
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Réseaux, Télécommunications, Systèmes et Architecture

Présentée et soutenue par :
M. HAMDI AYED

le jeudi 27 novembre 2014

Titre :

Unité de recherche :

Ecole doctorale :

ANALYSE ET OPTIMISATION DES RESEAUX AVIONIQUES
HETEROGENES

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Institut de Recherche en Informatique de Toulouse (I.R.I.T.)
Directeur(s) de Thèse :
M. CHRISTIAN FRABOUL

M. AHLEM MIFDAOUI

Rapporteurs :
M. LAURENT GEORGE, UNIVERSITE DE MARNE LA VALLEE

M. YE-QIONG SONG, UNIVERSITE DE LORRAINE

Membre(s) du jury :
1 M. LAURENT GEORGE, UNIVERSITE DE MARNE LA VALLEE, Président
2 M. AHLEM MIFDAOUI, ISAE TOULOUSE, Membre
2 M. CHRISTIAN FRABOUL, INP TOULOUSE, Membre
2 M. JUAN LOPEZ, AIRBUS FRANCE, Membre
2 M. LUIS ALMEIDA, UNIVERSIDADE DO PORTO PORTUGAL, Membre

Acknowledgments

I would like to express my sincere gratitude to my supervisor Christian Fraboul and

Co-supervisor Ahlem Mifdaoui for their constant support, guidance and patience during

my research. I thank them for their precious advice, availability and kindness they have

shown during my thesis. Without their help and support in the difficult moments this

thesis would not have been possible.

I am thankful for Ye-Qiong Song and Laurent George for accepting to be my thesis

referees. I am also very honored to count them among the members of the jury of my

thesis as well as Luis Almeida and Juan Lopez.

I would like to thank Sylvie Eichen for her precious help in administrative tasks.

I thank all the people that i worked or interacted with at the Department of Computer

Science, Mathematics and Automatics (DMIA) of the ISAE (Jolimont site). In particular,

I am grateful to Emmanuel Lochin, Fabrice Frances, Jerome Lacan, Patrick Senac, Tan-

guy Perennou and Pierre de-Saqui-Sannes for the many useful discussions and precious

advice. I thank Thomas, Remi, Hugo, Anh-Dung, Nicolas, Victor, Léo, Jonathan, Tuan,

Khanh, Viet, Rami, Karine, Ahmed and everyone in the DMIA department for providing

me a friendly working environment.

Finally, I thank my parents and all my family for their encouragement and support.

iii

iv

Abstract

The complexity of avionic communication architecture is increasing due to the grow-

ing number of interconnected end-systems and the expansion of exchanged data. To

be effective in meeting the emerging requirements in terms of bandwidth, latency and

modularity, the current avionic communication architecture consists of an Avionics Full

DupleX Switched Ethernet (AFDX) network to interconnect the critical end-systems and

some Input/ Output (I/O) data buses (e.g., Controller Area Network (CAN) bus) for sen-

sors and actuators. Clusters are then interconnected via specific devices, called Remote

Data Concentrators (RDCs), standardized as ARINC 655. RDC devices are modular

gateways distributed throughout the aircraft to handle heterogeneity between the AFDX

backbone and I/O data buses. Although RDC devices enhance avionics modularity and

reduce maintenance efforts, they become one of the major challenges in the design pro-

cess of such multi-cluster avionic architectures. The existing implementations of RDC

are usually based on direct frames translation and do not consider resource savings issue.

Resource utilization efficiency is important for avionic applications to guarantee easy in-

cremental design, and enhance margins for future avionic functions additions. Therefore,

the design of an optimized RDC device integrating resource saving mechanisms becomes

a necessity to enhance the scalability and performances of avionic applications. In this

context, the main objective of this thesis is to design and validate an enhanced RDC

device offering an efficient bandwidth utilization, considered as a main resource to save,

while meeting real-time constraints.

To achieve this aim, first, we design an enhanced CAN-AFDX RDC device compliant

with the ARINC 655 specifications. The main elementary functions integrated into the

proposed RDC are: (i) frame packing applied on upstream flows, i.e., flows generated

by sensors and destined to the AFDX, to minimize communication overheads, and con-

sequently bandwidth utilization; (ii) hierarchical traffic shaping applied on downstream

flows, i.e., flows generated by AFDX sources and destined to actuators, to reduce inter-

ferences on CAN, and thus to enhance communication efficiency. Moreover, our proposed

RDC may connect multiple I/O CAN buses using a partitioning process to guarantee the

isolation between different criticality levels.

Second, to analyze the effects of our proposed RDC on the system’s performance, we

detail the modeling of the CAN-AFDX architecture, and especially the RDC device and

its implemented functions. Afterwards, we conduct timing analysis to compute end-to-

end delay bounds and to verify real-time constraints. Preliminary performance analysis of

our proposed RDC device through simple examples shows the efficiency of frame packing

and traffic shaping processes to enhance resource savings in terms of AFDX bandwidth

utilization.

Many RDC configurations can meet the system requirements while enhancing resource

savings. Hence, we proceed to tuning of our RDC parameters to maximize as much as

possible resource savings, and consequently to minimize the AFDX bandwidth utilization

while meeting the system constraints. However, this RDC tuning problem turned to be

a NP-hard problem, and adequate heuristic methods are introduced to find the accurate

RDC parameters. Preliminary performance evaluation of our optimized RDC device has

been performed, and obtained results show significant enhancements in terms of band-

width utilization reduction, with reference to the currently used RDC device.

Finally, the performances of the proposed RDC device are validated through a real-

istic CAN-AFDX avionics architecture. Different I/O CAN loads have been considered

to check the scalability of the integrated RDC functions, i.e., frame packing and traffic

shaping. The obtained results confirm our first conclusions and highlight the ability of

our proposed RDC device to maximize resource savings, while meeting the real-time con-

straints. For instance, the optimized RDC device offers a bandwidth utilization reduction

of more than 40% compared to current RDC device.

Keywords: Multi-cluster avionics networks, AFDX, CAN, RDC design, Timing analysis,

performance optimization, Validation

List of Publications

[RTSS2011] Hamdi Ayed, Ahlem Mifdaoui and Christian Fraboul. Gateway Optimiza-

tion for an Heterogeneous Avionics Network AFDX-CAN. In: WIP session of the

32nd IEEE Real-Time Systems Symposium (RTSS), 29 Nov - 02 Dec 2011, Vienna,

Austria.

[ETFA2012] Hamdi Ayed, Ahlem Mifdaoui and Christian Fraboul. Frame Packing

Strategy within Gateways for Multi-cluster Avionics Embedded Networks. In: 17th

Emerging Technologies & Factory Automation (ETFA), Krakow, 17-21 Sept. 2012.

[ECRTS2013] Hamdi Ayed, Ahlem Mifdaoui and Christian Fraboul. Interconnection

Optimization for Multi-Cluster Avionics Networks. In: 5th Euromicro Conference

on Real-Time Systems (ECRTS), 2013, 9-12 July 2013.

[SIES2014] Hamdi Ayed, Ahlem Mifdaoui and Christian Fraboul. Hierarchical Traffic

Shaping and Frame Packing to Reduce Bandwidth Utilization in the AFDX. In: 9th

IEEE International Symposium on Industrial Embedded Systems (SIES), Pisa, 18-

20 June.

[ESL2014] Hamdi Ayed, Ahlem Mifdaoui and Christian Fraboul. Enhanced RDC Device

to Maximize Resource Savings for Avionics Networks. In: IEEE Embedded Systems

Letters (under submission).

vii

List of Publications

viii

Contents

List of Publications vii

List of Figures xiii

List of Tables xvii

Introduction

Context and Motivation . 1

Original Contributions . 3

Thesis Outline . 4

1 Background and Problem Statement

1.1 Progress of Avionic Communication Architecture and Main Challenges . . 7

1.1.1 History of Avionic Architecture . 8

1.1.2 Appearance of Multi-cluster Avionic Networks 9

1.2 Description of Network Standards . 13

1.2.1 ARINC 664: Backbone Network . 13

1.2.2 Sensors/Actuators Networks . 17

1.3 Description of RDC Standard: ARINC 655 22

1.3.1 RDC Requirements . 22

1.3.2 Functional Specifications . 24

1.3.3 Architectural Specifications . 25

1.4 Design Opportunities for Multi-Cluster Avionic Networks 26

1.5 Conclusion . 28

2 Related Work: Performance Optimization for Multi-Cluster Networks

ix

Contents

2.1 Optimizing Traffic-Source Mapping . 29

2.1.1 Avionics End-Systems . 30

2.1.2 Automotive End-Systems . 32

2.2 Optimizing Communication Network Performance 33

2.2.1 Work on the AFDX Network . 34

2.2.2 Work on Sensors/Actuators Networks 38

2.3 Optimizing Interconnection Devices . 41

2.3.1 CAN-Ethernet Bridge . 41

2.3.2 CAN-FlexRay Gateway . 42

2.3.3 ARINC 429-AFDX Gateway . 45

2.4 Need for Optimized CAN-AFDX Gateway 46

2.5 Conclusion . 48

3 Design of an Enhanced CAN-AFDX RDC

3.1 Current RDC Device . 51

3.2 Enhanced RDC Functional Overview . 54

3.3 Frame Packing Strategies . 57

3.3.1 Related Work . 57

3.3.2 Dynamic Strategy: FWT . 59

3.3.3 Static Strategy: MSP . 60

3.4 Data Mapping & Formatting . 60

3.4.1 Data Mapping . 60

3.4.2 Frame Formatting . 61

3.5 Traffic Shaping Mechanism . 64

3.5.1 Related Work . 64

3.5.2 HTS Algorithm . 66

3.6 Conclusion . 67

4 Modeling and Timing Analysis of the Enhanced RDC

4.1 CAN-AFDX RDC Modeling . 69

4.1.1 Frame Packing Strategies Modeling 71

4.1.2 HTS Mechanism Modeling . 75

4.2 Timing Analysis . 76

4.2.1 Sufficient Schedulability Test . 76

4.2.2 Timing Analysis for Upstream Flows 78

x

4.2.3 Timing Analysis for Downstream Flows 84

4.3 Preliminary Performance Analysis . 87

4.3.1 Considered Test Cases . 87

4.3.2 Impact of Frame Packing Strategy 89

4.3.3 Impact of HTS Mechanism . 93

4.4 Conclusion . 95

5 Performance Optimization of the Enhanced RDC

5.1 Problem Formulation . 97

5.2 Optimization Process under FWT Strategy 99

5.3 Optimization Process under MSP Strategy 102

5.3.1 Bandwidth Best Fit Decreasing Heuristic 104

5.3.2 Branch & Bound Algorithm . 106

5.4 Optimization process under HTS Mechanism 110

5.4.1 Heuristic Approach . 110

5.4.2 Example . 111

5.5 Preliminary Performances Analysis . 112

5.5.1 Results under Optimized FWT Strategy 113

5.5.2 Results under Optimized MSP Strategy 114

5.5.3 Results under Optimized HTS Mechanism 116

5.6 Conclusion . 117

6 Avionics Case Study

6.1 Description . 119

6.1.1 CAN-AFDX Architecture . 119

6.1.2 Communication Traffic . 120

6.1.3 Test Scenarios . 122

6.2 Benefits of Frame Packing Strategies . 122

6.2.1 Under FWT . 123

6.2.2 Under MSP . 124

6.2.3 Comparative Analysis and Conclusion 124

6.3 Benefits of HTS Mechanism . 125

6.3.1 Impact of I/O CAN Bus Sharing on Frame Packing 125

6.3.2 On the Effects of HTS Mechanism 128

6.4 Conclusion . 129

xi

Contents

Conclusions and Prospectives

Conclusions . 131

Prospectives . 134

A Network Calculus Overview

A.1 Network Calculus Theory . 137

A.1.1 Cumulative Functions . 137

A.1.2 Arrival Curve . 138

A.1.3 Service Curve . 140

A.1.4 Network Calculus Bounds . 141

A.1.5 Concatenation and Blind Multiplexing 142

A.1.6 Application to AFDX . 142

A.2 WoPANets Performance Analysis Tool . 143

A.2.1 WoPANets Features and Structure 144

A.2.2 Propagation Analysis Algorithm . 145

A.2.3 Illustrative Example . 147

A.2.4 Obtained Results . 148

B Generalization for TTCAN bus

B.1 TTCAN Description . 151

B.2 TTCAN-AFDX RDC design . 154

B.2.1 FWT strategy . 154

B.2.2 MSP strategy . 156

B.3 Timing Analysis . 157

B.3.1 Timing Analysis for RDC . 158

B.3.2 Timing Analysis on TTCAN . 159

B.3.3 Illustrative Example . 159

Bibliography 163

xii

List of Figures

1.1 Avionic network architecture: dedicated I/O networks 11

1.2 Centralized avionic architecture . 11

1.3 Multi-cluster avionic network architecture 12

1.4 Distributed avionic architecture . 13

1.5 Example of AFDX virtual links . 14

1.6 Virtual Link bandwidth control mechanism 14

1.7 Three AFDX Virtual Links carried by a 100 Mbps Ethernet link 15

1.8 Example of application data flow on AFDX 15

1.9 AFDX frame format . 16

1.10 ARINC 653 partitioning for AFDX end systems 17

1.11 Communication from application to application over AFDX with ARINC 653 18

1.12 ARINC 429 network architectures . 19

1.13 ARINC 429 frame format . 19

1.14 CAN protocol: CSMA/CR access mechanism 20

1.15 CAN 2.0 A frame structure . 21

1.16 Synchronous mode for CAN-AFDX RDC 25

1.17 Asynchronous mode for CAN-AFDX RDC 26

2.1 Data packing and VLs allocation . 31

2.2 Periodic execution of Partitions . 31

2.3 Data packing of CAN frames . 32

2.4 Multi-cluster automotive network architecture 33

2.5 Example of communication network . 36

2.6 Optimization of sensors/actuators network performance 38

2.7 CAN-Ethernet communication architecture 41

2.8 CAN-FlexRay communication architecture 43

2.9 CAN-FlexRay Gateway functional structure 43

2.10 CAN-FlexRay Gateway operation diagram 44

2.11 Example of AFDX frame including multiple ARINC 429 labels 45

xiii

List of Figures

2.12 CAN-AFDX avionics architecture . 46

3.1 Current CAN-AFDX RDC functional structure 52

3.2 Mapping table for the current RDC device 52

3.3 The current CAN-AFDX RDC: (1:1) strategy 53

3.4 Current CAN-AFDX RDC interconnection topology 53

3.5 Enhanced CAN-AFDX RDC functional structure 54

3.6 Packing CAN messages into AFDX frames 55

3.7 Frame unpacking process . 56

3.8 FWT frame packing strategy for upstream flows 59

3.9 MSP frame packing strategy on upstream flows 60

3.10 Mapping table for enhanced RDC device 61

3.11 Structure of AFDX payload (ARINC 664) 62

3.12 Chosen AFDX payload structure . 62

3.13 Explicit AFDX frame structure . 63

3.14 Implicit AFDX frame structure . 63

3.15 Hierarchical Traffic Shaping structure . 66

4.1 CAN-AFDX network architecture . 69

4.2 Upstream flows modeling from end-to-end 70

4.3 Downstream flows modeling from end-to-end 70

4.4 Example of CAN messages mapping onto AFDX VLs 71

4.5 Example of AFDX VLs allocation under FWT strategy 73

4.6 Example of AFDX VLs allocation under MSP strategy 75

4.7 End-to-end delay metric definition . 76

4.8 Worst-case waiting time under FWT strategy 78

4.9 Worst-case waiting time under MSP strategy 79

4.10 Comparison between exact WCRT and upper bound (Example 2) 84

4.11 Test case 1: one sensors CAN bus interconnected to the AFDX 87

4.12 Test case 2: one sensors/actuators CAN bus interconnected to the AFDX . 88

4.13 CAN WCRT of upstream flows . 94

4.14 CAN WCRT of downstream flows . 94

5.1 Optimization for FWT strategy . 99

5.2 Impact of the waiting timer ∆ on the AFDX bandwidth consumption 100

5.3 Optimization for MSP strategy . 102

5.4 Bandwidth-Best-Fit Decreasing heuristic 105

5.5 BB based algorithm example . 109

xiv

5.6 Optimization for HTS mechanism . 110

5.7 Example with the HTS heuristic approach (scenario 1) 112

5.8 Example with the HTS heuristic approach (scenario 2) 113

5.9 CAN WCRT of downstream flows . 116

6.1 CAN-AFDX case study . 120

6.2 AFDX network architecture (Courtesy of: ARTIST2 - IMA A380) 121

6.3 Impact of FWT frame packing strategy on AFDX bandwidth consumption . 123

6.4 Impact of MSP frame packing strategy on AFDX bandwidth consumption . 124

6.5 Bandwidth Utilization on the AFDX with shared I/O network 126

6.6 WCRT on CAN of upstream flows with shared I/O network 127

6.7 Impact of HTS mechanism on AFDX bandwidth consumption 128

A.1 Examples of Input and Output cumulative functions 138

A.2 Arrival curve . 139

A.3 Example of leaky bucket arrival curve . 139

A.4 Example of rate latency service curve . 140

A.5 Backlog and delay bounds . 141

A.6 δT service curve . 143

A.7 WOPANETS Structure . 145

A.8 The Input Topology of the Case Study . 147

A.9 Maximal Delay Bounds Histogram (1Gbps) 148

A.10 Tool run time as a function of the number of hops and flows 149

B.1 TTCAN matrix cycle . 152

B.2 Example of TTCAN matrix obtained using TDMA scheduling 153

B.3 Example of TTCAN matrix obtained using PSPQ scheduling 154

B.4 FWT strategy for TTCAN I/O network . 155

B.5 MSP strategy for TTCAN bus . 157

B.6 Worst Case Response Time on TTCAN 159

B.7 TTCAN bus interconnected to the AFDX 160

B.8 TTCAN schedule example for TTCAN upstream flows 161

xv

List of Figures

xvi

List of Tables

4.1 Example 1: traffic characterization . 82

4.2 Example 1: exact WCRT vs upper bound 83

4.3 Upstream flows description . 88

4.4 Downstream flows description . 89

4.5 Upstream flows description . 89

4.6 VLs characteristics under FWT . 90

4.7 End-to-end delay bounds under (1:1) strategy 90

4.8 End-to-end delay bounds under FWT strategy with ∆1, ∆2 and ∆3 91

4.9 MSP configurations considered for upstream flows in Table 4.3 91

4.10 Induced VLs characteristics under MSP configurations 92

4.11 End-to-end delay bounds under MSP strategy 92

4.12 Example 1: AFDX bandwidth consumption 94

5.1 Comparative analysis of Optimization approaches 104

5.2 Comparison between the optimization approaches for MSP configuration . 114

5.3 Impact of frame packing strategies . 115

5.4 Impact of HTS mechanism . 117

6.1 AFDX flows description . 121

A.1 Periodic Traffic Description . 147

A.2 Aperiodic Traffic Description . 148

B.1 Upstream flows description . 160

B.2 VLs characteristics under FWT for TTCAN 161

B.3 End-to-end delay bounds under FWT strategy with ∆ = 1ms 161

B.4 MSP configurations . 162

B.5 TTCAN-AFDX RDC: schedulability test and AFDX bandwidth consumption162

xvii

List of Tables

xviii

Introduction

Context and Motivation

The complexity of avionics communication architecture has increased rapidly due to

the growing number of interconnected avionic systems and the expansion of exchanged

data quantity. To follow this trend, the current architecture of new generation aircraft

like the A350 consists of a high rate backbone network based on the AFDX (Avionics Full

Duplex Switched Ethernet) [1] to interconnect the critical systems. Then, sensors and

actuators are organized into one or more sensors/actuators networks based on low rate

data buses like ARINC 429 [2] and CAN [3]. The obtained clusters are then intercon-

nected via specific devices, called Remote Data Concentrators (RDCs) and standardized

as ARINC 655 [4]. RDCs are modular gateways distributed throughout the aircraft to

handle heterogeneity between AFDX-based backbone and peripheral data buses. The in-

troduction of the RDC device aims mainly to reduce necessary cabling and to enhance the

system modularity, with reference to prior network architectures. However, using RDC

devices within the multi-cluster avionic networks raises challenging questions related to

the impact of the RDC system performance in terms of network utilization.

The related work on the design and optimization of multi-cluster networks for avionics

and automotive, and especially interconnection devices highlight the limitations of exist-

ing solutions in terms of resource management. In particular, the current RDC device

implements a simple frame conversion strategy which consists in forwarding one frame on

the destination network for each incoming frame from a source network. Due to frame

size and data rate dissimilarities between network clusters, this frame conversion strategy

may induce high communication overheads on the interconnected networks. Furthermore,

current RDC device connects exactly one sensors/actuators network to the avionic back-

bone network which may imply an important number of RDC devices, and consequently

inherent development and integration cost. Hence, the current RDC device offers the

advantage of being simple to design and to configure; however, it is limited in terms of

network resource savings, and it may induce additional system costs.

1

Introduction

The objective of this thesis is to design and validate an enhanced RDC device for

multi-cluster avionics networks, which integrates network resource savings techniques and

meets timing constraints. To achieve this goal, we consider a CAN-AFDX case study as a

representative avionic multi-cluster network, and we integrate new elementary functions

within the RDC device. First, our proposed RDC implements a frame packing function

to minimize the consumed AFDX bandwidth by an I/O CAN network. Then, a traffic

shaping function is implemented in the RDC to isolate sensors flows from actuators flows

on an I/O CAN bus. Furthermore, our proposed RDC allows the interconnection of multi-

ple CAN buses to the AFDX backbone, while enforcing the segregation between different

criticality levels using a partitioning mechanism compliant with ARINC 653 specifications

[5]. The performance of our proposed CAN-AFDX RDC is evaluated using an analytical

framework to prove the offered real-time guarantees when considering the nominal case

of communication.

The tuning of our proposed RDC device is addressed to achieve the best RDC config-

uration, i.e., parameters of RDC minimizing the network resources utilization and guar-

anteeing the schedulability of communication. The RDC tuning problem is formulated

as an optimization problem where: (i) the RDC frame packing and traffic shaping pa-

rameters are the variables; (ii) minimizing the AFDX bandwidth consumption due to the

RDC device is the objective; (iii) the schedulability of communication flows crossing the

CAN-AFDX network corresponds to the constraints. However, this optimization problem

is considered as a NP-hard problem. Hence, to solve this latter in a polynomial time, we

introduce heuristic approaches to find the accurate RDC configuration which maximizes

resource savings.

The validation of our proposed RDC is done through a realistic case study under dif-

ferent load conditions. The analysis is conducted based on our developed tool WoPANets

[6] which is able to analyze AFDX and CAN networks when integrating the impact of the

different additional functions, i.e., frame packing and traffic shaping, within our proposed

RDC device. The end-to-end latencies and the AFDX bandwidth consumption for the

considered avionics CAN-AFDX network using our proposed RDC device are computed.

The obtained results showed the efficiency of the frame packing process when applied for

upstream flows to minimize AFDX bandwidth consumption. Moreover, the use of the

traffic shaping mechanism when applied for downstream flows, combined with the frame

packing process, has shown an interesting improvement of bandwidth utilization savings

(up to 40%).

2

Original Contributions

Original Contributions

Our main contributions are as following:

– Design of an enhanced CAN-AFDX RDC device: the proposed RDC device

consists of configurable elementary functions and it is capable to connect multiple

I/O CAN buses to the AFDX backbone. The frame packing function is integrated

to reduce communication overheads on the AFDX, with reference to a simple (1:1)

frame conversion strategy, by grouping multiple CAN frames within the same AFDX

frame. Moreover, a traffic shaping mechanism, called ”Hierarchical Traffic Shap-

ing” (HTS), is implemented in our proposed RDC device to isolate upstream and

downstream flows on CAN bus, and consequently to favor frame packing process.

Furthermore, our proposed RDC device is capable of interconnecting multiple I/O

CAN buses to the AFDX backbone, while isolating data flows from different CAN

buses by using partitioning technique compliant with ARINC 653 specifications [5].

This partitioning mechanism offers segregation between flows from different critical-

ity levels and simplifies the data mapping process in the RDC device.

– Performance analysis of the enhanced CAN-AFDX RDC device: to prove

the offered real-time guarantees and the capacity of our proposed RDC to save net-

work resources, we introduce an analytical approach to evaluate the worst-case per-

formance of a CAN-AFDX network interconnected using our enhanced RDC device.

First, the modeling phase of the CAN-AFDX network including our proposed RDC

device is described. Then, a timing analysis is introduced to evaluate the impact of

the introduced functions within the RDC device on the communication performance.

– Optimization of CAN-AFDX RDC parameters: heuristic methods and algo-

rithms for RDC device tuning are provided to increase as much as possible network

efficiency in terms of AFDX network bandwidth consumption, which is considered

as a relevant metric to assess network resource savings. First, we consider the case

of specific CAN buses for either sensors or actuators to evaluate the impact of frame

packing strategies on AFDX bandwidth consumption. Then, we consider the gen-

eral case where an RDC device can support many I/O CAN buses interconnecting

both sensors and actuators. The impact of the contention between upstream and

downstream flows on AFDX bandwidth consumption is integrated.

