 100 for the random gradient model.

Figure 4.1 depicts the average, over 60 runs of Algorithm 4.1, of the objective function values,

the absolute errors of the iterates, and the percentages of successful iterations, using, across

all iterations, the three choices pj = 1, pj = p̃j , and pj = pmin. In the last case, pmin is an

underestimation of p∗j given by:

pmin = CDF−1
χ2(n)

((
κeg
σγαmax

)2
)

= 5 · 10−3.

The final objective function values and the relative final errors are shown in Table 4.1 for the first

three runs of the algorithm. One can see that the use of pj = p̃j leads to a better performance

than pj = pmin (because p̃j ≥ pmin is a better bound for p∗j than pmin is).

In the case where pj = 1, Algorithm 4.1 exhibits a performance worse than for the two other

choices of pj . The algorithm stagnated after some iterations, and could not approximate the

minimizer with a descent accuracy. In this case, γj is increasing along the iterations, and thus

it becomes very large after some iterations while the step sj ∼ 1/γ2
j becomes very small.

Other numerical experiments (not reported here) have shown that, when the error on the gradient

is small (σ � 1), the two versions pj = p̃j and pj = 1 give almost the same results, and this is
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run number 1 2 3
‖(x, y)− (x∗, y∗)‖/‖(x∗, y∗)‖ (pj = 1) 1.0168 0.3833 0.7521

f(x, y) (pj = 1) 0.5295 0.0368 1.47
‖(x, y)− (x∗, y∗)‖/‖(x∗, y∗)‖ (pj = p̃j) 0.0033 0.0028 0.0147

f(x, y) (pj = p̃j) 2.6474e-6 1.9778e-6 4.3548e-5
‖(x, y)− (x∗, y∗)‖/‖(x∗, y∗)‖ (pj = pmin) 0.1290 0.1567 0.0068

f(x, y) (pj = pmin) 0.0036 0.0059 9.1426e-6

Table 4.1: For three different runs of Algorithm 4.1, the table shows the values of the
objective function and relative error of the solution found for the three choices pj = 1,

pj = p̃j , and pj = pmin = 5 · 10−3.

(a) Average of function values. (b) Average of absolute error of iterates.

(c) Average percentage of successful iterations.

Figure 4.1: Average results of Algorithm 4.1 for 60 runs when using probabilities
pj = 1 (dotted line), pj = p̃j (solid line), and pj = pmin (dashed line).

consistent with the theory because when σ → 0, from (4.6),

p̃j → CDF−1
χ2(n) (∞) = 1.

Note that, on the other extreme, when the error on the gradient is big (σ � 1), version pj = p̃j

approaches version pj = pmin since p̃j ' pmin.
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4.4.2 Expensive gradient case

Let us assume that, in practice, for a given problem, one has two routines for gradient calculation.

The first routine computes the exact gradient and is expensive. The second routine is less

expensive but computes only an approximation of the gradient. The model gradient results from

a call to either routine. In this section, we propose a technique to choose the probability of

calling the exact gradient which makes our approach applicable.

Algorithm 4.2: Algorithm to determine when to call the exact gradient

Initialization
Choose the constant pmin ∈ (0, 1) (pmin is the lower bound of all the probabilities
p∗j ).

For a chosen probability p̄j such that p̄j ≥ pmin

1. Sample a random variable U ∼ U([0, 1/p̄j ]), independently from FMj−1, and
U([0, 1/p̄j ]) is the uniform distribution on the interval [0, 1/p̄j ].

1.1 If U ≤ 1, compute gMj using the routine which gives the exact gradient.

1.2 Otherwise, compute gMj using the routine which gives an approximation
of the exact gradient.

Lemma 4.7. If we use Algorithm 4.2 to compute the model gradient at the j-th iteration of

Algorithm 4.1, then we have p∗j ≥ p̄j ≥ pmin.

Proof. By using inclusion of events, we have that:

p∗j = P

(
‖gMj

− J(xj)>F (xj)‖ ≤ κeg
Γαj

∣∣∣∣∣FMj−1

)
≥ P

(‖gMj
− J(xj)>F (xj)‖ = 0

∣∣FMj−1

)
and from Algorithm 4.2 we conclude that:

P
(‖gMj − J(xj)>F (xj)‖ = 0

∣∣FMj−1

) ≥ P(U ≤ 1) =
1

1/p̄j
,

and thus p∗j ≥ 1
1/p̄j
≥ pmin.

For the experiments we use the same test function and the same parameters as in Section 4.4.1.

In Step 1.2 of Algorithm 4.2, we set the model gradient gMj to the exact gradient of the function

plus a Gaussian noise sampled from N(0, 10I). Across all iterations, we use Algorithm 4.2 to

compute gMj
with the three following choices of p̄j :
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• p̄j = 1/10, i.e., at iteration j the model gradient coincides with the exact gradient with

probability equal to p̄j = 1/10. Moreover, we have p∗j ≥ p̃j , where p̃j is the same as in

(4.6), and thus one can choose pj = max{1/10, p̃j}.
• p̄j = 1/50, with the same analysis as before and one can choose pj = max{1/50, p̃j}.
• p̄j ' 0 (p̄j = 10−10 in the experiment below), i.e., at iteration j the probability that

the model gradient coincides with the exact gradient is very small. Thus one can choose

pj = p̃j .

(a) Average of function values. (b) Average of absolute error of iterates.

Figure 4.2: Average results of Algorithm 4.1 for 60 runs when using probabilities
pj = p̃j (solid line), pj = max{1/10, p̃j} (dotted line), and pj = max{1/50, p̃j} (dashed

line).

Figure 4.2 depicts the average of the function values and the absolute error of the iterates over 60

runs of Algorithm 4.1 when using the three choices of the probability pj . As expected, the better

the quality of the model is the more efficient the Algorithm 4.1 is (less iterations are needed to

‘converge’ in the sense of sufficiently reducing the objective function value and absolute error).

We can clearly see that Algorithm 4.1 using the models for which pj = max{1/10, p̃j} provides a

better approximation to the minimizer of the objective function than using the models for which

pj = max{1/50, p̃j}, and this latter one is better than the case when pj = p̃j .

The main contribution of this chapter was to propose a variant of Levenberg-Marquardt method

to deal with the nonlinear least squares problems for which the exact gradient is not available

and we have only a probabilistic models. We illustrated our new approach with a basic numerical

application using Rosenbrock function. In the next chapter, we present the application of our

approach to data assimilation problems, more precisely we will show that solving 4DVAR prob-

lem using EnKS as linear solver is equivalent to approximating derivatives in random fashion.

Then we give a variant of algorithm 4.1 to solve the 4DVAR problem while ensuring the global

convergence. Moreover we illustrate numerically our approach using Lorenz 63 equations as a

forecast model in 4DVAR problem.



Chapter 5

Probabilistic methods for 4DVAR

problems (ensemble based

methods)

The aim of this chapter is to present the application of the approach developed in the previ-

ous chapter to data assimilation problems (4DVAR). We will show that solving 4DVAR prob-

lem, using EnKS as linear solver, is equivalent to approximating derivatives in random fash-

ion, which renders our approach sound in the case of hybridization of 4DVAR and ensemble-

based methods. Combinations of ensemble (EnKF/EnKS and their variants) and variational

(3DVAR/4DVAR) approaches have become of considerable recent interest in data assimilation

[17, 18, 58, 107, 119, 126]. In [126] and [107], it was proposed to use gradient methods in the

span of the ensemble to solve the 3DVAR problem. In [17, 107] the authors propose to add

regularization and use ensemble method approaches to minimize the nonlinear objective func-

tion over linear combinations of the ensemble. The authors in [81, 82] combine ensembles with

strong-constraint 4DVAR and perform the minimization in the observation space. The proposed

approach in [18] extends the method of [17] to strong-constraint 4DVAR, and the authors scale

the ensemble to approximate the derivatives (tangent operators) as in [107]. They call their

approach bundle variant which is the same as using finite differences to approximate derivatives.

Here, we use the same technique to approximate the derivatives, and we propose also an other

different implementation which relies on the scaling of the ensemble, but different from the bun-

dle variant. The approach proposed in [18] nests the minimization loop for the strong-constraint

4DVAR objective function inside the ensemble and performs the minimization over the span of

the ensemble, rather than nesting ensemble as a linear solver inside the 4DVAR minimization

loop over the full state space as we will present here.

In this chapter, we propose to use the EnKS as linear least squares solver for weak-constraint

4DVAR problem (2.34). The ensemble approach is naturally parallel over the ensemble members.

The proposed approach uses finite differences from the ensemble or scale the covariances to avoid

using tangent and adjoint operators. We will present a version of Levenberg-Marquardt method,

66
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to solve the general nonlinear least squares (2.34), and to use EnKS to approximate the solution

of the linearized subproblem. The method that we will present is suitable for the large dimension

problems. The method needs only a matrix vector products.

The reminder of this chapter is organized as follows, we begin by explaining how to approximate

the solution of the linearized subproblem arising in Levenberg-Marquardt method using the

ensembles (see Section 5.1). Next, we show that solving 4DVAR problem using EnKS as linear

solver is equivalent to consider subproblems with random gradients. Finally, we give a numerical

illustration using Lorenz 63 equations as a forecast model in 4DVAR problem (see section 5.2).

5.1 4DVAR by ensemble Kalman smoother

We recall the least squares problem to be solved:

min
x0,...,xp∈Rn

f(x0, . . . , xp) =
1
2

(
‖x0 − xb‖2B−1 +

p∑
k=1

‖xk −Mk(xk−1)‖2Q−1
k

(5.1)

+
p∑
k=0

‖Hk(xk)− yk‖2R−1
k

)
.

5.1.1 Levenberg-Marquardt and Ensemble Kalman smoother method

(LM-EnKS)

When applying the Gauss-Newton algorithm to solve the problem in (5.1). This latter problem is

solved iteratively by linearization. At iteration j, one solves the following linearized subproblem

for the increments δxj0:p:

min
δxj0:p

1
2

(∥∥∥xj0 + δxj0 − xb
∥∥∥2

B−1
+

p∑
k=1

∥∥∥xk + δxjk −Mk

(
xjk−1

)
−M′k

(
xjk−1

)
δxjk−1

∥∥∥2

Q−1
k

(5.2)

+
p∑
k=0

∥∥∥yk −Hk (xjk)−H′k (xjk) δxjk∥∥∥2

R−1
k

)
.

This is known in data assimilation community as the incremental approach [8, 27, 115]. For the

following we omit the index j. Denote:

δxb = xb − x0, mk =Mk (xk−1)− xk, Mk =M′k (xk−1) , k = 1, . . . , p,

dk = yk −Hk (xk) , k = 1, . . . , p, Hk = H′k (xk) , k = 0, . . . , p,

and write the auxiliary linear least squares problem (5.2) as:

min
δx0:p

(
‖δx0 − δxb‖2B−1 +

p∑
k=1

‖δxk −Mkδxk−1 −mk‖2Q−1
k

+
p∑
k=0

‖dk −Hkδxk‖2R−1
k

)
. (5.3)

The function minimized in (5.3) is the same as the one minimized in the KS (the function

minimized to find the KS mean) [8]. Hence the solution of (5.3) is then the mean of the smoothing
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problem whose evolution is given by:

δx0 = δxb + vb, vb ∼ N(0, B), (5.4)

δxk = Mkδxk−1 +mk + vk, vk ∼ N(0, Qk), k = 1, . . . , p, (5.5)

dk = Hkδxk + wk, wk ∼ N(0, Rk), k = 0, . . . , p. (5.6)

The Gauss-Newton method with the KS as a linear solver (solver used to solve the subproblem

(5.3) at each iteration) is known as the iterated Kalman smoother [8, 46].

We have seen that Gauss-Newton method may diverge, and convergence to a stationary point

of (5.1) can be recovered by a control of the step δx0:p. The Levenberg-Marquardt method (see

section 2.3.4.4) controls the step δx0:p by adding term of the form γ2 ‖δx0:p‖, or in this section

more generally term of the form γ2 ‖δx0:p‖2S−1
0:p

, where S0:p is a symmetric positive definite matrix.

These term controls the step size as well as rotates the step direction towards the steepest descent,

and obtain the Levenberg-Marquardt method x0:p ← x0:p + δx0:p, where δx0:p is the minimizer

of:

mj(x0:p + δx0:p) =
1
2

(
‖δx0 − δxb‖2B−1 +

p∑
k=1

‖δxk −Mkδxk−1 −mk‖2Q−1
k

+
p∑
k=0

‖dk −Hkδxk‖2R−1
k

+ γ2

p∑
k=0

‖δxk‖2S−1
k

)
. (5.7)

Similarly as in [68], we interpret the regularization terms:

γ2

p∑
k=0

‖δxk‖2S−1
k

=
p∑
k=0

‖δxk‖2(γ−2Sk)−1

in (5.7) as arising from additional independent observations:

0 = δxk + ek, ek ∼ N
(
0, γ−2Sk

)
, k = 0, . . . , p.

Hence the solution of the subproblem (5.7) is equal to the mean of the smoothing problem whose

evolution is given by:

δx0 = δxb + vb, vb ∼ N(0, B),

δxk = Mkδxk−1 +mk + vk, vk ∼ N(0, Qk), k = 1, . . . , p,

dk = Hkδxk + wk, wk ∼ N(0, Rk), k = 0, . . . , p, (5.8)

0 = δxk + ek, ek ∼ N
(
0, γ−2Sk

)
, k = 0, . . . , p. (5.9)

To approximately solve the subproblem (5.7), we propose to use the EnKS as a linear solver

instead of the KS (which solve exactly the subproblem and needs the tangent and adjoint oper-

ators).

Since in EnKS the state covariance determines the spread of the ensemble, and we may want to

work with ensembles with a very small spread to avoid linearization by tangent operators, we
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use covariances scaled by a parameter t > 0:

1
2

(
‖δx0 − δxb‖2(tB)−1 +

p∑
k=1

‖δxk −Mkδxk−1 −mk‖2(tQk)−1

+
p∑
k=0

‖dk −Hkδxk‖2(tRk)−1 + γ2

p∑
k=0

‖δxk‖2(tSk)−1

)
. (5.10)

The value of the parameter t does not change the minimizer of (5.7), but it will affect the

operation of the EnKS.

The minimizer δx0:p of (5.10) (or equivalently (5.7)) is then the mean of the smoothing problem

whose evolution is given by:

δx0 = δxb + vb, vb ∼ N(0, tB),

δxk = Mkδxk−1 +mk + vk, vk ∼ N(0, tQk), k = 1, . . . , p

dk = Hkδxk + wk, wk ∼ N(0, tRk), k = 0, . . . , p, (5.11)

0 = δxk + ek, ek ∼ N
(

0,
t

γ2
Sk

)
, k = 0, . . . , p. (5.12)

From section 2.2.4, and following the spirit of Algorithm 2.4, the EnKS method, with scaled

covariances, to approximate the minimizer of (5.10) gives:

1. Generate the initial ensemble
[
δx1

0|−1, . . . , δx
N
0|−1

]
=
[
δxl0|−1

]
, by sampling δxl0|−1 ∼

N (δxb, tB), where l = 1, . . . , N is the ensemble member index.

2. For k = 0, 1, . . . , p

(a) With
[
δxl0:k|k−1

]
already computed, Bayesian update for the observation (5.11):

E` =
[
e1
` , . . . , e

N
`

]
, el` = δxl`|k−1 −

1
N

N∑
i=1

δxi`|k−1, ` = 0, . . . , k, l = 1, . . . , N

Zk =
[
z1
k, . . . , z

N
k

]
, zlk = Hkδx

l
k|k−1 −

1
N

N∑
i=1

Hkδx
i
k|k−1, l = 1, . . . , N (5.13)

Dk =
[
d1
k, . . . , d

N
k

]
, dlk = dk − wlk −Hkδx

l
k|k−1, w

l
k ∼ N (0, tRk) , l = 1, . . . , N,

(5.14)

PN0:k,0:k|k−1 =
1

N − 1


E0

...

Ek

 [E>0 . . . E>k
]
.
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Then we get the update formula:
δxl0|k

...

δxlk|k

 =


δxl0|k−1

...

δxlk|k−1

+ PN0:k,0:k|k−1H
>
k (tRk + HkP

N
0:k,0:k|k−1H

>
k )−1

(
dk − wlk −Hkδx

l
k|k−1

)
(5.15)

=


δxl0|k−1

...

δxlk|k−1

+


E0

...

Ek

 Z>k t−1R−1
k

N − 1

[
I − 1

N − 1
Zk

(
I +

Z>k t
−1R−1

k Zk
N − 1

)−1

Z>k t
−1R−1

k

]
dlk.

(b) Bayesian update for the regularization (5.12) is similar but simpler, taking the iden-

tity for Hk, 0 for dk, and t
γ2Sk for Rk. It might be implemented by a call to the

same subroutine as for the Bayesian update for the observation yk.

E1
` =

[
e11
` , . . . , e

N1
`

]
, el1` = δxl1`|k −

1
N

N∑
i=1

δxi1`|k, ` = 0, . . . , k, l = 1, . . . , N

Z1
k =

[
z11
k , . . . , z

N1
k

]
, zl1k = δxl1k|k −

1
N

N∑
i=1

δxi1k|k, l = 1, . . . , N

D1
k =

[
d11
k , . . . , d

N1
k

]
, dl1k = wl1k − δxl1k|k, wl1k ∼ N

(
0,

t

γ2
Sk

)
, l = 1, . . . , N.