3

Thesis Outline

– Validation of the enhanced RDC device: The validation of RDC capacity to

save network resources and to meet avionics requirements is done through a realis-

tic case study under different load conditions. The considered CAN-AFDX network

includes several I/O CAN buses and an AFDX backbone with hundreds of AFDX

flows. The interconnection of CAN buses to the AFDX is done using our enhanced

RDC device. A performance evaluation is conducted under different test cases to

highlight the ability of our proposed RDC device to save resources and to guarantee

real-time constraints.

Thesis Outline

This thesis consists of six chapters. Chapter 1 gives an overview of the avionic

context and the main requirements. First, a brief history of avionic architectures and

the appearance of multi-cluster communication networks are described. Then, the main

avionic network technologies are presented, and particularly the main features of AR-

INC 655 standard [4] for RDC devices. Finally, the design opportunities of multi-cluster

avionic networks are discussed, and especially the impact of RDC devices on real-time

performances of avionic networks.

Chapter 2 presents the most relevant work related to the design and the optimization

of multi-cluster avionics network. This state of the art covers different aspects varying

from optimizing the performance analysis of the AFDX backbone and sensors/actuators

networks, to tuning the traffic source mapping and interconnection devices configuration.

Then, the main motivations and challenges to design and optimize the RDC device for

CAN-AFDX network are detailed.

In Chapter 3, we introduce an enhanced CAN-AFDX RDC device. The proposed

RDC consists of a set of elementary functions which aims to improve the RDC per-

formance, with reference to the currently used RDC device. First, an overview of the

functional structure of the enhanced RDC device is provided. Then, the integrated ele-

mentary functions within the RDC device are detailed, such as frame packing and traffic

shaping functions.

In Chapter 4, to evaluate the timing performance of our proposed RDC device and

to verify communication schedulability, we model the CAN-AFDX network architecture

4

Thesis Outline

including the enhanced RDC device. Then, a timing analysis process taking into account

the impact of the new functions integrated into the RDC device on the communication

performance is provided. Then, preliminary performance analysis is conducted through

small scale test cases to estimate the offered network resource savings and to prove the

real-time guarantees of our proposed RDC device.

Since many RDC configurations may be schedulable while offering different levels of re-

source savings on CAN-AFDX networks, we address in Chapter 5 the tuning of the RDC

device to achieve the best configuration, i.e., the parameters of the RDC functions mini-

mizing the network utilization while meeting the time constraints. The tuning process of

our proposed RDC device is first formulated as an optimization problem. Then, adapted

heuristic approaches to find optimal RDC configuration are detailed. Afterwards, prelim-

inary results obtained using the optimized CAN-AFDX RDC device with small scale test

cases are provided.

In Chapter 6, to validate our proposed CAN-AFDX RDC device, we consider a re-

alistic avionics case study with various load conditions. The end-to-end latencies and

the AFDX bandwidth consumption induced by our proposed RDC device are computed.

Then, a comparative study between different RDC configurations and under various traf-

fic load conditions is conducted to highlight the capacity of our proposed RDC device

to save network resources, while meeting the hard real-time constraints of the avionics

applications.

Finally, we conclude with a discussion about the performance of our enhanced RDC

device. Then, we present some directions that can be explored in the future.

5

Thesis Outline

6

Chapter 1

Background and Problem Statement

In this chapter, an overview of the evolution of avionic architectures and the appear-

ance of multi-cluster avionic networks are first presented. Afterward, the main network

technologies used in these architectures are described. Then, the ARINC 653 standard [4]

for interconnection devices is presented from functional and architectural perspectives to

highlight its role in multi-cluster avionic networks. Finally, the main design opportunities

for multi-cluster avionic networks are discussed.

1.1 Progress of Avionic Communication Architecture

and Main Challenges

To handle the increasing needs of avionic systems in terms of computing and In-

put/Output resources, the avionic architecture has evolved from federated architecture

[7], i.e., functions are hosted by dedicated hardware, to Integrated Modular Architecture

(IMA) [7], i.e., functions share common hardware modules (e.g. CPU module, I/O mod-

ule). As a part of the avionic architecture, the communication networks have also evolved

from low rate dedicated data buses (e.g. ARINC 429 [2]) to multiplexed field-buses (e.g.

MIL-STD-1553B [8], ARINC 629 [9], CAN [3]), and more recently switched networks, e.g.

ARINC 664 [1]. Although this progress offers a more scalable architecture to support dis-

tributed avionic functions, it has raised at the same time several challenges related mainly

to the system’s performance and resources utilization. In this section, we first present an

overview of avionic architecture evolution. Afterwards, we focus on multi-cluster net-

works, used in modern aircraft to support communication between avionic end-systems,

and we identify their main challenges.

7

Chapter 1. Background and Problem Statement

1.1.1 History of Avionic Architecture

At the beginning of aircraft’s industry, avionics functions were hosted by dedicated

hardware with their proper processing units, which are directly attached to their In-

put/Output interfaces to get required data and perform some computations. Then, pro-

cessed data are exchanged with other avionic functions. This avionic architecture, called

federated architecture, has been used for decades for avionics systems to support safety-

critical functions and to guarantee system’s requirements. This avionic architecture offers

a high isolation level due to the dedicated hardware, i.e., dedicated processing resources

and I/O interfaces. However, with the increasing number of avionic functions, the feder-

ated architecture reached its limits due to the important number of required hardware,

and consequently inherent system weight and costs.

In the last two decades, Integrated Modular Architecture (IMA) has been introduced

as an alternative to federated architecture. The IMA concept consists in using a set of

common hardware modules (e.g. CPU module, I/O module) to support several appli-

cations with different safety levels. Hence, the system’s resources have became shared

between several avionic functions, while isolation is still guaranteed at the software level

using partitioning techniques. For instance, the ARINC 653 [5] standard specifies a par-

titioning mechanism, which provides isolation between avionics functions hosted within

the same avionics system. This isolation is achieved by restricting the address space of

each partition and limiting the amount of CPU time reserved for each partition. The

objective is to ensure that an errant avionics function running in one partition will not

affect functions running in other partitions

As the avionic architecture evolved, the avionic communication system has also evolved

to follow the increasing demand on communication resources and the emerging require-

ments of IMA architecture. Using federated avionic architecture implied a low exchanged

data between subsystems, and consequently using point-to-point connections, such as AR-

INC 429 [2] bus standard, was efficient. However, with the IMA approach, an increasing

number of avionic functions and exchanged data quantity have to be supported. Hence,

the ARINC 429 bus became no longer effective due to its low data transmission rate and

high required cabling. Therefore, new communication standards have been introduced to

meet these emerging requirements with IMA architectures. For instance, AFDX [1] stan-

dard, based on Switched Ethernet at 100 Mbps was introduced by Airbus in the A380 as

a high speed backbone network.

8

1.1. Progress of Avionic Communication Architecture and Main Challenges

1.1.2 Appearance of Multi-cluster Avionic Networks

In this section, we first present the main avionics requirements. Then, we review the

recent progress of the avionic communication networks, used with IMA architecture.

1.1.2.1 Avionics Requirements

The avionic network as a part of the avionics system has to fulfill a set of requirements

[10]. The main ones are as follows:

– Predictability: The avionic network must behave in a predictable way and ap-

propriate proofs to guarantee its determinism have to be provided by the network

designer. For example, the communication latencies, the backlog in a network node

or the packet loss rate have to be bounded. The required proof depends on the

avionics application. For instance, consider an air pressure sensor that produces a

measurement each 10 ms and sends it through the avionic network to one or many

calculators to perform some computations. To meet predictability requirement, a

network designer can check that each pressure measurement is delivered to its des-

tinations within 10 ms from its production instant to its end of reception at the

calculator. Moreover, the average loss rate of pressure measurements may also be

assessed to estimate the calculation quality.

– Reliability: The avionic network must be fault-tolerant and fulfill minimum safety

levels. One aspect related to the avionics system reliability consists in preventing

failed nodes in the network from affecting the normal operations. Several mecha-

nisms can be used to improve the reliability and the robustness of the communication

network in avionics context. It is common to use multiple redundant data paths to

enhance the network fault tolerance, such a mechanism is supported by the AFDX

protocol [1]. Moreover, retransmission mechanisms can be implemented inside net-

work nodes to recover packet losses. Furthermore, redundant nodes can be used to

recover and replace a faulty node during operation time.

– Modularity: This requirement is related to the flexibility and exchangeability of

components between avionic systems. An important step towards enhancing the

avionics system modularity has been taken by adopting IMA approach for avionic

architecture design. Avionic systems consist of common elementary components,

which can be configured to fit different avionic applications. The integration of such

components requires well-defined hardware and software interfaces. The hardware

9

Chapter 1. Background and Problem Statement

configuration of avionic systems must allow easy maintenance. The modularity of

avionic systems allows to exchange components and even systems with minimum

configuration and readjustment effort. This fact facilitates system’s maintenance

and future evolution, such as adding new avionics functions or replacing existing

ones.

– Cost and life cycle: These requirements are related to the maintainability, man-

ageability and direct costs associated with the avionics system development and

maintenance. One important step towards reducing avionics system costs was done

with the modular design introduced by the IMA approach. The flexibility and con-

figurability of avionic systems reduce development cycle duration, and ease incre-

mental design process and maintenance operations. Furthermore, the use of com-

mercial off-the shelf (COTS) technologies and components, which are cheap and

largely available, aims to reduce development and deployment costs of the avionics

system. Although the use of COTS technologies in the avionics context required

additional development effort due to the strict avionics requirements, this choice

offers significant system’s cost reduction and it is currently an attractive alternative

for aircraft manufacturers. The introduction of the AFDX [1] network protocol,

based on Switched Ethernet, is a typical example on how COTS technologies may

be adopted for avionics use with additional development effort to fulfill avionics re-

quirements and to reduce costs.

1.1.2.2 Description and Main Challenges

The complexity of avionic communication architecture is increasing rapidly due to

the growing number of interconnected subsystems and the expansion of exchanged data

quantity. To follow this trend, the architecture of new generation aircraft, such as the

A380, consists of a high rate backbone network based on the AFDX [1] to interconnect

the critical subsystems, as shown in Figure 1.1. Then, each specific avionic subsystem is

directly connected to its associated Input/Output (I/O) network based on low rate data

buses, such as ARINC 429 [2] and CAN [3].

Although this architecture simplifies the design process and reduces the time to mar-

ket, it leads at the same time to inherent weight and integration costs due the important

number of sensors/actuators networks. In addition, this architecture makes the avionics

subsystems closely dependent on their Inputs/Outputs and no longer interchangeable.

However, for avionic applications, it is essential that the communication architecture ful-

10

1.1. Progress of Avionic Communication Architecture and Main Challenges

Figure 1.1: Avionic network architecture: dedicated I/O networks

fills the emerging requirements in terms of modularity and performance to guarantee an

easy incremental design process and the possibility of adding new functions during the

aircraft lifetime.

Figure 1.2: Centralized avionic architecture

On the other hand, as shown in Figure 1.2, systems connected using AFDX were

centralized in the avionic bay. This fact implies high cabling quantities, since each I/O

11

Chapter 1. Background and Problem Statement

network requires dedicated cabling to communicate with its corresponding AFDX end-

system. This cabling is done through long distances going generally from the aircraft

wings and tail, where most of sensors and actuators are located, to the main avionic bay

at the front of the aircraft.

Figure 1.3: Multi-cluster avionic network architecture

To handle these limitations, the solution, implemented in recent aircraft, such as A350

and A400M, consists in keeping the AFDX as a backbone network to interconnect the crit-

ical avionic systems, and dissociating the sensors and actuators from their corresponding

end-systems. As shown in Figure 1.3, the obtained clusters are interconnected via specific

devices, called Remote Data Concentrators(RDCs), and standardized as ARINC 653 [4].

RDCs are modular gateways distributed throughout the aircraft, as shown in Figure 1.4,

to handle heterogeneity between the AFDX backbone network and peripheral data buses.

This alternative architecture enhances the avionic subsystems modularity and simpli-

fies the reconfiguration process. The RDC actually becomes the main node that needs

to be reconfigured in case of sensor or actuator modification. Furthermore, distributing

RDC devices in the aircraft reduces considerably the required network cabling. However,

at the same time it represents one of the major challenges in the design process of such

multi-cluster avionic networks.

12

1.2. Description of Network Standards

Figure 1.4: Distributed avionic architecture

1.2 Description of Network Standards

In this section, we present the main features of the AFDX network used in current

avionic architectures as a high speed backbone network. Then, we describe the main

network technologies used for I/O networks: ARINC 429 and CAN.

1.2.1 ARINC 664: Backbone Network

The AFDX [1] network is based on Full Duplex Switched Ethernet at 100 Mbps, suc-

cessfully integrated into new generation civil aircraft, such as the A380 and the A400M.

This technology succeeds to support the important amount of exchanged data and to guar-

antee timing requirements, due to its high data rate, its policing mechanism in switches

and the Virtual Link (VL) concept.

1.2.1.1 Virtual Link

AFDX virtual link gives a way to reserve a guaranteed bandwidth to each traffic flow.

The VL represents a multicast virtual channel which originates at a single end-system

and delivers its packets to a fixed set of end-systems, as shown in Figure 1.5. Each VL is

characterized by: (i) BAG (Bandwidth Allocation Gap), ranging in powers of 2 from 1 to

128 milliseconds, which represents the minimal inter-arrival time between two consecutive

13

Chapter 1. Background and Problem Statement

Figure 1.5: Example of AFDX virtual links

frames; (ii) MFS (Maximal frame size), ranging from 64 to 1518 bytes, which represents

the size of the largest frame that can be sent during each BAG. The VL control mecha-

nism is illustrated in Figure 1.6.

Figure 1.6: Virtual Link bandwidth control mechanism

Using the VL control mechanism, a 100 Mbps Ethernet link can support multiple

Virtual Links. For instance, in Figure 1.7 three Virtual Links are carried by a single

Ethernet physical link. The figure also shows that the messages sent on AFDX Ports

1, 2, and 3 are carried as sub-VLs by VL 1. Similarly, messages sent on AFDX Ports 6

and 7 are carried by VL 2, and messages sent on AFDX Ports 4 and 5 are carried by VL 3.

1.2.1.2 Message flows & Frame Structure

The end-to-end communication of a message using AFDX requires the configuration

of the source end-system, the AFDX network and the destination end-systems to deliver

correctly the message to the corresponding receive ports. Figure 1.8 shows a message M

being sent to Port 1 by the avionics subsystem. End system 1 encapsulates the message

in an AFDX frame and sends it to the AFDX into the VL 100 (the destination addresses

are specified by VLID 100). The forwarding tables in the network switches are configured

14

1.2. Description of Network Standards

Figure 1.7: Three AFDX Virtual Links carried by a 100 Mbps Ethernet link

Figure 1.8: Example of application data flow on AFDX

to deliver the frame to both end-systems 2 and 3. The end-systems are configured to be

able to determine the destination ports for the message contained in the frame. In this

case, the message is delivered by end-systems 2 and 3 to ports 5 and 6, respectively.

15

Chapter 1. Background and Problem Statement

Figure 1.9: AFDX frame format

An AFDX frame is based on the Ethernet frame, as shown in Figure 1.9. The Ether-

net header allows the identification of the source and destinations end-systems. The IP

and UDP headers allow each destination end-system to find the corresponding destina-

tion port for the received message within the Ethernet payload. The Ethernet payload

consists of the IP packet (header and payload). Then, the IP packet payload contains

the UDP packet (header and payload), which contains the message sent by the avionics

applications. Padding is used only when UDP payload is smaller than 18 bytes, to ensure

a minimum AFDX frame size of 64 bytes. The maximum frame size is 1518 bytes without

counting the IFG (Inter-Frame Gap) of 12 bytes and the preamble of 8 bytes. This IFG

and preamble have to be considered when performing timing analysis to take into account

the overhead of data transmission over the AFDX network.

1.2.1.3 Application Layer: ARINC 653 Specifications

As shown in Figure 1.10, an avionics system is connected to the AFDX network through

an end-system. In general, an avionics system is capable of supporting multiple avion-

ics subsystems. A partitioning mechanism, compliant with ARINC 653 [5] specifications,

provides isolation between avionics subsystems within the same avionics system. This iso-

lation is achieved by restricting the address space of each partition and by placing limits

on the amount of CPU time reserved for each partition. The objective is to ensure that

an errant avionics subsystem running in one partition will not affect subsystems running

on other partitions.

Hence, avionics applications are assigned to ARINC 653 partitions and communication

between them is ensured using communication ports. In the example of Figure 1.11, three

AFDX end-systems communicate through an AFDX network. Each end-system runs two

16

1.2. Description of Network Standards

Figure 1.10: ARINC 653 partitioning for AFDX end systems

partitions which host avionics applications. Partition 1 of end-system 1 communicates

with partition 1 of end-system 2 using partitions ports (source port 1 of partition 1 of

end-system 1 and destination port 2 of partition 1 of end-system 2). As we can see from

this example, data flows originated from the same ARINC 653 partition in an AFDX

end-system can share the same VL at the MAC layer. However, data flows from different

partitions are not allowed to share VLs to guarantee segregation between partitions on

AFDX network.

1.2.2 Sensors/Actuators Networks

1.2.2.1 ARINC 429

The ARINC 429 standard [2] is a widely used avionic data bus that has been deployed

in various avionic applications for decades. This standard relies on unidirectional commu-

nications with a single transmitter and up to twenty receivers. Connected devices, Line

Replaceable Units (LRUs), can be organized in a star or bus topologies as shown in Figure

1.12. Each LRU may host multiple transmitters or receivers communicating on different

ARINC 429 buses. This simple architecture of ARINC 429 bus offers a highly reliable

17

Chapter 1. Background and Problem Statement

Figure 1.11: Communication from application to application over AFDX with ARINC 653

communication with short transmission latencies.

ARINC 429 data transfer is based on 32 bit data word, as described in Figure 1.13.

ARINC 429 data words are made up of five primary fields:

– Parity (1 bit): allowing error check to guarantee accurate data reception;

– Sign/Status Matrix (SSM) (2 bits): can be used to indicate the sign or direction

of the words data, or to report source equipment operating status. This field is

dependant on the data type;

– Data/Payload (19 bits): containing the word’s data information;

– Source/Destination Identifier (SDI) (2 bits): indicating which source is transmitting

the data or for which receivers the data is destined;

– Label (8 bits): is used to identify the word’s data type and can contain instructions

18

1.2. Description of Network Standards

Figure 1.12: ARINC 429 network architectures

or data reporting information. Labels may be further refined using the first 3 bits

of the data field as an Equipment Identifier to identify the source.

ARINC 429 specifies two speeds for data transmission: high speed operates at 100

Kbit/s and low speed operates at 12.5 Kbit/s. ARINC 429 operates in such a way that

each single transmitter communicates in a point-to-point connection with its receivers.

This fact requires an important amount of cables which significantly increases the overall

aircraft weight. This traditional data bus is no longer effective in meeting the emerging

requirements of avionic applications in terms of throughput demand and modularity.

Figure 1.13: ARINC 429 frame format

19

Chapter 1. Background and Problem Statement

1.2.2.2 CAN

The Controller Area Network (CAN) data bus was designed in the 80s by Robert Bosh

GmbH [3] for automotive applications. Its success due to its reliability and its versatility

attracted the attention of manufacturers in other industries, including process control,

medical equipment, and recently avionics.

The CAN bus operates at data rates up to 1Mbps for cable lengths less than 40m,

and 125Kbps when the length is around 500m. Two versions of the CAN protocol are

specified: CAN 2.0 A and CAN 2.0 B. The first uses the standard frame format, that

supports a 11-bit identifier, while the second uses an extended frame format in which the

identifier consists of 18 additional bits (for a total of 29 bits). Controllers connected to

the CAN bus must transmit and receive data while avoiding collisions using the Carrier

Sense Multiple Access with Collision Resolution (CSMA/CR) mechanism.

– Message arbitration: a bus terminal can start a new transmission only when the

bus is idle. However, if two terminals try to transmit at the same time, then an

arbitration protocol is implemented to allow the transmission of the message with

the highest priority (Arbitration based on Message Priority or AMP).

Figure 1.14: CAN protocol: CSMA/CR access mechanism

The bus signal can have two logic values, dominant and recessive: whenever two

terminals attempt a simultaneous transmission of a dominant bit and a recessive

bit, a dominant logic value will result on the bus. In a typical implementation of a

wired connection 0 is the dominant value, and consequently this is often called an

AND implementation. As shown in Figure 1.14, the first controller that loses the

contention, i.e., sending a recessive bit and reading a dominant value resulting on

20

1.2. Description of Network Standards

the bus, must immediately stop its transmission. This fact results in an arbitration

technique based on the message header, which determines the communication pri-

ority. CAN is based on broadcast communications where each transmitted frame is

received by all the connected terminals. Each node will determine if the received

frame is relevant to that particular system or not, and drop packets that were not

addressed to it.

– Frame structure as shown in Figure 1.15, CAN data frames consist of a payload

up to 8 bytes and an overhead of 6 bytes due to the different headers and bit stuffing

mechanism.

Figure 1.15: CAN 2.0 A frame structure

Each CAN frame consists of the following bit fields:

– Start Of Frame (SOF) (1 bit): is always a dominant bit marking the beginning

of a transmission;

– Arbitration (13 bits): consists of the Identifier, the Remote Transmission Request

(RTR) for a standard frame (or the Substitute Remote Request (SRR) for an

extended frame), and finally the Extension bit IDE to determine if the frame

is standard or extended. It identifies the type of CAN message and defines its

transmission priority on CAN bus;

– Control (5 bits): is composed of r0 and r1, reserved bits that are always dominant;

and the Data Length Code (DLC) of 4 bits, which specifies the number of bytes

present in the Data field;

– Data (1-64 bits): contains the actual information;

– CRC (16 bits): is used to guarantee data integrity;

– ACK (2 bits): allows receivers to acknowledge correct received messages;

21

Chapter 1. Background and Problem Statement

– End Of Frame (EOF) (7 bits): indicates the end of the CAN frame;

– Intermission Frame Space (IFS) (3 bits): is the minimum number of bits separat-

ing consecutive messages. During this intermission period no other communica-

tion can start on the CAN bus.

To ensure a strong synchronisation, the protocol avoids the presence of more than 5

consecutive bits of the same value in the transmitted frame by adding a stuffing bit

with the opposite value. Stuff bits increase the maximum transmission time of CAN

messages. Including stuff bits and the inter-frame space, the maximum transmission

time Cm of a CAN message m including bm data bytes were proven in [11] and are

given by the following expressions:

– for 11-bit identifiers,

Cm = (55 + 10 ∗ bm) ∗ τbit (1.1)

– and for 29-bit identifiers,

Cm = (80 + 10 ∗ bm) ∗ τbit (1.2)

where τbit is the transmission time for a single bit.

1.3 Description of RDC Standard: ARINC 655

The Remote Data Concentrator (RDC) [4] is a gateway that performs protocol conver-

sion to guarantee interoperability between avionic systems with different communication

interfaces and specific communication protocols. Typically, it translates data from various

sources, e.g. sensors and actuators, into a format usable by avionic computing resources.

It also converts data from computing resources into appropriate formats usable by various

sensors and actuators equipments. ARINC 655 standard [4] was introduced as a high-level

design guide for RDCs. It mainly reviews the requirements to fulfill by RDC devices for

avionic networks. Moreover, it provides guidelines concerning the design of RDC devices.

1.3.1 RDC Requirements

The RDC device inherits from avionics requirements described in Section 1.1.2.1 and

particularly:

22

1.3. Description of RDC Standard: ARINC 655

– Predictability: the process of reception and transmission of data by the RDC

device introduces additional network latency. For critical avionics applications, the

system designer must ensure that the end-to-end data latency is less than the re-

quired deadline. Therefore, it is important to determine the permissible latency for

each system that uses this information at the beginning of the design process.

– Reliability: the designer of RDC device should consider a fault tolerant design.

The level of fault tolerance is determined by the analysis of the system integrity

goals, the required availability of the function and the overall maintenance proce-

dure.

– Modularity: RDC device should be modular, i.e., composed of standard modules

that can be easily replaced. RDC devices should be exchangeable and reconfigurable,

such that the replacement of a RDC device does not require long and complex ad-

justments.

– Cost and life cycle: network designer should consider minimizing the different

types and number of required RDCs for an avionic network. This fact aims at

reducing manufacturing costs, by reducing the system weight and simplifying its

development.

Furthermore, an RDC device has to meet some additional requirements related to its

role as an interconnection device:

– Interoperability: the primary purpose of an RDC device is to ensure interoper-

ability of avionic systems of different manufacturers. Appropriate network interfaces

should be integrated into the RDC and data formats conversion functions should be

implemented to guarantee communication transparency between avionic systems.

The mapping of packets format has to be ensured between a source and a destina-

tion network interconnected by the RDC device.

– Adaptability: the RDC should be able to interface with a variety of data buses

and other network technologies used in aircraft. The RDC should be configurable to

be customized for different interconnection applications with different performance

requirements.

23

Chapter 1. Background and Problem Statement

– Resources utilization efficiency: the RDC should keep communication over-

heads as low as possible when forwarding data flows from a source to a destination

network. This fact saves network resources and keeps margins for the future evolu-

tion of the avionic architecture.

To meet the main RDC requirements, the ARINC 655 specifications provide some

recommendations and guidelines which can be grouped into two categories: functional

and architectural. These specifications will be detailed in the next sections.

1.3.2 Functional Specifications

The RDC device should include appropriate functions to receive, process and forward

data from typical avionic I/O networks to the processing computers and vice versa. The

main functions that should be integrated into the RDC device are:

– Data Mapping: the RDC should perform the conversion of the received data for-

mat to fit the target network format. A configurable mapping table should be used

to map data type and address to fit the requirements of the destination networks.

The mapping table should be static and well configured to guarantee the required

safety and timing performance levels. Furthermore, as several RDCs devices may

be used within the same network, a consistent mapping process should consider all

the mapping tables in RDC devices;

– Data Forwarding: the RDC should forward data received from an input network

interface to one or several output interfaces. The RDC may be used to connect two

or more network clusters. Therefore, a forwarding function is required to define for

each received data the output interfaces. A simple solution consists in using a static

forwarding table that is configured offline in the RDC device by the network designer;

– Data processing: the RDC may include software functions, such as data sampling,

filtering and monitoring. These software functions may also perform range checking,

data validity and fault detection. These functions may increase end-to-end commu-

nication latencies, and should be taken into account during the timing analysis and

the validation of the RDC behavior.

24

1.3. Description of RDC Standard: ARINC 655

1.3.3 Architectural Specifications

Figure 1.16: Synchronous mode for CAN-AFDX RDC

The main RDC’s architectural recommendations are:

– Communication scheme: two communication schemes are described in ARINC

653 specifications:

– Synchronous RDC: in this case, the processing and forwarding of a received data

by the RDC is triggered by the event of data reception. An example of a syn-

chronous CAN-AFDX RDC is shown in Figure 1.16.

– Asynchronous RDC: in this case, the rates and instants of data exchanges between

the RDC and connected networks are determined by the RDC. The RDC imple-

ments a write/read table where data from different equipments communicating

with the RDC are gathered. An example of an asynchronous CAN-AFDX RDC

device is shown in Figure 1.17. For each type of messages, a received message

in the RDC overwrites the old one and a binary freshness indicator is used. The

transmission of data flows is done periodically with transmission rates defined in

the RDC. One significant advantage of this asynchronous mode consists in adapt-

ing data rates between the source producing and the destinations receiving data.

For example, consider a sensor producing the air pressure measurement each 2

ms. Consider computing systems consuming this data to perform a computation

25

Chapter 1. Background and Problem Statement

once each 10 ms. Since sensor data is produced at a higher rate than the required

one, then the RDC may adapt production rates by reading the pressure data from

its write/read memory once each 10 ms.

Figure 1.17: Asynchronous mode for CAN-AFDX RDC

– Partitioning: the RDC should interconnect multiple sub-networks which may have

different levels of criticality. Therefore, a partitioning process should be used in the

RDC to keep isolation between communication flows having different criticality lev-

els.

1.4 Design Opportunities for Multi-Cluster Avionic

Networks

As described in Section 1.1.2.2, the main benefits of multi-cluster avionic networks are

the use of old equipments with new ones, and the reduction of weight and I/O resources.

For instance, the use of RDC devices allows cabling reduction, and enhances the modu-

larity and exchangeability of the avionic end-systems.

However, the use of multi-cluster networks in the avionics context arises mainly the

following challenges:

26

1.4. Design Opportunities for Multi-Cluster Avionic Networks

– Software/Hardware (SW/HW) Mapping: the avionics system consists of a

set of applications which need to exchange data; and a set of communicating nodes

via data buses or other network technologies. Each node can host one or multi-

ple applications. The mapping of applications onto network nodes is an important

task when designing the avionics networks. This mapping will clearly impact the

resource utilization and real-time performance of the avionics system, and it has to

be considered during network integration phase. Hence, the designer should select

the SW/HW mapping maximizing the resource savings while meeting real-time re-

quirements.

– End-to-end communication performance: avionics networks have to fulfill real-

time constraints requirements. Bounding the total delay of each data from a source

to one or many destination nodes is an important issue to fulfill the predictabil-

ity requirement, and particularly the stability for closed loop control in avionics. In

multi-cluster networks, the latency between data input and its corresponding output

are due to: (a) communication latency through network clusters (e.g. data buses

and backbone networks); (b) interconnection latency due to the traversal of gate-

ways. These delays depend on the scheduling policies used in the network nodes (e.g.

source and destination end-systems, switches and gateways), and the observed con-

tentions on shared networks. Hence, appropriate modeling and analysis techniques

should be used to prove that the avionics network meets the real-time requirements.

– Design of interconnection device and interoperability issues: the intercon-

nection devices have a major importance in multi-cluster avionics networks, since

they allow heterogeneous network technologies to exchange data and to keep end-to-

end connectivity between avionics systems. The RDC [4] is an avionics interconnec-

tion device used typically to connect sensors/actuators networks with the backbone

network connecting computing units. Therefore, the RDC device has: (i) to ensure

frame formats conversion and consistent addressing of data packets between source

and destination networks; (ii) to offer bounded latency and a predictable behaviour;

(iii) to ensure the isolation of data flows with different criticality levels. Further-

more, the inter-cluster communication through the RDC device may induce high

communication overheads due to the dissimilarities between interconnected network

clusters in terms of rates and frame formats. Hence, the impact of RDC device on

resource utilization has to be considered, and design choices reducing the commu-

nication overheads between interconnected networks should be integrated.

27

Chapter 1. Background and Problem Statement

1.5 Conclusion

Current civil avionic communication architecture consists of several network clusters,

interconnected using RDC devices standardized under the ARINC 655. These multi-

cluster networks present the advantage of allowing the use of old data buses in conjunction

with new network technologies, such as the AFDX protocol. This fact reduces develop-

ment costs of new equipments and guarantees the incremental design of avionics systems.

However, the performance optimization of multi-cluster avionic networks arise several

challenges, which are mainly due to: (i) the difficulty of performing software/hardware

mapping; (ii) the complexity of performance analysis and meeting the real-time con-

straints; (iii) the design of interconnection devices and interoperability issues.

In the next chapter, we present the main related work on performance optimization

for multi-cluster embedded networks, and especially the main existing work dealing with

the interconnection devices.

28

Chapter 2

Related Work: Performance

Optimization for Multi-Cluster

Networks

In the area of performance optimization for embedded networks in avionics and au-

tomotive, various approaches have been integrated into different parts of the end-to-end

communication path, including traffic sources, communication networks and interconnec-

tion devices. We review in this chapter the most relevant work in this area for avionics

and automotive applications. First, we present optimization approaches for traffic-source

mapping, where the main concern is the mapping of the application data onto frames.

Then, main existing approaches for performance optimization for communication net-

works are detailed, including, timing analysis and data routing for both AFDX and sen-

sors/actuators networks. Finally, the optimization of interconnection devices is reviewed

and existing protocol conversion approaches to guarantee real-time performance and re-

source utilization efficiency are detailed.

2.1 Optimizing Traffic-Source Mapping

Traffic-source mapping consists in affecting data produced by a source application to

the frames supported by the communication network. A simple mapping consists in in-

cluding each generated data into a dedicated frame. However, this choice may induce a

high communication overhead. A more advanced mapping approach consists in grouping

multiple data produced by one or many applications in the same network frame. The

traffic-source mapping has a direct impact on the network utilization. The grouping pro-

29

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

cess of elementary data allows reducing the protocol overheads, and consequently saving

network capacity and improving communication efficiency. Different strategies have been

introduced for avionics end-systems and automotive ECUs (Electronic Control Units) and

have shown significant enhancements in terms of network capacity utilization.

2.1.1 Avionics End-Systems

The AFDX network is considered as a promising communication technology for mod-

ern avionics architectures. The AFDX is based on routing frames through isolated data

channels, called Virtual Links (VLs).

In [12], the authors introduced a method to define VLs characteristics to minimize

the AFDX network utilization rate. The method presented in [12] is illustrated in Figure

2.1 and it consists in packing data from different AFDX applications hosted by the same

AFDX end-system within the same AFDX frame. The transmission of each resulting

AFDX frame is supported by an AFDX VL respecting the frame characteristics. The

authors in [12] proposed an approach to find VLs configuration minimizing the band-

width consumption on AFDX network to improve network resources utilization and to

ease the addition of new VLs. First, an algorithm to find the optimal VLs allocation for

periodic or sporadic data generated by the same AFDX application was proposed. This

algorithm is based on data segmentation and has as objective minimizing the consumed

bandwidth on the AFDX network. Afterwards, this algorithm was extended to find the

optimal allocation for a set of data generated by the same end-system. The applicability

of this approach was illustrated on a representative avionics benchmark, and the results

showed its efficiency to save network bandwidth utilization. However, this approach did

not integrate the verification of the time constraints.

Another interesting work in this area was presented in [13]. This work concerns the

adequate mapping of avionics functions onto processing modules while meeting real-time

and resource constraints. Avionics applications are hosted by partitions compliant with

ARINC 653 [5]. Each partition has its own memory space and it is executed periodically

during a reserved time slot. As illustrated in Figure 2.2, two partitions P1 and P2 are

executed on the same processing unit with respect to their associated periods. The period

of the obtained schedule is called the Major Frame (MAF).

In [13], the authors formulated an optimization problem for mapping avionics par-

titions onto processing resources of an IMA architecture. The formulation takes into

30

2.1. Optimizing Traffic-Source Mapping

Figure 2.1: Data packing and VLs allocation

Figure 2.2: Periodic execution of Partitions

account resources as well as timing constraints of mapped avionics functions. The main

objective was to maximize the evolution margins and to ease future avionics functions

addition to the system. A method to solve this optimization problem was provided.

However, this mapping problem considered only AFDX communication network, and the

impact of an interconnected communication network, as currently used in avionics, on the

software/hardware mapping was not considered.

31

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

2.1.2 Automotive End-Systems

For automotive applications, mapping periodic or sporadic data flows produced by

applications sharing the same ECU onto frames has been widely studied to minimize

bus utilization rate. Frame packing is a classic technique used in automotive context to

achieve this aim. In [14] and [15], authors proposed the use of frame packing to allocate

signals produced by source applications to CAN frames. This approach is illustrated in

Figure 2.3. The proposed frame packing strategy consists in fixing the groups of data to

pack based on an arbitrary criterion. Then, a periodic CAN frame is defined per group of

data respecting the maximal CAN payload size. In [14] and [15], the authors proved that

the data packing problem is NP-hard and proposed several algorithms to select adequate

frame packing strategies processed in a polynomial time. A comparative study of the dif-

ferent algorithms has been conducted to select the most resource efficient configuration.

However, these methods assume a synchronous behaviour of the different applications

hosted by the same ECU. This assumption is not always verified in the general case and

the proposed method could be complex to generalize.

Figure 2.3: Data packing of CAN frames

In [16], the authors considered a multi-cluster communication architecture, as de-

scribed in Figure 2.4. This architecture consists of two heterogeneous communication

buses: Event-Triggered and Time-Triggered. For instance, authors considered CAN bus

as a representative technology of event-triggered data buses, and TTP/C as a representa-

tive technology of time-triggered data buses. A gateway is used to support communication

between both data buses. In [16], the authors proposed a frame packing strategy inside

source nodes of both network clusters, to achieve higher bus utilization rate and to im-

prove flows schedulability. In this approach, the timing constraints of messages were

integrated, and a schedulability analysis which takes into account the queuing delays in

the gateways was provided. However, The frame packing was implemented only in source

nodes, while the gateway was considered as a simple conversion node, e.g., each received

32

2.2. Optimizing Communication Network Performance

frame in the gateway from a source cluster implies exactly one forwarded frame to the

other cluster. Although this approach showed interesting bandwidth consumption sav-

ings, further enhancements may be achieved by considering the role of the gateway in

reducing communication overheads.

Figure 2.4: Multi-cluster automotive network architecture

2.2 Optimizing Communication Network Performance

Various analytical methods have been introduced to compute end-to-end communica-

tion latencies. These methods were used in the literature to analyze and optimize the

performances of critical embedded networks. Furthermore, routing algorithms have been

studied for embedded networks to improve network timing performances and to guarantee

a better load balance in the network. First, we present the main related work to AFDX

performance analysis and optimization. Then, we give an overview of the main work

concerning sensors/actuators networks.

33

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

2.2.1 Work on the AFDX Network

2.2.1.1 Timing Analysis techniques

In avionics networks, for certification reasons, it is necessary to prove that the com-

munication latency for each message does not exceed its deadline. To achieve this aim,

several techniques have been introduced in the literature to analyze the timing perfor-

mance of avionics networks. In particular, the AFDX network has been largely studied

and several methods to prove the predictability of communication over AFDX has been

proposed such as Network Calculus [17], Trajectory approach [18] and Model checking

[19]. These methods can be organized into two categories:

– Methods computing an upper bound on end-to-end communication delays: Network

Calculus and Trajectory approach

– Methods computing the exact end-to-end communication delays: Model checking

TheNetwork Calculus (NC) formalism is based on the mathematical theory of Min-

Plus algebra [20]. This theory has been widely used for analyzing performance guarantees

in computer networks, and it was one of the first methods used for AFDX certification

[17] [21].

To provide timing guarantees for data flows, Network Calculus formalism is based on

bounding network resources. This means that traffic sources have to guarantee a maxi-

mum traffic emission, and network elements have to offer guarantees on minimum service

capacity. To model the data flows generated by sources in the network, the concept of

arrival curve is used. Then, to model the amount of service guaranteed by a network node

applying some scheduling policy, the concept of service curve is used. Given the model

of an input data flow and the model of the traversed network node, Network Calculus

provides a bound on the maximal traversal delay of the network node using the horizontal

deviation between the arrival curve and the service curve. Furthermore, a characterization

of the output traffic from the network node using arrival curves is provided. More details

about Network Calculus theory can be found in Appendix A.

In [17], the authors introduced a methodology for modeling the AFDX network using

Network Calculus formalism. The AFDX data flows were modeled using arrival curves,

deducted directly from the VLs characteristics, i.e., maximum frame size and minimum

inter-arrival time. Moreover, each network node was modeled using service curve which

34

2.2. Optimizing Communication Network Performance

takes into account the respective scheduling policy. Then, a method for computing the

end-to-end delay bound for a given AFDX flow has been introduced. This timing analysis

method consists in propagating the arrival curve of a given data flow from the source

end-system to the destination end-system throughout its path.

This timing analysis method based on propagating arrival curves offers upper bounds

for end-to-end delays in AFDX networks. However, this approach [17] leads to pessimistic

bounds, as the serialization of frames is not taken into account between two successive

nodes. Consider two AFDX flows traversing a tandem of network nodes, the application

of the propagation analysis approach integrates twice the impact of a flow on the other (at

the first node and at the second node). To achieve tighter bounds on AFDX end-to-end

delays, the authors used a ”grouping” technique [21]. This technique takes into account

the serialization of frames from different VLs transmitted on the same AFDX link. The

”group” is defined as the set of VLs which exit from the same switch output port and enter

the same switch input port, i.e. Virtual Links that share at least two segments of path.

The key issue is that the frames of those VLs are serialized once when exiting the first

output port. This optimized technique has been shown to offer tighter bounds compared

to the propagation algorithm. However, since the first applications of Network Calculus

to AFDX network, a multitude of Network Calculus algorithms have been proposed in

the literature. Achieving tighter bounds with Network Calculus requires an increasing

computational complexity. Therefore, there is a trade-off between the quality of the ob-

tained upper bounds on network traversal delays and the computational complexity of

the Network Calculus algorithms.

The Trajectory approach is a timing analysis technique introduced to get upper

bounds on communication response times in distributed systems [22] [23]. For each packet

from a given flow, the trajectory approach builds the packets sequence corresponding to

the worst-case in each traversed node. The end-to-end delay is then deducted from delays

experienced in crossed nodes throughout the packet path.

To explain the trajectory approach, we consider the example of the communication

network in Figure 2.5. The communication network is composed of seven connected nodes.

Each data flow follows a path in the network corresponding to the crossed nodes from

end-to-end. This path is assumed to be static in the Trajectory approach and the set of

crossed nodes by the data flow can be seen as an ordered sequence of nodes. In the exam-

ple of Figure 2.5, two flows are considered, τ1 and τ2. τ1 follows the path P1 = {4, 5, 6, 7}.
The Trajectory approach assumes, with reference to a flow τi with path Pi, a flow τj with

path Pj , such that Pi 6= Pj and Pi ∩ Pj 6= ∅. In the example of Figure 2.5, flows τ1 and

35

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

Figure 2.5: Example of communication network

τ2 verify the assumption of trajectory approach since P2 = {1, 5, 6, 3} and P1∩P2 = {5, 6}.

Flows are scheduled in each crossed node. Each flow τi has a minimum inter-arrival

time between two consecutive packets at the first node of its path in the network. The

end-to-end delay of a packet computed using the Trajectory approach is the sum of the

times spent in each visited network node and the transmission delays on links. Consid-

ering a FIFO (First In First Out) scheduling algorithm, the time spent by a packet m

in node h depends on the pending packets in h at the arrival time of m to h. In the

worst-case, all these pending packets are more prior than m and will be processed before

m.

In [18], the trajectory approach has been applied to AFDX network by considering

that:

– An end-system is represented by a node in the trajectory approach;

– Each output port of an AFDX switch is represented by a node in the trajectory

approach;

– The switches latency is represented by links in the trajectory approach;

– An AFDX VL becomes a flow in the trajectory approach.

The authors conducted a comparison between results obtained using the propagation

algorithm with Network Calculus and those obtained using Trajectory approach. Ob-

tained results showed that the upper bounds on the end-to-end delays on AFDX obtained

using the Trajectory approach are tighter compared to Network Calculus bounds.

36

2.2. Optimizing Communication Network Performance

The Model checking [19] is another approach to guarantee the maximum trans-

mission delay in the AFDX network, which computes the exact worst-case end-to-end

communication delays. The basic idea of this approach consists in checking all the possi-

ble scenarios that the network can experience to find the exact worst-case communication

delays. These scenarios form an exploration space which is often called ”state-space”. An

attempt for applying the Model Checking approach to analyze the performance of AFDX

network was done in [24]. A major difficulty is that, theoretically, the state-space of

AFDX communication network is infinite (because of continuous real-time nature of the

network). Therefore, using model checking for such applications requires some kind of

state-space reduction. Unfortunately, the use of Model Checking is yet limited compared

to Network Calculus and Trajectory approach, as it cannot cope with realistic AFDX

networks, due to the combinatorial explosion problem for large configurations.

In our case, we conduct timing analysis of the AFDX network using Network Calculus

approach due to its low computational complexity. Furthermore, we developed a perfor-

mance analysis tool for avionics networks based on Network Calculus formalism, called

WoPANets [6] (see Appendix A for more details).

2.2.1.2 Optimal Routing for AFDX

The AFDX network is a switched network with multiple possible paths from a given

source to a destination end-system. As we explained in Section 1.2.1, in AFDX networks,

VLs are routed statically. One major task when integrating the avionics architecture con-

sists in defining VLs paths throughout the AFDX network. In [12], the authors addressed

the optimization of VLs routing for the AFDX network to minimize communication la-

tencies and to limit the maximum utilization rate of the AFDX links. Indeed, a poor VL

routing may induce a high contention level between AFDX flows at the output ports of

the AFDX switches, and consequently inducing high communication latencies. To over-

come this problem, the authors in [12] proposed a routing algorithm that can be used to

route thousands of VLs, to maximize the minimal residual capacity of the AFDX links.

The main idea of this algorithm is to balance the communication load between network

switches and to keep a low contention level. This fact leads to low traversal delays of the

switches, and consequently low end-to-end latencies on the AFDX network. This tech-

nique optimizes the network resources utilization and lets margins for network evolution.

37

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

Figure 2.6: Optimization of sensors/actuators network performance

2.2.2 Work on Sensors/Actuators Networks

Different I/O buses may be used in multi-cluster avionics networks as shown in Figure

2.6. The timing analysis of these data buses is necessary to prove the predictability of the

avionics system. This problem has been addressed for CAN bus [25] to prove its timing

guarantees and thus the predictability of communications. The objective is to prove that

the response time of a message, which needs to be delivered from a source to one or many

destination nodes on the bus, does not exceed its Deadline.

The CAN bus has been largely used as the main communication network for auto-

motive applications. Many approaches have been proposed in the literature for timing

analysis of CAN bus to prove its capacity to meet strict real-time constraints of automo-

tive applications. In [25], Tindell et al. were the first to introduce a method to compute

exact Worst Case response Time (WCRT) on CAN bus. This result was proven to be

optimistic under certain conditions by Davis et al. in [11] and a revision of the method

introduced in [25] was provided. In [11], the Worst Case Response Time (WCRT) on

CAN for a message m is given by:

Rm = max
q=0..Qm−1

Rm(q) (2.1)

(2.2)

38

2.2. Optimizing Communication Network Performance

where Qm is the number of instances of message m that become ready to transmission

before the end of the busy period relative to m, and Rm(q) is the WCRT of instance q of

message m. Rm(q) is given by:

Rm(q) = Cm + Jm + wm(q)− qTm (2.3)

(2.4)

where,

– The transmission time Cm, corresponding to the longest time that the message can

take to be transmitted;

– The queuing jitter Jm, corresponding to the longest time between the initiating

event and the message being queued, ready to be transmitted on the bus;

– The queuing delay wm(q), corresponding to the longest time that the instance q of

messagem can remain in the CAN controller queue, before commencing transmission

on the bus;

– Tm is the period of message m.

wm(q) is computed using the following iterative expression:

wn+1
m (q) = Bm + qCm +

∑

k∈hp(m)

⌈
wn

m + Jk + τbit
Tk

⌉
∗ Ck (2.5)

where hp(m) corresponds to the set of messages with priority higher than m, τbit

the transmission time of one bit and Bm the maximum blocking time due to the set of

messages with lower priority than m, denoted by lp(m):

Bm = max
k∈lp(m)

Ck (2.6)

The number of instances that need to be examined Qm is given by:

Qm =

⌈
tm + Jm

Tm

⌉
(2.7)

where tm corresponds to the length of the priority level-m busy period, which is given

by the following recurrence relation, starting with an initial value of tm = Cm, and finishing

39

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

when tn+1
m = tnm:

tn+1
m = Bm +

∑

k∈hep(m)

⌈
tnm + Jk

Tk

⌉
∗ Ck (2.8)

hep(m) is the set of messages with priority higher or equal to m.

These expressions were introduced for native CAN protocol, which assumes a Static

Priority (SP) queues in all CAN nodes to schedule messages sharing the same CAN source

node. However, different CAN bus configurations have been investigated and the timing

analysis in [11] has been adapted to fit the following CAN configurations:

– CAN bus with SP and FIFO queues: in [26], the WCRT analysis for CAN bus

has been extended to cover the case where CAN nodes may implement SP or FIFO

queues. This work was motivated by the fact that some CAN devices implement

queueing policies that are not strictly SP-based, thus invalidating the assumption

of SP queues for CAN nodes with the native CAN bus. The authors in [26] showed

that using FIFO queues instead of SP queues in CAN nodes significantly degrade

the overall real-time performance of the network. Therefore, they recommended the

use of priority queues whenever possible. However, system integrators do not always

have control over the queuing policies implemented in the communications stacks or

devices of all the ECUs of the system. In this case, the analysis in [26] may be useful.

– CAN bus with offsets: in [27], the WCRT analysis for CAN bus has been ex-

tended to cover the case where the production of messages in CAN nodes is desyn-

chronised using offsets. Transmitting frames with offsets means that the first in-

stance of a stream of periodic frames is released with a delay, called the offset, with

regard to a reference point. This latter is the first instant at which the station

becomes ready to transmit. The frames are then sent periodically, with the first

transmission as the time origin. It is worth noticing that since there is no global

synchronization among the CAN stations, each station possesses its own local clock

and the de-synchronization between the streams of frames remain local to each sta-

tion. Unlike the native CAN analysis which is based on a synchronous transmission

of frames by a CAN source, using offsets allows to avoid this worst-case scenario,

and thus reduce WCRT on CAN bus. The authors in [27] proved that using offsets

in CAN sources is beneficial in terms of reducing response times, especially at high

CAN loads.

40

2.3. Optimizing Interconnection Devices

2.3 Optimizing Interconnection Devices

The use of interconnection devices for multi-cluster networks has become very common

in automotive and recently in avionics context. These devices allow different communi-

cation standards and equipments to coexist with each other. As automotive and avionics

networks are subject to strict real-time constraints, proofs of determinism and reliability

have to be provided. As a main part of such networks, interconnection devices should be

designed to guarantee correct protocol conversion between network clusters and real-time

requirements, and to enhance network efficiency. In automotive and avionics context,

several approaches concerning the interconnection device design and performance opti-

mization have been proposed.