PN0:k,0:k|k =
1

N − 1


E1

0

...

E1
k

[E1>
0 . . . E

1>
k

]
.

We get the update formula:
δxl10|k

...

δxl1k|k

 =


δxl0|k

...

δxlk|k

+ PN0:k,0:k|k

(
t

γ2
Sk + PN0:k,0:k|k

)−1 (
wl1k − δxlk|k

)

=

 δxl0|k
...

δxlk|k

+


E1

0

...

E1
k

 Z1>
k

γ2

t S
−1
k

N − 1
(5.16)

I − 1
N − 1

Z1
k

(
I +

Z1>
k

γ2

t S
−1
k Z1

k

N − 1

)−1

Z1>
k

γ2

t
S−1
k

 dl1k ,
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(c) While k ≤ p− 1, advance the ensemble members in time by applying the linearized

model Mk+1 and sampling the model error:

δxlk+1|k = Mk+1δx
l1
k|k +mk+1 + vlk+1, v

l
k+1 ∼ N (0, tQk+1) . (5.17)

3. The approximation of the minimizer of (5.7) (or equivalently the minimizer of (5.10)) is
1
N

∑N
l=1 δx

l1
0:p|p.

5.1.2 Finite differences and the fully nonlinear method

The derivatives Mk = M′k(xk−1), k ∈ {1, . . . , p}, and Hk = H′k(xk), k ∈ {0, . . . , p}, of the

operators Mk and Hk only occur in the evaluation of matrix-vector products. Thus, we can

replace the derivatives by finite differences involving only the evaluation of the original operators,

obviating the need for tangential operators. Substituting

M′k (xk−1) δxl1k−1|k−1 ≈
Mk

(
xk−1 + τδxl1k−1|k−1

)
−Mk (xk−1)

τ
with τ > 0, (5.18)

in (5.17) gives:

δxlk|k−1 =
Mk

(
xk−1 + τδxl1k−1|k−1

)
−Mk (xk−1)

τ
+ [Mk (xk−1)− xk] + vlk, (5.19)

l = 1, . . . , N,

and substituting

H′k (xk) δxlk|k−1 ≈
Hk
(
xk + τδxlk|k−1

)
−Hk (xk)

τ
(5.20)

in (5.13) and (5.14) gives:

zlk =
Hk
(
xk + τδxlk|k−1

)
−Hk (xk)

τ
− 1
N

N∑
i=1

Hk
(
xk + τδxik|k−1

)
−Hk (xk)

τ
(5.21)

=
1
τ

[
Hk
(
xk + τδxlk|k−1

)
− 1
N

N∑
i=1

Hk
(
xk + τδxik|k−1

)]
, l = 1, . . . , N,

dlk = [yk −Hk (xk)]− wlk −
Hk
(
xk + τδxlk|k−1

)
−Hk (xk)

τ
, l = 1, . . . , N. (5.22)

When τ → 0, the resulting method is asymptotically equivalent to the method with the deriva-

tives (see chapter 7 for the proof). In the case when τ = 1, and t = 1 we recover the standard

EnKS as presented in [43]. Indeed, (5.19) becomes:

δxlk|k−1 =Mk

(
xk−1 + δxl1k−1|k−1

)
−Mk (xk−1) + [Mk (xk−1)− xk] + vlk

=Mk

(
xk−1 + δxl1k−1|k−1

)
− xk + vlk.
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Noting that xk−1 + δxl1k−1|k−1 = xl1k−1|k−1, (5.19) becomes:

xlk|k−1 =Mk

(
xl1k−1|k−1

)
+ vlk, (5.23)

which is exactly the same as advancing the ensemble member l in the usual way, as in [43].

Similarly, noting that xk + δxlk|k−1 = xlk|k−1, (5.22) becomes with τ = 1:

zlk = Hk
(
xk + δxlk|k−1

)
−Hk

(
xk|k−1

)− 1
N

N∑
i=1

[
Hk
(
xk + δxik|k−1

)
−Hk

(
xk|k−1

)]
= Hk

(
xlk|k−1

)
− 1
N

N∑
i=1

Hk
(
xik|k−1

)
, (5.24)

and (5.21) becomes:

dlk = [yk −Hk (xk)]− wlk −Hk
(
xk + δxlk|k−1

)
+Hk (xk)

= yk − wlk −Hk
(
xlk|k−1

)
, (5.25)

which is the same as presented in [43].

Note that, in the case when τ 6= 1, the dynamical model operator is evaluated two times (we

need to evaluate it in two different points) to approximate the derivatives in EnKS. However in

the case when τ = 1, one evaluation of this operator is needed. In addition when the covariances

are scaled with t > 0 so small, τ = 1 may be sufficient to approximate well the derivatives.

Therefore, we conclude that the cost in term of the model operator evaluations is less in the case

where the covariances are scaled with small t (t << 1) than in the case where the covariances

are not scaled.

The pseudo-code for the Levenberg-Marquardt method, using EnKS as linear solver, to solve

4DVAR problem (5.1) is given in Algorithm 5.1.

5.2 LM-EnKS and Levenberg-Marquardt based on proba-

bilistic models

In Algorithm 5.1, we use EnKS method to approximate the subproblem solution. When the

ensemble size is infinite the method gives the exact solution of the linearized subproblem (see

Chapter 7), hence the use of a finite ensemble can be seen in turn as an approximation of

derivatives. In this section we will quantify probabilistically the error between the derivatives

approximation made when using EnKS and the exact derivatives. Then we give a version of

Algorithm 4.1 for the solution of the 4DVAR problem (5.1) when using EnKS as the linear

solver, and adding the regularization.
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Algorithm 5.1: Levenberg-Marquardt EnKS algorithm

Initialization
Choose the constants η ∈ (0, 1), γmin, γmax > 0,τ ∈ (0, 1], t ∈ (0, 1] and λ > 1.
Select x0

0:p and γ0 ∈ [γmin, γmax]. Choose all the parameters related to solving the
4DVAR problem (5.1) using EnKS as the linear solver.

For j = 0, 1, 2, . . . , and while γj ≤ γmax

1. Compute the increment ensemble [δxl0:p|p]
N
l=1 using (5.16), and by

approximating the derivatives as explained in section 5.1.2. Let

sj0:p =
1
N

N∑
l=1

δxl0:p|p.

2. Compute ρj =
f(xj

0:p)−f(xj
0:p+sj

0:p)
mj(xj

0:p)−mj(xj
0:p+sj

0:p) , where f is the nonlinear least squares

model in (5.1) and mj is the model in (5.7).

3. If ρj ≥ η1, then set xj+1
0:p = xj0:p + sj0:p and γj+1 = max(γj , γmax).

Otherwise, set xj+1
0:p = xj0:p and γj+1 = λγj .

For simplicity, we now rewrite the linear system (5.4)-(5.6) as:

δX = δXb + V, V ∼ N(0, BV ), (5.26)

D = HδX +W, W ∼ N(0, R), (5.27)

where

δX = [δx0; · · · ; δxp] is the joint state of the states δx0, . . . , δxp,

D = [d0; d1; · · · ; dp],

δXb = [δxb; M1δxb +m1; M2(M1δxb +m1) +m2; · · · ; Mp(· · ·M1δxb +m1 · · · ) +mp],

H = diag(H0, . . . ,Hp) is the joint observation operator,

V = [vb; M1vb + v1; M2(M1vb + v1) + v2; · · · ; Mp(· · ·M1vb + v1 · · · ) + vp],

BV = cov(V ), W = [w0;w1; · · · ;wp], and R = cov(W ).

To simplify it even more, we make the change of variables U = δX−δXb, and then (5.26)–(5.27)

becomes:

U ∼ N(0, BV ) (5.28)

D −HδXb = HU +W, W ∼ N(0, R), (5.29)
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and the linear least squares problem (5.3) becomes, with u = δX − δXb:

min
u∈Rn(p+1)

1
2

(
‖u‖2

B−1
V

+ ‖D −HδXb −Hu‖2R−1

)
. (5.30)

To approximate the solution of the problem (5.30), we use a centered EnKS, and approximate

the derivatives by finite differences. We explain in the following how to built this approximation.

Let us denote by l the ensemble members index, running over l = 1, . . . , N , where N is the

ensemble size. We sample an ensemble
[
Ũ l0:p

]N
l=1

from N(0, BV ) as follows:

We sample
[
vlb
]N
l=1

according to N(0, B),
[
vl1
]N
l=1

according to N(0, Q1), . . .,
[
vlp
]N
l=1

according

to N(0, Qp), and then we set
[
Ũ l0:p

]N
l=1

as follows:

For l ∈ {1, . . . , N}, Ũ l0 = vlb, Ũ
l
1 = M1v

l
b + wl1, . . ., Ũ lp = Mp(· · ·M1v

l
b + vl1 · · · ) + vlp.

When there is no confusion on the notation we omit the subscripts. Let

¯̃U0:p =
1
N

N∑
l=1

Ũ l0:p and BN =
1

N − 1

N∑
l=1

(
Ũ l0:p − ¯̃U0:p

)(
Ũ l0:p − ¯̃U0:p

)>
be the empirical mean and covariance of the ensemble Ũ l0:p, respectively. One has:

BN = CC>, where C =
1√
N − 1

[
Ũ1 − ¯̃U, Ũ2 − ¯̃U, . . . , ŨN − ¯̃U

]
.

We then build the centered ensemble
[
U l
]N
l=1

=
[
Ũ l − ¯̃U

]N
l=1

. Note that the empirical mean of

the ensemble
[
U l
]N
l=1

is equal to zero and that its empirical covariance matrix is BN .

Now one generates the ensemble
[
U l0:p|p

]N
l=1

as follows:

U l0:p|p = U l0:p +KN
(
D −W l −HδXb

)
, l = 1, . . . , N, (5.31)

where W l is sampled from N(0, R), and

KN = BNH>
(
R+ HBNH>

)−1
.

In practice, as we already explained in section 2.2.2, the empirical covariance matrix BN is

never computed or stored since to compute the matrix products BNH> and HBNH> only

matrix-vector products are needed:

BNH> =
1

N − 1

N∑
l=1

U lU l
>

H> =
1

N − 1

N∑
l=1

U lh>l ,

HBNH> = H
1

N − 1

N∑
l=1

U lU l
>

H> =
1

N − 1

N∑
l=1

hlh
>
l ,

KN =
1

N − 1

N∑
l=1

U lh>l

(
R+

1
N − 1

N∑
l=1

hlh
>
l

)−1

,



Chapter 5. Probabilistic methods for 4DVAR problems 75

where hl = HU l =
[
H0U

l
0; · · · ; HpU

l
p

]
.

Let Ū and W̄ denote the empirical mean of the ensembles U l0:p|p and W l, respectively. One has

from (5.31):

Ū = KN
(
D −HδXb − W̄

)
. (5.32)

5.2.1 The linearized least squares subproblem arising in EnKS

Ū is equal to the KS mean for the smoothing problem whose evolution is given by:

Ũ ∼ N(0, BN ),

D̃ = HŨ + W̃ , W̃ ∼ N(0, R), where D̃ = D −HδXb − W̄ . (5.33)

Hence, for a large N (such that BN is invertible), Ū is the solution of the following linear least

squares problem:

min
u∈Rn(p+1)

1
2

(
‖u‖2

(BN )−1 + ‖Hu− D̃‖2R−1

)
. (5.34)

From the above derivation, we conclude that when we use the EnKS (until now with exact

derivatives) to approximate the solution of the linearized subproblem (5.3), what is obtained is

the solution of the linear least squares problem (5.34). The least squares model in (5.34) can be

seen, in turn, as a realization of the following stochastic model:

1
2

(
‖u‖2B−1 + ‖Hu− D̃‖2R−1

)
, (5.35)

where B−1 and D̃ are random variables, with realizations
(
BN
)−1 and D̃, respectively. Hence

approximating the solution of the linearized subproblem (5.3) using EnKS, is the same as finding

a minimizer of a realization of the quadratic random model (5.35). This method which approx-

imates the solution of the linearized subproblem (5.3) using EnKS may diverge. Convergence

to a stationary point of (5.1) can be recovered by controlling the size of the step, and one pos-

sibility way to do so is to consider the application of the Levenberg-Marquardt method as in

Algorithm 2.8. At each step, a regularization term is then added to the model in (5.34):

m(x+ u) =
1
2

(
‖u‖2

(BN )−1 + ‖Hu− D̃‖2R−1 + γ2‖u‖2
)
, (5.36)

which corresponds to adding a regularization term to the model (5.35):

M(x+ u) =
1
2

(
‖u‖2B−1 + ‖Hu− D̃‖2R−1 + Γ2‖u‖2

)
. (5.37)

We now provide the details about the solution of (5.36). For this purpose let

PN = (I −KNH)BN .
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Note that by using the Sherman–Morrison–Woodbury formula one has:

PN =
(
(BN )−1 + H>R−1H

)−1
,

in other words, PN is the inverse of the Hessian of model in (5.34).

Proposition 5.1. The minimizer of the model (5.36) is u∗ = Ū − PN (PN + (1/γ2)In)−1Ū .

Proof. Since Ū is the solution of problem (5.34), a Taylor expansion around Ū of the model in

(5.34) gives:

1
2

(
‖u‖2

(BN )−1 + ‖Hu− D̃‖2R−1

)
=

1
2

(
‖Ū‖2

(BN )−1 + ‖HŪ − D̃‖2R−1 + ‖u− Ū‖2(PN )−1

)
.

Hence, the minimizer of the model (5.36) is the same as the minimizer of

1
2

(
‖Ū‖2

(BN )−1 + ‖HŪ − D̃‖2R−1 + ‖u− Ū‖2(PN )−1 + γ2‖u‖2
)
.

and thus given by:

u∗ =
(
(PN )−1 + γ2I

)−1
(PN )−1Ū . (5.38)

By using the Sherman–Morrison–Woodbury formula, one has:

(
(PN )−1 + γ2I

)−1
= PN − PN (PN + (1/γ2)In

)−1
PN ,

which together with (5.38) concludes the proof.

5.2.2 A derivative-free LM-EnKS

The linearized model and observation operators appear only when acting on a given vector, and

therefore they could be efficiently approximated by finite differences (the same way as in Section

5.1.2). The linearized observation operator Hk = H′k(xk), k ∈ {0, . . . , p}, appears in the action

on the ensemble members and can be approximated by:

Hkδxk = H′k(xk)δxk ' Hk (xk + τδxk)−Hk (xk)
τ

,

where τ > 0 is a finite differences parameter. The linearized model M1 =M′
1(x0) occurs in the

action on the vector δxb, M2 = M′
2(x1) occurs in the action on the vector M1δxb, and so on

for M3, . . . ,Mp, and (just for the first two terms) the finite difference approximations are:

M1δxb = M′
1(x0)δxb ' M1(x0 + τδxb)−M1(x0)

τ

M2(M1δxb +m1) = M′
2(x1)(M1δxb +m1) ' M2 (x1 + τ(M1δxb +m1))−M2(x1)

τ

' M2 (x1 +M1(x0 + τδxb)−M1(x0) + τm1)−M2(x1)
τ

.
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Since our approach is derivative free, we replace all the derivatives of the model and of the

observation operators by approximation by finite differences. The quantities using derivatives

become then:

ĥl =

[
H0

(
x0 + τU l0

)−H0 (x0)
τ

; · · · ;
Hp
(
xp + τU lp

)−Hp (xp)
τ

]
' hl,

K̂N =
1

N − 1

N∑
l=1

U lĥ>l

(
R+

1
N − 1

N∑
l=1

ĥlĥ
>
l

)−1

' KN ,

ˆδXb =
[
δxb;

M1 (x0 + τδxb)−M1 (x0)
τ

+m1; · · ·
]
' δXb, (5.39)

ĤδXb =
[H0 (x0 + τδxb)−H0 (x0)

τ
; · · ·

]
' HδXb,

Û = K̂N (D − ĤδXb − V̄ ) ' Ū ,

P̂N = BN − K̂N 1
N − 1

N∑
l=1

ĥlU
l> ' PN ,

û∗ = Û − P̂N
(
P̂N + (1/γ2)In

)−1

Û ' u∗. (5.40)

Since û∗ is an approximation to u∗ using finite differences for derivatives, there exists a constant

ζ > 0, which depends on the second derivatives of the model and observation operators, such

that ‖e‖ ≤ ζτ , where e = u∗ − û∗. Moreover, from (5.36), u∗ is the solution of the normal

equations: ((
BN
)−1

+ H>R−1H + γ2I
)
u∗ = H>R−1D̃,

where H>R−1D̃ = ∇m(x) = gm, and thus:((
BN
)−1

+ H>R−1H + γ2I
)
û∗ = gm −

((
BN
)−1

+ H>R−1H + γ2I
)
e,

and so û∗ can be seen as an inexact solution of the normal equations, with a residual equal to:

r = − ((BN )−1 + H>R−1H + γ2I
)
e.

We have seen that the solution of the normal equations can be inexact as long as Assumption 4.2.2

is met. The residual r is then required to satisfy ‖r‖ ≤ ε‖gm‖, for some ε > 0, to fulfill the global

convergence requirements of our Levenberg-Marquardt approach, and for this purpose we need

the following assumption.