2.3.1 CAN-Ethernet Bridge

In [28], authors proposed a mixed CAN-Ethernet network architecture as an alterna-

tive to interconnected CAN buses. As the CAN [3] bus has limited number of supported

nodes, i.e., 30 nodes at 1 Mbps, and a relatively low transmission rate compared to Eth-

ernet, the authors proposed an extended CAN architecture where multiple CAN buses

communicate with each other through Ethernet bridges, as shown in Figure 2.7.

Figure 2.7: CAN-Ethernet communication architecture

41

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

This mixed CAN/Ethernet network allows connecting a high number of CAN terminals

and consequently balancing CAN utilization and improving its scalability. Furthermore,

a frame packing technique was implemented in the CAN-Ethernet bridges to reduce the

induced overhead by CAN traffic on the Ethernet. This frame packing technique consists

in encapsulating several CAN frames into the same Ethernet frame while respecting the

maximum frame size of 1518 bytes. Furthermore, the bridge decapsulates the CAN frames

received within an Ethernet frame and transmits these CAN frames to their final desti-

nations. To analyze the network performances, the average communication latencies were

analyzed using simulation. This approach is not sufficient to prove the communication

determinism and the worst-case behavior required by critical embedded networks.

2.3.2 CAN-FlexRay Gateway

In modern cars, CAN [3] is the dominant network protocol for in-vehicle communi-

cation. However, as discussed in [29], CAN reached its limits in terms of data rate (a

maximum rate of 1 Mbit/s) and maximal number of supported ECUs with the emergence

of x-by-wire applications, i.e., the replacement of mechanical and hydraulic systems by

electronic ones. This fact increases the number of in-vehicle functions and exchanged

data volume. CAN is based on an Event-Triggered arbitration mechanism, which may

induce high jitter under high utilization rates. The emerging FlexRay protocol, which

has a higher transmission capacity of 10 Mbit/s and supports both time-triggered and

event-triggered traffic, is expected to meet the emerging requirements of automotive ap-

plications. However, as the technology transition from CAN to FlexRay could not happen

at once, both network protocols are expected to be used together in automotive in the

near future. Consequently, the applications requiring low speed will still be carried out

by CAN bus, while new high-speed functionality will be implemented on FlexRay network.

This situation imposes the existence of a gateway unit, which facilitates the inter-

communication between CAN and FlexRay networks. In [29], a gateway for CAN and

FlexRay interconnection for in-vehicle networks was proposed. The considered commu-

nication architecture is described in Figure 2.8. Authors addressed the design of high-

performance gateway, offering efficient resource utilization.

42

2.3. Optimizing Interconnection Devices

Figure 2.8: CAN-FlexRay communication architecture

Figure 2.9: CAN-FlexRay Gateway functional structure

The proposed gateway in [29] to interconnect CAN and FlexRay networks, is shown

in Figure 2.9. Each frame received in the gateway from a source bus is first decoded. The

frame is then processed to get the data included in the frame. The protocol conversion

is then undertaken, i.e., the conversion of data from one protocol format to another. The

data is inserted into an appropriate frame and then coded for transmission on the des-

tination bus. For example, the protocol conversion operation from FlexRay to CAN is

shown in Figure 2.10. To transmit a FlexRay message on CAN bus, the CAN-FlexRay

43

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

gateway will check if the message is compatible for transmission on the network, i.e., less

than or equal to 8 bytes. If the message meets the criteria, then it will be inserted into the

transmission buffer. If the message is too large, then the gateway will send the message

to the transmit buffer sequentially in blocks of 8 bytes until no remaining data has to be

transmitted.

Figure 2.10: CAN-FlexRay Gateway operation diagram

The performance analysis of the CAN-FlexRay gateway, based on an experimentation

platform, has shown bounded processing delays with low jitter. In our work, we address a

similar problem for avionics networks which consists in interconnecting CAN and AFDX

44

2.3. Optimizing Interconnection Devices

networks. Our objective is designing an efficient gateway in terms of resources utilization,

while meeting the timing constraints. However, the protocol characteristics of FlexRay

are different from those of AFDX networks, especially in terms of communication schemes

and frame formats. This fact makes the interconnection approach of [29] inapplicable in

our case. Furthermore, this approach was limited to the functional aspects of the gateway

design, whereas architectural aspects were not addressed. In our case, both functional

and architectural perspectives are detailed to cover the different aspects which impact the

CAN-AFDX RDC performance and resource utilization efficiency.

2.3.3 ARINC 429-AFDX Gateway

The transition of ARINC 429 systems to AFDX-compliant systems cannot be done in

a short time. Hence, both networks need to coexist for a while and aircraft manufacturers

opted for a gatewayed architecture. As described in Appendix B of ARINC 664 [1], a

gateway device may be used to convert ARINC 429 messages to AFDX frames and vice

versa. The gateway proceeds as follows: it encapsulates multiple ARINC 429 messages

into the same AFDX frame to be then transmitted on the AFDX; and it decapsulates sev-

eral ARINC 429 messages received within the same AFDX frame to be then transmitted

on the ARINC 429.

Figure 2.11: Example of AFDX frame including multiple ARINC 429 labels

An AFDX frame formatting mechanism, which allows a network designer to better

45

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

map non-AFDX data onto AFDX messages is provided in [1]. An illustrative example of

the formatting of packed AFDX frames is given in Figure 2.11. In this example, 4 ARINC

429 frames are included into the same AFDX frame. However, no details are given on

how to select groups of data to include within the same AFDX frame. Furthermore,

performance analysis and optimization are left to the attention of network designers.

2.4 Need for Optimized CAN-AFDX Gateway

CAN bus has been successfully used for decades in automotive due to its high relia-

bility, real-time properties and low cost. It became recently an attractive communication

technology for aircraft manufacturers. Recent standards for avionics have been intro-

duced, such as CANAerospace [30] and ARINC 825 [31]. A typical avionics network

architecture is shown in Figure 2.12 where CAN buses are used as sensors/actuators net-

works. The communication with processing units connected to the high speed backbone

AFDX network is ensured using RDC devices [4]. The main role of these devices is to

handle protocol dissimilarities between AFDX and CAN and to guarantee interoperability

between them.

Figure 2.12: CAN-AFDX avionics architecture

Although the RDC was introduced to interconnect communication networks in avion-

ics context, few works have addressed the design of RDC devices to interconnect CAN and

46

2.4. Need for Optimized CAN-AFDX Gateway

AFDX networks. The objective of our current work is to design an enhanced CAN-AFDX

RDC, which offers a high network efficiency and guarantees system’s requirements. The

CAN-AFDX RDC should:

– correctly convert CAN frames to AFDX frames, and vice versa;

– ensure a consistent addressing between CAN and AFDX networks;

– guarantee temporal constraints of data flows from end-to-end;

– be optimized to achieve a high network efficiency in terms of resource savings.

To achieve this goal, our proposal is based on extending the RDC device standard

[4] by adding new functions, to improve system’s performance and enhance network effi-

ciency. The main heterogeneity parameters between CAN and AFDX networks concern

the communication paradigms, data rate and frame characteristics dissimilarities. The

CAN is a multiplexed bus with a CSMA/CR access mechanism based on static priorities,

whereas the AFDX is a switched network based on virtual link concept. CAN frames can

support a maximal payload of 8 bytes which is very small compared to an AFDX frame,

which can support up to 1472 bytes of payload. The main arising issues to design and

validate a CAN-AFDX RDC device are as follows:

– RDC design: the key function of this specific equipment is to keep the communi-

cation transparency between an AFDX calculator and a CAN sensor or actuator to

avoid the alteration of existent hardware in these equipments. Hence, for an AFDX

calculator the source or the destination of the transmitted Virtual Link is the RDC

device, while for a CAN sensor or actuator the transmitted data is consumed or

generated by the interconnection equipment. The main characteristics of the CAN-

AFDX RDC to define are:

– gateway strategy and addressing scheme: we need to define an accurate method

to map CAN frames onto AFDX VLs. A first basic strategy consists in associat-

ing for each CAN frame one AFDX VL using a static mapping table. This latter

method will be shown to be non optimal in terms of reserved bandwidth on AFDX;

– data formatting: the gateway strategy implementation requires an appropriate

data formatting to send one or many CAN frames on the same AFDX VL. The

47

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

choice of this structure should take into account the AFDX standard, and reduce

as much as possible the induced overhead to guarantee the bandwidth consump-

tion efficiency on the AFDX;

– data routing: the RDC device should be capable to interconnect several I/O CAN

buses to the AFDX backbone. The RDC should implement a routing mechanism

which forwards each input data to its corresponding output RDC interface(s);

– flows segregation: when connecting multiple I/O CAN buses with different crit-

icality levels to the AFDX using the same RDC device, an adapted segregation

mechanism should be implemented in the RDC to guarantee the isolation between

the different criticality levels.

– Performance analysis and optimization of RDC: the RDC device should be

designed to fulfill avionics requirements in terms of predictability and resource effi-

ciency. Hence, the main challenges are:

– Timing analysis: for avionic embedded applications, it is essential that the com-

munication network fulfills certification requirements, e.g. predictable behavior

under hard real-time constraints and temporal deadlines guarantees. The use

of gateways may increase the communication latencies and real-time constraints

have to be met. To deal with the worst-case performance analysis of such network,

an appropriate timing analysis has to be considered;

– Optimization process: to increase the network efficiency, especially in terms of

bandwidth consumption on the AFDX, and to enhance margins for future avionic

functions addition, an optimization process of the RDC parameters is required.

This process will define the most accurate RDC configuration, which respects

the system’s constraints and minimizes the induced network overhead, and con-

sequently consumed network resources.

2.5 Conclusion

In this chapter, we reviewed the main related work in the area of performance op-

timization for multi-cluster embedded networks, especially those addressing the design

of interconnection devices in avionics and automotive. In automotive context, several

48

2.5. Conclusion

techniques to enhance the gateway design, and consequently network performance have

been proposed. However, there are less approaches addressing efficient gateways design

in avionics context. Hence, there is a clear need for an optimized avionics gateway, and

particularly one to interconnect CAN and AFDX networks. The main arsing issues to

design this latter were detailed to enhance the system’s performance and resource savings.

In the next chapter, we will detail the design of our proposed RDC device to handle

the identified issues.

49

Chapter 2. Related Work: Performance Optimization for Multi-Cluster Networks

50

Chapter 3

Design of an Enhanced CAN-AFDX

RDC

In this chapter, we introduce an enhanced RDC device for CAN-AFDX networks to

improve the system’s performances. Compared to the current RDC device, new functions

are integrated to maximize the network resource savings and to guarantee real-time perfor-

mances. First, the current RDC device is described and will be considered as a reference

to highlight the introduced enhancements within the proposed RDC device. Then, the

functional structure overview of our proposed RDC device is presented. Finally, we detail

the implemented functions within this latter, such as frame packing and traffic shaping

mechanism.

3.1 Current RDC Device

In Figure 3.1, the currently used CAN-AFDX RDC device is presented to show the

main characteristics of the current implementation. This RDC performs the frame con-

version from CAN to AFDX, and vice versa using a mapping table. Data mapping is a

necessary function of the RDC device connecting two network protocols with dissimilar

addressing schemes. The mapping is defined within a static table which is configured

offline and does not change during execution time. Within the current RDC device, the

data mapping function is based on a static table associating for each CAN ID an AFDX

VL ID, since no packing process is performed. This mapping is illustrated in Table 3.2,

where three CAN messages required three dedicated VLs.

The main characteristics of the current RDC are:

51

Chapter 3. Design of an Enhanced CAN-AFDX RDC

Figure 3.1: Current CAN-AFDX RDC functional structure

Figure 3.2: Mapping table for the current RDC device

– (1:1) conversion strategy: as shown in Figure 3.3, it proceeds as follows: first,

each frame received at the input interface is decapsulated to extract the payload.

Then, based on the static mapping table, the required header is identified and added

to the extracted payload to build the corresponding frame at the output. This latter

is then sent through the target network interface.

52

3.1. Current RDC Device

Figure 3.3: The current CAN-AFDX RDC: (1:1) strategy

– One-to-one interconnection: as illustrated in Figure 3.4, the current RDC can

connect only one I/O bus to the AFDX. Thus, one RDC device is required per I/O

network interconnected to the AFDX.

Figure 3.4: Current CAN-AFDX RDC interconnection topology

As it can be noticed, the (1:1) strategy of the current RDC device is simple to imple-

ment. However, it can induce high bandwidth consumption on the AFDX network. For

the CAN-AFDX case study, implementing the (1:1) strategy in the RDC device consists

in forwarding one AFDX frame with a minimum size of 84 bytes AFDX frame (IFG (Inter

Frame Gap) included) for each received CAN message with a maximum payload size of

8 bytes. This clearly induces a high overhead on the AFDX network, and consequently

53

Chapter 3. Design of an Enhanced CAN-AFDX RDC

a poor network utilization efficiency. Furthermore, the use of one RDC device per inter-

connected I/O network can lead to high hardware costs and important system’s weight.

3.2 Enhanced RDC Functional Overview

To overcome the limitations of the current RDC, we propose an enhanced CAN-AFDX

RDC with: (i) additional functions to reduce communication overheads and to maximize

resource savings; (ii) the possibility to connect multiple I/O networks using one RDC

device based on a software partitioning mechanism.

A modular structure of our proposed RDC is shown in Figure 3.5. It has one AFDX

interface to communicate with AFDX end-systems and several CAN bus interfaces to

communicate with several I/O CAN buses. Each network interface in the RDC consists

of a reception interface denoted by Rx and a transmission interface denoted by Tx. For

each CAN bus, a compliant-ARINC 653 [5] partition is implemented to ensure commu-

nication isolation between the different CAN buses. This choice is mainly motivated by

the safety requirements, especially the need to limit errors propagation. Furthermore, we

consider the synchronous communication scheme described in Section 1.3.3.

Figure 3.5: Enhanced CAN-AFDX RDC functional structure

Each partition handles upstream and downstream flows originating or destined to

its associated CAN bus to or from the AFDX. Furthermore, an I/O processing unit is

54

3.2. Enhanced RDC Functional Overview

required to forward a data received on the input AFDX interface to the appropriate par-

tition, based on a pre-configured forwarding table.

The main new functions added to the basic RDC are:

– Frame packing function: is applied to upstream flows to reduce communica-

tion overhead. Frame packing of upstream flows consists in grouping several CAN

data into a single AFDX frame, as shown in Figure 3.6. This fact allows to reduce

required AFDX overhead, and thus AFDX bandwidth consumption to forward up-

stream flows from a CAN bus to the AFDX network;

Figure 3.6: Packing CAN messages into AFDX frames

– Frame unpacking function: is applied to downstream flows. It consists in ex-

tracting multiple CAN data from a single AFDX frame when the frame packing

process is activated at the AFDX source. In [12], authors introduced a frame pack-

ing algorithm in AFDX end-systems to optimize the data mapping into AFDX VLs.

To handle such VLs, our proposed RDC device includes an unpacking module which

reverses the packing process. As shown in Figure 3.7, the unpacking unit in the RDC

will first extract the elementary data from the same AFDX frame. The knowledge

of the used formatting scheme of the AFDX frames is necessary to identify the num-

ber, order and type of packed data messages, and consequently to extract correctly

elementary data. Afterwards, a mapping table is used to define the CAN IDs for

the extracted elementary data to obtain CAN frames;

55

Chapter 3. Design of an Enhanced CAN-AFDX RDC

Figure 3.7: Frame unpacking process

– Hierarchical traffic shaping function: To minimize the interference on CAN bus

between downstream and upstream flows, we propose the usage of Hierarchical Traf-

fic Shaping (HTS) algorithm [32] within the RDC device. This algorithm is used to

control downstream flows transmission on CAN, and consequently guarantee band-

width isolation between upstream and downstream flows. HTS algorithm consists

of a set of traffic shapers, based on the leaky bucket method [33], and connected in

a hierarchical way according to a tree structure. HTS algorithm is a special case

of hierarchical server-based scheduling which has been successfully implemented in

various network applications [32] [34] [35] [36]. We extend the use of this algorithm

within avionic RDC devices to control downstream flows and consequently to reduce

bandwidth utilization on the AFDX induced by upstream flows. The proposed HTS

algorithm uses two levels of traffic shaping. The first level is implemented based

on greedy method [37] which comes for free to control individual downstream flows,

and consequently to reduce the jitter due to the AFDX network [38]. The second

level is used to shape aggregate downstream flows, scheduled according to fixed pri-

ority non-preemptive policy, to substantially reduce the number of flows introducing

interference on upstream flows on CAN.

As shown in Figure 3.5, for each I/O CAN bus, our proposed CAN-AFDX RDC pro-

cesses upstream and downstream flows as follows:

– Upstream flows: the Rx queue of a CAN interface associated to an I/O CAN bus

stores the incoming CAN frames in FIFO (First In First Out) order. Afterwards,

these frames are processed by the Frame Packing unit which forms groups of CAN

data that may be sent in the same AFDX frame. Then, based on a predefined

mapping table, a Virtual Link is affected to each group of data formed by the frame

56

3.3. Frame Packing Strategies

packing unit to ensure its delivery to the AFDX end-systems. As we can see in

Figure 3.5, flows from different I/O CAN buses can not be packed together. Indeed,

as partitioning mechanism is implemented to isolate upstream flows coming from

different CAN buses, the interaction between different upstream flows is limited to

the AFDX interface which handles contention between VLs from different partitions.

– Downstream flows: For downstream flows, the I/O processing unit moves frames

from the AFDX Rx interface to the corresponding partition, based on the forwarding

table. Then, these received frames are processed within the unpacking frame unit.

This latter extracts one or many elementary data from the same AFDX frame de-

pending on the data packing performed within the initial AFDX source. Afterwards,

based on a mapping table, CAN identifiers are defined and CAN data are encapsu-

lated with the appropriate CAN headers to form CAN frames. HTS mechanism is

implemented in the RDC device to eliminate the jitter due to the AFDX network,

and minimize interference on CAN buses between upstream and downstream flows.

3.3 Frame Packing Strategies

In this section, we first review main related work to frame packing technique. Then,

we introduce two frame packing strategies for the CAN-AFDX RDC device.

3.3.1 Related Work

In the literature, several frame packing strategies were introduced for different appli-

cations, and can be organized into two classes:

– Dynamic frame packing: the groups of data messages to pack within the same

AFDX frame are not fixed a priori. A specific criterion for grouping data on the fly

during execution time is defined, such as the number of messages to pack;

– Static frame packing: the groups of data messages are fixed offline and do not

change during system execution.

In [28], a dynamic frame packing approach has been proposed within CAN-Ethernet

bridges. It consists in fixing the number of elementary CAN packets in each transmitted

57

Chapter 3. Design of an Enhanced CAN-AFDX RDC

Ethernet frame to reduce the induced Ethernet overhead by CAN flows. Using simulation,

obtained communication latencies showed significant overhead savings on the Ethernet

network, compared to using basic bridges with a naive (1:1) strategy for frames conver-

sion between CAN and Ethernet networks. However, no analytical proof was provided

concerning the verification of schedulability constraints as required for hard real-time ap-

plications. Another interesting dynamic packing strategy was proposed in [39] to construct

network frames from applications data for non real-time networks. This latter strategy is

based on a predefined frame’s filling level. Hence, messages are packed in the same frame

until reaching the filling level. This approach could be efficient to reduce the overhead

and to minimize the bandwidth consumption for non real-time applications. However, for

real-time communication with hard constraints, this approach can lead to a poor tempo-

ral behavior since the schedulability issue was not integrated in the frame packing design

phase.

Static packing approaches have been introduced and studied for different applications,

especially for automotive communications in [14] [15] [16] and for avionics communications

in [12]. In automotive networks [14] [15], authors considered a communication network

based on CAN protocol and addressed the problem of building CAN frames to support a

set of data from applications hosted by an Electronic Controller Unit (ECU), i.e., an auto-

motive terminal. Various algorithms were proposed to select the best static frame packing

which minimizes the load on CAN bus while meeting the timing constraints. Obtained

results have shown the efficiency of static frame packing in saving network resources, es-

pecially in terms of bandwidth utilization. However, the introduced packing approaches

in [14] and [15] assumed a high synchronization level between their applications within

the same ECU. This fact makes the application of these approaches complex in our case

where data incoming to the RDC device are serialized after their transmission on the

source network, i.e., a CAN bus for our CAN-AFDX case study.

In [16], authors introduced a static frame packing algorithm for automotive ECUs in a

multi-cluster automotive architecture based on two different buses: a time-triggered and

an event-triggered. Moreover, a gateway is used to support inter-buses communication.

Authors used a static frame packing strategy to affect signals, i.e., elementary applications

messages, to periodic frames that need to be transmitted on the communication network.

Obtained results showed the enhancements of system’s schedulability due to frame pack-

ing strategy within the ECUs. However, The considered gateway performs a simple (1:1)

conversion strategy, and tuning the frame packing strategy parameters is a complex task.

In avionics context, a static frame packing scheme was introduced in [12] to be applied

58

3.3. Frame Packing Strategies

inside AFDX end-systems to map applications data into AFDX VLs. An algorithm to

select the best frame packing in terms of bandwidth utilization was introduced. However,

this algorithm did not integrate schedulability constraints to discard non-feasible configu-

rations. Moreover, the proposed frame packing needs a high synchronization level between

applications hosted by the same AFDX end-system. This assumption is not verified in

our case since data are serialized on the source network before achieving the RDC device.

This fact makes the applicability of this strategy complex in our case.

Hence, some static frame packing approaches were proposed in the literature for both

automotive and avionics applications. However, these researches addressed maily the

problem of affecting elementary applications data to network frames within source nodes,

and not within interconnection devices.

In the rest of this section, we present two frame packing strategies integrated in our

enhanced RDC device. The first one is dynamic, called Fixed Waiting Time (FWT), while

the second one is static, called Messages Set Partitioning (MSP).

3.3.2 Dynamic Strategy: FWT

This strategy is based on a waiting timer, as illustrated in Figure 3.8. This timer is

started at the end of reception of the first CAN message at the packing queue, and it

allows the accumulation of many CAN messages at the RDC CAN interface. Then, when

the timer expires, the gathered data messages will be sent within the same AFDX frame.

Afterwards, each AFDX frame is transmitted into one of the virtual links defined in the

RDC to support the upstream flows, i.e. sensors flows.

Figure 3.8: FWT frame packing strategy for upstream flows

59

Chapter 3. Design of an Enhanced CAN-AFDX RDC

3.3.3 Static Strategy: MSP

The MSP strategy consists in defining off-line a partition of CAN messages set, where

each obtained subset represents the composition of an AFDX frame, as illustrated in Fig-

ure 3.9. An RDC device implementing MSP packing strategy proceeds as following. First,

the received CAN messages are queued in the input port of the RDC device. Then, based

on a static mapping table, each CAN frame is relayed to its associated output queue. The

frame packing is synchronized with the reception of the most urgent CAN frame among

each defined sub-partition. A timeout could be implemented to avoid losing all the ac-

cumulated messages in case of non-reception of the most urgent one. Finally, the output

AFDX VLs will be multiplexed in the output port of the RDC device according to FIFO

policy and then transmitted on the AFDX network.

Figure 3.9: MSP frame packing strategy on upstream flows

3.4 Data Mapping & Formatting

To set up a frame packing and unpacking units in the RDC device, two important

issues have to be considered: data mapping and frame formatting.

3.4.1 Data Mapping

To integrate the frame packing process with enhanced RDC device, the static mapping

is no longer based on associating one VL ID for each CAN ID, but one VL to multiple

CAN IDs unlike the current RDC device. This mapping is illustrated in Table 3.10, where

seven CAN messages are affected to three VLs. For each frame packing strategy, the ade-

quate mapping table should be defined and configured to respect the different addressing

schemes.

60

3.4. Data Mapping & Formatting

Figure 3.10: Mapping table for enhanced RDC device

3.4.2 Frame Formatting

The frame packing process in the CAN-AFDX RDC device consists in including sev-

eral data in the payload of one AFDX frame. This fact requires the definition of adequate

AFDX frame structures, which may depend on the implemented frame packing strategy.

To define the most accurate AFDX frame structure for each considered frame packing

strategy, we follow the guidelines provided by the ARINC 664 standard [1] for formatting

AFDX frame payload. A payload corresponds to one or several elementary data and it

is created and received at the application layer. We consider the concept of Functional

Data set (FDS), introduced in the standard ARINC 664 [1]. As shown in Figure 3.11, an

FDS allows grouping multiple data in the same AFDX frame and consists of two fields:

(i) Data Sets (DS) that can contain several data primitives (e.g., Float, Integer, Boolean);

(ii) Functional Status Set (FSS) which is a 4 Bytes field to encode the correctness and

the status of at maximum 4 Data Sets. Several FDS data sets may be used to organise

data included in the AFDX payload.

In order to keep communication overhead as low as possible in the AFDX payload

structure, we chose the structure of Figure 3.12. One FSD is defined which is composed

of one DS containing all the data messages to send within the AFDX frame and one FSS

encoding the status of the supported data set.

Furthermore, the standard ARINC 664 defines two types of frame structures:

– Explicit structure: The frame format includes information allowing the desti-

nation of the frame to decode its payload. The structure includes identifiers to

explicitly identify each elementary data encoded in the frame, and length parameter

to define how long the structure is. An explicit formatting structure is shown in Fig-

ure 3.13: one identifier of 1 byte per data type is used for data identification, and the

number and order of elementary data can vary according to the maximum frame size.

61

Chapter 3. Design of an Enhanced CAN-AFDX RDC

Figure 3.11: Structure of AFDX payload (ARINC 664)

Figure 3.12: Chosen AFDX payload structure

– Implicit structure: Unlike the explicit structure, the frame in this case contains

only elementary data without explicit identifiers. Then, the destination application

will interpret correctly the frame format according to the identifier of the reception

AFDX port. This concept is common in the Internet world with the Well Known

Service (WKS) concept. For example, the File Transfer Protocol (FTP) service is

available on port 21. In a similar way, we can affect to the AFDX port 6 a struc-

ture containing pressure measurement encoded on 8 bytes, followed by temperature

measurement encoded on 4 bytes.

62

3.4. Data Mapping & Formatting

Figure 3.13: Explicit AFDX frame structure

Figure 3.14: Implicit AFDX frame structure

An implicit structure is shown in Figure 3.14 where the frame formats are affected to

port numbers. For each destination port receiving an AFDX frame, the correspond-

ing structure defines the maximum size of the AFDX frame, and the elementary data

fields in a predefined order where each data has a specific type and size. Padding

may be used in the source to keep the same structure of the AFDX frame between

successive transmissions, and to allow destinations to correctly decode included data.

The information about frame structure is shared between senders and receivers.

63

Chapter 3. Design of an Enhanced CAN-AFDX RDC

The appropriate formatting structure which minimizes the induced communication

overhead while guaranteeing correct identification of data, should be selected during the

network design. This choice will mainly depend on the avionics applications and the

knowledge of the AFDX frames composition during execution time. In our case, this

choice depends also on the frame packing strategy. Hence, the frame structure is chosen

as follows:

– Under FWT: we do not know a priori the set of data to pack in each AFDX frame

since packing is done on-the-fly according to the waiting time parameter. Hence,

the explicit structure is considered as more adequate under FWT packing strategy.

Then, the only parameter to fix in this case is the maximum AFDX frame size, which

is generally the maximum size of all possible resulting AFDX frames under FWT

packing strategy. Thus, we compute the worst-case scenario in terms of gathered

data size during the waiting time to define payload size of the explicit structure of

AFDX frames.

– Under MSP: the composition of the AFDX frames is fixed and is known a pri-

ori. Therefore, using an implicit structure is more adequate in this case to identify

packed data into the AFDX frames.

3.5 Traffic Shaping Mechanism

In this section, we first review the main related work to traffic shaping mechanism.

Then, we introduce a traffic shaping technique, called Hierarchical Traffic Shaping (HTS),

adapted to our CAN-AFDX RDC device to isolate upstream and downstream flows and

control contention between them on I/O CAN buses.

3.5.1 Related Work

Traffic shaping is a traffic management technique which consists in delaying some

packets to be conform with a desired traffic profile. It is a widely used technique in

communication networks in general, and especially in real-time networks. It is used to

guarantee performances and to improve latencies by bounding packets interference.

The Hierarchical Traffic Shaping (HTS) is a part of general Hierarchical Server-Based

64

3.5. Traffic Shaping Mechanism

(HSB) Scheduling where each traffic shaper in the hierarchy structure is considered as a

server which will bound the traffic burstiness sent within a limited time window. HSB

scheduling is a common approach that has been used in many network applications to

control interference between various traffic classes with different real-time requirements,

i.e., Soft Real-Time (SRT) and Hard Real-Time (HRT) traffic. Concerning industrial ap-

plication and especially Real-Time Ethernet, one of the most relevant approaches based

on HSB framework to guarantee a dynamic adaptation of servers was proposed in [36].

The authors presented a multi-level HSB architecture for Ethernet, implemented on com-

mercial switches and based on FTT-SE (Flexible Time Triggered Switched Ethernet)

paradigm [40]. Schedulability analysis was detailed and validated using experimentation.

This approach is efficient in dynamic environment, and typically open networks. However,

it assumes that servers parameters verify a priori traffic temporal constraints.

In automotive applications, various approaches based on traffic shaping and HSB

scheduling were proposed to improve CAN bus performances. In [38], traffic shaping

algorithm based on leaky bucket method, and particularly greedy method [37], was in-

tegrated within gateways to reduce the jitter on the destination network and improve

the schedulability of lower priority messages. However, this approach is considered as a

limited form of HTS approach implementing only one level of traffic shapers to control in-

dividual input messages. In [35], HSB scheduler, based on Earliest Deadline First (EDF)

algorithm, was detailed to use CAN in a more flexible way compared to native CAN. This

approach improved bandwidth isolation among aperiodic traffic and was validated using

simulation. However, no analytical approach was proposed to provide worst-case response

times of messages and to guarantee messages schedulability.

In avionics application, traffic shaping is integrated in AFDX end-systems to guarantee

a reserved bandwidth for each application and is standardized as Virtual Link concept.

This approach guarantees bandwidth isolation between traffic flows and improves the pre-

dictability of the AFDX network. In our case, we extend this approach by implementing

HTS scheduling within RDC devices to interconnect the backbone AFDX with I/O CAN

buses. The main idea is to minimize the interference due to downstream flows on the

transmission of upstream flows on CAN, and consequently the WCRTs on CAN of up-

stream flows. This will favor frame packing mechanism for upstream frames within RDC

device, and thus will reduce bandwidth utilization on the AFDX.

Our proposal consists of two traffic shaping levels and a root server to implement

native CAN scheduler. The idea of the first level of traffic shapers is very similar to the

65

Chapter 3. Design of an Enhanced CAN-AFDX RDC

one detailed in [38] where we consider greedy method, which does not increase maximum

end-to-end delays as proved in [37], and induced jitter by the AFDX network. However,

we extend this implementation by adding a second level of traffic shapers to substan-

tially reduce the number of flows introducing interference on upstream flows on CAN.

The schedulability analysis of upstream and downstream flows is proved and validated

through a realistic avionic case study. Furthermore, unlike [36], a tuning process of the

HTS parameters is proposed to minimize as much as possible bandwidth utilization on

the AFDX, while guaranteeing at the same time upstream and downstream flows require-

ments.

3.5.2 HTS Algorithm

The HTS mechanism is based on a set of traffic shapers and servers connected in a

tree structure and defined in a static manner a priori, as shown in Figure 3.15. This latter

is organized into three levels: leaf, inner and root.

Figure 3.15: Hierarchical Traffic Shaping structure

66

3.6. Conclusion

– Leaf traffic shapers: are implemented to control the flow of received packets from

the AFDX network. They are based on greedy method [8]. A greedy shaper is a

special traffic shaper, that not only ensures an output stream that conforms to a

given traffic specification, but that also guarantees that no packets get delayed any

longer than necessary. In our case, leaf shapers ensures the same minimal inter-

arrival time as in AFDX sources for each downstream flow. Hence, do not increase

maximum end-to-end delays, however, they reduce efficiently the observed jitter in

the RDC device. This fact enhances lower priority messages schedulability on CAN

[9].

– Inner traffic shapers: each one is based on leaky bucket method to shape aggre-

gate downstream flows of outgoing packets from leaf shapers after being classified

and scheduled according to a fixed priority non-preemptive policy. The aim of these

shapers is to substantially reduce the number of flows introducing interference on

upstream flows, and to guarantee bandwidth isolation on CAN. One or many inner

traffic shapers can be implemented depending on the incoming traffic rate. Indeed,

shaping all the incoming flows using the same inner traffic shaper will induce small

inter-arrival time between packets at the output, and consequently important in-

terference with upstream flows. The tuning process of these inner shapers will be

detailed in next chapters.

– The root server implements simply fixed priority non-preemptive scheduling which

represents the CAN native behavior. All the packets will be multiplexed at the root

server according to their corresponding priorities.

3.6 Conclusion

In this chapter, we presented an enhanced RDC device which is capable of: (i) con-

necting multiple I/O CAN networks to AFDX; (ii) saving AFDX bandwidth by reducing

communication overheads induced by the RDC. Compared to the currently used RDC,

our proposed RDC implements a set of additional functions: (i) frame packing based on

dynamic or static strategy; (ii) frame unpacking; (iii) Hierarchical Traffic Shaping (HTS).

The upstream flows, i.e., flows sent from CAN to AFDX, are processed by the frame

packing strategy in the RDC; while the downstream flows, i.e., flows sent from CAN to

AFDX, are first unpacked to extract elementary CAN data, then they are processed by

the HTS unit. Furthermore, a partitioning process, ARINC 653-compliant, is used in the

67

Chapter 3. Design of an Enhanced CAN-AFDX RDC

RDC to isolate communication from different I/O CAN buses. A partition in the RDC

is affected to each I/O CAN bus connected to the AFDX network. This choice reduces

the number of required RDC hardware units, and thus reduces the system weight and cost.

The proposed RDC device presents several advantages such as modularity, configura-

bility and resource management efficiency. However, introduced functions imply addi-

tional complexity in the performance analysis and RDC configuration task. As the RDC

device inherits from the avionics system requirements, we have to prove that it meets

real-time requirements. In the next chapter, we will introduce adequate timing analysis

approach to validate the real-time behaviour of our proposed RDC device, while enhanc-

ing network resource savings.

68

Chapter 4

Modeling and Timing Analysis of

the Enhanced RDC

In this chapter, we first model the CAN-AFDX network interconnected using our en-

hanced RDC device and the supported data flows. Afterwards, a timing analysis method

is proposed and detailed to verify the system schedulability under different RDC’s con-

figurations. A performance evaluation through a small scale CAN-AFDX network is then

provided.

4.1 CAN-AFDX RDC Modeling

Figure 4.1: CAN-AFDX network architecture

As shown in Figure 4.1, the traffic supported by the RDC device can be organized

into two types of flows: (i) upstream flows received from sensors connected to CAN bus

and destined to calculators on AFDX; (ii) downstream flows received from calculators

connected to AFDX and destined to actuators connected to CAN bus. We consider Sup

and Sdown for upstream and downstream flow sets, respectively. For each stream flow

m ∈ Sup ∪ Sdown, we associate four characteristics {Tm, Lm, Dlm, Pm} which represent the

69

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

period, maximum payload, deadline and priority on CAN bus, respectively. We consider

a strict order of CAN priorities, i.e. for any two messages mk and mj , Pmk
< Pmj

means

that message mk has higher priority than mj .

When upstream and downstream flows cross the RDC device, they are processed as

follows:

– Upstream flows: as shown in Figure 4.2, the RDC device maps CAN messages

set Sup onto AFDX VLs set to support the upstream flows on AFDX network.

This mapping process is called VLs allocation. To check the network temporal con-

straints, the allocated VLs need to be completely characterized. The VLs allocation

is detailed for each proposed frame packing strategy, i.e., FWT and MSP, in Section

4.1.1;

Figure 4.2: Upstream flows modeling from end-to-end

– Downstream flows: as shown in Figure 4.3, the RDC device will first extract the

CAN messages set Sdown from the AFDX VLs. Then, the obtained CAN messages

are processed by the set of shapers in the HTS structure. To prove the network

temporal guarantees, these shapers have to be completely characterized. The map-

ping of downstream flows Sdown onto the shapers of the HTS structure is detailed

in Section 4.1.2.

Figure 4.3: Downstream flows modeling from end-to-end

70

4.1. CAN-AFDX RDC Modeling

4.1.1 Frame Packing Strategies Modeling

The frame packing process consists in building a set of AFDX VLs V = {v1, v2, ..., vm}
to define the output traffic from the RDC to the AFDX network, knowing the set of

CAN-messages M = {m1, m2, ..., mn} at the input.

Figure 4.4: Example of CAN messages mapping onto AFDX VLs

As we can see through the example of Figure 4.4, after the frame packing process, each

AFDX frame fi within the VL vi ∈ V will contain a subset of CAN messages M(vi) ⊂M .

This subset of messages which can be static under MSP strategy, i.e., does not change

over successive transmissions, or dynamic under FWT strategy, i.e., may vary from a

transmission to another. Each VL vi is characterized by {BAGi,MFSi, Dli, DESi
AFDX}

which represent the bandwidth allocation gap, the maximum frame size, the deadline and

the set of AFDX end-system destinations, respectively. These characteristics will clearly

depend on the implemented frame packing strategy in the RDC, and will be developed in

the rest of this section.

4.1.1.1 FWT Strategy

For an RDC device implementing the FWT strategy with a waiting timer ∆, we define

a set of AFDX VLs to support the AFDX frames resulting from FWT packing process.

The number of VLs is defined considering that the RDC can forward as much AFDX

frames as timer ∆ occurrences during the smallest period of the CAN messages set M .

Hence, we define the number of VLs to support CAN messages under FWT strategy as

71

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

follows:

Nvls(∆) = Card(V) =

⌈
minmj∈M Tj

∆

⌉
(4.1)

In the worst-case scenario, any defined virtual link may support the most urgent CAN

data and may include the maximum number of elementary CAN data accumulated during

the FWT packing process. Hence, the allocated VLs V to the CAN traffic under FWT

strategy which cover the worst-case scenario are considered as identical in terms of their

composing elementary data, and their characteristics are defined as following.

For any vi ∈ V ,

– BAGi: since any allocated VL vi needs to transmit the message having the smallest

period within the messages set M , we define the BAG as the closest value in power

of 2 to the smallest period of messages in M :

BAGi = 2k, k =

⌊
log(minmj∈MTj)

log(2)

⌋
(4.2)

– MFSi: is considered as the sum of all data payloads in the messages set M and the

induced overhead imposed by the AFDX structure. Padding may be used to guar-

antee a minimum AFDX frame size of 84 bytes (IFG (Inter Frame Gap) included).

The largest AFDX frame generated by the RDC depends on the waiting time ∆.

According to the explicit structure detailed in the previous chapter, a bound on the

maximal frame size (in bits) is as follows:

MFSi = max
(
84 ∗ 8,min(Si,∆ ∗

8

17
∗ 106) + (67 +Nlb(∆)) ∗ 8

)
(4.3)

where,

– Si is the sum of all data payloads in M (in bits);

– ∆∗ 8

17
∗106 is the maximal payload (in bits) that can be accumulated in the RDC

during ∆. The typical CAN parameters are integrated where 8 bytes correspond

to the maximum CAN payload size, and 17 bytes the size of a maximum frame

size including payload and CAN protocol overhead and a transmission capacity

of 106Mbps;

72

4.1. CAN-AFDX RDC Modeling

– (67+Nlb(∆))∗8 is the overhead (in bits) imposed by the AFDX explicit structure,

where Nlb(∆) is the maximal number of CAN identifiers received during ∆;

– Padding may be used to ensure a minimum AFDX frame size of 84 bytes.

– Dli: is the relative deadline of the obtained AFDX frame. This relative deadline

will be detailed in Section 4.2.

– DESi
AFDX : since any VL vi in V can include any CAN message in M , then vi can

be received by any AFDX end-system that initially consumes at least one of these

data. Therefore, DESi
AFDX is as follows:

DESi
AFDX = ∪mj∈MDESj

AFDX (4.4)

An example of AFDX VLs allocation under FWT strategy is shown in Figure 4.5. In

this example, a set of 4 CAN messages is mapped onto 2 AFDX VLs. The choice of VL

to support packed data is done during the execution time among VLs 1 and 2.

Figure 4.5: Example of AFDX VLs allocation under FWT strategy

4.1.1.2 MSP Strategy

The MSP strategy for CAN-AFDX RDC is defined using a partitioning process of

CAN messages set M . Each AFDX VL vi ∈ V consists of a sub-set M(vi) of CAN mes-

73

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

sages obtained after the partitioning process and it is characterized as follows:

– BAGi: unlike FWT strategy, under the MSP strategy the subset M(vi) is fixed.

Therefore, for a AFDX VL vi the BAG is computed as follows:

BAGi = 2k, k =

⌊
log(minmj∈M(vi)Tj)

log(2)

⌋
(4.5)

– MFSi: unlike FWT, under MSP strategy an implicit AFDX frame structure is used

and the sub-set of CAN messages M(vi) to pack is known a priori. Therefore, an

accurate MFS (in bits) for AFDX VL vi is computed as follows:

MFSi = max
(
84,

∑

mj∈M(vi)

Lj + 67
)
∗ 8 (4.6)

– Dli: is the relative deadline of the obtained AFDX frame which depends on its

associated CAN-messages subset M(vi). Unlike FWT strategy, under MSP strategy

only the impact of CAN messages in M(vi) needs to be taken into account instead

of all CAN messages set M with FWT;

– DESi
AFDX : under MSP strategy, the sub-set M(vi) is known a priori. Therefore,

the set of AFDX destination end-systems is more accurate than under FWT:

DESi
AFDX = ∪mj∈M(vi)DESj (4.7)

An example of AFDX VLs allocation under MSP strategy is illustrated in Figure 4.6.

In this example, a set of 4 CAN messages is mapped onto 2 AFDX VLs. VL 1 supports

the successive transmission of frames containing messages 1 and 3, whereas VL 2 supports

the successive transmission of frames 2 and 4.

74

4.1. CAN-AFDX RDC Modeling

Figure 4.6: Example of AFDX VLs allocation under MSP strategy

4.1.2 HTS Mechanism Modeling

The HTS is used to manage downstream flows to minimize interference with upstream

flows on CAN. Each leaf traffic shaper is applied for only one type of downstream flow

and consequently admits the same period and authorized maximum payload than its as-

sociated flow. However, an inner traffic shaper is applied to a group of outgoing flows

from leaf shapers. Then, each inner shaper sh in the set of inner shapers Shinner, applied

for a set of downstream flows Ssh, is characterized by {Tsh, Lsh, Psh}, where:

– Tsh is the period. This value is comprised between T minsh and T maxsh depending

on the characteristics of Ssh. To support the aggregate flow rate, T maxsh is at most

equal to 1∑
i∈Ssh

1
Ti

. Furthermore, to avoid overflowing the CAN bus, we consider

that T minsh is at least equal to 1ms, which is an arbitrary choice that integrates

CAN transmission capacity and typical production periods of CAN sources. If
1∑

i∈Ssh

1
Ti

> 1ms, than this configuration is possible; else we should investigate other

HTS configurations;

– Lsh is the maximum payload size where Lsh = max
i∈Ssh

Li;

– Psh is the associated priority to the inner shaper. This value depends on the consid-

ered communication way and is equal to P minsh or P maxsh. To cover the worst-case

from the downstream flows point of view, this priority is considered as the lowest

75

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

priority among all its input downstream flows set, and Psh = P maxsh = max
i∈Ssh

Pi.

However, the worst-case from the upstream point of view corresponds to considering

the highest priority among all its input downstream flows set and Psh = P minsh =

min
i∈Ssh

Pi.

4.2 Timing Analysis

In this section, we first introduce a schedulability test based on end-to-end latencies

to analyze the timing guarantees offered by our enhanced RDC to the crossed flows. Af-

terwards, an adequate timing analysis is provided to compute end-to-end latencies and

evaluate the timing performance of the RDC.

4.2.1 Sufficient Schedulability Test

For avionics embedded applications, it is essential that the communication network ful-

fills certification requirements, e.g. predictable behavior under hard real-time constraints

and temporal deadline guarantees. The use of a frame packing process and traffic shaping

within the RDC may increase communication latencies and real-time constraints have to

be checked. To deal with the worst-case performance analysis of such networks, we con-

sider as a metric the worst-case end-to-end delay that will be compared to the temporal

deadline for each frame.

Figure 4.7: End-to-end delay metric definition

The end-to-end delay deed(mj) of each CAN message mj ∈M(vi), where M(vi) is the

subset of CAN-messages associated with the VL vi ∈ V , consists of three parts as shown

76

4.2. Timing Analysis

in Figure 4.7:

– dCAN(mj): is the maximal response time of a CAN frame. A schedulability analysis

for native CAN bus has been introduced in [11], where the CAN bus is modeled as

a static priority non-preemptive scheduler. This analysis will be adapted in the case

where the HTS mechanism is applied in the RDC.

– dRDC(mj): is the maximal duration the message mj might be delayed in the RDC.

This delay depends mainly on the implemented frame packing strategy in the RDC

device for upstream flows, and on the HTS mechanism implemented for downstream

flows. For upstream flows, this delay is the sum of: (i) a technological latency,

denoted by ǫ, which is due to payload extraction/encapsulation and reading the

mapping table; (ii) waiting time in the RDC between the reception instant of the

CAN message and the transmission instant of its associated AFDX frame, denoted

by WT (mj), then

dRDC(mj) = ǫ+WT (mj) (4.8)

In this section, we will provide bounds on the RDC traversal latency for both up-

stream and downstream flows.

– dAFDX(vi): is the upper bound on the delay experienced by the AFDX VL including

mj . Delay bounds computation for the AFDX network, based on Network Calculus

formalism, has been introduced in [17]. The tool WoPANets presented in [6] and

based on Network Calculus formalism, will be used throughout this work to analyze

AFDX delay bounds (see Appendix A for more details about the Network Calculus

concepts and WoPANets tool).

The proposed schedulability test is as follows:

∀ vi ∈ V , ∀ mj ∈M(vi),

dCAN(mj) + dRDC(mj) + dAFDX(vi) ≤ Dlj (4.9)

77

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

4.2.2 Timing Analysis for Upstream Flows

First, we provide a method to compute a bound on RDC traversal delay dRDC(m). Af-

terwards, we provide a method to compute a bound on worst-case response time on CAN

bus dCAN(m). The AFDX delay bound dAFDX is computed using WoPANets tool given

the set of allocated VLs obtained according to the implemented frame packing strategy,

as provided in Section 4.1.1.

4.2.2.1 RDC Traversal Delay Computation

The RDC device delay imposed to upstream flows is due to the frame packing unit.

Under FWT strategy, the worst-case waiting time in the RDC is equal to ∆. As shown

in Figure 4.8, this occurs when a CAN message is not completely received at the FWT

packing queue before the expiration of an already started timer of duration ∆. In this

case, the received CAN message has to be transmitted within the next AFDX frame which

is built after the expiration of a timer of duration ∆.

Figure 4.8: Worst-case waiting time under FWT strategy

Hence, a bound on the waiting time for message mj in the RDC device under FWT

strategy is given as follows:

WT (mj) = ∆ (4.10)

Under MSP packing strategy, the worst-case waiting time of a CAN-message mj ∈
M(vi) \ {ms}, where ms is the message with the smallest period, occurs when it arrives

78

4.2. Timing Analysis

immediately after the end of ms reception in the RDC. In this case, the message mj has

to wait for the next reception of ms to be packed in the same AFDX frame, as illustrated

in Figure 4.9. Therefore, an upper bound of the waiting time in the RDC ofmj ∈M(vi) is:

WT (mj) =

{
0 if j = s

Ts + dCAN(ms) otherwise
(4.11)

Figure 4.9: Worst-case waiting time under MSP strategy

4.2.2.2 CAN Worst Case Response Time Computation

In [11], the CAN bus was modeled as a static priority non-preemptive scheduler

and the Worst Case Response Time (WCRT) for a message m was provided:

dCAN(m) = Rm

= max
q=0..Qm−1

Rm(q) (4.12)

where Qm is the number of instances of message m that become ready to transmission

before the end of the busy period relative to m, and Rm(q) is the WCRT of instance q of

message m. Rm(q) is given by:

Rm(q) = Cm + Jm + wm(q)− qTm (4.13)

where,

– The transmission time Cm, corresponding to the longest time that the message can

take to be transmitted;

79

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

– The queuing jitter Jm, corresponding to the longest time between the initiating

event and the message being queued, ready to be transmitted on the bus;

– The queuing delay wm(q) , corresponding to the longest time that the instance q of

messagem can remain in the CAN controller queue, before commencing transmission

on the bus.

– Tm is the period of message m.

wm(q) is computed using the following iterative expression:

wn+1
m (q) = Bm + qCm +

∑

k∈hp(m)

⌈
wn

m(q) + Jk + τbit
Tk

⌉
∗ Ck (4.14)

where hp(m) corresponds to the set of messages with priority higher than m, τbit

the transmission time of one bit and Bm the maximum blocking time due to the set of

messages with lower priority than m, denoted by lp(m). The recurrence relation starts

with a value of w0
m(q) = Bm + qCm, and ends when wn

m(q) = wn+1
m (q), or when Rm(q) =

Cm + Jm +wn+1
m (q)− qTm > Dlm in which case the message is unschedulable. For values

of q > 0 an efficient starting value is given by w0
m(q) = wm(q − 1) + Cm. Bm is given by:

Bm = max
k∈lp(m)

Ck (4.15)

The number of instances that need to be examined Qm is given by:

Qm =

⌈
tm + Jm

Tm

⌉
(4.16)

where tm corresponds to the length of the priority level-m busy period is given by

the following recurrence relation, starting with an initial value of tm = Cm, and finishing

when tn+1
m = tnm:

tn+1
m = Bm +

∑

k∈hep(m)

⌈
tnm + Jk

Tk

⌉
∗ Ck (4.17)

hep(m) is the set of messages with priority higher or equal to m.