Assumption 5.2.1. The Jacobian of the observation operators Hk, k = 0, . . . , p, are uniformly

bounded, i.e., there exists κH > 0 such that ‖H′k(xk)‖ ≤ κH for all k ∈ {0, .., p} and for all

iterations j.

Proposition 5.2. Under Assumption 5.2.1. If the finite differences parameter τ is such that

τ ≤ ε‖gm‖
ζ (‖(BN )−1‖+ κ2

H‖R−1‖+ γ2)
, (5.41)

then ‖r‖ ≤ ε‖gm‖.
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Proof. We have:

‖r‖ ≤ ∥∥(BN )−1 + H>R−1H + γ2I
∥∥ ‖e‖

≤ (‖(BN )−1‖+ κ2
H‖R−1‖+ γ2

)
ζτ ≤ ε‖gm‖.

We note that the iteration index j has been omitted from the notation of this section until

now. In fact, the point x has been denoting the iterate xj . Now, from (5.37) the gradient of

the stochastic model is gMj
= −H>R−1D̃ and from (5.30) the exact gradient of the function to

minimized in problem (2.38) is −H>R−1(D −HδXb). Thus,

p∗j = P

(
‖H>R−1(D −HδXb − D̃)‖ ≤ κeg

Γαj

∣∣∣∣∣FM̃j−1

)
.

But we know that D−HδXb − D̃ = V̄ = (1/N)
∑N
i=1 Vi, where Vi are i.i.d. and follow N(0, R),

and thus D −HδXb − D̃ ∼ N(0, R/N) and R−1(D −HδXb − D̃) ∼ R−1/2√
N
N(0, I). Thus

p∗j ≥ P

(
κH‖R−1/2‖√

N
‖N(0, I)‖ ≤ κeg

Γαj

∣∣∣∣∣FM̃j−1

)

= P

(
‖N(0, I)‖ ≤ κ

√
N

Γαj

∣∣∣∣∣FM̃j−1

)
,

where κ = κeg
κH‖R−1/2‖ . Since Γj ≤ min{λjγ0, γmax},

p∗j ≥ CDF−1
χ2(m)

( κ
√
N

min{λjγ0, γmax}α
)2
 def= p̃j , (5.42)

where m =
∑p
k=0mk, mk is the size of yk, and γmax is the tolerance used in the stopping

criterion.

Note that lim
N→∞

p̃j = 1, thus lim
N→∞

p∗j = 1, and hence when N →∞ the gradient approximation

using ensemble converges almost surely to the exact gradient.

We are now ready to propose a version of Algorithm 2.8 for the solution of the 4DVAR prob-

lem (5.1) when using EnKS as the linear solver, and adding the regularization.

5.2.3 Computational experiments with Lorenz 63 as forecast model

The twin experiment technique is used to evaluate the performance of the of Algorithm 5.2. It

can be described as follows: an integration of the model is chosen as the true state, meaning

that an initial true state is fixed (truth0), and then we integrate it over time using the model to

obtain the true state at each time k (truthk). Then, we build the observations yk by applying

the observation operator Hk to the truth and by adding a Gaussian perturbation N(0, Rk).
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Algorithm 5.2: Levenberg-Marquardt based on probabilistic gradient models
for data assimilation 4DVAR problem

Initialization
Choose the constants η1 ∈ (0, 1), η2, γmin, γmax > 0, and λ > 1. Select x0 and
γ0 ∈ [γmin, γmax]. Choose all the parameters related to solving the 4DVAR
problem (5.1) using EnKS as the linear solver.

For j = 0, 1, 2, . . .

1. Choose τ satisfying (5.41). Compute the increment û∗ using (5.40) and set
δx∗ = û∗ + ˆδXb, where ˆδXb is computed as in (5.39). Let sj = δx∗.

2. Compute ρj = f(xj)−f(xj+sj)
mj(xj)−mj(xj+sj)

, where f is the nonlinear least squares
model in (5.1) and mj is the model (5.36).

3. If ρj ≥ η1, then set xj+1 = xj + sj and

γj+1 =


λγj if ‖gmj‖ < η2/γ

2
j ,

max

{
γj

λ

1−pj
pj

, γmin

}
if ‖gmj‖ ≥ η2/γ

2
j ,

where pj = p̃j is computed as in (5.42).
Otherwise, set xj+1 = xj and γj+1 = λγj .

Similarly, the background xb is sampled from the Gaussian distribution with the mean equal to

the initial conditions and the covariance matrix B. Finally we try to retrieve the truth using the

observations and the background.

We consider as model in the problem (2.38), Lorenz 63 equations [84], a simple dynamical model

with chaotic behavior. The Lorenz equations are given by the nonlinear system:

dx

dt
= −σ(x− y),

dy

dt
= ρx− y − xz, and

dz

dt
= xy − βz,

where x = x(t), y = y(t), z = z(t), and σ, ρ, β are parameters. The state at time t is

Xt = (x(t), y(t), z(t))> ∈ R3. This nonlinear system is discretized using a fourth-order Runge-

Kutta method. The parameters σ, ρ, β are chosen as 10, 28, and 8/3 respectively.

The initial truth is set to (1, 1, 1)> and the truth at time k to truthk =M(truthk−1)+vk, where

vk is sampled from N(0, Qk) andM is the model obtained by discretization of Lorenz 63 system.

The model error covariance is given by Qk = σ2
qI where σq = 10−4. The background mean xb

is sampled from N(truth0, B). The background covariance is B = σ2
b I, where σb = 1. The time

step is chosen as dt = 0.11. The time windows length is p = 40. The observation operator is

Hk = 10I. At each time i, the observations are constructed as follows: yk = Hk(truthk) + wk,

where wk is sampled from N(0, R), R = σ2
rI, and σr = 1.
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The size of the ensemble used is N = 400. Following the spirit of Proposition 4.2.2, the finite

difference parameter is set as:

τj = min

{
10−3,

εj‖gmj‖
ζ
(‖(BN )−1‖+ κ2

H‖R−1‖+ γ2
j

)} ,
where the value of 1 is chosen for the unknown constants ζ and κH (see Assumption 5.2.1). In

this experimental framework, the model gradient is given by gmj = −H>R−1D̃ = 10D̃, where D̃

is computed according to (5.33). Then, following the spirit of Assumption 4.2.2, εj is chosen as:

εj = min

{
θin
γαj

,

√
βin

γ2
j

κ2
Jm + γ2

j

}
,

where βin = 1/2, θin = 1, and α = 0.5. The unknown constant κJm (see Assumption 4.3.1) is

set to 1.

The basic algorithmic parameters are set to η1 = η2 = 10−6, γmin = 10−5, γmax = 106, and

λ = 8. The initial regularization parameter is γ0 = 1. Finally, we set κ = 1 in the calculation

of p̃j given in (5.42).

In order to measure the quality of the solutions we use as performance metric the Root Mean

Square Error (RMSE), which is defined as follows:

RMSE =
1
p

p∑
k=0

RSEk,

where RSEk is the Root Squares Error at time k given by

RSEk =

√
1
n

(truthk −xk)>(truthk −xk),

where truthk is the true vector state at time k and xk is the estimator of the state computed

using the algorithm.

(a) The RMSE. (b) Objective function values.

Figure 5.1: Results of one run of Algorithm 5.2 when using probabilities pj = 1
(dotted line) and pj = p̃j (solid line).
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Figures 5.1(a) and 5.1(b) show, respectively, the RMSE and the objective function values, for

one run of Algorithm 5.2, using the choices pj = p̃j and pj = 1 (One run shows well the behavior

of the algorithm on this problem and there was no need to take averages over several runs). As

it can be seen from these plots, 40 iterations were enough for Algorithm 5.2 using pj = p̃j to

reduce the RMSE from 4.88 to 0.019. But when pj = 1 is used, the same 40 iterations were not

enough to drive the RMSE to the same value. These results illustrate the importance of using

probability pj = p̃j to update the regularization parameter γ.

In this chapter we have explained how to use EnKS to approximately solve the linearized least

square subproblem when using Levenberg-Marquardt method to solve 4DVAR problem (see Al-

gorithm 5.1). Moreover, we have shown that using EnKS to solve 4DVAR linearized subproblem

is equivalent to use the Levenberg-Marquardt method based on probabilistic models. Numeri-

cally, we have illustrated the importance of using probability pj to increase the performance of

the new method. In the next chapter, we present more numerical experiments to investigate the

impact of the other parameters, namely the ensemble size (parameter N), the finite differences

parameter (τ) and the covariances scale parameter (t).



Chapter 6

Numerical experiments

In Chapters 4 and 5, we gave a variant of Levenberg-Marquardt algorithm to deal with the case

where the linearized subproblem is solved inexactly and the gradient model is noisy. We already

provide some numerical tests, especially to illustrate the importance of using the probability pj
to update the regularization parameter γ. In this chapter, we give more numerical experiments to

investigate the impact of other parameters. We give tests with simple version of Algorithm 5.1,

where we maintain the regularization parameter fix (we do not update the parameter γ over

iterations). In this case Algorithm 5.1 becomes Algorithm 6.1.

Algorithm 6.1: Levenberg-Marquardt EnKS method with fixed regularization

Initialization
Choose the constants τ ∈ (0, 1], t ∈ (0, 1], N and γ ≥ 0. Select x0

0:p. Choose all
the parameters related to solving the 4DVAR problem (5.1) using EnKS as the
linear solver.

For j = 0, 1, 2, . . .

1. Compute the increment ensemble [δxl0:p|p]
N
l=1 using (5.16) and the

approximation of the derivatives as explained in section 5.1.2. Let
sj0:p = 1

N

∑N
l=1 δx

l
0:p|p.

2. Set xj+1
0:p = xj0:p + sj0:p.

We organize this chapter as follows: in Section 6.1, we give some results where the regularization

is not necessary to guarantee the convergence. We investigate the impact on the progress of

the iterations of the following parameters, (i) the ensemble size (parameter N), (ii) the finite

differences parameter (τ), (iii) and the covariance scale parameter (t). Lorenz 63 equations

system is used as a forecast model. Section 6.2 is devoted to experiments where the regularization

is necessary to guarantee the convergence (Gauss-Newton method without control of the step is

not sufficient to ensure the convergence). We analyze the impact of the regularization parameter

82
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(γ) on the progress of the iterations. The tests in these section are performed using the quasi

geostrophic model as forecast model.

6.1 Numerical experiments using Lorenz 63 equations

In this section, experiments are performed by using the classical Lorenz 63 system [84] as the

forecast model. We show an example without model error (strong-constraint 4DVAR problem),

where convergence is achieved with γ = 0. There is no need for regularization to converge for

this example (Gauss-Newton approach with EnKS as linear solver).

In this section, we first explain the experiments set up. Then we analyze the impact of the

parameters: N , τ and t on the progress of the iterations.

6.1.1 Experiments set up

In the problem (2.38), we consider Lorenz 63 equations as forecast model, (the description of

this model is already given in section 5.2.3). The twin experiment technique is used to evaluate

the performance of the Algorithm 6.1. The initial truth is set to truth0 = [1, 1, 1]> and the truth

at time k to truthk =M(truthk−1), whereM is the model obtained by discretization of Lorenz

63 system. The background mean xb is sampled from N(truth0, B). The background covariance

is B = I3. The time step is chosen as dt = 0.05. The number of time steps is p = 40. The

observation operator is Hk (x, y, z) =
(
x3, y3, z3

)
. At each time k, the observations are built as

follows: yk = Hk(truthk) + vk, where vk is sampled from N(0, R) with R = I3.

6.1.2 The ensemble size impact on the iteration progress

In this section, we investigate the influence of the ensemble size used to approximate the solution

of the linearized subproblem, on the iteration progress. We fix the finite differences parameter

τ to 10−6, and the covariance scale parameter t to 1. Since the results depend on the ensemble

generated at each iteration, the results we report here are averaged over 30 experiments. For

each of these experiments, at each iteration, Algorithm 6.1 produces an ensemble to approximate

the solution of the linearized subproblem.

Figures 6.1 and 6.2 show the box plots 1 of objective function values for eight iterations of

Algorithm 6.1. The plots of the first figure correspond to 4 first iterations respectively. In the

second figure, the plots correspond to the iterations, 5, 6, 7, and 8 respectively. In each plot, the

first column corresponds to the results when N = 10, the second is for N = 50, the third is for

N = 100, the fourth is for N = 200, and the last column is for N = 500.

1It is a matlab function, where in each box the central curve presents the median (red curve), the
edges are the 25th and 75th percentiles (blue curve), the whiskers extend to the most extreme data
points the algorithm (matlab algorithm) considers to be not outliers (black curve), and the outliers are
plotted individually (red dots).
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(a) Objective function value for the first iteration. (b) Objective function value for the second iteration.

(c) Objective function value for the third iteration. (d) Objective function value for the fourth iteration.

Figure 6.1: Box plots of objective function values for the first 4 iterations. In each
plot, the first column corresponds to the results when N = 10, the second is for N = 50,
the third is for N = 100, the fourth is for N = 200, and the last column is for N = 500.

From Figures 6.1 and 6.2 we see clearly, as expected, that increasing values of N provides better

results (in terms of the decrease in the objective function). The standard deviation of the

ensemble of runs (the length of the boxes) decreases when N increases. However, when we are

interested only by the median of the different runs, we observe that for the first four iterations

of the algorithm, the objective function value is almost the same for different values of N . But

after the fifth iteration, the median of the objective function decreases when N increases. So

we conclude that when the current iteration is ”far” from the objective function minimum, on

average, the ensemble size has not a significant influence. However, when the current iteration is

”near” to the minimum, then the larger N is, the better results will be. In the first 4 iterations,

we observe that for some runs, the smaller N is, the better reduction of the objective function will

be. Hence from the previous analysis we conclude that an adaptive ensemble size over iteration

can be a better choice than fixed N for all iterations: to choose small N for the first iteration

and to increase it over iterations.

Figures 6.3 and 6.4 show the box plots of relative gradients for the first eight iterations of

Algorithm 6.1. The plots of the first figure correspond to the four first iterations respectively. In

the second figure, the plots correspond to the iterations, 5, 6, 7, and 8 respectively. In each plot,
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(a) Objective function value for the fifth iteration. (b) Objective function value for the sixth iteration.

(c) Objective function value for the seventh iteration. (d) Objective function value for the eighth iteration.

Figure 6.2: Box plots of objective function values for the 5th, 6th, 7th, and 8th
iterations.

the first column corresponds to the results when N = 10, the second is for N = 50, the third

is for N = 100, the fourth is for N = 200, and the last column is for N = 500. These figures

confirm our previous analysis about the impact of the parameter N .

The mean and the standard deviation over different runs of the objective function and relative

gradient are summarized in tables in Appendix C.

6.1.3 The impact of finite differences parameter along the iterations

In this section, we investigate the influence of the finite differences parameter used to approximate

the derivatives of the model and observation operators. We fix the covariance scale parameter t

to 1, and ensemble size N to 50. The results, we report here, are averaged over 30 experiments.

Tables 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 represent summary of results using Algorithm 6.1 with

the following choices for the parameter τ : 1, 0.1, 10−2, 10−3, 10−4, 10−5 and 10−6 respectively.

These Tables show the mean and the standard deviation of the objective function and relative

gradient for eight iterations.
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(a) Relative gradient for the first iteration. (b) Relative gradient for the second iteration.

(c) Relative gradient for the third iteration. (d) Relative gradient for the fourth iteration.

Figure 6.3: Box plots of relative gradient for the first 4 iterations.

Figures 6.5 and 6.6 show the box plots of objective function for the first eight iterations of

Algorithm 6.1. The plots of the first figure correspond to the four first iterations respectively.

In the second figure, the plots correspond to the iterations, 5, 6, 7, and 8 respectively. In each

plot, the first column corresponds to the results when τ = 10−2, the second is for τ = 10−3, the

third is for τ = 10−4, the fourth is for τ = 10−5, and the last column is for τ = 10−6.

These tables show the impact of the parameter τ on the progress of iterations. For τ = 1 (when

we use the classical non linear EnKS), the results are almost the same after the first iteration, in

this case the iterations do not improve the results. However, when τ ≤ 0.1 the objective function

is decreasing over iterations.

For small values of τ , for example, in Tables 6.3 and 6.4, we see that when τ ≤ 10−2 few iterations

were enough to reduce significantly the objective function. But for τ = 0.1, the algorithm needs

more iterations to reduce the objective function significantly. When τ = 10−4, the results are

slightly different than the results with τ = 10−5 or 10−6. So for these experiments, we conclude

that it is better to choose τ ≤ 10−4, such that the results will be less sensitive to the value of

τ . This value is problem dependent, so for other experiences maybe a smaller τ will be needed.

In practice, to avoid divergence due to the finite differences, it is better to choose τ as small as
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(a) Relative gradient for the fifth iteration. (b) Relative gradient for the sixth iteration.

(c) Relative gradient for the seventh iteration. (d) Relative gradient for the eighth iteration.

Figure 6.4: Box plots of relative gradient for the 5th , 6th,7th and 8th iterations.

possible, and since the computers use finite-precision arithmetic, we need to be careful to the

effects of computer rounding.

We can see also from these tables, that for the first iteration, the best decrease in objective

function is obtained when τ = 1, and the worst decrease is obtained for τ = 10−6 (the bigger τ

is, the better decrease in objective function will be). And from Figures 6.5 and 6.6 we see that

for the first four iterations the bigger τ is, the better results will be, but for the iterations 5,

6, 7, and 8 we see that, the smaller τ is, the better results will be. Hence, an adaptive τ over

iterations can be a good choice than fixed τ for all iterations: To choose big τ (τ = 1) for the

first iteration and to decrease it over iterations. Exploration of the best strategy to choose τ

over iterations will be studied in the future works.