The response time computed using equations 4.12 to 4.17 corresponds to the exact

WCRT on CAN. However, it may induce a high computing complexity since it potentially

requires the computation of multiple response times for each CAN message. In [11],

authors presented a simpler but more pessimistic schedulability test which computes an

upper bound on the WCRT on CAN, which is only valid for CAN messages with

80

4.2. Timing Analysis

deadlines less or equal to periods. An upper bound on WCRT on CAN for message

m can be thus given by:

dCAN(m) = Cm + wm + Jm (4.18)

where, wm is an upper bound on the queueing delay of any instance q of message m,

which is obtained using the following iterative expression:

wn+1
m = max(Bm, Cm) +

∑

k∈hp(m)

⌈
wn

m + Jk + τbit
Tk

⌉
∗ Ck (4.19)

We denote by lep(m) the set of flows with priority lower of equal to m, then, 4.19 can

be written as follows:

wn+1
m = max

k∈lep(m)
(Ck) +

∑

k∈hp(m)

⌈
wn

m + Jk + τbit
Tk

⌉
∗ Ck (4.20)

To check the schedulability of message m on CAN, we start with an initial value

w0(m) = Cm and continue until obtaining one of these two situations: (i) wn+1(m) +

Cm + Jm > Dlm, then stop but no conclusion on the schedulability of message m; (ii)

wn+1(m) = wn(m), then stop and conclude m is schedulable with an upper bound on its

WCRT of wm + Cm + Jm.

In order to compute the exact WCRT on CAN using equations 4.12 to 4.17, we define

for an upstream flow m the set of messages hp(m) and lp(m) required for this timing

analysis:

– hp(m) = {k ∈ Sup ∪ Shinner / Pk < Pm}: set of messages with priorities higher

than m among upstream flows and the set of inner shapers in HTS structure by

considering P minsh for each inner shaper sh ∈ Shinner;

– lp(m) = {j ∈ Sup ∪ Shinner / Pk > Pm}: set of messages with priorities lower or

equal than m among upstream flows and the set of inner shapers in the HTS struc-

ture by considering P minsh for each inner shaper sh ∈ Shinner.

To apply the sufficient schedulability test using equation 4.18 and 4.19, we define for

an upstream flowm the set of messages hp(m) and lep(m) required for this timing analysis:

81

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

– hp(m) = {k ∈ Sup ∪ Shinner / Pk < Pm}: set of messages with priorities higher

than m among upstream flows and the set of inner shapers in HTS structure by

considering P minsh for each inner shaper sh ∈ Shinner;

– lep(m) = {j ∈ Sup ∪ Shinner / Pk ≥ Pm}: set of messages with priorities lower

or equal than m among upstream flows and the set of inner shapers in the HTS

structure by considering P maxsh for each inner shaper sh ∈ Shinner.

In Section 4.2.2.3, we conduct a comparison between the upper bound on the WCRT

on CAN bus and the exact WCRT to evaluate the degree of pessimism of the upper bound.

The schedulability test 4.9 can be verified for each message m using equation 4.10, 4.11,

4.12 (or 4.18 under the assumption that the deadline of a message is equal to its period)

and the obtained AFDX delay bounds using WoPANets tool.

4.2.2.3 CAN analysis: upper bound vs exact WCRT

To illustrate the proposed timing analysis on CAN and assess the pessimism of the

upper bound on the WCRT on CAN, we consider the following examples of flows on CAN:

– Example 1: we consider three messages corresponding to the example of Table 3

in [11], which was used to highlight the flaw in the analysis introduced by Tindell

and al. in [25], as described in Table 4.1. The CAN message’s payload leading to a

transmission time of 1 ms is equal to 116 bytes, which largely exceeds the maximum

payload of 8 bytes allowed by CAN and the deadline of each message is equal to its

production period. Even if this traffic is non realistic for a CAN bus, we use it to

compare WCRT and the proposed upper bound on WCRT for CAN-like schedulers.

Table 4.1: Example 1: traffic characterization

Message Priority Period (ms) Tx time (ms) Deadline (ms)

A 1 2.5 1 2.5

B 2 3.5 1 3.5

C 3 3.5 1 3.5

– Example 2: we randomly generate a set of CAN messages with periods in 4,8,16ms

and payloads in the interval [2,8]bytes. We consider several messages sets with a

CAN utilization rate between 15% and 70%. The priorities are assigned to messages

82

4.2. Timing Analysis

such as Pi < Pj if Ti < Tj, i.e. the lower the period of mi is the higher its priority is.

For messages with the same period we arbitrary associated distinct priorities. The

deadline of each CAN message is considered equal to its production period.

To evaluate the pessimism of the upper bound on the WCRT on CAN, for each of the

previous CAN flows examples, we compute the exact WCRT using equation 4.12 and the

upper bound on the WCRT using equation 4.18. Afterwards, we compare the obtained

results and conclude on the degree of pessimism of our schedulability test.

For example 1, the obtained WCRT and upper bound on WCRT on CAN are re-

ported in Table 4.2.

Table 4.2: Example 1: exact WCRT vs upper bound

Message Deadline (ms) WCRT (ms) Upper Bound (ms)

A 2.5 2 2

B 3.5 3 3

C 3.5 3.5 7

The upper bounds obtained for messages A and B are equal to the exact WCRT.

However, for message C we obtain a pessimistic upper bound of 7 ms compared to the

exact WCRT which is equal to 3.5 ms. For this example, the CAN utilization is equal to

97% and messages utilization rates (Cm/Tm) are relatively high, 40% for A and 28% for

B and C.

For example 2, we consider the generated CAN traffic with the utilization rate 70%.

The obtained WCRT and upper bound for each CAN message are reported in Figure

4.10. As can be seen, the obtained upper bounds for CAN messages are equal to the

exact WCRT for all the messages except message 42 where the upper bound is slightly

higher than the exact WCRT. The results obtained for generated CAN messages sets

with low CAN utilization rates show very tight upper bounds. In this case, the number of

instances obtained using Equation 4.17 is equal to 1 and the difference between computed

WCRT and the upper bound is due to considering max(Bm, Cm) (for the upper bound)

instead of max(Bm) (for the exact WCRT).

83

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

 0

 2

 4

 6

 8

 10

0 5 10 15 20 25 30 35 40 45

W
C

R
T

/U
pp

er
 B

ou
nd

(m
s)

CAN message ID

Upper Bound (ms) Exact WCRT (ms)

Figure 4.10: Comparison between exact WCRT and upper bound (Example 2)

The example 1 shows that under some extreme conditions (a very high CAN load,

high individual utilization rates) the analysis using the upper bound may lead to large

upper bound compared to the exact WCRT. However, for example 2, which represents

a realistic CAN traffic in terms of payload size, periods and CAN bus utilization, the

obtained results showed tight upper bounds on the WCRT. In our study, we consider

realistic CAN traffic with similar properties as those of example 2 and we use the upper

bound on WCRT for timing analysis on CAN bus to simplify the computation.

4.2.3 Timing Analysis for Downstream Flows

Downstream flows are subject to HTS when crossing the RDC device. In this section,

we provide a method to compute a bound on RDC traversal delay, dRDC(m). After-

wards, we provide a method to compute a bound on worst-case response time on CAN

bus dCAN(m).

4.2.3.1 RDC Traversal Delay Computation

The RDC delay dRDC(m) for a downstream flow m is composed of: (i) a technolog-

ical latency, denoted by ǫ due to payload extraction, unpacking and data encapsulation

process; (ii) a blocking time due to the HTS structure, denoted by Bshaper(m). The RDC

delay can be written as follows:

dRDC(m) = ǫ+Bshaper(m) (4.21)

84

4.2. Timing Analysis

For each downstream messagem, first the leaf shaper, based on greedy method, absorbs

the jitter due to AFDX network without increasing the maximal AFDX delay. The impact

of this shaper on end-to-end delay is thus included in the AFDX delay. Furthermore, the

input flows of inner shapers are considered as jitter free. An inner shaper, as we defined

in the HTS structure, can be modeled as a static priority non-preemptive scheduler for

downstream flows outcoming from leaf shapers. Each message m ∈ Ssh will occupy the

shaper during Tsh units of time since the shaper does not send more than one packet per

Tsh. Then, the worst-case blocking time at shaper sh is derived:

Bshaper = max
q=0..Qm−1

Bshaper(q) (4.22)

where Qm is the number of instances of message m that become ready to transmission

before the end of the busy period relative to m, and Bshaper(q) is the maximal blocking

time in shaper sh of instance q of message m. Considering jitter free downstream flows

at the entry of inner shapers, Bshaper(q) is derived as follows:

Bshaper(q) = Cshm + wm(q)− qTm (4.23)

where,

– Cshm, corresponding to the longest time that the message can take to be forwarded

by the inner shaper;

– The queuing delay wm(q) , corresponding to the longest time that the instance q of

message m can remain in the inner shaper queue, before being forwarded;

– Tm is the period of message m.

wm(q) is computed using the following iterative expression:

wn+1
m (q) = Bm + q ∗ Tsh +

∑

k∈hpinner(m)

⌈
wn

m(q) + τbit
Tk

⌉
∗ Tsh (4.24)

where hpinner(m) corresponds to the set of messages with priority higher than m

crossing the shaper sh and Bm the maximum blocking time due to the set of messages

with lower priority than m sharing the shaper sh, denoted by lpinner(m):

Bm =

{
0 if lpinner(m) = ∅
Tsh otherwise

(4.25)

85

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

– hpinner(m) = {k ∈ Ssh / Pk < Pm}: set of messages shaped with the same inner

shaper sh, with priorities higher than m;

– lpinner(m) = {j ∈ Ssh / Pj > Pm}: set of messages shaped with the same inner

shaper sh, with priorities lower than m.

The number of instances that need to be examined Qm is given by:

Qm =

⌈
tm
Tm

⌉
(4.26)

where tm corresponds to the length of the priority level-m busy period is given by

the following recurrence relation, starting with an initial value of tm = Tsh, and finishing

when tn+1
m = tnm:

tn+1
m = Bm +

∑

k∈hepinner(m)

⌈
tnm
Tk

⌉
∗ Tsh (4.27)

hepinner(m) is the set of messages with priority higher or equal to m sharing the shaper

sh.

4.2.3.2 CAN Worst Case Response Time Computation

A bound on the worst-case response time on CAN for a downstream flow can be

computed using equation 4.12 to equation 4.17 by considering the output flows of inner

shapers as CAN flows with the same characteristics as the associated inner shaper (pe-

riod, maximal size and priority) and by define the lp(m), hp(m) and hep(m) sets for each

message m ∈ Sdown as follows:

– hp(m) = {k ∈ Sup∪Shinner / Pk < Pm}: set of messages with priorities higher than

m among upstream flows and inner shapers by considering P maxsh for each inner

shaper sh ∈ Shinner;

– hep(m) = {k ∈ Sup ∪ Shinner / Pk ≤ Pm}: set of messages with priorities higher

than m among upstream flows and inner shapers by considering P maxsh for each

inner shaper sh ∈ Shinner;

– lp(m) = {j ∈ Sup ∪ Shinner / Pk < Pm}: set of messages with priorities lower or

equal than m among upstream flows and inner shapers by considering P minsh for

86

4.3. Preliminary Performance Analysis

each inner shaper sh ∈ Shinner.

Hence, the schedulability test 4.9 can be verified for each message m using equation

4.12 and equation 4.21 and the obtained AFDX delay bounds using WoPANets tool.

4.3 Preliminary Performance Analysis

To evaluate the performance of our enhanced RDC CAN-AFDX device in terms of

temporal guarantees and bandwidth utilization, we consider a small scale CAN-AFDX

network with different upstream and downstream traffic scenarios. The impact of the

RDC’s functions on the communication latencies is assessed. Furthermore, the bandwidth

utilization rates are computed to evaluate the efficiency of our enhanced RDC device to

save network resources.

4.3.1 Considered Test Cases

4.3.1.1 Test Case 1

Figure 4.11: Test case 1: one sensors CAN bus interconnected to the AFDX

To illustrate the VLs allocation methodology and the schedulability analysis test for

each proposed frame packing strategy, namely FWT and MSP, we consider the test case

shown in Figure 4.11. In this considered test case, one sensors CAN bus is connected

to the AFDX backbone using our enhanced RDC device. Hence, there is no contention

between upstream and downstream flows on the CAN bus and the HTS mechanism can be

deactivated within the RDC device. The considered CAN bus supports a set of upstream

flows, with characteristics described in Table 4.3. The deadline of each message in Table

4.3 is assumed to be equal to its production period. A background AFDX traffic, i.e.,

AFDX flows exchanged between AFDX end-systems, is considered. The impact of the

87

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

AFDX flows on upstream flows is integrated in the AFDX delays dAFDX computed using

WoPANets tool.

Table 4.3: Upstream flows description

Messages Number Payload(bytes) Period(ms)

m1 3 8 4

m2 2 8 8

m3 16 2 16

m4 4 2 32

4.3.1.2 Test Case 2

Figure 4.12: Test case 2: one sensors/actuators CAN bus interconnected to the AFDX

To evaluate the impact of the HTS algorithm integrated into the RDC device on the

system performance, we consider the CAN-AFDX network architecture described in Fig-

ure 4.12. A sensors/actuators CAN bus is connected to the AFDX backbone using our

enhanced RDC device, as shown in Figure 4.12. The CAN flows are described in Tables

4.4 and 4.5. Upstream and downstream flows consist both of 24 CAN messages with a

payload size of 8 bytes and periods between 8ms and 32ms. We assume the deadline of

each message is equal to its production period. We also assume that downstream flows

have higher priorities than upstream flows. The same background AFDX traffic as Test

Case 1 is considered to compute the AFDX delay dAFDX.

88

4.3. Preliminary Performance Analysis

Table 4.4: Downstream flows description

Message Period (ms) size (bytes) Priority

m1 − m8 8 8 1 − 8

m9 − m16 16 8 9 − 16

m17 − m24 32 8 17 − 24

Table 4.5: Upstream flows description

Message Period (ms) size (bytes) Priority

m25 − m32 8 8 25 − 32

m33 − m40 16 8 33 − 40

m41 − m48 32 8 41 − 48

4.3.2 Impact of Frame Packing Strategy

To evaluate the impact of frame packing strategies on network performance, we con-

sider Test Case 1.

4.3.2.1 Under FWT

Induced VLs characteristics and corresponding AFDX bandwidth consumption under

FWT strategy, obtained with different values of waiting time ∆ varying between 1ms

to 3ms, are reported in Table 4.6. These values have been chosen less than the smallest

period among upstream flows , i.e., T1 = 4ms, otherwise the configuration is obviously not

feasible. The (1:1) strategy is used as a reference to show the performance enhancements

offered by our proposed FWT strategy.

As it can be noticed, implementing (1:1) strategy in the CAN-AFDX RDC leads to a

significant number of VLs with a high induced AFDX bandwidth rate. This is essentially

due to the high overhead when sending each CAN data (less than or equal to 8 bytes)

in one AFDX frame (at least 84 bytes, including inter-frames gap). On the other hand,

the FWT strategy offers a noticeable amelioration on the number of allocated VLs in the

RDC, but also on the consumed AFDX bandwidth where a reduction of roughly 50% is

obtained with ∆2 and ∆3.

89

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

These results show a decreasing bandwidth consumption when the waiting time ∆

increases. However, from a given value, the obtained bandwidth consumption becomes

stable even if the waiting time increases. In this case, we observe no improvement in

terms of induced AFDX bandwidth rate for ∆3 = 3ms compared to ∆2 = 2ms. It is

worth to note that a non-optimal choice of waiting time can lead to a poor bandwidth

utilization rate, which is the case for ∆1 = 1ms. In fact, this value reduces the number

of allocated VLs, but the induced bandwidth consumption is still comparable to the one

obtained with (1:1) strategy. This is mainly due to the over-dimensioning of the allocated

BAG and MFS for each VL. For waiting times ∆2 and ∆3, important bandwidth savings

are achieved compared to (1:1) strategy and this is mainly due to the reduction of the

number of AFDX VLS allocated to upstream flows.

Table 4.6: VLs characteristics under FWT

Strategy BAG (ms) MFS (bytes) VLs number rate (Mbps)

(1:1) 4 84 25 1.42

∆1 = 1ms 4 167 4 1.3

∆2 = 2ms 4 172 2 0.69

∆3 = 3ms 4 172 2 0.69

The end-to-end delay bound is computed for each message and then compared to

its respective deadline to check its schedulability condition. The obtained delay bounds

under the (1:1) strategy and the FWT with the different waiting times are described in

Tables 4.7 and 4.8, respectively. The technological latency in the RDC device is assumed

to bounded by ǫ = 0.05ms.

Table 4.7: End-to-end delay bounds under (1:1) strategy

Msgs dAFDX(ms) dCAN(ms) T (ms) d1:1eed(ms)

m1 1.1 0.54 4 1.69

m2 1 0.8 8 1.85

m3 1.1 1.95 16 3.1

m4 1.4 2.23 32 3.68

90

4.3. Preliminary Performance Analysis

Table 4.8: End-to-end delay bounds under FWT strategy with ∆1, ∆2 and ∆3

Message class T (ms) d∆1
eed(ms) d∆2

eed(ms) d∆3
eed(ms)

m1 4 2.9 3.75 4.75

m2 8 3.15 4 5

m3 16 4.3 5.15 6.15

m4 32 4.58 5.4 6.4

As it can be noticed from Table 4.7, the set of CAN messages is schedulable under

(1:1) strategy since all obtained delays respect their associated deadlines, chosen equal to

periods in our example. Under FWT strategy, as reported in Table 4.8, ∆1 and ∆2 lead

to a schedulable configurations. However, when ∆ increases the schedulability condition

is compromised as it can be seen with ∆3. Hence, increasing the waiting time inside the

gateway is not always the best solution to enhance the performances while satisfying the

temporal constraints.

4.3.2.2 Under MSP

Different MSP configurations may be defined by partitioning the set of CAN messages

and defining the resulting allocated AFDX VLs into the RDC device. A direct MSP con-

figuration consists in affecting all CAN messages to one AFDX VL. This configuration is

not schedulable in practice and is therefore discarded.

For upstream flows described in Table 4.3, we introduce the MSP configurations of

Table 4.9.

Table 4.9: MSP configurations considered for upstream flows in Table 4.3

Configurations VL allocation

conf1 v1 : {3 ∗m1}, v2 : {2 ∗m2}, v3 : {16 ∗m3}, v4 : {4 ∗m4}
conf2 v1 : {3 ∗m1, 2 ∗m2}, v2 : {16 ∗m3, 4 ∗m4}
conf3 v1 : {1 ∗m1, 2 ∗m2, }, v2 : {1 ∗m1, 16 ∗m3}, v3 : {1 ∗m1, 4 ∗m4}

The configuration conf1 corresponds to packing all the messages of type mi within

the same AFDX frame supported by the virtual link vi. In Table 4.10, we reported the

91

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

characteristics of the allocated AFDX VLs for each MSP configuration, conf1, conf2 and

conf3. Furthermore, the end-to-end delay bounds under the different MSP configuration

are described in Table 4.11.

As we can see from Tables 4.10 and 4.11, MSP configurations conf1 and conf2 offer

high AFDX bandwidth reduction. However, they imply high end-to-end delays and do not

meet schedulability constraints of upstream flows. For example under conf1, message m1

has a delay bound about 5.8ms, which is higher than its deadline equal to 4ms. Hence,

these two configurations are not schedulable and have to be discarded.

Table 4.10: Induced VLs characteristics under MSP configurations

Strategy VLs number rate (Mbps)

(1:1) 25 1.42

conf1 4 0.34

conf2 2 0.27

conf3 3 0.56

MSP configuration conf3 offers an AFDX bandwidth consumption reduction of roughly

60% compared to (1:1) strategy, and it meets timing constraints for all CAN messages,

as shown in Table 4.11. Hence, conf3 is schedulable and can be implemented within the

RDC device to process the upstream messages.

Table 4.11: End-to-end delay bounds under MSP strategy

Message class T (ms) dconf1eed (ms) dconf2eed (ms) dconf3eed (ms)

m1 4 5.7 5.8 1.95

m2 8 10 6.1 6.2

m3 16 19.2 19.1 7.35

m4 32 35.4 19.5 7.6

4.3.2.3 Comparative Analysis

As we have seen through results of Test Case 1, frame packing mechanism offers sig-

nificant reduction of consumed AFDX bandwidth by upstream flows on AFDX network

92

4.3. Preliminary Performance Analysis

under well-configured strategy. The comparison between the two proposed frame packing

strategies, in terms of consumed AFDX rate, is in favour of MSP strategy where the

AFDX rate is about 0.56Mbps instead of 0.69Mbps under FWT.

However, the comparison between these two frame packing strategies should also take

into account the complexity of implementation. The FWT strategy requires only one

queue and a fixed timer to be implemented within the RDC, whereas MSP strategy needs

several queues and a timer per queue to be set up within the RDC.

On the other hand, the choice of accurate frame packing strategy parameters, for both

FWT and MSP strategies, could be a hard task. This fact is due to the high number

of possible configurations and the verification of the temporal constraints. Therefore, a

tuning process to select accurate frame packing configurations for both FWT and MSP

strategies is required, and it will be detailed in the next chapter.

4.3.3 Impact of HTS Mechanism

To evaluate the impact of HTS mechanism, we consider the Test Case 2. We first

compute the CAN WCRT for upstream flows and the delay bounds integrating the RDC

and CAN delays for downstream flows to show the impact of traffic shaping process on

timing performance. Then, we compute consumed AFDX bandwidth by the RDC device

when using MSP packing strategy to process upstream flows, combined to HTS mecha-

nism for downstream flows. Indeed, MSP strategy is selected herein since it showed better

enhancements in terms of bandwidth consumption than FWT strategy in Section 4.3.2

As can be seen in Figure 4.13, the use of HTS in RDC device reduces upstream flows

delays on CAN by almost 50%. Consequently, as reported in Table 4.12, the consumed

AFDX bandwidth by upstream flows has also decreased when using HTS mechanism with

reference to a naive (1:1) strategy and the case where HTS is deactivated. We can see that

using HTS offers a significant bandwidth saving, of roughly 40% and 33%, respectively.

This is due to the reduction of upstream flows CAN delays which favors the frame packing

process. On the other hand, as shown in Figure 4.14, the improvement of upstream flows

delays and AFDX bandwidth saving comes with the degradation of downstream flows

delays. In this case, messages 7 and 8 do not respect their respective timing constraints,

and consequently the RDC configuration is non schedulable.

93

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

 0

 5

 10

 15

 20

 25

 30

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

W
C

R
T

(m
s)

Message ID

Deadline(ms) No HTS With HTS

Figure 4.13: CAN WCRT of upstream flows

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
C

R
T

+
D

rd
c

(m
s)

Message ID

Deadline(ms) No HTS With HTS

Figure 4.14: CAN WCRT of downstream flows

Table 4.12: Example 1: AFDX bandwidth consumption

Configuration AFDX Bandwidth (in Mbps)

(1:1) 1.15

MSP + NO HTS 1.05

MSP + HTS 0.7

Various configurations of HTS can be explored to find an accurate shaping in the

94

4.4. Conclusion

CAN-AFDX RDC, i.e., offering a significant reduction of AFDX bandwidth consumption

and meeting timing constraints for both upstream and downstream flows. However, as

this will be shown in the next chapter, the selection of traffic shaping parameters is a hard

task, and a method for RDC parameters tuning is needed to find the best configuration.

4.4 Conclusion

In this chapter, the frame packing and traffic shaping functions applied on the up-

stream and downstream flows, respectively, have been modeled. Furthermore, a timing

analysis approach has been introduced to verify the temporal constraints when using our

enhanced RDC device. The analytical results with simple test cases have shown the effi-

ciency of the frame packing approaches in saving AFDX bandwidth, especially the static

strategy MSP. The HTS shaping approach has also shown an important role on guaran-

teeing isolation on CAN between upstream and downstream flows. Moreover, it improves

the efficiency of the frame packing process applied on the upstream flows in terms of

AFDX bandwidth consumption.

The first results have also shown that there are various CAN-AFDX RDC configura-

tions, i.e., various frame packing strategy and HTS mechanism parameters, which offer a

feasible communication and different network utilization levels. Therefore, a major chal-

lenge consists in tuning the RDC device parameters to maximize the network’s resource

savings. This RDC tuning problem will be addressed in the next chapter, and adequate

solving approaches will be provided.

95

Chapter 4. Modeling and Timing Analysis of the Enhanced RDC

96

Chapter 5

Performance Optimization of the

Enhanced RDC

In this chapter, the tuning of our proposed RDC device, i.e., selection of the frame

packing and traffic shaping configurations, is performed to maximize network resource

savings. First, the RDC tuning problem is formulated as an optimization problem. Af-

terwards, since finding the exact optimal solution is a hard task in practice, we have

introduced heuristic approaches to find accurate solutions in a polynomial time. Fi-

nally, preliminary performance evaluation of the optimized CAN-AFDX RDC device is

conducted through a small scale case study under various traffic loads and RDC configu-

rations.

5.1 Problem Formulation

To enhance the avionic networks scalability and let margins for future function addi-

tion, an adequate optimization process is required to define the best RDC configuration

maximizing resource savings and respecting system timing constraints. We select the

AFDX bandwidth consumption as a relevant metric to assess network resource savings

when using the enhanced RDC device for CAN-AFDX interconnection.

Our objective consists in finding the RDC configuration, i.e., parameters of frame

packing and HTS functions, minimizing the bandwidth consumption on AFDX network

and meeting system’s time constraints. This can be formulated as an optimization prob-

lem as follows:

97

Chapter 5. Performance Optimization of the Enhanced RDC

minimize
V

Bw(V) (5.1)

subject to ∀mi ∈ Sup ∪ Sdown, deed(mi) ≤ Dli

(5.2)

where,

– Bw(V) =
∑

vi∈V
MFSi

BAGi is the AFDX bandwidth consumption of allocated VLs set

V originating at the RDC;

– the constraint corresponds to the schedulability condition of upstream and down-

stream flows;

This optimization problem will be studied following an incremental approach:

– First, we consider the case where the enhanced RDC device interconnects specific

CAN buses for either sensors or actuators to the AFDX backbone network. Hence,

we focus on the impact of the RDC on upstream flows by activating the frame pack-

ing process and deactivating the HTS mechanism.

– As a first step, we select the FWT packing strategy in the RDC and we vary

the waiting timer ∆. Then, the optimization problem becomes equivalent to tun-

ing the parameter ∆ of the FWT strategy to minimize the AFDX bandwidth

consumption induced by the RDC device while fulfilling timing constraints. This

study is detailed in Section 5.2;

– Then, we select the MSP packing strategy in the RDC and we vary the parti-

tion of the upstream flows set. Then, the optimization problem becomes equiva-

lent to the selection of the best partition which minimizes the AFDX bandwidth

consumption induced by the RDC device while fulfilling timing constraints. This

study is detailed in Section 5.3;

– Second, we consider the general case where the enhanced RDC device intercon-

nects sensors/actuators CAN buses to the AFDX backbone. Hence, we integrate

the HTS mechanism effect when the frame packing process is activated in the RDC

and we vary the parameters of the shapers in the HTS structure. Then, the opti-

mization problem becomes equivalent to the selection of the best configuration of

98

5.2. Optimization Process under FWT Strategy

the HTS mechanism, combined with the best frame packing strategy that minimizes

the AFDX bandwidth consumption induced by the RDC device while fulfilling tim-

ing constraints. This study is detailed in Section 5.4;

5.2 Optimization Process under FWT Strategy

For FWT strategy, we consider the waiting time duration as the parameter to tune, as

shown in Figure 5.1, to enhance the AFDX bandwidth consumption efficiency. Therefore,

we introduce a solving approach to find the most accurate value of ∆.

Figure 5.1: Optimization for FWT strategy

The main difficulty to solve the optimization problem 5.1 for FWT strategy is due

to the fact that the schedulability constraints cannot be expressed using closed-form ex-

pressions depending on the waiting time ∆, since iterative algorithms based on Network

Calculus formalism are used to compute bounds on AFDX delays. To cope with this prob-

lem, we start by analyzing the impact of the parameter ∆ on the induced RDC bandwidth

consumption on the AFDX.

This latter is expressed as follows where the characteristics of the allocated VLs V

associated to each waiting time ∆ are determined as explained in the previous chapter in

Section 4.1.1.1:

BW (∆) =
∑

viǫV (∆)

MFSi

BAGi
(5.3)

The function BW (∆) obtained for the example described in Table 4.3 in the previous

chapter is illustrated in Figure 5.2. The AFDX bandwidth consumption obtained with

99

Chapter 5. Performance Optimization of the Enhanced RDC

Figure 5.2: Impact of the waiting timer ∆ on the AFDX bandwidth consumption

the (1:1) strategy, denoted by (1:1) in the Figure 5.2, is considered as a reference. This

latter corresponds to the sum of allocated VLs rates obtained when sending each CAN

message of the set M in a separate VL and it is as follows:

BW(1:1) =
∑

mjǫM

84 ∗ 8
Tj

(5.4)

As shown in Figure 5.2, implementing (1:1) strategy in the RDC device induces an

AFDX bandwidth equal to 1.42Mbps. However, the FWT strategy offers a better band-

width consumption compared to the (1:1) strategy, for all waiting times greater than

0, 8ms. Furthermore, as it can be noticed in Figure 5.2, there are many local minima of

RDC bandwidth consumption corresponding to the waiting times equal to integer divisors

of Tmin, which is the smallest period among upstream flows. The list L∆ containing the

values of ∆ corresponding to these minima is considered and sorted in a decreasing order

as follows:

L∆ = {∆1 =
Tmin

2
,∆2 =

Tmin

3
, ...,∆K =

Tmin

K + 1
} (5.5)

where K is the maximum integer giving a better bandwidth consumption than the

strategy (1:1). For instance, in Figure 5.2, Tmin = 8ms and K = 4.

100

5.2. Optimization Process under FWT Strategy

According to the plotted curve in Figure 5.2, the induced bandwidth rate decreases

when the waiting time increases. However, we could not simply consider the biggest wait-

ing time duration because there is no guarantee of the schedulability constraints. Hence,

we propose to explore this waiting time list to check for each value of ∆ the temporal

constraints. If the constraints are verified, then the exploration is stopped and the current

value of ∆ is considered as the accurate waiting time to implement in the RDC.

Therefore, we introduce FWT heuristic to solve this problem. This heuristic takes the

upstream flows set as input data and returns as output the accurate waiting time ∆ that

guarantees the minimum AFDX bandwidth consumption and the temporal constraints.

The different steps of the proposed FWT heuristic are as follows:

1. Compute BW (∆) and BW(1:1) for the input upstream messages set M , using ex-

pressions 5.3 and 5.4, respectively.

2. Find ∆min corresponding to the smallest local minima leading to lower bandwidth

consumption compared to (1:1) strategy. As ∆min = Tmin

K+1
, this is equivalent to

finding K which is the maximum integer leading to the lowest AFDX bandwidth

consumption compared to (1:1) strategy.

3. Define the list L∆ of waiting times to explore. This list contains local minima of

bandwidth consumption as explained in expression 5.5 for the example shown in Fig-

ure 5.2. To be inserted in L∆, a local minima has to be in the interval [∆min,
Tmin

2
]

and equal to integer divisors of Tmin. Then, the list L∆ is sorted in decreasing or-

der to find the highest waiting time which offers the lowest bandwidth consumption.

4. Consider the next value of ∆ from the list L∆, then check the schedulability condi-

tion, i.e., the timing constraints of upstream flows are met,:

(a) If the condition is verified, then SUCCESS.

(b) If not and there is at least one value of ∆ to explore, go to step (4). If all

values of ∆ are already explored, then FAILURE.

101

Chapter 5. Performance Optimization of the Enhanced RDC

5.3 Optimization Process under MSP Strategy

Using MSP strategy, the AFDX VLs allocation for upstream flows is directly defined

using a partitioning process as shown in Figure 5.3. Therefore, the choice of the parti-

tion in the RDC is the main parameter to tune, to achieve the lowest AFDX bandwidth

consumption. For the MSP strategy, the optimization problem 5.1 can be modeled as a

Bin-Packing (BP) problem.

For the BP problem, items have to be assigned to bins. Each item is assigned to

exactly one bin and the total size of each bin does not exceed its maximal capacity. Then,

the number of used bins has to be minimized. The BP problem has been considered as a

NP-hard problem in [41] and many algorithms have been introduced to find approximate

solutions in a polynomial execution time.

Figure 5.3: Optimization for MSP strategy

Hence, to solve the optimization problem for the MSP strategy, we formulate it as a

BP problem where:

– AFDX VLs are considered as the bins;

– CAN data are modeled as the items to pack into bins;

– The objective is to minimize the AFDX bandwidth consumption induced by the

RDC device.

However, unlike the BP problems where the number of used bins has to be minimized,

in our case we are looking for minimizing the AFDX bandwidth consumption and not the

AFDX frames number. Indeed, minimizing the number of AFDX frames is not necessary

102

5.3. Optimization Process under MSP Strategy

the best choice in terms of AFDX bandwidth consumption which depends on multiple

parameters such as the frames number, sizes and periods. Furthermore, the BP problem

considers only the bin capacity constraint, whereas in our case, in addition to AFDX

frame size constraint, we have timing constraints. Therefore, the introduced algorithms

to solve classic BP problems need some adaptations to be used for MSP tuning problem.

In this section, we investigate different optimization approaches that can be used to

find a feasible MSP strategy, i.e., frame set partition respecting the schedulability con-

straints and minimizing the induced AFDX bandwidth. The proposed approaches are as

follows:

– The first approach is based on Exhaustive Search that considers all possible par-

titions to find the best feasible one. However, the partition number of a set with

a size n is known as Bell number B that grows exponentially with n, i.e., for a

set of 20 frames, B ∼ 5.1014. Hence, this approach will certainly lead to the best

frame partition in terms of bandwidth consumption, but at the same time it is a

time-consuming approach due to solutions-space explosion;

– The second approach consists in building a specific heuristic, inspired by the classi-

cal Best-Fit-Decreasing (BFD) algorithm [41], to reach an approximate solution in

terms of bandwidth consumption within a polynomial time;

– The third approach is based on the Branch & Bound algorithm [42] to bridge the

gap between the Exhaustive Search and the Heuristic approach by reducing the size

of explored solutions-space compared to the former and enhancing the quality of the

obtained solution compared to the latter.

A comparative analysis between the three approaches in terms of complexity and so-

lution quality is shown in Table 5.1. As can be noticed, the Heuristic approach and the

Branch & Bound algorithm are the most adapted approaches for our optimization problem.

Therefore, an adapted heuristic approach, called Bandwidth-Best-Fit Decreasing (BBFD)

heuristic, and an adequate algorithm based on the Branch & Bound (B&B) concept are

proposed to solve our MSP tuning problem within the RDC device.

103

Chapter 5. Performance Optimization of the Enhanced RDC

Table 5.1: Comparative analysis of Optimization approaches

Approach Complexity Solution Quality

Exhaustive Search high high

Branch & Bound medium high

Heuristic low medium

5.3.1 Bandwidth Best Fit Decreasing Heuristic

Several heuristics were introduced to compute an approximate solution for the classical

Bin-Packing problem [41]. The simplest heuristic is First-Fit Decreasing (FFD) which is

based on sorting items according to a decreasing order of sizes, and then inserting each

item in the first bin with enough space to include that item. A more effective heuristic is

Best-Fit Decreasing (BFD) which differs from the first one by selecting the most suitable

bin among the list of bins instead of the first possible bin. Our objective is to minimize

bandwidth consumption instead of the number of used VLs, corresponding to the bins

in the BP problem, while guaranteeing the temporal constraints of all the transmitted

AFDX frames. Thus, we introduce the Bandwidth-Best-Fit Decreasing (BBFD) heuristic

described in Figure 5.4, and we describe in the following sections the main steps of this

heuristic.

5.3.1.1 Initialization

The heuristic sorts the input messages set M to pack into AFDX VLs in the increasing

order of their respective deadlines. The heuristic starts by packing first the messages with

the smallest deadlines to build partitions favoring the most constrained messages.

5.3.1.2 Iterative partitioning

The set of AFDX VLs is built iteratively. At the beginning, the first message in set

M is inserted in a new VL that is added to the set V . Then, the BBFD heuristic is

conducted for each selected message mi ∈M as follows:

– (a) if there is at least one existent VL in V that can support message mi, i.e. the

temporal deadline and the maximal MFS size of 1518 bytes are respected, then it

builds the subset V (mi) that corresponds to the obtained VLs sets including mi.

104

5.3. Optimization Process under MSP Strategy

Afterwards, it selects the VL in V (mi) that minimizes the obtained AFDX band-

width consumption and adds it to the set V ;

– (b) if there is no existent VL in V that can support mi, because the maximal MFS

size of 1518 bytes is exceeded or its deadline constraint is not respected, then it

builds a new VL including mi and adds it to the set V .

Figure 5.4: Bandwidth-Best-Fit Decreasing heuristic

At the end of this step, an AFDX VLs set V is obtained such that bandwidth con-

sumption is minimized. However, the schedulability analysis of this configuration needs

to be checked.

105

Chapter 5. Performance Optimization of the Enhanced RDC

5.3.1.3 Schedulability analysis

This step consists in conducting the schedulability analysis of the obtained configu-

ration. If the schedulability condition is verified, then this configuration is considered as

the solution of our optimization process and the heuristic stops successfully. Otherwise,

a decomposition process is launched.

5.3.1.4 Decomposition

The main idea of decomposition process consists in identifying the VLs subset V ∗ ⊂ V ,

which does not meet the schedulability condition. Then, to relax this constraint, the

heuristic is based on unpacking the most urgent messages included in the identified VLs.

Therefore, for each VL vk ∈ V ∗:

– (a) if vk contains at least two messages, then unpack the most critical one and in-

clude it in a new VL. Afterwards, update the VL set V and go back to the step

Schedulability analysis of the heuristic;

– (b) if vk consists of one CAN message, then there is no possible improvement of VLs

schedulability using our decomposition process. In this case, the heuristic returns a

failure.

5.3.2 Branch & Bound Algorithm

The main idea of Branch &Bound algorithm [42] is based on the definition of upper

and lower bounds for an objective function to explore the most promising subspace of

potential solutions, and consequently to reduce the computation’s complexity. The two

main operations to process the Branch & Bound algorithm are: (i) a Branching-Strategy

that consists in generating the new states from an existing one; (ii) a Discarding-Policy

that consists in eliminating the subspace of solutions admitting their lower bound of the

objective function exceeding the upper bound of the reference solution.

This general algorithm is adapted to our MSP tuning problem to build a schedulable

set of AFDX VLs within the gateway, while minimizing the bandwidth consumption. To

explore the subspace of potential solutions, we identify each state by (V,M), where V is

the set of VLs already created and M the set of input messages not yet processed, i.e.

not yet allocated to VLs in V . The upper and lower bounds of our objective function

106

5.3. Optimization Process under MSP Strategy

i.e. bandwidth consumption, the Branching-Strategy and Discarding-Policy are defined

in the following sections.

5.3.2.1 Upper bound

The main idea consists in enhancing the quality of the solution obtained with the

BBFD heuristic. Hence, the CAN-messages partition obtained with this latter solution

is considered as a reference solution and the induced bandwidth consumption of the ob-

tained VLs set is identified as the upper bound of the bandwidth consumption to launch

the exploration of the most promising solutions. If BBFD fails to find a feasible solution,

then any schedulable partition of messages can be considered as the reference solution,

such as the partition obtained with (1:1) strategy. However, it is worth noting that the

better is the reference solution, the faster an optimal solution is obtained with the B &B

algorithm. Each time we find a CAN-messages partition with a bandwidth consumption

lower than this upper bound, the reference solution is updated.

5.3.2.2 Lower bound

For each state s characterized by V (s) and M(s), a lower bound on the consumed

bandwidth is defined as follows:

lowerBound(s) = Bw(V (s)) +Bw(M(s)) (5.6)

where,

Bw(M(s)) =
∑

mi∈M(s)
Li

Ti

5.3.2.3 Branching-Strategy

For each state, we consider all possible states that can be obtained by selecting a mes-

sage mi from M and packing it in an existing VL in V , or by creating a new VL including

only mi.

107

Chapter 5. Performance Optimization of the Enhanced RDC

5.3.2.4 Discarding-Policy

Three conditions must be verified in our case to discard a state or to keep it in the

potential solutions space. The first concerns the validity of the state, i.e., the generated

VLs meet the schedulability condition and maximal frame size constraint of 1518 Bytes.

The second is that the obtained lower bound of the state has to be smaller than the

reference’s upper bound. Finally, the third concerns the schedulability of the state which

is applicable only for final states that define a complete CAN-messages partition.

5.3.2.5 Algorithm process & example

The different steps of this optimization method are as follows:

– First, input messages set M is sorted in the increasing order of periods. Then, a

reference solution is obtained using the BBFD heuristic.

– Afterwards, we apply iteratively the Branching-Strategy and Discarding-Policy:

– if a state corresponds to a complete partition, i.e. all input messages are assigned

to AFDX VLs, we proceed to an update of the reference solution only if it en-

hances the bandwidth consumption and it is schedulable, otherwise this state is

discarded;

– if the state is intermediary, which means that it corresponds to a partial partition

of input messages set, then we generate all possible new states by including the

next CAN message in M in an existing VL or putting it in a new VL. For each

valid created state, we evaluate the lower bound. If its lower bound is smaller than

the bandwidth consumption of the reference solution, then this state is added to

the list to explore;

– the set of states to explore is sorted in the increasing order of lower bound values

to consider the most bandwidth-efficient states first.

In Figure 5.5, our proposed B&B approach is applied to an abstracted frame packing

example with 3 messages. Only a part of the exploration tree is presented in this figure to

illustrate how our proposed Branch & Bound algorithm is applied. For each considered

state, we update the set of CAN messages M that is not yet affected to AFDX VLs,

108

5.3. Optimization Process under MSP Strategy

VLs set V and the lower bound value. By comparing the lower bound to the bandwidth

consumption of the reference solution, we make one of the following decisions:

– if lower bound is higher, then discard the state, which is the case for state number

5 in the exploration tree of Figure 5.5;

– if lower bound is smaller and the state is intermediate, then branch from that state,

i.e., generate all child states originating at the considered state, which is the case of

state 4;

– if lower bound is smaller and the state is a leaf in the tree, then update the refer-

ence solution, which is the case of state 14.

Figure 5.5: BB based algorithm example

109

Chapter 5. Performance Optimization of the Enhanced RDC

5.4 Optimization process under HTS Mechanism

A HTS configuration can be seen as a partition of the set of downstream flows, defining

the set of inner shapers that have to be implemented in the RDC to control the rate of

downstream flows, as shown in Figure 5.6. Each obtained sub-set of downstream flows

from the partitioning process will share the same inner shaper. This problem can be

modeled as a bin-packing problem, where downstream flows are modeled as items and

inner shapers as bins that will include items.

Figure 5.6: Optimization for HTS mechanism

Our objective is to find the best HTS structure, i.e. the number and parameters of

inner shapers in Shinner combined with the frame packing strategy configuration, which

minimizes as much as possible the AFDX bandwidth consumption while guaranteeing the

temporal constraints of upstream and downstream flows.

Hence, to solve this NP-hard problem, we introduce an adequate heuristic approach.

5.4.1 Heuristic Approach

The different steps of our proposed heuristic for the HTS tuning are as follows:

1. Initialization: First, the heuristic sorts downstream messages set Sdown in non-

decreasing order of periods. At this step, the set of inner shapers is empty, Shinner =

∅. The heuristic will start by allocating the first message in Sdown.

2. Iterative construction of inner shapers: Then, the set Shinner is built itera-

tively. At the beginning, the first message in Sdown is inserted in a new shaper sh

that would be added to the list of HTS configurations List0Shinner
. Then, for the next

selected message in Sdown, the heuristic is conducted as follows for each iteration

110

5.4. Optimization process under HTS Mechanism

k ≥ 1:

– (a) we add the selected message to each inner shaper in each HTS configuration in

the list Listk−1
Shinner

and we build a new configuration by adding a new inner shaper

containing only the selected message. Then, we update the inner shaper charac-

teristics of each HTS configuration as defined in Section 4.1.2 of the previous

chapter. Furthermore, for each HTS configuration, we verify the schedulability

condition of each upstream flow in Sup and of each selected downstream flow.

Only feasible configurations (if any) are considered to form the list ListkShinner

and then go to step (b) until the stop condition is verified, i.e. each message in

Sdown has an associated inner shaper in the final HTS configuration. For k ≥ 2,

if there is no feasible configuration, go to step (c).

– (b) for each configuration of inner shapers in the list ListkShinner
, we compute the

sum of WCRTs of upstream flows on CAN. Then, we sort the list ListkShinner
in

non-decreasing order of associated sum of WCRTs obtained for upstream flows.

Afterwards, we select the first inner shaper configuration Shinner in the sorted list

ListkShinner
and we come back to step (a) by considering Listk−1

Shinner
= Shinner for

the next selected message in Sdown.

– (c) for each inner shaper configuration in Listk−1
Shinner

, we compute the sum of

WCRTs of upstream flows on CAN. Then, we sort the list Listk−1
Shinner

in non-

decreasing order of associated sum of WCRTs obtained for upstream flows. Then,

we select the next not yet selected inner shaper configuration Shinner in the sorted

list Listk−1
Shinner

and we come back to step (a) by considering Listk−1
Shinner

= Shinner

for the next selected message in Sdown.

5.4.2 Example

Figures 5.7 and 5.8 illustrate the proposed heuristic to find the optimal configura-

tion of HTS, through two possible execution scenarios on an abstracted example with 3

downstream flows. These scenarios consider the same set of downstream flows Sdown but

illustrate two complementary cases of the proposed heuristic execution. State 0 corre-

sponds to the initialization step. The set of inner shapers is then iteratively constructed

by generating states 1 to 5. For example for scenario 1, in state 1 message m1 is inserted

into shaper sh1. Then following step 1.a) states 2 and 3 are generated by inserting mes-

sage m2 in shaper sh1 or putting it into shaper sh2. Afterwards, step 1.b) selects state 2

111

Chapter 5. Performance Optimization of the Enhanced RDC

Figure 5.7: Example with the HTS heuristic approach (scenario 1)

and the exploration of the tree is carried from state 2. Then states 4 and 5 are generated

by affecting message m3 to shaper sh1 and sh2 respectively. In scenario 1, the state 5

corresponds to a complete partition of the set of downstream flows Sdown and is selected

in step 1.a) as the best configuration of shapers. In scenario 2, states 4 and 5 are non

schedulable, therefore, step 1.c) is processed, and the exploration of the tree is carried

from state 3 following step 1.a).

5.5 Preliminary Performances Analysis

As a first step, to illustrate the optimization process for frame packing strategies, we

consider the Test Case 1 described in Section 4.3 of the previous chapter. We implement

FWT and MSP packing strategies in the RDC, and we apply our proposed optimization

approaches to select the best RDC configuration for each implemented strategy.

112

5.5. Preliminary Performances Analysis

Figure 5.8: Example with the HTS heuristic approach (scenario 2)

5.5.1 Results under Optimized FWT Strategy

To find the best waiting time ∆ for FWT strategy, we process as follows:

1. BW(1:1) = 1.42 and BW (∆) is plotted as in Figure 5.2;

2. ∆min = 0.8ms is the smallest local minima leading to a better bandwidth compared

to (1:1) strategy. Thus, the exploration interval for ∆ is [0.8ms, 2ms] since the

minimum period is equal to 4 ms;

3. L∆ = {2ms, 1.3ms, 1ms, 0.8ms} is the list to explore, sorted in the decreasing order

of ∆;

4. ∆ = 2ms is the first value to test and BW (2ms) = 0.69Mbps. Schedulability test is

positive, and consequently FWT heuristic returns ∆ = 2ms as the optimal solution

for FWT optimization problem.

It is worth noting that for this example with 24 upstream flows the size of the list

L∆ to explore is equal to 4. The size of this list depends on the timing characteristics of

113

Chapter 5. Performance Optimization of the Enhanced RDC

messages and not on their number which reduces the complexity of the FWT heuristic.

5.5.2 Results under Optimized MSP Strategy

Table 5.2 illustrates a comparative analysis between the MSP configurations obtained

with the two introduced optimization approaches, BBFD heuristic and B&B algorithm, in

terms of solution accuracy and approach complexity. Different test scenarios with CAN

messages number increasing from 2 to 7 and periods in [4, 128]ms and payload size in

[1, 8]bytes are considered.

The number of explored states with each approach are described in Table 5.2 to show

their respective complexities with reference to Exhaustive Search (ES) approach. Only

the scenarios leading to the best enhancements in terms of bandwidth consumption are

presented when applying B&B algorithm compared to BBFD heuristic.

Table 5.2: Comparison between the optimization approaches for MSP configuration

Messages number 2 3 4 5 6 7

States (Heuristic) 3 5 8 11 15 19

States (B&B) 6 45 340 4110 67165 ≥ 1.6 106

States (Exhaustive Search) 6 45 508 8285 190000 ≥ 5.6 106

Bw(BB)−Bw(H)
Bw(BB)

(%) 0 0.2 0.7 0.3 0.1 0.1

As can be seen, the enhancements obtained in terms of bandwidth consumption when

applying the B&B algorithm instead of the BBFD heuristic approach are very small (less

than 1%), whereas the number of explored states with the former is inherently higher

compared to the number obtained with the latter. For example, test scenario in Table 5.2

with 5 messages required the exploration of 4110 states to return an MSP configuration

with B&B algorithm while it required only 11 with BBFD heuristic. The obtained solution

with BBFD heuristic offers very similar bandwidth saving compared to B&B algorithm

(0.3% of difference).