Chapter 6. Numerical experiments 88

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 1.02003e+ 6 760713 0.0254455 0.00793264
2 1.31874e+ 6 904111 0.028162 0.00855416
3 1.32354e+ 6 769817 0.0284948 0.00676967
4 1.38256e+ 6 1.46461e+ 6 0.0279326 0.01112
5 1.54959e+ 6 1.17558e+ 6 0.0292484 0.0100845
6 1.34157e+ 6 988026 0.0275389 0.00930916
7 2.05108e+ 6 2.02847e+ 6 0.032617 0.0130256
8 1.47114e+ 6 1.31421e+ 6 0.0285715 0.0109438

Table 6.1: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for τ = 1. This results are based on 30 runs of the

algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 1.39475e+ 9 1.02545e+ 7 1.94175 0.0104526
2 5.26613e+ 7 551084 0.223874 0.00140712
3 414255 15901.7 0.0153886 0.000395556
4 5699.8 410.231 0.00117148 0.000542535
5 1299.63 315.227 0.00127304 0.000425505
6 830.148 130.175 0.00118449 0.000252579
7 826.846 133.989 0.00128004 0.000224837
8 847.404 162.952 0.00126899 0.000294887

Table 6.2: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for τ = 0.1. This results are based on 30 runs of the

algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.21852e+ 9 3.84072e+ 6 3.61684 0.00327528
2 1.70111e+ 8 250978 0.464039 0.000439236
3 2.98839e+ 6 7613.99 0.0454189 6.15652e− 5
4 3266.88 44.8316 0.00120926 1.28007e− 5
5 89.2153 2.95203 0.000119746 3.21321e− 5
6 17.0808 2.27432 0.000122451 3.17617e− 5
7 10.7502 2.00966 0.000123399 2.70921e− 5
8 10.8172 1.88677 0.000122659 2.7123e− 5

Table 6.3: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for τ = 10−2. This results are based on 30 runs of the

algorithm.
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Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.54264e+ 9 3.99354e+ 6 3.88933 0.00332865
2 1.93129e+ 8 265209 0.503535 0.000447233
3 3.68603e+ 6 7814.41 0.0507985 5.75722e− 5
4 4431.52 41.6994 0.00150852 8.92524e− 6
5 65.6978 1.45526 2.26206e− 5 8.20163e− 6
6 6.93278 0.428038 1.92633e− 5 6.6285e− 6
7 1.88476 0.254633 1.73697e− 5 6.35718e− 6
8 1.68046 0.213557 2.17494e− 5 9.8257e− 6

Table 6.4: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for τ = 10−3. This results are based on 30 runs of the

algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.57725e+ 9 3.66682e+ 6 3.91813 0.00303631
2 1.95616e+ 8 249033 0.507715 0.000416979
3 3.76302e+ 6 6988.06 0.0513628 5.07704e− 5
4 4581.31 45.7803 0.00154127 9.35865e− 6
5 65.4442 1.45785 1.987e− 5 9.61086e− 6
6 6.844 0.482017 1.54439e− 5 6.27586e− 6
7 1.89082 0.249112 1.73318e− 5 5.58338e− 6
8 1.63813 0.306168 1.54461e− 5 4.786e− 6

Table 6.5: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for τ = 10−4. This results are based on 30 runs of the

algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.58192e+ 9 4.39612e+ 6 3.92203 0.00365915
2 1.95938e+ 8 297734 0.508257 0.000499714
3 3.77314e+ 6 8958.34 0.0514367 6.52323e− 5
4 4594.81 38.0969 0.00154488 7.73641e− 6
5 65.4126 1.55834 1.97131e− 5 7.6434e− 6
6 6.8555 0.421578 1.61269e− 5 6.16052e− 6
7 1.80078 0.250871 1.42417e− 5 5.08144e− 6
8 1.54713 0.227356 1.56828e− 5 5.60583e− 6

Table 6.6: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for τ = 10−5. This results are based on 30 runs of the

algorithm.
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Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.58166e+ 9 4.51102e+ 6 3.92179 0.00374781
2 1.95928e+ 8 301738 0.508239 0.000506715
3 3.7728e+ 6 8519.76 0.0514343 6.22944e− 5
4 4598.51 47.7101 0.00154509 9.46065e− 6
5 65.2617 1.45906 1.79196e− 5 7.04679e− 6
6 6.92311 0.509595 1.83612e− 5 9.08593e− 6
7 1.72074 0.222652 1.63607e− 5 6.36998e− 6
8 1.64117 0.213949 1.78754e− 5 7.12538e− 6

Table 6.7: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for τ = 10−6. This results are based on 30 runs of the

algorithm.

(a) Objective function value for the first iteration. (b) Objective function value for the second iteration.

(c) Objective function value for the third iteration. (d) Objective function value for the fourth iteration.

Figure 6.5: Box plots of objective function values for the first 4 iterations. In each
plot, the first column corresponds to the results when τ = 10−2, the second is for
τ = 10−3, the third is for τ = 10−4, the fourth is for τ = 10−5, and the last column is

for τ = 10−6.
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(a) Objective function value for the fifth iteration. (b) Objective function value for the sixth iteration.

(c) Objective function value for the seventh iteration. (d) Objective function value for the eighth iteration.

Figure 6.6: Box plots of objective function values for the 5th, 6th, 7th, and 8th
iterations. In each plot, the first column corresponds to the results when τ = 10−2, the
second is for τ = 10−3, the third is for τ = 10−4, the fourth is for τ = 10−5, and the

last column is for τ = 10−6

6.1.4 The impact of the covariance scale parameter along iterations

In this section, we investigate the influence of the covariance scale parameter (parameter t)

used to scale the covariances on the iteration progress. As we explained in Section 5.1.1, the

covariance determines the spread of the ensemble, and in purpose to avoid linearization by

tangent operators, we had to work with ensembles with a very small spread. In the following

experiments we do not use linearization of the model and observation operators, hence we set

the finite differences parameter τ to 1. The ensemble size is chosen to be N = 50. The results

are averaged over 30 experiments.
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Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 1.28257e+ 6 1.23853e+ 6 0.0270522 0.0109531
2 1.10873e+ 6 916209 0.0251437 0.00896673
3 1.51647e+ 6 1.49452e+ 6 0.0290045 0.0119987
4 1.39313e+ 6 1.27483e+ 6 0.0279534 0.010177
5 1.51007e+ 6 1.21716e+ 6 0.0292823 0.0108102
6 1.39358e+ 6 880561 0.0288245 0.00842026
7 1.95103e+ 6 4.04489e+ 6 0.0301669 0.0221282
8 1.20969e+ 6 779758 0.0274561 0.00760138

Table 6.8: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for t = 1. This results are based on 30 runs of the

algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 5733.16 19422.4 0.00161204 0.00133425
2 1451.47 1138.93 0.0012582 0.000400696
3 1208.99 396.589 0.00124296 0.000366118
4 1951.53 2175.58 0.0013618 0.000526474
5 2044.8 4057.06 0.00144038 0.000594717
6 1476.91 1402.97 0.00126713 0.000420628
7 1869.56 1229.01 0.00156065 0.000479531
8 1230.38 489.404 0.00133016 0.000369764

Table 6.9: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for t = 0.1. This results are based on 30 runs of the

algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 96236.1 54838.6 0.00356334 0.00141698
2 18.7648 13.5008 0.000167082 7.54836e− 5
3 15.3066 6.5091 0.00016295 7.96217e− 5
4 15.9289 8.13209 0.000170817 8.1496e− 5
5 14.3342 5.64091 0.000138005 6.90142e− 5
6 16.3813 10.5751 0.000176655 0.000111055
7 13.6446 5.73428 0.000138049 7.15604e− 5
8 14.2618 5.64293 0.00014546 7.48936e− 5

Table 6.10: The mean and the standard deviation of the objective function values
and relative gradient over iterations, for t = 10−2. This results are based on 30 runs of

the algorithm.
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Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 151509 30308.4 0.00499104 0.000712935
2 323.352 1157.41 9.7606e− 5 9.18185e− 5
3 5.70462 0.99866 6.62323e− 5 1.01845e− 5
4 5.45984 0.833337 6.82585e− 5 1.27266e− 5
5 5.37228 1.0759 6.99485e− 5 2.20055e− 5
6 5.47419 0.980439 6.59529e− 5 1.17609e− 5
7 5.40448 0.906405 6.64815e− 5 1.36321e− 5
8 5.35449 1.00148 6.56933e− 5 1.48703e− 5

Table 6.11: The mean and the standard deviation of the objective function values
and relative gradient over iterations, for t = 10−3. This results are based on 30 runs of

the algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 156532 6830.53 0.00505647 0.000158234
2 950.31 1941.53 0.000149884 0.000145801
3 13.5984 31.4542 6.31974e− 5 5.56812e− 6
4 5.64767 0.521936 6.34469e− 5 3.45804e− 6
5 5.40699 0.547723 6.22896e− 5 4.15821e− 6
6 5.43251 0.477186 6.31823e− 5 2.65772e− 6
7 5.37252 0.39704 6.26536e− 5 2.62201e− 6
8 5.40146 0.439204 6.22815e− 5 2.39527e− 6

Table 6.12: The mean and the standard deviation of the objective function values
and relative gradient over iterations, for t = 10−4. This results are based on 30 runs of

the algorithm.

Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 158242 2263.76 0.00508601 5.21562e− 5
2 813.719 1756.22 0.000138571 0.000135563
3 17.6345 50.6745 6.4255e− 5 7.59141e− 6
4 5.39086 0.319794 6.24925e− 5 1.58549e− 6
5 5.3323 0.275657 6.24319e− 5 1.60708e− 6
6 5.32189 0.337935 6.20656e− 5 2.27654e− 6
7 5.23654 0.330453 6.17784e− 5 2.00154e− 6
8 5.3509 0.349742 6.24633e− 5 1.93566e− 6

Table 6.13: The mean and the standard deviation of the objective function values
and relative gradient over iterations, for t = 10−5. This results are based on 30 runs of

the algorithm.
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Iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 157885 1981.7 0.00507934 4.59814e− 5
2 1206.74 1975.32 0.000172241 0.00015554
3 18.5641 48.9945 6.40279e− 5 6.60551e− 6
4 5.58651 0.483219 6.27524e− 5 1.95824e− 6
5 5.40551 0.258106 6.2646e− 5 1.51741e− 6
6 5.32878 0.280484 6.2203e− 5 1.93783e− 6
7 5.39498 0.259749 6.27501e− 5 1.68833e− 6
8 5.41447 0.308099 6.30845e− 5 1.70115e− 6

Table 6.14: The mean and the standard deviation of the objective function values
and relative gradient over iterations, for t = 10−6. This results are based on 30 runs of

the algorithm.

Tables 6.8, 6.9, 6.10, 6.11, 6.12, 6.13 and 6.14 represent summary of the results when using

Algorithm 6.1 with the following choices for the convariance scale parameter t: 1, 0.1, 10−2,

10−3, 10−4, 10−5, and 10−6 respectively. These tables show the objective function and the

relative gradient mean and standard deviation for eight iterations.

These tables show the impact of the parameter t on the iteration progress. For t = 1, the

results are almost the same after the first iteration (the same conclusion as for the case when

τ = 1 and t = 1 in the previous section). In this case the iterations do not improve the results.

However when t ≤ 0.1 the objective function is decreasing over iterations. The smaller t is, the

better results will be. For small values of t, for example, in Tables 6.10 and 6.11 we see that

when t ≤ 10−2 few iterations were enough to reduce significantly the objective function. But for

t = 0.1, the algorithm needs more iterations to reduce the objective function significantly. These

results illustrate the importance of scaling the covariances with small t.

6.2 Numerical tests using Quasi Geostrophic model (QG)

In this section, we show an example with model error, and where the regularization is neces-

sary to guarantee the convergence. We will analyze the impact of the regularization parameter

(parameter γ) used in Algorithm 6.1 approach.

We start by introducing the qg model [44], which will be used as dynamical model. Then we

describe the experiments set up. Finally, we present the results when using Algorithm 6.1. We

present the results for the following different choices of regularization parameter γ = 0 (no

regularization used), 0.001, 0.1, 1, 10, 100, 500, 1000.

6.2.1 Model description

The model description follows the ECMWF technical report [47].
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The two-layer qg model represents quasi-geostrophic flow in a cyclic channel. The equations

of the two-level model are given by [44] (see also [97]), and are expressed in terms of non-

dimensionalized variables:
Dq1

Dt
=
Dq2

Dt
= 0 (6.1)

where D
Dt denotes the total derivative, and q1 and q2 denote the quasi-geostrophic potential

vorticity [35] on the upper and lower layers respectively. For each quantity the subscript 1

will refer to the upper layer and 2 to the lower layer. The equations in (6.1) correspond to

conservation of potential vorticity. The quantities q1 and q2 satisfy also the following equations:

q1 = ∇2ψ1 − F1(ψ1 − ψ2) + βy, (6.2)

q2 = ∇2ψ2 − F2(ψ2 − ψ1) + βy +Rs, (6.3)

where ψ denotes stream function, ∇2 is the two dimensional Laplacian, β is the northward

derivative of the Coriolis parameter, and Rs is the heating. The two parameters F1 and F2 are

used to couple the two layers:

F1 =
f2

0L
2

D1g∆θ/θ̄
and F2 =

f2
0L

2

D2g∆θ/θ̄
.

L is a typical length scale. D1 and D2 are the depths of the upper and lower layers respectively.

f0 is the Coriolis parameter at the southern boundary and β0 is its northward derivative. g is

the acceleration due to gravity , ∆θ is the difference in potential temperature across the layer

interface, and θ̄ is the mean potential temperature. We define Ū a typical velocity. We denote

by t̃, x̃, ỹ, ũ, and ṽ the dimensional quantities corresponding to time, spatial coordinates and

velocities respectively. The non-dimensional corresponding quantities are defined by:

t = t̃
Ū

L
, x =

x̃

L
, y =

ỹ

L
, u =

ũ

Ū
, v =

ṽ

Ū
, β = β0

L2

Ū
.

For experiments described in this dissertation, we have set:

L = 106m, Ū = 10ms−1, f0 = 10−4s−1, β0 = 1.5× 10−11s−1m−1,

g = 10ms−2, D1 = 6000m, D2 = 4000m,
∆θ
θ̄

= 0.1.

These parameters are used also to define the true evolution of the system (truth).

The model variables (stream function, potential vorticity and wind components) are defined on

a rectangular grid of dimension nx × ny . In this experiments we choose nx = 40 and ny = 20,

with a dimensional grid spacing of 300km in both the north-south and east-west directions. The

model state is only the values of stream function over the grid. The potential vorticity and wind

components are diagnostic quantities and they can be calculated from stream function. They do

not form part of the control variable. The dimension of the state vector of the model (stream

function) is thus 1600 (2× nx × ny).

The time-stepping consists of a semi-Lagrangian advection of potential vorticity, followed by an
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inversion of the potential vorticity equation to determine stream function and velocity compo-

nents. The interpolation to the departure point is bi-cubic. A 1-hour time step was used for all

the experiments presented here.

The equations are solved on a domain which is cyclic in the zonal direction, hence the potential

vorticity equations can be decoupled. The meridional wind is equal to zero on the northern

and southern boundaries and the stream function in this boundaries is chosen by the user. The

choice of the stream function in the boundaries is equivalent to choose the mean zonal wind on

each layer . In this experiments, the mean wind was 40ms−1 in the upper layer and 10ms−1 in

the lower layer.

Potential vorticity is discretized using a standard five-point finite-difference representation of the

Laplacian. It is inverted by applying ∇2 to equation (6.2) and subtracting F1 times equation

(6.3) and F2 times equation (6.2) to give:

∇2q1 − F2q1 − F1q2 = ∇2(∇2ψ1)− (F1 + F2)∇2ψ1. (6.4)

This latter equation is a two-dimensional Helmholtz equation, which can be solved for ∇2ψ1.

The Laplacian can then be inverted to determine ψ1 . After determining ψ1 and ∇2ψ1, the

stream function on level 2 can be determined by substitution into equation (6.2). Solution

of the Helmholtz equation and inversion of the Laplacian are achieved using an FFT-based

method. Applying a Fourier transform in the east-west direction to equation (6.4) gives a set of

independent equations for each wave number.

6.2.2 Experiments set up

The initial states for the two sets of integration were constructed by taking a sequence of states

from an unperturbed truth run (the truth), and adding perturbations drawn from a multivariate

Gaussian distribution with zero mean and covariance matrix constructed from a large sample

of errors in three-hour forecasts made by a version of the model with layer depths fixed to

D1 = 5500m and D2 = 4500m for the upper and lower layer respectively.

The truth was generated from a model with layer depths of D1 = 6000m and D2 = 4000m, and

the time step was set to 300s whereas the assimilating model had layer depths of D1 = 5500m

and D2 = 4500m, and time step was set to 3600s. these changes on the layer depths and time

step provides a source of model error.

For all the experiments presented here, observations of non-dimensional stream function, vector

wind and wind speed were taken from a truth of the model at 100 points randomly distributed

over both levels. Observations were made every 12 hours. We note that the number of obser-

vations used in an analysis cycle is much smaller than the number of degrees of freedom of the

model. Observation errors were assumed to be independent from each others and uncorrelated in

time. The standard deviations were chosen to be equal to 0.4 for stream function observation er-

ror, 0.6 for wind and 1.2 for wind speed. The observations operator is the bi-linear interpolation

of the model fields to horizontal observation locations.
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The background error covariance matrix (B matrix) and the model error covariances (matrices

Qk) used in these experiments correspond to isotropic, homogeneous correlations of stream

function in the horizontal, with Gaussian spacial structure, and with constant vertical correlation

over the grid. These matrices are characterized by theirs standard deviations, theirs vertical

correlations and theirs horizontal length scale. For the matrix B the standard deviation in this

experiments is 0.8. The vertical correlation is equal to 0.2 and the horizontal length scale is equal

to 106m. For the matrices Qk the standard deviation in this experiments is 0.2. The vertical

correlation is equal to 0.5 and the horizontal length scale is equal to 2× 106m.

We used an analysis windows of 10 days, with two sub-windows of 5 days (p = 2). For testing

codes we used the ECMWF framework named Object-Oriented Prediction System (OOPS) [113].

6.2.3 Numerical results

Figure 6.7: Objective function values for eight iterations when using Gauss-Newton
algorithm (Algorithm 2.7), the subproblem is solved exactly at each iteration.

The proposed method (Algorithm 6.1) uses the sample covariance from the ensemble which can

be suboptimal as a result of small ensemble size. The most common algorithms for dealing

with these deficiency are inflation [3] and covariance localization [66]. Here, we do not want to

use these techniques that would mask some of the properties of the proposed method, hence

the ensemble size is chosen to be large N = 3000. Nevertheless, one can contemplate building

local versions of the method similarly to what was done by [66] (Local Transform Kalman Filter

(LETKF)).

Figure 6.7 shows the objective function over iterations, when using Gauss-Newton method (these

objective function values are summarized in Table C.6 in Appendix C). We see, clearly, that

the Gauss-Newton algorithm does not converge. The objective function is not monotonically

decreasing over iterations. The objective function is oscillating by increasing and decreasing

along iterations. Therefore for this example Gauss-Newton approach without regularization is

diverging.
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(a) Objective function values over iterations for γ = 0. (b) Objective function values over iterations for γ =
0.001.

(c) Objective function values over iterations for γ = 0.1. (d) Objective function values over iterations for γ = 1.

Figure 6.8: Objective function values for eight iterations for the following choices of
γ: 0, 0.001, 0.1, 1.

Figures 6.8(a), 6.8(b), 6.8(c), 6.8(d), 6.9(a), 6.9(b), 6.9(c), and 6.9(d) show the objective function

values over 8 iterations for the following choices of regularization parameter: γ = 0, 0.001, 0.1,

1, 10, 100, 500, 1000, respectively. From these figures, we see that: for γ = 0, as expected,

Algorithm 6.1 is diverging (since we do not use regularization and we only approximate the

linearized subproblem using an ensemble). For small values of γ (in this experiments for γ =

0.001, 0.1 or 1 ) the objective function is not monotonically decreasing. In the case where

γ = 0.001, the algorithm is still diverging even if the regularization is used. Hence small values

of regularization are not enough to control well the step size, in the sense that the objective

function does not decrease monotonically over iterations. However, when γ ≥ 10 the objective

function is decreasing over iterations, for example when γ = 10 the objective function decreases

monotonically from 56508.9 (at the first iteration) to 1367.02 after eight iterations. Moreover, the

decrease in the objective function depends on γ, the best decrease in this experiment is obtained

for γ = 10. For big values of γ (γ ≥ 100) the objective function is decreasing, as expected,

but the decrease in the objective function is less than one attained using γ = 10. We conclude

that when the regularization is used to ensure convergence: (i) for small values of regularization,

the method can still diverging, (ii) and for big values of regularization the objective function

decreases but slowly (and may be a lot of iterations will be needed to attain some predefined
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(a) Objective function values over iterations for γ = 10. (b) Objective function values over iterations for γ =
100.

(c) Objective function values over iterations for γ = 500. (d) Objective function values over iterations for γ =
1000.

Figure 6.9: Objective function values for eight iterations for the following choices of
γ: 10, 100, 500, 1000.

decrease). Therefore the regularization parameter should not be neither ”very small” nor ”very

big”. An adaptive γ over iterations (As proposed in Algorithm 5.1) can be a good compromise,

in the sense (i) to increase γ when the objective function increases (ii) and to decrease γ when

the objective function decreases.

Tables C.7 and C.8 in appendix C summarize the objective function values over the iterations

for the different choices of the regularization parameter.

In this chapter we have analyzed numerically the impact of several parameters arising in Algo-

rithm 5.1. We have used two different forecast models in our experiments, namely Lorenz 63

model and the quasi-geostropic model. In the next chapter, we study the asymptotic behavior

of Algorithm 5.1, as the finite differences parameter goes to zero and/or the ensemble size goes

to infinity.



Chapter 7

Towards a convergence theory of

ensemble based methods

In Chapter 5, we have proposed to use EnKS as linear solver for 4DVAR problem (Algorithm 5.1).

At each iteration we approximated the linearized subproblem solution by the empirical mean of

an EnKS, where each ensemble member is considered as vector of Rn, meaning that each vector

is regarded as a sample point of a random vector. In this chapter we investigate a different

way to interpret such algorithm, similarly as in [78, 87], each ensemble member is considered as

random vector and not merely as vector of Rn. In fact the elements of the EnKS can be seen as

random vectors instead of realizations. Then an important question related to EnKF/EnKS and

related ensemble methods is a law of large number-like theorem as the size of the ensemble grows

to infinity. In [78, 87], it was proved that the ensemble mean and covariance of EnKF converge

to those of the KF, as the number of ensemble members grows to infinity. The analysis in [87]

relies on the fact that ensemble members are exchangeable and uses the uniform integrability

theorem, which does not provide a rate of convergence; in [78] a stochastic inequalities for the

random matrices and vectors are obtained with the classical rate 1√
N

. In this chapter we follow

the spirit of the paper [87], and propose to extend the convergence to EnKS as the number N

increases to infinity. The randomness of the elements of EnKS turns also random the current

point of Algorithm 5.1 (at each iteration the solution of linearized subproblem is ”a random

vector”). We will investigate also the asymptotic behavior of this algorithm.

We start by recalling some definitions and preliminary results that will be useful in the following

of the chapter (see Section 7.1). Then we show the convergence in Lp,∀ p ∈ [1,∞) of EnKS

in the limit for large ensemble to the KS, in the sense that the ensemble mean and covariance

constructed by EnKS method converge to the mean and covariance of the KS respectively (see

Section 7.3). Finally, we show the convergence of Algorithm 5.1 iterations to their corresponding

iterations in Algorithm 2.8. Since Algorithm 5.1 uses finite differences for derivatives approxi-

mation, (i) we start by showing the convergence on probability of its iterations to the iterations

generated by the algorithm with exact derivatives as the finite differences parameter goes to zero,

100
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(ii) then we prove the convergence in Lp of Algorithm 5.1 iterations as the size of the ensemble

grows to infinity (see Section 7.4).

7.1 Basic concepts and preliminaries

This section consists of fundamental information that will be a reference for the sequel of the

chapter. First, we recall definition of sequence of random vectors exchangeability, the notion of

convergence in probability and in Lp of random elements. Then we present several lemmas that

will be useful for the following of the chapter.

Definition 7.1. (Exchangeability of random vectors) A set of N random vectors [x1, . . . , xN ] is

exchangeable [7] if their joint distribution is invariant to a permutation of the indices; that is,

for any permutation π of the numbers 1, . . . , N and any Borel set B

P
([
xπ(1), . . . , xπ(N)

]
∈ B

)
= P

([
x1, . . . , xN

] ∈ B) .
Clearly an i.i.d sequence is exchangeable.

Definition 7.2. (Convergence in probability) A sequence
(
xk
)

of random elements converges

in probability towards the random element x if ∀ ε > 0:

lim
k→∞

P
(∥∥xk − x∥∥ ≥ ε) = 0.

i.e.∀ ε > 0, ∀ ε̃ > 0, ∃ k0 such that ∀ k ≥ k0 P
({
ω :
∥∥xk(ω)− x(ω)

∥∥ ≤ ε}) ≥ 1− ε̃,

where x(ω) means a realization of random element x.

The concept of convergence in probability is extended in an obvious manner to the case when

the random elements are indexed by τ > 0. Then xτ → x in probability as τ → 0 means:

∀ ε > 0, ∀ ε̃ > 0, ∃ τ0 > 0 such that ∀ τ ≤ τ0 P ({ω : ‖xτ (ω)− x(ω)‖ ≤ ε}) ≥ 1− ε̃.

If x is a random element (either vector or matrix), and ‖x‖ is the usual Euclidean norm for

vectors and spectral norm for matrices. For p ∈ [1,∞), denote

‖x‖p = E
(‖x‖p)1/p .

The space Lp (of vectors or matrices) consists of all random elements x such that ‖x‖p < ∞.
‖.‖p is a pseudo norm of the space Lp. Note that if the element x is deterministic

‖x‖p = E (‖x‖p)1/p = (‖x‖p)1/p = ‖x‖.

Definition 7.3. (Convergence in Lp) Given a real number p ≥ 1. A sequence
(
xk
)

of random

elements converges in Lp (or in the p-th mean) towards the random element x if the p-th absolute
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moments E
(∥∥xk∥∥p) and E

(‖x‖p) of xk and x exist, and

lim
k→∞

E
(∥∥xk − x∥∥p) = 0.

We state the following lemmas which will be used in this chapter.

Lemma 7.4. If random elements y1, . . . , yN are exchangeable, and z1, . . . , zN are also exchange-

able, and independent from y1, . . . , yN , then y1 + z1, . . . , yN + zN are exchangeable.

Lemma 7.5. Suppose X =
[
x1, . . . , xN

]
and Y =

[
y1, . . . , yN

]
are exchangeable, the random

elements X and Y are independent, and zk = F
(
y1, . . . , yN , yk, xk

)
where F is measurable

and permutation invariant in the first N arguments, then Z =
[
z1, . . . , zN

]
has exchangeable

columns.

For the proof of the previous two lemmas we refer to [87, lemma 1].

Lemma 7.6. (Uniform integrability) If (xk) is a bounded sequence in Lp and xk → x in proba-

bility, then: xk → x in Lq ∀ q ∈ [1,p).

Proof. The lemma follows from uniform integrability [15, page 338].

Lemma 7.7. (Continuous mapping theorem) Let xk be a sequence of random elements with

values on a metric space A, such that xk → x in probability. Let f be a continuous function

from A to another metric space B. Then f
(
xk
)→ f (x) in probability.

Proof. For the proof we refer to [117, Theorem 2.3].

7.2 On the convergence of ensemble Kalman filter

For theoretical purposes, we define an auxiliary ensemble Up|p = [ulp|p]
N
l=1 in the same way as the

ensemble Xp|p = [xp|p]Nl=1 which is constructed by Algorithm 2.2, but in the recurrence to build

Uk|k we use the exact covariance matrix of Uk|k−1 instead of its empirical estimate. In fact for

k = 0, U0|0 = X0|0, and for k = 1, . . . , p, we build Uk|k as follows:

ulk|k−1 = Mku
l
k−1|k−1 +mk + vlk, (7.1)

ulk|k = ulk|k−1 + Pk|k−1H
>
k

(
Rk +HkPk|k−1H

>
k

)−1
(
yk − wlk −Hku

l
k|k−1

)
, (7.2)

l = 1, . . . , N,

where Pk|k−1 is the exact covariance of u1
k|k−1,

Pk|k−1 = E

[(
u1
k|k−1 − E

(
u1
k|k−1

))(
u1
k|k−1 − E

(
u1
k|k−1

))>]
,

and the random vectors [vlk]Nl=1 and [wlk]Nl=1 are the same as those used to build the ensemble

Xk|k.
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Note that the only difference between the two ensemblesXk|k and Uk|k is that for the construction

of the first ensemble we use the empirical prediction covariance PNk|k−1 of the ensemble Xk|k−1,

which depends on all ensemble members. Therefore, the members of the ensemble [X l
k|k]Nl=1 are

in general dependent. However,

Lemma 7.8. The members of the ensemble Uk|k are i.i.d and the distribution of each ulk|k is

the same as the Kalman filter distribution, for any k = 0, . . . , p,

Proof. The proof is by induction and the same as in [87, Lemma 4], except we take the additional

perturbation vlk into account. Since [vlk]Nl=1 are Gaussian and independent of everything else by

assumption, [ulk|k]Nl=1 are independent and Gaussian. The forecast covariance Pk|k−1 is non-

random matrix, and consequently, the step (7.2) is a linear transformation, which preserves the

independence of the ensemble members and the Gaussianity of the distribution. The members of

the ensemble Uk|k have the same mean and covariance as given by the Kalman filter [22, eq. (15)

and (16)]. The proof is completed by noting that a Gaussian distribution is determined by its

mean and covariance.

The large sample asymptotic behavior of the i.i.d. random vectors [ulk|k]Nl=1 is ”simple” to analyze,

because of independence, but their covariance matrix Pk|k−1 is unknown in general, and so are

the random vectors [ulk|k−1]Nl=1 and [ulk|k]Nl=1 themselves. In contrast, the random vectors in

the EnKF [xlk|k−1]Nl=1 and [xlk|k]Nl=1 are dependent, because they all contribute to the empirical

covariance matrix PNk|k−1, but their empirical covariance matrix can be easily computed, and so

are the elements in the EnKF. In the following theorem we recall a result of convergence obtained

in [78, 87] between the members of those ensembles (Xk|k−1/Xk|k and Uk|k−1/Uk|k).

Theorem 7.9. Let the random matrix defined for k = 0, . . . , p, by

[
Xk|k;Uk|k

]
=

[
Xk|k
Uk|k

]
=

[
x1
k|k, . . . , x

N
k|k

u1
k|k, . . . , u

N
k|k

]
. (7.3)

for each time step k = 0, . . . , p, (7.3) has exchangeable columns. Moreover

x1
k|k−1 → u1

k|k−1, x
1
k|k → u1

k|k

1
N

N∑
l=1

xlk|k−1 → E(u1
k|k−1),

1
N

N∑
l=1

xlk|k → E(u1
k|k)

PNk|k−1 =
1

N − 1

N∑
l=1

(
xlk|k−1 −

1
N

N∑
l=1

xlk|k

)(
xlk|k−1 −

1
N

N∑
l=1

xlk|k

)>
→

Pk|k−1 = E

[(
u1
k|k−1 − E

(
u1
k|k−1

))(
u1
k|k−1 − E

(
u1
k|k−1

))>]
,

in Lp as N →∞,∀ p ∈ [1,∞).

Proof. The theorem is a simple extension of that of [87, Theorem 1], by adding the model error

vlk in each step of the induction over k.
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Notice that since (7.3) has exchangeable columns, and x1
k|k → u1

k|k in Lp for given p ∈ [1,∞),

we have the same convergence result for each member of the ensemble i.e, ∀ l ∈ N∗, xlk|k−1 →
ulk|k−1 and xlk|k → ulk|k in Lp (the proof of convergence for other members is exactly the same

by changing the superscript 1 by the member superscript).

7.3 On the convergence of ensemble Kalman smoother

In this section, we extend the result of Theorem 7.9 in the previous section to the EnKS. We

denote by X0:p|p = [xl0:p|p]
N
l=1 an EnKS generated by Algorithm 2.4. Just as for EnKF, we

construct an ensemble U0:p|p = [ul0:p|p]
N
l=1 by induction on k as follows:

For k = 0, U0|0 = X0|0, and for k = 1, . . . , p,

ulk|k−1 = Mku
l
k−1|k−1 +mk + vlk,

ul0:k|k = ul0:k|k−1 + P0:k,0:k|k−1H̃
>
k

(
Rk + H̃kP0:k,0:k|k−1H̃

>
k

)−1 (
yk − wlk −Hku

l
k|k−1

)
,

l = 1, . . . , N.

where P0:k,0:k|k−1 is the exact covariance of u1
0:k|k−1. The blocks of this covariance are, for

l, q = 0, . . . , k,

P`,q|k−1 = E[(U1
`|k−1 − E(U1

`|k−1))(U1
q|k−1 − E(U1

q|k−1))>].

[vlk]Nl=1 and [wlk]Nl=1 are the same as those used to build the ensemble X0:k|k.

As in the case of the filter, the members of the ensemble U0:k|k are i.i.d and their common

distribution is the Kalman smoother distribution.

Since the Kalman smoother is nothing else than the Kalman filter for the composite state X0:k,

the same induction step as in Theorem 7.9 applies for each k ∈ {0, . . . , p}, and we have the

following:

Theorem 7.10. Let the random matrix defined for k = 0, . . . , p, by

[
X0:k|k;U0:k|k

]
=

[
X0:k|k
U0:k|k

]
=

[
x1

0:k|k, . . . , x
N
0:k|k

u1
0:k|k, . . . , u

N
0:k|k

]
. (7.4)

for each time step k = 0, . . . , p, (7.4) has exchangeable columns. Moreover

x1
0:k|k−1 → u1

0:k|k−1, x
1
0:k|k → u1

0:k|k

x̄0:k|k−1 =
1
N

N∑
l=1

xl0:k|k−1 → E
(
u1

0:k|k−1

)
, x̄0:k|k =

1
N

N∑
l=1

xl0:k|k → E
(
u1

0:k|k
)

PN0:k,0:k|k → P0:k,0:k|k,

in Lp as N →∞,∀ p ∈ [1,∞).
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7.4 On the convergence of LM-EnKS algorithm

The final aim of this section is to give the limit of each iteration of LM-EnKS algorithm (Al-

gorithm 5.1), when the ensemble size goes to infinity and the finite differences parameter goes

to zero. We give the proof in the simple case when the regularization parameter γ is fix over

iterations and all the iterations are accepted. In this case, it is convenient to consider the joint

observation at time k on the increment δxk (the regularization observation and the observation

yk), instead of considering each observation alone. From Section 5.1.1 we have the observation

on the increment is (equation 5.8):

dk = Hkδxk + wk, wk ∼ N(0, Rk)

and the new observation which arise from regularization is (equation 5.9):

0 = δxk + ek, ek ∼ N
(

0,
Sk
γ2

)
.

Therefore the joint observation is:[
dk

0

]
=

[
Hk

I

]
δxk +

[
vk

ek

]
,

[
vk

ek

]
∼ N

([
0

0

]
,

(
Rk 0

0 Sk
γ2

))
. (7.5)

If we denote

[
dk

0

]
,

[
Hk

I

]
,

[
vk

ek

]
and

(
Rk 0

0 Sk
γ2

)
by d̃k, H̃k, ṽk and R̃k respectively, then

the equation (7.5) becomes simply:

d̃k = H̃kδxk + ṽk, ṽk ∼ N
(

0, R̃k
)
.

Hence to avoid this new notations and without loss of generality, it is enough to do the analysis

in the case when γ is equal to 0. Also, for the simplicity reason we assume that there is no

observation in the state x0.

Algorithm 7.1: Gauss-Newton algorithm to solve 4DVAR problem

Initialization
Select x0 = x0

0:p

For j = 1, 2, . . .

xj = arg min
x0:p

1
2

(
‖x0 − xb‖2B−1 +

p∑
k=1

∥∥∥xk −Mk(x
j−1
k−1)−M′k(xj−1

k−1)
(
xk−1 − xj−1

k−1

)∥∥∥2

Q−1
k

+
p∑

k=1

∥∥∥yk −Hk(xj−1
k )−H′k(xj−1

k )
(
xk − xj−1

k

)∥∥∥2

R−1
k

)
.
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Algorithm 7.2: Gauss-Newton-EnKS with derivatives method

Initialization
Select x0 = x0

0:p the same starting point as in Algorithm 7.1, and N0 ≥ 2 (set the
initial ensemble x0,l

0:p|p = x0, l = 1, . . . , N0).

For j = 0, 1, 2, . . .. Choose an ensemble size Nj+1 ≥ 2.

1. Generate the initial ensemble:

δxj+1,l
0|0 = xb − xj0 + vj+1,l

b , vj+1,l
b ∼ N (0, B) , l = 1, . . . , N.

2. For k = 1, 2, . . . , p

(a) With
[
δxj+1,l

0:k−1|k−1

]Nj+1

l=1
already computed:

δxj+1,l
k|k−1 = M′k

(
xjk−1

)
δxj+1,l

k−1|k−1 +Mk

(
xjk−1

)
− xjk−1 (7.6)

+vj+1,l
k , vj+1,l

k ∼ N (0, Qk) , l = 1, . . . , N.

(b) Bayesian update for the observation:

δxj+1,l
0:k|k = δxj+1,l

0:k|k−1 + P
Nj+1

0:k,0:k|k−1


0
...

H′>k
(
xjk

)
 (7.7)

(
Rk +H′k

(
xjk

)
P
Nj+1

k,k|k−1H′>k
(
xjk

))−1 (
yk −Hk

(
xjk

)
−wj+1,l

k −H′k
(
xjk

)
δxj+1,l

k|k−1

)
, wj+1,l

k ∼ N(0, Rk), (7.8)

3. Set xj+1,l
0:p|p = xj0:p + δxj+1,l

0:p|p , l = 1, . . . , Nj+1. Then set

xj+1
0:p = x̄

j+1,Nj+1

0:p|p =
1

Nj+1

Nj+1∑
l=1

xj+1,l
0:p|p .

In this simple case, Algorithm 5.1 becomes Algorithm 7.3 (Gauss-Newton algorithm with EnKS

as linear solver).

Algorithm 7.2 presents the version of Algorithm 7.3 where the derivatives arising in EnKS at

each iteration are not approximated by finite differences. For the clarity reasons we will re-

mind in details each step of the Algorithms 7.2 and 7.3, and also we will recall the Gauss-

Newton algorithm (Algorithm 7.1) when used to solve the weak constraint 4DVAR problem:
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Algorithm 7.3: Gauss-Newton-EnKS method

Initialization

Choose the constant τ ∈ (0, 1], x0 the same starting point as in Algorithm 7.1, and

N0 ≥ 2 (set the initial ensemble x0,l,τ
0:p|p = x0, l = 1, . . . , N0).

For j = 0, 1, 2, . . .. Choose Nj+1 the same as in Algorithm 7.2.

1. Generate the initial ensemble:

δxj+1,l,τ
0|0 = xb − xj0 + vj+1,l

b , vj+1,l
b , l = 1, . . . , N.

2. For k = 1, 2, . . . , p

(a) With
[
δxj+1,l,τ

0:k−1|k−1

]Nj+1

l=1
already computed:

δxj+1,l,τ
k|k−1 =

Mk

(
xjk−1 + τδxj+1,l,τ

k−1|k−1

)
−Mk

(
xjk−1

)
τ

+Mk

(
xjk−1

)
(7.9)

−xjk−1 + vj+1,l
k , vj+1,l

k .

(b) Bayesian update for the observation:

δxj+1,l,τ
0:k|k = δxj+1,l,τ

0:k|k−1 +
1

Nj+1 − 1
Ej+1,τ

0:k

(
Zj+1,τ

0:k

)>
(
Rk + Zj+1,τ

k

(
Zj+1,τ
k

)>)−1 (
yk −Hk

(
xjk

)
−wj,lk −

Hk
(
xjk + τδxj+1,l

k|k−1

)
−Hk

(
xjk

)
τ

 , where

Ej+1,τ
` =

[
ej+1,1,τ
` , . . . , e

j+1,Nj+1,τ
`

]
, ej+1,l,τ

` = xj+1,l,τ
`|k−1 −

1
N

N∑
i=1

xj+1,i,τ
`|k−1 ,

Zj+1,τ
` =

[
zj+1,1,τ
` , . . . , z

j+1,Nj+1,τ
`

]
, zj+1,l,τ

` =
H`
(
xj` + τej+1,l,τ

`

)
−H`

(
xj`

)
τ

` = 0, . . . , k, l = 1, . . . , Nj+1.

3. Set xj+1,l,τ
0:p|p = xj0:p + δxj+1,l,τ

0:p|p , l = 1, . . . , Nj+1. Then set

xj+1
0:p = x̄

j+1,Nj+1,τ

0:p|p =
1

Nj+1

Nj+1∑
l=1

xj+1,l,τ
0:p|p .
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min
x0,...,xp∈Rn

f(x0, . . . , xp) =
1
2

(
‖x0 − xb‖2B−1 +

p∑
k=1

‖xk −Mk(xk−1)‖2Q−1
k

+
p∑
k=1

‖yk −Hk(xk)‖2R−1
k

)
.

Note that at each iteration j, Algorithms 7.3 and 7.2 generate ensembles of size Nj , and not

necessary ensembles with the same size for all iterations. Moreover, for k = 0, . . . , p, the random

vectors [vj,lk ]Nl=1 and [wj,lk ]Nl=1 are the same in the two Algorithms.

We summarize the differences between Algorithms 7.1, 7.2 and 7.3:

• The first one is the classical Gauss-Newton algorithm and it solves exactly the linearized

subproblem (no approximation in the solution of the linearized subproblem).

• The second algorithm is called here the Gauss-Newton-EnKS with derivatives. It ap-

proximates the solution of the linearized subproblem using an EnKS, and it does not

approximate the derivatives of the model and observation operators arising in EnKS (the

approximation in the solution of the linearized subproblem arises only from the use of the

ensembles).

• The third algorithm, is called here the Gauss-Newton-EnKS. It approximates the solu-

tion of the linearized subproblem using an EnKS without derivatives, meaning that it

approximates derivatives of the model and observation operators arising in EnKS with

finite differences as described in Section 5.1.2 (the approximation in the solution of the

linearized subproblem arises from the use of the ensembles and the finite differences to

approximate derivatives).

The goal of the following will be to find the limit of each Algorithm 7.3 iteration as τ → 0 and/or

min{N1, . . . , Nj} → ∞ (equivalently N1 →∞, . . . , Nj →∞).

For simplicity, in the following, when there is no confusion we drop the index j of Nj

7.4.1 Convergence when the finite differences parameter goes to zero

The aim of this section is to study the asymptotic behavior of Algorithms 7.3 as the finite

differences parameter τ → 0. More precisely we show that when τ → 0, each Algorithm 7.3

iteration converges to its corresponding iteration of Algorithm 7.2 in probability.

We start by the following two technical lemmas which will be used later to prove the convergence.

Lemma 7.11. Let (xτ ) and (yτ ) be 2 functions of τ > 0, f a function twice continuously

differentiable, and lim
τ→0

xτ = x and lim
τ→0

yτ = y. Then

f(xτ + τyτ )− f(xτ )
τ

→ f ′(x)y as τ → 0.
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i.e., ∀ ε >, ∃ τ0 > 0, η > 0 such that ∀ τ ≤ τ0, ‖xτ − x‖ ≤ η, and ‖yτ − y‖ ≤ η
implies

∥∥∥∥f (xτ + τyτ )− f (xτ )
τ

− f ′(x)y
∥∥∥∥ ≤ ε.

Proof. Let us define the following function:

t→ φ(t) = f (xτ + tτyτ ) .

From Taylor expansion with integral remainder formula we have:

φ(1) = φ(0) + φ′(0) +
∫ 1

0

(1− t)φ′′(t)dt. (7.10)

One can, easily, shows that:

φ′(0) = τf ′ (xτ ) yτ , (7.11)

φ′′(t) = τ2y>τ f
′′ (xτ + tτyτ ) yτ . (7.12)

Substituting equations (7.11) and (7.12) into equation (7.10) gives:

f (xτ + τyτ ) = f(xτ ) + τf ′ (xτ ) yτ + τ2

∫ 1

0

(1− t)y>τ f ′′ (xτ + tτyτ ) yτdt.

Therefore∥∥∥∥f (xτ + τyτ )− f (xτ )
τ

− f ′(x)y
∥∥∥∥ ≤ ‖f ′ (xτ ) yτ − f ′(x)y‖

+
∥∥∥∥τ ∫ 1

0

(1− t)y>τ f ′′ (xτ + tτyτ ) yτdt
∥∥∥∥ .

Since the function f is twice continuously differentiable, lim
τ→0

xτ = x and lim
τ→0

yτ = y then:

lim
τ→0
‖f ′ (xτ ) yτ − f ′(x)y‖+

∥∥∥∥τ ∫ 1

0

(1− t)y>τ f ′′ (xτ + tτyτ ) yτdt
∥∥∥∥ = 0,

thus

lim
τ→0

f(xτ + τyτ )− f(xτ )
τ

= f ′(x)y.

The following lemma extends the result of the previous lemma (Lemma 7.11) to the case where

(xτ ) and (yτ ) are functions of random vectors.

Lemma 7.12. Let (xτ ) and (yτ ) be 2 functions of random vectors for τ > 0, such that lim
τ→0

xτ = x

and lim
τ→0

yτ = y in probability, and f is twice continuously differentiable. Then

f(xτ + τyτ )− f(xτ )
τ

→ f ′(x)y in probability, as τ → 0.
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Proof. Let ε > 0, ε̃ > 0. On one hand, we have

lim
τ→0

xτ = x, and lim
τ→0

yτ = y

in probability, implies that ∀η > 0, ∃ τη > 0,

∀ τ < τη, P(Ωx,η) ≥ 1− ε̃/2 and P(Ωy,η) ≥ 1− ε̃/2, (7.13)

where

Ωx,η = {ω : ‖xτ (ω)− x(ω)‖ ≤ η} and Ωy,η = {ω : ‖yτ (ω)− y(ω)‖ ≤ η}.

On the other hand, we have the function f is twice continuously differentiable therefore us-

ing Lemma 7.11, ∃ η̃ > 0, and τ1 > 0 such that for every ω and τ which verifies τ ≤ τ1,

‖xτ (ω)− x(ω)‖ ≤ η̃, and ‖yτ (ω)− y(ω)‖ ≤ η̃ implies∥∥∥∥f (xτ (ω) + τyτ (ω))− f (xτ (ω))
τ

− f ′(x(ω))y(ω)
∥∥∥∥ ≤ ε.

Thus we have ∀τ ≤ min(τη̃, τ1)

Ωx,η̃ ∩ Ωy,η̃ ⊂
{
ω :

∥∥∥∥f (xτ (ω) + τyτ (ω))− f (xτ (ω))
τ

− f ′(x(ω))y(ω)
∥∥∥∥ ≤ ε} .

Moreover, using (7.13), we have:

P(Ωx,η̃ ∩ Ωx,η̃) = 1− P(Ω̄x,η̃ ∪ Ω̄y,η̃) ≥ 1− P(Ω̄x,η̃)− P(Ω̄y,η̃) ≥ 1− ε̃, thus

P
({

ω :
∥∥∥∥f (xτ (ω) + τyτ (ω))− f (xτ (ω))

τ
− f ′(x(ω))y(ω)

∥∥∥∥ ≤ ε}) ≥ 1− ε̃.

In the case where f is a vector function, the previous lemmas hold. For the proof it is enough

to consider the previous proofs for each component of the function f .

Theorem 7.13. Under the assumption that the model and observation operators, Mk, and Hk
are twice continuously differentiable for any k = 1, . . . , p, then: when τ → 0, at each iteration j

of Algorithm 7.3, ∀ l = 1, . . . , N , xj,l,τ0:k|k → xj,l0:k|k in probability, where xj,l,τ0:k|k and xj,l0:k|k are the l-th

members of the ensembles generated at the j-th iteration of Algorithms 7.3 and 7.2 respectively.

Proof. The proof is done by induction on j, let l ∈ {1, . . . , N}, for j = 0, we have x0,l,τ = x0,l =

x0. For j ≥ 1, we use induction on time step k. For k = 0, we have xj,l,τ0|0 = xb + vj,lb , hence

lim
τ→0

xj,l,τ0|0 = xb + vlb = xj,l0|0 in probability.

We recall that the j-th iterates generated by Algorithm 7.3 and 7.2 are equal to x̄j,N,τ0:p|p and x̄j,N0:p|p
respectively.
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For k = 1, . . . , p, we have from Lemma 7.12, and induction assumption when τ → 0

Mk

(
x̄j−1,N,τ
k−1|p + τδxj,l,τk−1|k−1

)
−Mk

(
x̄j−1,N,τ
k−1|p

)
τ

converges in probability to

M′k
(
x̄j−1,N
k−1|p

)
δxj,lk−1|k−1, and

Hk
(
x̄j−1,N,τ
k|p + τδxj,l,τk|k−1

)
−Hk

(
x̄j−1,N,τ
k|p

)
τ

converges in probability to

H′k
(
x̄j−1,N
k|p

)
δxj,lk|k−1,

therefore, using continuous mapping theorem (Lemma 7.7) we conclude the following conver-

gences in probability as τ → 0:

xj,l,τk|k−1 =
Mk

(
x̄j−1,N,τ
k−1|p + τδxj,l,τk−1|k−1

)
−Mk

(
x̄j−1,N,τ
k−1|p

)
τ

+Mk

(
x̄j−1,N,τ
k−1|p

)
+ vj,lk →

xj,lk|k−1 =M′k
(
x̄j−1,N
k−1|p

)
δxj,lk−1|k−1 +Mk

(
x̄j−1,N
k−1|p

)
+ vj,lk . (7.14)

ej,l,τ` = xj,l,τ`|k−1 −
1
N

N∑
i=1

xj,i,τ`|k−1 → ej,l` = xj,l`|k−1 −
1
N

N∑
i=1

xj,i`|k−1 ` = 0, . . . , k, l = 1, . . . , N.

(7.15)

Using the latter convergence and Lemma 7.12 we conclude that:

zj,l,τ` =
H`
(
x̄j−1,N,τ
k|p + τej,l,τ`

)
−H`

(
xj`

)
τ

→ zj,l` = H′`
(
x̄j−1,N
k−1|p

)
ej,l` , (7.16)

` = 0, . . . , k, l = 1, . . . , N.

Therefore using the convergences in (7.14), (7.15) and (7.16) and the continuous mapping theo-

rem once more gives:

xj,l,τ0:k|k =→ xj,l0:k|k in probability, as τ → 0.

Corollary 7.14. For any time index k = 0, . . . , p we have:

xj,N,τ0:k =
1
N

N∑
l=1

xj,l,τ0:k|k → xj,N0:k =
1
N

N∑
l=1

xj,l0:k|k, in probability as τ → 0.

7.4.2 Convergence when the ensemble sizes go to infinity

In this section, we study the asymptotic behavior of Algorithm 7.2 when the ensemble sizes

{N0, . . . , Nj} go to infinity. We will show that each Algorithm 7.2 iteration converges to its

corresponding iteration of Algorithm 7.1 in Lp. We recall that for k = 0, . . . , p, Xj
0:k|k =

[xj,l0:k|k]Njl=1 are denoting the ensembles generated by Algorithm 7.2 at iteration j. For theoretical

purposes, we define by induction on j an ensemble U j0:k|k = [uj,l0:k|k]Njl=1 of size Nj as follows:
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1. For j = 0, we set U0
0:k|k = X0

0:k|k.

2. For j = 1, 2, . . .

(a) For k = 0, uj,l0|0 = xj0|0, ∀ l = 1, . . . , Nj .

(b) For k = 1, . . . , p,

uj,lk|k−1 = M′k
(
E
(
uj−1,1
k−1|p

))
uj,lk−1|k−1 −M′k

(
E
(
uj−1,1
k−1|p

))
E
(
uj−1,1
k−1|p

)
+ Mk

(
E
(
uj−1,1
k−1|p

))
+ vj,lk ,

uj,l0:k|k = uj,l0:k|k−1 + P j0:k,0:k|k−1H̃′>k
(
E
(
uj−1,1
k|p

))(
Rk + H̃′k

(
E
(
uj−1,1
k|p

))
P j0:k,0:k|k−1H̃′>k

(
E
(
uj−1,1
k|p

)))−1 (
yk −Hk(E(uj−1,1

k|p ))− wj,lk
−H′k(E(uj−1,1

k|p ))uj,lk|k−1 +H′k
(
E
(
uj−1,1
k|p

))
E
(
uj−1,1
k

))
,

∀ l = 1, . . . , Nj .

where P j0:k,0:k|k−1 is the exact covariance matrix of uj,10:k,0:k|k−1, and H̃′k
(
E
(
uj−1,1
k|p

))
=[

0, . . . ,H′k
(
E
(
uj−1,1
k|p

))]
.

Assumption 7.4.1. The model and observation operators, Mk, and Hk are twice continuously

differentiable and have at most polynomial growth at infinity, and their Jacobians have also at

most polynomial growth at infinity. i.e. there exists κ > 0, and s ≥ 0, such that ‖Mk(x)‖ ≤
κ (1 + ‖x‖s), ‖M′k(x)‖ ≤ κ (1 + ‖x‖s), ‖Hk(x)‖ ≤ κ (1 + ‖x‖s), and ‖H′k(x)‖ ≤ κ (1 + ‖x‖s) for

all k = 0, . . . , p, and x.

Note that we chose the same κ and the same s for all the operators to avoid unnecessary notations.

Each member of the ensemble Xj
0:k|k = [xj,l0:k|k]Njl=1 generated by Algorithm 7.2 at iteration j is

considered as a sequence of Nj (the ensemble size). For fixed member index l, and time step k

we denote these sequence by
{
xj,l0:k|k

}∞
Nj=2

.

Lemma 7.15. Let Assumption 7.4.1 holds. Then
{
xj,l0:k|k

}∞
Nj=2

is bounded in Lp (independently

from Nj, l, N0, . . . , Nj−1), for any p ∈ [1,∞), any j ≥ 0, any l ∈ {1, . . . , Nj}, and any

k = 0, . . . , p.

Proof. Let p ∈ [1,∞), and l ∈ {1, . . . , Nj}. The proof is done by induction on j, for j = 0,

x0,l = x0 is bounded in Lp. For j > 0, we proceed by induction on time step, for k = 0, xj,l0|0 is

Gaussian, so
{
xj,l0|0

}∞
Nj=2

is bounded in Lp. For k = 1, . . . , p, from (7.9) we conclude that:

∥∥∥xj,lk|k−1

∥∥∥
p
≤
∥∥∥M′k (x̄j−1,N

k−1|p
)∥∥∥

2p

(∥∥∥xj,lk−1|k−1

∥∥∥
2p

+
∥∥∥x̄j−1,N

k−1|p
∥∥∥

2p

)
+
∥∥∥Mk

(
x̄j−1,N
k−1|p

)∥∥∥
p

+
∥∥∥vj,lk ∥∥∥

p
.
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Under assumption (7.4.1), and the fact that vj,lk is normally distributed, there exists a constant

Cp such that:

∥∥∥xj,lk|k−1

∥∥∥
p
≤ κCp

(
1 +

∥∥∥x̄j−1,N
k−1|p

∥∥∥s
2ps

)(∥∥∥xj,lk−1|k−1

∥∥∥
2p

+
∥∥∥x̄j−1,N

k−1|p
∥∥∥

2p

)
+ κCp

(
1 +

∥∥∥x̄j−1,N
k−1|p

∥∥∥s
ps

)
+ Cp,

hence, using induction assumptions on j and k we have
{
xj,l0:k|k−1

}∞
Nj=2

is bounded in Lp. From

equation (7.7) we conclude that:∥∥∥xj,l0:k|k
∥∥∥
p
≤
∥∥∥xj,l0:k|k−1

∥∥∥
p

+
∥∥∥P j,N0:k,0:k|k−1

∥∥∥
8p

∥∥∥H′>k (x̄j−1,N
k|p

)∥∥∥
8p∥∥∥∥(Rk +H′k

(
x̄j−1,N
k|p

)
P j,Nk,k|k−1H′>k

(
x̄j−1,N
k|p

))−1
∥∥∥∥

4p

(‖yk‖

+
∥∥∥Hk (x̄j−1,N

k|p
)∥∥∥

2p
+
∥∥∥wj,lk ∥∥∥

2p

+
∥∥∥H̃′k (x̄j−1,N

k|p
)∥∥∥

4p

(∥∥∥xj,lk|k−1

∥∥∥
4p

+
∥∥∥x̄j−1,N

k|p
∥∥∥

4p

))
.

Since Rk is positive definite and P j,N0:k,0:k|k−1 is positive semi definite, hence

∥∥∥∥(Rk + H̃′>k
(
x̄j−1,N
k|p

)
P j,N0:k,0:k|k−1H̃′k

(
x̄j−1,N
k|p

))−1
∥∥∥∥

4p

≤ ∥∥R−1
k

∥∥ . (7.17)

From [85, lemma 31] we have: ∥∥∥P j,N0:k,0:k|k−1

∥∥∥
8p
≤ 2

∥∥∥xj,10:k|k−1

∥∥∥2

16p
. (7.18)

From the inequalities (7.17) and (7.18), assumption 7.4.1, and the fact that wj,lk is normally

distributed there exists a constant C̃p such that:

∥∥∥xj,l0:k|k
∥∥∥
p
≤
∥∥∥xj,l0:k|k−1

∥∥∥
p

+ 2
∥∥∥xj,10:k|k−1

∥∥∥2

16p
κC̃p

(
1 +

∥∥∥x̄j−1,N
k|p

∥∥∥s
8ps

)∥∥R−1
k

∥∥ (‖yk‖

+ κC̃p

(
1 +

∥∥∥x̄j−1,N
k|p

∥∥∥s
2ps

)
+ C̃p

+ κC̃p

(
1 +

∥∥∥x̄j−1,N
k|p

∥∥∥s
4ps

)(∥∥∥xj,lk|k−1

∥∥∥
4p

+
∥∥∥x̄j−1,N

k|p
∥∥∥

4p

))
,

hence
{
xj,l0:k|k

}∞
Nj=2

is bounded in Lp.

Theorem 7.16. For each j, and k = 0, . . . , p,

[
Xj

0:k|k;U j0:k|k
]

=

[
Xj

0:k|k
U j0:k|k

]
=

[
xj,10:k|k, . . . , x

j,N
0:k|k

uj,10:k|k, . . . , u
j,N
0:k|k

]
. (7.19)

are exchangeable, and xj,10:k|k → uj,10:k|k, x̄
j,N
0:k|k → E

(
uj,10:k|k

)
, as min{N0, . . . , Nj} → ∞, in Lp ∀p ∈

[1,∞).
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Proof. Let p ∈ [1,∞). We use the induction on j, for j = 0, we have ∀ l ∈ {1, . . . , N}, and

k ∈ {0, . . . , p}, x0,l
0:k|k = x0

0:k = u0,l
0:k|k, therefore

[
X0

0:k|k;U0
0:k|k

]
are exchangeable, x0,1

0:k|k →
u0,1

0:k|k, and x̄0,N
0:k|k → E

(
u0,1

0:k|k
)

in Lp, as N0 → ∞. For j > 0, we use the induction on time

index k, for k = 0,
[
xj,l0|0

]N
l=1

are i.i.d and xj,l0|0 = uj,l0|0, therefore
[
Xj

0|0;U j0|0
]

are exchangeable,

xj,10|0 → uj,10|0, and using Law of large numbers x̄j,N0|0 → E
(
uj,10|0

)
as N →∞ in Lp.

For k = 1, . . . , p, let l ∈ {1, . . . , N}, we have

[
xj,lk|k−1

uj,lk|k−1

]
=

 M′k(x̄j−1,N
k−1|p ) 0

0 M′k
(
E
(
uj−1,1
k−1|p

)) [ xj,lk−1|k−1

uj,lk−1|k−1

]

+

 Mk

(
x̄j−1,N
k−1|p

)
−M′k

(
x̄j−1,N
k−1|p

)
x̄j−1,N
k−1|p

Mk

(
E
(
uj−1,1
k−1|p

))
−M′k

(
E
(
uj−1,1
k−1|p

))
E
(
uj−1,1
k−1|p

) +

[
vj,lk

vj,lk

]

= F k

(
x̄j−1,N
k−1|p ,

[
xj,lk−1|k−1

uj,lk−1|k−1

]
,

[
vj,lk

vj,lk

])
,

where F k is a measurable function.

The ensemble sample mean x̄j−1,N
k−1|p is invariant to a permutation of ensemble members. The

matrix V jk =
[
vj,1k , . . . , vj,Nk

]
is exchangeable

([
vj,lk

]N
l=1

are i.i.d
)

. From the induction as-

sumption on k,

[
Xj
k−1|k−1

U jk−1|k−1

]
is exchangeable, and it is also independent from

[
V jk

V jk

]
,

therefore

[
Xj
k|k−1

U jk|k−1

]
is exchangeable by Lemma 7.5. From induction assumption on j and

k, x̄j−1,N
k−1|p → E

(
uj−1,1
k−1|p

)
, xj,1k−1|k−1 → uj,1k−1|k−1 in Lp, as min{N0, . . . , Nj} → ∞ and using con-

tinuous mapping theorem, we conclude that when min{N0, . . . , Nj} → ∞

xj,1k|k−1 =M′k
(
x̄j−1,N
k−1|p

)
xj,1k−1|k−1 +Mk

(
x̄j−1,N
k−1|p

)
−M′i

(
x̄j−1,N
k−1|p

)
x̄j−1,N
k−1|p + vj,1k →

uj,1k|k−1 =M′k
(
E
(
uj−1,1
k−1|p

))
uj,1k−1|k−1 +Mk

(
E
(
uj−1,1
k−1|p

))
−M′k

(
E
(
uj−1,1
k−1|p

))
E
(
uj−1,1
k−1|p

)
+ vj,1k ,

in probability. From Lemma 7.15, we have
{
xj,10:k|k−1

}∞
N=2

is bounded Lp, therefore by using the

uniform integrability theorem (Lemma 7.6) we can leverage the last convergence in probability

to the convergence in Lp.
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We have also[
xj,l0:k|k
uj,l0:k|k

]
=

[
xj,l0:k|k−1

uj,l0:k|k−1

]
+

[
KN
k 0

0 Kj
k

]
 yk +H′k

(
x̄j−1,N
k|p

)
x̄j−1,N
k|p −Hk

(
x̄j−1,N
k|p

)
yk +H′k

(
E
(
uj−1,1
k|p

))
E
(
uj−1,1
k|p

)
−Hk

(
E
(
uj−1,1
k|p

)) 
−
[
wj,lk

wj,lk

]
−
[
H′k(x̄j−1,N

k|p ) 0

0 H′k(E(uj−1,1
k|p ))

][
xj,lk|k−1

uj,lk|k−1

])

= F k

(
x̄j−1,N
k|p , PN0:k,0:k|k−1,

[
xj,lk|k−1

uj,lk|k−1

]
,

[
wj,lk

wj,lk

])

where

KN
k =


PN0,k|k−1H′k

(
x̄j−1,N
k|p

)>
...

PNk,k|k−1H′k
(
x̄j−1,N
k|p

)>

(
Rk +H′k

(
x̄j−1,N
k|p

)
PNk,k|k−1H′k

(
x̄j−1,N
k|p

)>)−1

,

Kj
k =


P j0,k|k−1H′k

(
E
(
uj−1,1
k|p

))>
...

P jk,k|k−1H′k
(
E
(
uj−1,1
k|p

))>

(
Rk +H′k

(
E
(
uj−1,1
k|p

))
P jk,k|k−1H′k

(
E
(
uj−1,1
k|p

))>)−1

and F k is a measurable function.

The ensemble sample mean x̄j−1,N
k|p , and the ensemble sample covariance PN0:k,0:k|k−1 are invariant

to a permutation of ensemble members, W j
k =

[
wj,1k , . . . , wj,Nk

]
is exchangeable

([
wj,lk

]N
l=1

are i.i.d
)

,

we have also

[
Xj
k|k−1

U jk|k−1

]
is exchangeable, and it is independent from

[
W j
k

W j
k

]
, therefore[

Xj
0:k|k

U j0:k|k

]
is exchangeable by Lemma 7.5. We have x̄j−1,N

k|p → E
(
uj−1,1
k|p

)
, xj,10:k|k−1 → uj,10:k|k−1

in Lp. From [87, lemma 3] we have PN0:k,0:k|k−1 → P j0:k,0:k|k−1 in probability, therefore using

continuous mapping theorem KN
k → Kj

k. From the fact that the convergence in Lp induce the

convergence in probability, and using again the continuous mapping theorem we conclude that:

xj,10:k|k = xj,10:k|k−1 +KN
k

(
yk −Hk

(
x̄j−1,N
k|p

)
− wj,1k −H′k

(
x̄j−1,N
k|p

)
xj,1k|k−1

+H′k
(
x̄j−1,N
k|p

)
x̄j−1,N
k|p

)
→

uj,10:k|k = uj,10:k|k−1 +Kj
k

(
yk −Hk

(
E
(
uj−1,1
k|p

))
− wj,1k −H′k

(
E
(
uj−1,1
k|p

))
uj,1k|k−1

+H′k
(
E
(
uj−1,1
k|p

))
E
(
uj−1,1
k|p

))
,

in probability, when min{N0, . . . , Nj} → ∞. Then we leverage the last convergence to the con-

vergence in Lp using the uniform integrability theorem.
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Lemma 7.17. E
(
uj,10:p|p

)
= xj, where xj is the j-th iterate generated by Algorithm (7.1).

Proof. The proof is done by induction on j.

For j = 0, we have ∀ l ∈ {1, . . . , N}, u0,l
0:p|p = x0

0:p|p = x0, thus E
(
u0,1

0:p|p
)

= x0. For j > 0, we

have

E
(
uj,10:p|p

)
= arg min

x0:p

1
2

(
‖x0 − xb‖2B−1

+
p∑
k=1

∥∥∥xk −Mk

(
E
(
uj−1,1
k−1|p

))
−M′k(E(uj−1,1

k−1|p))
(
xk−1 − E

(
uj−1,1
k−1|p

))∥∥∥2

Q−1
k

+
p∑
k=1

∥∥∥yk −Hk (E (uj−1,1
k|p

))
−H′k

(
E
(
uj−1,1
k|p

))(
xk − E

(
uj−1,1
k|p

))∥∥∥2

R−1
k

)
,

and from the induction assumption on j we have E
(
uj−1,1

0:p|p
)

= xj−1
0:p , hence

E
(
uj,1

)
= arg min

x0:p

1
2

(
‖x0 − xb‖2B−1 +

p∑
k=1

∥∥∥xk −Mk(xj−1
k−1)−M′k(xj−1

k−1)
(
xk−1 − xj−1

k−1

)∥∥∥2

Q−1
k

+
p∑
k=1

∥∥∥yk −Hk(xj−1
k )−H′k(xj−1

k )
(
xk − xj−1

k

)∥∥∥2

R−1
k

)
= xj .

Corollary 7.18. For each j,

lim
min{N1,...,Nj}→∞

(
lim
τ→0

xj,N,τ
)

= xj ,

in probability where xj,N,τ and xj are the j-th iterates generated by Algorithms 7.3 and 7.1

respectively.

Proof. The proof follows immediately from Theorem 7.13, Theorem 7.16, and Lemma 7.17.

In this chapter we have shown the convergence in Lp spaces of the empirical mean and covariance

of EnKS to the KS mean and covariance in the limit for large ensemble size. We have shown also

that each LM-EnKS iterate converges in probability to its corresponding iterate of Algorithm 7.1

as the finite differences parameter goes to zero and then the ensemble sizes go to infinity. We

think that it is possible to obtain a stronger limit result, especially to leverage the convergences

in probability to convergences in Lp, and show the convergence rate of the algorithms following

[78]. These convergences will be further explored in the future works.



Chapter 8

Conclusions and perspectives

The thesis concentrates on the numerical methods for least squares problems, in which the gradi-

ent model is expensive or noisy and accurate only within a certain probability. Within this study,

a solution method based on a Gauss-Newton technique, made globally convergent with a trust-

region strategy, is considered (Levenberg-Marquardt method). We have given an application in

data assimilation of the new proposed method, and also we have studied the sensitivity of the

linearized subproblem solution to data, when using the singular value decomposition method.

In this work, we have contributed to the research area of least squares problems by addressing

the following challenges:

(i) Solving the problem of the determination of a closed formula for the condition number of

the truncated singular value solution, in the case of ill-conditioned problems and/or when

the data are noisy.

(ii) Giving a variant of the Levenberg-Marquardt method to the scenarios where the linearized

least squares subproblems are solved inexactly and/or the gradient model is accurate only

within a certain probability.

(iii) Proposing an application of the new variant of the Levenberg-Marquardt method in data

assimilation framework.

(iv) Analyzing numerically the impact of different parameters arising in the Levenberg-Marquardt

method, using EnKS as a linear solver, on the iteration progress.

(v) Studying the asymptotic behavior of each iteration of the Levenberg-Marquardt algorithm,

in the case where we maintain the regularization parameter fixed and we use EnKS as a

linear solver.

The challenge (i) was addressed in Chapter 3 by solving the problem of the determination of

the condition number of the truncated singular value solution. The expression that has been

found for this condition number relies on a singular value decomposition of the problem (see

(3.29)). We anticipate that the proposed formula will therefore stimulate research in several
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directions. Finding good estimates of the condition number using iterative techniques would, for

instance, be of crucial relevance for large scale problems. From a theoretical point of view, we

also believe that the condition number may bring new insight into the problem of the detection

of the truncation index of the singular value decomposition. One of the topics of future research

will be to explore this issue on practical problems.

The challenge (ii) was addressed in Chapter 4 by showing how to adapt the Levenberg-Marquardt

method for nonlinear least squares problems to handle the cases where the gradient of the ob-

jective function is subject to noise or only is computed accurately within a certain probability.

The gradient model was then considered random in the sense of being a realization of a ran-

dom vector, and assumed first order accurate under some probability p∗j (see (4.2)). Given the

knowledge of a lower bound pj for the probability p∗j (see Assumption 4.1.1), and an approxi-

mate solution to the subproblem which achieves at least the Cauchy decrease on the model (see

Assumption 4.2.1) we have shown how to update the regularization parameter of the method in

such a way that the whole approach is almost surely globally convergent. We mean by the latter

convergence that a subsequence of the true objective function gradients goes to zero with prob-

ability one. We have covered also the situation where the linearized least squares subproblems,

arising in the Levenberg-Marquardt method, are solved inexactly. We covered essentially two

possibilities: conjugate gradient and any generic inexact solution of the corresponding normal

equations, which then encompasses a range of practical situations, from inexactness in linear

algebra to inexactness in derivatives. This is particularly useful in the 4DVAR application to

accommodate finite differences of the nonlinear operators involved. The main difficulty in the

application of the new approach (Algorithm 2.8 in Chapter 4) is to ensure that the models are

indeed (pj)-probabilistically accurate, but we have presented a number of practical situations

where this is achievable. It would be interesting to further explore the role of the probabil-

ity p∗j in the adaptation of the regularization parameter, and to seek better lower bounds of the

probability p∗j which may improve the convergence properties of the new approach.

The challenge (iii) was addressed in Chapter 5 by proposing to use ensemble methods, namely

EnKS to approximate the subproblem solution arising when using Gauss-Newton or Levenberg-

Marquardt methods to sovle the 4DVAR problem. The use of ensemble methods as a linear solver

makes random approximations to the gradient. We thus showed how to adapt the approach of

Levenberg-Marquardt based on random models method in this situation. We have shown that to

solve the 4DVAR problem arising in data assimilation, in the framework of the application of the

Levenberg-Marquardt method, when using the EnKS method for the formulation and solution

of the corresponding linearized least squares subproblem, is equivalent to approximately solve a

realization of a random model. We have also provided a lower bound pj for the probability of

first order accuracy (see 5.42), which renders our approach applicable and sound. We gave some

numerical results to illustrate our approach by using Lorenz 63 equations as forecast model in

the 4DVAR problem. Here also, it would be interesting to further investigate the better lower

bounds to the probability p∗j and to study the performance of our approach when applied to

large and realistic data assimilation problems.

The challenge (iv) was addressed in Chapter 6 by giving numerical results to illustrate the LM-

EnKS method (see Algorithm 5.1). The numerical experiments are done using two different
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forecast models, namely Lorenz 63 model and the quasi-geostrophic model. We have analyzed

mainly the impact of the following parameters which arise in the LM-EnKS algorithm:

• The ensemble size: we have shown that, in the average of several runs, for the first it-

erations (when the current iteration is ”far” from the objective function minimum) this

parameter has not a big impact on the iteration progress. However after some iterations

(when the current iteration is ”near” to the minimum), then the larger the ensemble size

is, the better the results will be. Hence we believe that an adaptive ensemble size over

iteration can be a better choice (than fixed one for all iterations). We mean by adaptive

ensemble size to generate an ensemble with a small size in the first iteration and then to

increase it over iterations.

• The finite differences parameter (τ): we have shown that, it is better for the first iteration

to use the classical ensemble Kalman smoother as proposed in [43] to approximately solve

the subproblem (which correspond to the choice of τ = 1), and then to decrease the finite

differences parameter to zero over iterations.

• The covariance scale parameter: we have shown that the scaling of the covariances is very

important to speed up the decrease of the objective function over iterations. We have

shown that, few iterations were enough to reduce significantly the objective function in

the case where the covariances are scaled. But in the case where the covariances are not

scaled, the algorithm needs more iterations to reduce the objective function significantly.

We conclude that the choice of the previous parameters is of crucial importance for the cost of

the algorithm. One of the topics of future research will be to explore in more details the best

strategies to adapt these parameters over iterations.

Finally, the challenge (v) was addressed in Chapter 7. The main results of these chapter show

that:

• In the linear case, i.e., when the observation and the model operators are linear for any

time step, the empirical mean and covariance of EnKS converge to the KS mean and

covariance in the limit for large ensemble size in Lp for any p ∈ [1,∞).

• In the nonlinear case, i.e., in the case where the observation and the model operators

are not necessary linear, we have shown the convergence of LM-EnKS iterations ( Al-

gorithm 7.3) in the limit for large ensemble size. The convergence is in the sense that

(i) each iterate generated by Algorithm 7.3 converges in probability to its corresponding

iterate of Algorithm 7.2 as the finite differences parameter goes to zero (Algorithm 7.3 is

asymptotically equivalent to the algorithm with derivatives as finite differences parameter

goes to zero), (ii) and that each iterate generated by Algorithm 7.2 converges, in Lp for

any p ∈ [1,∞), to its corresponding iterate of Algorithm 7.1 (the classical Gauss-Newton

algorithm).

These convergence issues, and more generally the asymptotic behavior of the ensemble based

algorithms deserve further investigation. Here in the nonlinear case, we have given only the
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limit in probability of each iteration of Algorithm 7.3 as the finite differences parameter goes to

zero and the ensemble sizes go to infinity. One may try to prove stronger convergences, especially

to leverage the convergences in probability to convergences in Lp, and show the convergence rate

of these algorithms following the spirit of [78].

There are some other general issues which worth further exploration. It would be interesting to

further explore globalization strategies by developing algorithms that are similar in spirit to the

classical trust regions approach [25, Chapter 6], and to extend the proposed algorithms to the

case of constrained least squares problems. In both cases, we expect that the formulation of the

subproblem using Lagrange multipliers is the key issue to obtain a robust algorithm.



Appendix A

Derivatives of weak constraints

4DVAR problem

When we alleviate the assumptions that the modelMk is perfect (i.e., the residual vk 6= 0), and

that mk = 0. The least-squares problem (2.39) becomes:

min
x0:p

1
2

(
‖x0 − xb‖2B−1 +

p∑
k=0

‖Hk(xk)− yk‖2R−1
k

+
p∑
k=1

‖xk −Mk(xk−1)−mk‖2Q−1
k

)
.

The function F : Rn(p+1) → R(n+m)(p+1), is defined by:

F (x0:p) =



B−1/2(x0 − xb)

Q
−1/2
1 (M1(x0)− x1 +m1)

...

Q
−1/2
p (Mp(xp−1)− xp +mp)

R
−1/2
0 (H0(x0)− y0)

...

R
−1/2
p (Hp(xp)− yp)


, (A.1)

Note that:

F1:n(x0:p) = B−1/2(x0 − xb),

Fnk+1:n(k+1)(x0:p) = Q
−1/2
k (Mk(xk−1)− xk), for k = 1, . . . , p

Fn(p+1)+mk+1:n(p+1)+m(k+1)(x0:p) = R
−1/2
k (Hk(xk)− yk), for k = 0, . . . , p

where Fk:l denotes the joint function of Fk, Fk+1, . . ., Fl.
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Computation of the derivatives

The Jacobibian of the function defined in (A.1) is:

JF (x) =


δF1(x)
δx0(1)

. . . δF1(x)
δx0(n)

δF1(x)
δx1(1)

. . . δF1(x)
δxp(n)

δF2(x)
δx0(1)

. . . δF2(x)
δx0(n)

δF2(x)
δx1(1)

. . . δF2(x)
δxp(n)

...
...

. . . . . .
...

δFq(x)
δx0(1)

. . .
δFq(x)
δx0(n)

δFq(x)
δx1(1)

. . .
δFq(x)
δxp(n)

 =


∇F1(x)>

...

∇Fq(x)>



=



JF1:n(x)

JFn+1:2n(x)
...

JFnp+1:n(p+1)(x)

JFn(p+1)+1:n(p+1)+m(x)
...

JF(n+m−1)(p+1)+1:(n+m)(p+1)(x)


,

where xk(j) denotes the j-eme component of the vector xk. Hence the function F Jacobian is

equal to:

B−1/2 0n 0n . . . . . . 0n 0n
Q
−1/2
1 M′1(x0) −Q−1/2

1 0n . . . . . . 0n 0n

0n Q
−1/2
2 M′2(x1) −Q−1/2

2 0n
. . . . . . 0n

...
...

. . . . . . . . .
...

...

0n . . .
. . . . . . 0n Q

−1/2
p M′p(xp−1) −Q−1/2

p

R
−1/2
0 H′0(x0) 0m 0m . . .

. . . 0m 0m

0m R
−1/2
1 H′1(x1) 0m

. . . . . .
. . . 0m

...
...

. . . . . . . . .
...

...

0m . . .
. . . . . . 0m 0m R

−1/2
p H′p(xp)



,

and the gradient of the objective function defined in (A.1) is equal to:

∇f(x) =



B−1(x0 − xb) +M′1(x0)>Q−1
1 (M1(x0)− x1 +m1)

+H′0(x0)>R−1
0 (H0(x0)− y0)

M′2(x1)>Q−1
2 (M2(x1)− x2 +m2) +Q−1

1 (x1 −M1(x0)−m1)

+H′1(x1)>R−1
1 (H1(x1)− y1)

...

M′p(xp−1)>Q−1
p (Mp(xp−1)− xp +mp) +Q−1

p−1(xp−1 −Mp−1(xp−2)−mp−1)

+H′p−1(xp−1)>R−1
p−1(Hp−1(xp−1)− yp−1)

Q−1
p (xp −Mp(xp−1)−mp) +H′p(xp)>R−1

p (Hp(xp)− yp)


.
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Sherman–Morrison–Woodbury

formula

Sherman-Morrison-Woodbury formula is useful when one want to update the inverse of a small

rank adjustment of a given matrix.

Let A ∈ Rn,n be a non singular matrix having the inverse A−1, and let U ∈ Rn,r and V ∈ Rr,n

two matrices with r ≤ n. If Ir + V >A−1U ∈ Rr,r is invertible , then the matrix A + UV > is

invertible and (
A+ UV >

)−1
= A−1 −A−1U

(
Ir + V >A−1U

)−1
V >A−1.

Let C ∈ Rr,r be a non singular matrix having the inverse C−1, if C−1 + V >A−1U is invertible,

then the matrix A+ UCV > is invertible and

(
A+ UCV >

)−1
= A−1 −A−1U(V >A−1U + C−1)−1V >A−1.
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Test results

The mean and the standard deviation over different runs

of the objective function and relative gradient, for different

values of N

iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.58419e+ 9 1.37083e+ 7 3.9239 0.0113705
2 1.96093e+ 8 902717 0.508512 0.00151073
3 3.77692e+ 6 27388.9 0.051462 0.000198448
4 4623.21 170.757 0.00154629 3.24746e− 5
5 72.8078 5.86888 5.28081e− 5 2.21919e− 5
6 13.1061 3.17854 4.88829e− 5 2.3701e− 5
7 9.37865 3.60414 5.32011e− 5 2.02696e− 5
8 9.27288 4.58593 5.41864e− 5 2.3871e− 5

Table C.1: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for N = 10. This results are based on 50 runs of the

algorithm.

The objective function values over iterations for different

values of γ
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iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.58001e+ 9 3.70922e+ 6 3.92042 0.00307241
2 1.95815e+ 8 243755 0.508049 0.00040834
3 3.77e+ 6 7661.99 0.0514139 5.56985e− 5
4 4592.79 50.8496 0.00154387 1.04138e− 5
5 65.3008 1.67208 1.64732e− 5 5.35522e− 6
6 6.81256 0.421082 1.49686e− 5 4.19515e− 6
7 1.92003 0.228182 1.74395e− 5 6.5466e− 6
8 1.603 0.222602 1.82193e− 5 7.22388e− 6

Table C.2: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for N = 50. This results are based on 50 runs of the

algorithm.

iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.58124e+ 9 1.84726e+ 6 3.92146 0.00153481
2 1.95902e+ 8 126403 0.508196 0.000212041
3 3.77161e+ 6 3639.52 0.0514257 2.6511e− 5
4 4601.22 31.7067 0.00154601 6.19756e− 6
5 64.6354 1.01239 1.23927e− 5 4.38367e− 6
6 6.36547 0.283221 1.11069e− 5 3.77735e− 6
7 1.38782 0.134158 1.19745e− 5 3.78766e− 6
8 1.15234 0.1458 1.01889e− 5 3.89619e− 6

Table C.3: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for N = 100. This results are based on 50 runs of the

algorithm.

iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.58161e+ 9 1.97718e+ 6 3.92176 0.00164204
2 1.95921e+ 8 130025 0.508229 0.000218074
3 3.77279e+ 6 3974.62 0.0514344 2.89634e− 5
4 4600.75 21.4993 0.00154601 4.19961e− 6
5 64.4984 0.613937 9.08844e− 6 3.19868e− 6
6 6.25661 0.170825 7.68826e− 6 3.52966e− 6
7 1.18981 0.0685448 7.9474e− 6 2.42671e− 6
8 0.936584 0.0615694 7.35678e− 6 2.18636e− 6

Table C.4: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for N = 200. This results are based on 50 runs of the

algorithm.
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iter. Obj. fun. Obj. fun. Rel. grad. Rel. grad.
mean std mean std

1 3.58125e+ 9 857555 3.92147 0.000716486
2 1.95896e+ 8 56306.8 0.508188 9.48331e− 5
3 3.77196e+ 6 1807.75 0.0514284 1.31439e− 5
4 4596.43 13.0518 0.0015452 2.50977e− 6
5 64.3515 0.449598 6.64223e− 6 2.22441e− 6
6 6.12631 0.0651529 4.63101e− 6 1.46142e− 6
7 1.06267 0.0390599 4.95395e− 6 2.66412e− 6
8 0.827915 0.0169406 4.87621e− 6 1.71227e− 6

Table C.5: The mean and the standard deviation of the objective function values and
relative gradient over iterations, for N = 500. This results are based on 50 runs of the

algorithm.

Iter. Obj. fun. when using incremental 4DVAR
0 56508.9
1 62500.3
2 38573.7
3 107781.0
4 134528.0
5 66415.5
6 44556.9
7 62627.7
8 44669.8

Table C.6: The objective function values over iterations when using Gauss-Newton
algorithm (incremental 4DVAR algorithm).

Iter. γ = 0 γ = 0.001 γ = 0.1 γ = 1
0 56508.9 56508.9 56508.9 56508.9
1 62824.3 59241.7 62624.6 47705.1
2 75969 109593 76888.8 39642.3
3 88286.7 94525.7 68068.9 55521
4 63846.3 49202.8 62213.3 31999.4
5 65510.3 27512.6 53272.8 16767.4
6 72536.9 14105.2 67739.8 12517.5
7 64758.1 10363.7 73657.4 9694.71
8 96220.3 6958.5 58497.4 9274.92

Table C.7: The objective function values over iterations for the following value of γ:
0, 0.001, 0.1, 1.
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Iter. γ = 10 γ = 100 γ = 500 γ = 1000
0 56508.9 56508.9 56508.9 56508.9
1 30470.7 33648.7 35025.3 36037.3
2 30138.6 24974.8 24916.5 25207.9
3 15324.9 21384.2 19093.2 20603.2
4 8183.56 17169.9 16413.2 16405.7
5 4177.05 17732.6 13289.7 14897.3
6 2339.36 14419.5 11317.1 13402.4
7 1667.51 12482.5 10300.8 12005.8
8 1367.02 12754.1 8666.3 10556.3

Table C.8: The objective function values over iterations for the following values of γ:
10, 100, 500, 1000.
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