Although B&B algorithm allows to reduce the number of explored states compared to

Exhaustive Search to find an optimal MSP configuration, it induces high complexity even

for small input messages size, e.g., it requires 1.6 106 state explorations for 7 messages.

114

5.5. Preliminary Performances Analysis

In addition, it induces high execution time and it is not simple to use with big upstream

flows number. Therefore, our introduced BBFD heuristic approach is considered as an

accurate approach to find a valid solution with low computing complexity. This heuristic

is then selected to find the best MSP configuration and the following performance analysis

are based on this heuristic.

To find the best MSP configuration for upstream flows for the Test Case 1 described

in Section 4.3 of the previous chapter, we applied our proposed BBFD heuristic which

returns the following MSP configuration:

– confBBFD: v1 : {1 ∗m1, 2 ∗m2, }, v2 : {1 ∗m1, 16 ∗m3}, v3 : {1 ∗m1, 4 ∗m4}

This configuration induces a bandwidth consumption on the AFDX of 0.56Mbps and

offers a reduction of almost 60% compared to (1:1) strategy.

The obtained results under FWT and MSP strategies are described in Table 5.3.

Table 5.3: Impact of frame packing strategies

Strategy VLs number AFDX bandwidth (Mbps) Schedulability

(1:1) 25 1.42 OK

FWT (∆ = 2ms) 2 0.69 OK

MSP (confBBFD) 3 0.56 OK

As we can see, optimized FWT and MSP strategies lead to significant enhancement of

network resource savings in terms of AFDX bandwidth consumption, compared to (1:1)

strategy. For instance, they offer a reduction of AFDX bandwidth consumption of 50%

and 60% with reference to (1:1) strategy, respectively. Moreover, MSP strategy offers a re-

duction of 20% compared to FWT strategy. This fact is mainly due to the communication

overhead reduction under MSP strategy, which explicitly defines the CAN messages-set

packed in each AFDX frame transmitted by the RDC, unlike FWT strategy. This leads

to an accurate VL allocation and avoids VLs over-dimensioning problem that can occur

under FWT strategy. Hence, in the following section, to evaluate the performance of the

HTS mechanism, we will consider the MSP strategy.

115

Chapter 5. Performance Optimization of the Enhanced RDC

5.5.3 Results under Optimized HTS Mechanism

To illustrate our HTS heuristic, we consider the Test Case 2 described in Section 4.3

of the previous chapter. When applying the introduced heuristic approach, the obtained

inner shapers set consists of 7 shapers where each shaper has a shaping period of 4ms

and the following composition:

– Sh1 : {m1, m2}
– Sh2 : {m3, m4}
– Sh3 : {m5, m6}
– Sh4 : {m7, m8}
– Sh5 : {m9, m10, m11, m12}
– Sh6 : {m13, m14, m15, m16}
– Sh7 : {m17, m18, m19, m20, m21, m22, m23, m24}

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
C

R
T

+
D

rd
c

(m
s)

Message Identifier

Deadline(ms) With HTS

Figure 5.9: CAN WCRT of downstream flows

This HTS configuration is feasible and leads to a bandwidth consumption of 0.75 Mbps.

Compared to (1:1) strategy and the configuration where MSP packing is used and HTS

is deactivated, it offers a significant bandwidth saving while ensuring the schedulability

of both upstream and downstream flows, as can be seen in Table 5.4. Unlike the HTS

configuration considered in Section 4.3.3, the optimized HTS configuration obtained with

our proposed heuristic builds a set of inner shapers which respects the downstream flows

deadlines as shown in Figure 5.9.

116

5.6. Conclusion

Hence, the obtained RDC configuration based on the optimized HTS mechanism, com-

bined with MSP strategy offers:

– feasible upstream flows;

– feasible downstream flows;

– low AFDX bandwidth consumption.

Table 5.4: Impact of HTS mechanism

Configuration Bandwidth (in Mbps) Schedulability

(1:1) 1.42 OK

MSP + NO HTS 1.05 OK

MSP + HTS (heuristic) 0.75 OK

5.6 Conclusion

In this chapter, we formulated a general CAN-AFDX RDC optimization problem to

maximize network resource savings. Particularly, we selected the AFDX bandwidth con-

sumption as a relevant metric since it lets margins for future evolutions of avionics systems.

The schedulability constraints are integrated to guarantee certification requirements. As

the general RDC tuning problem is too complex, we followed an incremental approach.

First, we considered specific CAN buses, i.e., either for sensors or actuators, to focus on

the frame packing process and its impact on upstream flows. Each of the proposed frame

packing strategies, FWT and MSP, was considered and a frame packing optimization

problem was addressed. Second, we considered the general case with sensors/actuators

CAN buses and contention between upstream and downstream flows to show the impact

of the HTS mechanism, combined with the frame packing process on the AFDX band-

width consumption. The HTS mechanism applied to downstream flows was optimized to

achieve efficient AFDX bandwidth consumption. This latter was combined with the best

optimized frame packing strategy, for instance MSP strategy.

Since the RDC parameters tuning problem turned to be a NP-hard, we introduced

heuristics to solve it. Obtained results confirmed the efficiency of the frame packing func-

117

Chapter 5. Performance Optimization of the Enhanced RDC

tion to save AFDX bandwidth consumption and reduce the number of allocated AFDX

VLs induced by the RDC device. Moreover, the HTS mechanism, applied to downstream

flows, showed an important role in improving frame packing efficiency when applied to

upstream flows. This is due to the capacity of HTS mechanism to isolate downstream and

upstream flows and to avoid interference.

The proposed approaches to enhance the RDC device performances for CAN-AFDX

multi-cluster networks while meeting the real-time constraints are extended to other CAN-

like protocols such as TTCAN [43]. The frame packing strategies and the timing analysis

are adapted to suit the specificities of this CAN-like bus, and the details are provided in

Appendix B. The validation of the enhanced RDC device for CAN-AFDX network will

be conducted in the next chapter through a realistic avionics case study.

118

Chapter 6

Avionics Case Study

In this chapter, the validation of our proposed CAN-AFDX RDC performance is con-

ducted through a realistic avionics case study. First, the avionics case study is described

and the considered test scenarios are presented. Then, the computation and analysis of

the end-to-end latencies and the network bandwidth utilization are detailed, to verify the

first conclusions of the previous chapters, and to highlight the ability of our enhanced

RDC device to improve system’s performance, with reference to the currently used RDC

device.

6.1 Description

6.1.1 CAN-AFDX Architecture

We consider the multi-cluster CAN-AFDX avionic network shown in Figure 6.1. This

network architecture consists of 3 I/O CAN buses with a transmission capacity of 1 Mbps,

and a high speed AFDX backbone with a transmission capacity of 100 Mbps.

The communication between sensors/actuators and the avionics calculators is per-

formed using RDC devices. In our case, we will consider the proposed RDC device in-

tegrating frame packing and HTS mechanism instead of the currently used RDC device.

The figure 6.2 shows the details of the AFDX backbone network which interconnects 56

end-systems using a switched topology with 9 AFDX switches. This network architecture

supports the flight control, the cabin functions and the management of engines, fuel and

energy.

119

Chapter 6. Avionics Case Study

Figure 6.1: CAN-AFDX case study

6.1.2 Communication Traffic

Data flows supported by architecture of Figure 6.1 can be organized into three classes:

– the upstream flows, i.e., the sensors flows destined to AFDX calculators;

– the downstream flows, i.e., the calculators flows destined to actuators;

– AFDX flows, i.e., flows exchanged between AFDX calculators.

Upstream and downstream flows have to cross the I/O network, the RDC device and

the AFDX backbone to reach their destinations, whereas AFDX flows are circulating only

on the AFDX network.

6.1.2.1 AFDX Flows

As can be seen in Table 6.1, AFDX flows consists of 450 VLs with BAG values rang-

ing in {4, 16, 32}ms and MFS values in {16, 226, 482} bytes. This table represents the VL
distribution according to BAG and frame size values.

120

6.1. Description

Figure 6.2: AFDX network architecture (Courtesy of: ARTIST2 - IMA A380)

Table 6.1: AFDX flows description

BAG(ms) Number of VLs MFS (bytes) Number of VLs

4 62 16 386

16 100 226 56

32 288 482 8

6.1.2.2 Upstream and Downstream Flows

Upstream and downstream flows are randomly generated with payload sizes up to 8

bytes and periods in {4, 8, 16, 32, 64, 128}ms. The total CAN load is varying from 1%

and 70%. This limitation on the traffic load is considered as a necessary condition to

121

Chapter 6. Avionics Case Study

guarantee CAN bus schedulability.

6.1.3 Test Scenarios

The performance evaluation of our enhanced CAN-AFDX RDC device is conducted

through the following test scenarios:

– Test Scenario 1: in this case, each CAN bus is used exclusively either for sensors

or actuators to avoid contention between upstream and downstream flows. As a first

step, we activate the frame packing function in the RDC device applied to upstream

flows and we deactivate the HTS mechanism since there is no contention on CAN

bus with downstream flows. In addition to the AFDX flows described in Table 6.1,

we generate upstream flows as described in Section 6.1.2.2 for non shared I/O CAN

buses;

– Test Scenario 2: in this case, each CAN bus is shared between sensors and actua-

tors and supports upstream and downstream flows communication. The generated

upstream and downstream flows share equitably the CAN bus load, i.e., half of

CAN load is due to upstream flows and the other half to downstream flows. Frame

packing and HTS mechanism are both activated within the RDC device to minimize

communication overheads on the AFDX and interferences on CAN. In addition to

the AFDX flows described in Table 6.1, we generate upstream and downstream flows

as described in Section 6.1.2.2 for the shared I/O CAN buses.

6.2 Benefits of Frame Packing Strategies

As a first step, we consider the Test Scenario 1. The aim of this performance evalua-

tion is to show the impact of the frame packing process within our proposed RDC device on

AFDX bandwidth consumption and end-to-end latencies for the considered CAN-AFDX

network architecture. First, for each CAN load, we conduct the optimization process for

the FWT frame packing strategy within each CAN-AFDX RDC device of the considered

network architecture. Afterwards, we verify the timing constraints of the system and we

compute the induced AFDX bandwidth utilization by the RDC device. Then, we proceed

in the same way under MSP strategy. Finally, we compare obtained results in terms of

network resource savings and offered real-time guarantees.

122

6.2. Benefits of Frame Packing Strategies

6.2.1 Under FWT

To analyze the efficiency of the FWT packing strategy, we compute the maximum

AFDX bandwidth consumption among the three RDC device of our case study. The ob-

tained values for the different CAN loads are illustrated in Figure 6.3. Each plotted point

on Figure 6.3 corresponds to the optimal configuration obtained following the optimiza-

tion process described in the previous chapter, which meets the schedulability condition

for both upstream and downstream flows. As can be seen, the (1:1) strategy leads to an

important bandwidth consumption, essentially due to the overhead of sending each sen-

sor message (less or equal to 8 bytes) in one AFDX frame (at least 64 bytes). However,

under the FWT strategy, we can notice an interesting reduction of the consumed AFDX

bandwidth compared to the (1:1) strategy. For instance, for a CAN load around 50%,

FWT strategy induces 2Mbps while (1:1) strategy induces 3.4Mbps. This fact represents

a reduction up to 40% of the consumed AFDX bandwidth under FWT strategy. However,

it is worth noticing that under low CAN loads the bandwidth utilization reduction is less

important compared to high CAN loads. This is mainly due to the over-dimensioning

effect of VLs characterisation under FWT strategy which is a consequence of its dynamic

nature where the frame structure is defined ”on-the-fly” during execution time.

 0

 1

 2

 3

 4

 5

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
FD

X
 B

W
 c

on
su

m
pt

io
n

[M
bp

s]

Total CAN load (%)

(1:1) strategy FWT strategy

Figure 6.3: Impact of FWT frame packing strategy on AFDX bandwidth consumption

123

Chapter 6. Avionics Case Study

6.2.2 Under MSP

The obtained results with MSP strategy are illustrated in Figure 6.4. We can no-

tice further enhancements under MSP strategy compared with (1:1) strategy and FWT

strategies. For instance, we observe a reduction of AFDX bandwidth consumption under

MSP of 47% and 15% with reference to (1:1) and FWT strategies, respectively. Unlike

FWT, the explicit structure of the AFDX frames under MSP reduces the communication

overheads, and consequently the induced AFDX bandwidth consumption on the AFDX.

This fact clearly leads to an accurate VL allocation induced by the RDC device and avoids

the relative VLs over-dimensioning problem of the FWT strategy.

 0

 1

 2

 3

 4

 5

5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
FD

X
 B

W
 c

on
su

m
pt

io
n

[M
bp

s]

Total CAN load (%)

(1:1) strategy FWT strategy MSP strategy

Figure 6.4: Impact of MSP frame packing strategy on AFDX bandwidth consumption

6.2.3 Comparative Analysis and Conclusion

MSP strategy leads to better performances than FWT strategy under all tested CAN

load conditions. This is due to the schedulability condition under FWT strategy for high

CAN loads. Under FWT strategy, all CAN data are subject to additional waiting delay,

even the most urgent ones, to be packed into an AFDX frame. However, when CAN load

increases, the response times on CAN bus increase, and consequently the admissible wait-

ing time decreases. This fact is not in favor of the packing process under FWT strategy,

and the induced bandwidth consumption will be similar to the one under (1:1) strategy.

On the other hand, MSP strategy does not delay the most urgent messages since packed

frames transmission is synchronized with the reception of these messages. This allows

124

6.3. Benefits of HTS Mechanism

MSP strategy to be more efficient under high CAN loads.

Hence, the obtained results in this section have shown the efficiency of the proposed

RDC device, including frame packing strategies and the optimization process, to reduce

AFDX bandwidth consumption. Further, the comparative analysis of our two proposed

packing strategies, namely FWT and MSP, has shown that the MSP frame packing strat-

egy integrated into the CAN-AFDX RDC offers better bandwidth savings on the AFDX

network, compared to the FWT strategy. However, it is worth noting that the compari-

son of these two strategies should consider implementation and configuration complexity

of each strategy. From this perspective, FWT is simpler to implement since it requires

one packing queue and a timer to be integrated into CAN-AFDX RDC; whereas, MSP

strategy requires one queue per a group of messages to pack and a processor unit capable

of handling specific messages reception to trigger the packing process.

6.3 Benefits of HTS Mechanism

To show the impact of the HTS mechanism within our proposed RDC device on the

AFDX bandwidth consumption and end-to-end latencies for the considered CAN-AFDX

network, we consider the Test Scenario 2. Based on the previous results, we consider the

most efficient frame packing strategy, MSP strategy to pack upstream flows and reduce

communication overheads, and the HTS mechanism for downstream flows to minimize

interferences on CAN bus between upstream and downstream flows. First, we process the

optimization approaches for MSP strategy and HTS mechanism. Then, we compute the

induced AFDX bandwidth consumption for each optimal configuration when varying the

CAN load.

6.3.1 Impact of I/O CAN Bus Sharing on Frame Packing

As priority assignment on CAN bus is an important parameter for upstream and down-

stream flows, we consider two configurations of priority assignment:

– Configuration 1: upstream flows have higher priority than downstream flows;

– Configuration 2: downstream flows have higher priority than upstream flows.

125

Chapter 6. Avionics Case Study

The main idea here is to show the behavior of the proposed RDC device, when only

the frame packing process is activated within the RDC. The obtained results will highlight

the importance of the HTS mechanism integration within the RDC device.

We consider a bound on RDC traversal delay for downstream flows equal to 0.05ms

which takes into account the unpacking process, the extraction of data from AFDX frame

and the encapsulation of an actuator data into a CAN frame. Then, the induced band-

width consumption by the RDC is shown in Figure 6.5. For each configuration, the CAN

load is varying from 5% to 70% and the MSP strategy applied on upstream flows is con-

figured to respect the schedulability condition. The bandwidth consumption under (1:1)

strategy is considered as a reference.

Figure 6.5: Bandwidth Utilization on the AFDX with shared I/O network

Under configuration 1, we still observe a significant reduction of the bandwidth con-

sumption on the AFDX when using the optimized RDC device implementing MSP strat-

egy, compared to the basic one with (1:1) strategy. Hence, under this priority assignment

configuration, the proposed RDC device deactivating the HTS mechanism is still efficient,

since only one downstream message at maximum can interfere with the upstream flows.

However, under configuration 2, the performance of the optimized RDC device is degraded

and becomes equivalent to the performance of the RDC device implementing a (1:1) strat-

egy under CAN load more than 25 %. To understand the reasons of this degradation,

consider the Worst-Case Response Times (WCRT) on CAN of upstream flows. In Figure

6.6, we report WCRTs for upstream messages with period equal to 16ms to show the

126

6.3. Benefits of HTS Mechanism

impact of HTS mechanism on WCRT on CAN bus. As can be noticed, WCRTs increase

significantly under configuration 2 because of the important contentions due to the higher

priority downstream flows. However, increasing upstream flows delays on CAN is not

in favor of performing frame packing within RDC device, and consequently of reducing

bandwidth consumption on the AFDX. Hence, if it is possible, then it would be better to

select the configuration 1, which is more bandwidth efficient compared to configuration 2.

 0

 5

 10

 15

 20

5 10 15 20 25 30 35 40 45 50 55 60 65 70

W
C

R
T

(m
s)

CAN load (%)

Deadline Configuration 1 Configuration 2

Figure 6.6: WCRT on CAN of upstream flows with shared I/O network

However, in avionics context, the modification of application specifications can ramify

maintenance efforts and incremental design process. Therefore, revising priority assign-

ment of different flows to improve system performances can be a complicated task for

designers. Our aim consists in reducing as much as possible bandwidth consumption on

the AFDX induced by the RDC device, even in the worst-case configuration of priority

assignment for upstream flows, i.e., upstream flows have lower priority than downstream

flows. Therefore, to overcome the limitations highlighted with these first results, the key

idea consists in favoring frame packing mechanism for upstream flows within the RDC

device to reduce bandwidth consumption on the AFDX network. This fact consists in

minimizing as much as possible WCRTs on CAN of upstream flows when having the low

priority, and ensuring at the same time the temporal constraints of downstream flows.

To achieve this aim, we will activate the HTS mechanism on downstream flows in our

proposed RDC device, to reduce interference on CAN and to isolate upstream and down-

stream flows.

127

Chapter 6. Avionics Case Study

6.3.2 On the Effects of HTS Mechanism

To evaluate the performance of our enhanced CAN-AFDX RDC, we compute AFDX

bandwidth consumption for each RDC when activating both the HTS mechanism and

MSP frame packing strategy. The maximum AFDX bandwidth consumption induced by

RDC devices are illustrated in Figure 6.7 when varying CAN loads. The cases where only

(1:1) strategy or MSP strategy without HTS mechanism is implemented are considered

as references to highlight the efficiency of HTS mechanism.

Figure 6.7: Impact of HTS mechanism on AFDX bandwidth consumption

As can be seen in Figure 6.7, the use of the HTS mechanism combined with the MSP

strategy within the RDC device offers significant AFDX bandwidth consumption savings,

compared to the case where only MSP strategy is activated. For instance, for a CAN

load of 40%, we got an AFDX bandwidth consumption of roughly 1.7Mbps under (1:1)

strategy and of 0.7Mbps under MSP strategy combined with the HTS mechanism. Fur-

ther, we can notice that when only the frame packing process is activated within the RDC

device, the performances converge quickly to the ones under (1:1) strategy. This is mainly

due to the high upstream flows delays on CAN because of the contention with the higher

priority downstream flows. For CAN loads higher than 65%, we notice that the use of

the HTS mechanism does not improve the AFDX bandwidth consumption, compared to

(1:1) strategy and the case where no HTS is used. This is due to the fact that even if the

HTS mechanism is applied within the RDC device, the enhancements of the WCRT on

CAN of upstream flows are not that noticeable to favor the frame packing process.

128

6.4. Conclusion

6.4 Conclusion

In this chapter, the validation of the enhanced RDC device was conducted through a

realistic avionics case study. Obtained results confirm our first conclusions from the pre-

liminary performance evaluation in Chapters 4 and 5, and have shown significant AFDX

bandwidth savings under various CAN loads conditions. For instance, for specific CAN

bus, i.e., either for sensors or actuators, the MSP strategy has shown a high efficiency

in saving network bandwidth with reductions of almost 50% and 20%, with reference to

(1:1) and FWT strategies, respectively. Furthermore, we notice that sharing CAN buses

between sensors and actuators may limit bandwidth savings that can be achieved by our

proposed frame packing process. However, the use of the Hierarchical Traffic Shaping

mechanism combined with the MSP strategy within the proposed RDC device shows bet-

ter efficiency to limit the AFDX bandwidth consumption. This fact is due to the isolation

between upstream and downstream flows on CAN bus, which improves upstream flows

worst-case response times on CAN, and consequently favors the frame packing process.

129

Chapter 6. Avionics Case Study

130

Conclusions and Prospectives

Conclusions

The current avionic communication architecture consists of an AFDX network to con-

nect the avionic computing systems and several I/O data buses, such as CAN bus, to

connect sensors and actuators. Clusters are then interconnected via specific devices,

called Remote Data Concentrators (RDCs), standardized as ARINC 655 [4]. RDC de-

vices are modular gateways distributed throughout the aircraft to handle heterogeneity

between the AFDX backbone and I/O data buses. For certification reasons, the timing

constraints of the avionics system have to be guaranteed. Furthermore, the avionics sys-

tem have to meet emerging requirements for resource utilization efficiency to let margins

for future evolution and limit system weight and costs. Although the RDC device has

been introduced as the standard for interconnection devices for avionics use, the existing

implementations of RDC do not consider network resource savings. In this thesis, we

proposed an enhanced CAN-AFDX RDC device which maximizes resource savings, while

meeting real-time constraints.

First, we proposed the design of an enhanced CAN-AFDX RDC device in

terms of network bandwidth utilization. Our proposed RDC is compliant with the AR-

INC 655 specifications. From a functional perspective, our proposed RDC is composed of

elementary functions. The main functions integrated into the RDC are:

– frame packing applied on upstream flows, i.e., flows generated by sensors and des-

tined to AFDX, to reduce communication overheads required to transmit CAN traf-

fic on AFDX network, and consequently decrease the AFDX bandwidth utilization.

Two frame packing strategies have been proposed: (i) a dynamic strategy, called

FWT strategy; (ii) a static strategy, called MSP strategy;

– Hierarchical Traffic Shaping (HTS) applied on downstream flows, i.e., flows gen-

erated by AFDX sources and destined to actuators on CAN buses, to guarantee

131

Conclusions and Prospectives

isolation between upstream and downstream flows on each I/O CAN bus, and con-

sequently to favor the frame packing process.

These functions can be activated and configured to fulfill real-time and resource ef-

ficiency requirements. From an architectural perspective, our proposed RDC connects

multiple I/O CAN buses and uses a partitioning process compliant with ARINC 653 [5]

specifications to guarantee isolation between different criticality levels. This fact reduces

the number of RDC devices required for the multi-cluster network architecture, and con-

sequently the system weight and costs.

Second, to analyze the performance offered by our proposed RDC, we proceeded as

following:

– First, we proposed the modeling of the CAN-AFDX architecture with a focus on

the RDC device and its implemented functions;

– Then, we introduced a timing analysis for CAN-AFDX network integrating the

impact of our enhanced RDC device to verify the schedulability of communication.

Furthermore, to prove the efficiency of our RDC to save avionics resources utiliza-

tion, we considered the AFDX bandwidth consumption induced by the RDC device

as a relevant metric. The introduced timing analysis approach combines results of

Network Calculus theory and worst-case response time analysis for CAN bus, and

computes bounds on the end-to-end latencies for CAN-AFDX network. Moreover,

the impacts of the elementary functions activated in the RDC device were integrated

within the maximum RDC traversal delay;

– Preliminary performance analysis for our proposed RDC device has been conducted

through a CAN-AFDX case study with different scenarios of upstream and down-

stream flows. The AFDX bandwidth consumption was considered as a relevant

metric to assess system’s resource utilization, whereas the end-to-end latency was

used to verify the schedulability of the used RDC configuration. Obtained results

have shown significant AFDX bandwidth consumption savings when using frame

packing strategies, namely FWT and MSP, while meeting time constraints. A com-

parison between these two packing strategies in terms of AFDX bandwidth savings

has shown that MSP strategy is more efficient than FWT strategy. However, the

former is more complex to implement within the RDC device. Furthermore, using

the HTS mechanism within the RDC device for downstream flows has shown its

132

efficiency to reduce interference on upstream flows. This fact favors frame packing

process, and consequently maximizes the AFDX bandwidth savings. To be more

specific, the HTS mechanism improves the worst-case response times on CAN for

upstream flows, and thus it offers margins to perform packing of upstream data in

the RDC device.

Third, an RDC optimization process to minimize network resource utilization

while ensuring flows schedulability has been performed. As this RDC tuning problem

turned to be combinatorial, we proposed adapted approaches to solve this problem under

different frame packing strategies and traffic shaping configurations. For instance, we

proposed:

– an heuristic to find the best FWT configuration defined using the parameter ∆ rep-

resenting the waiting timer used to accumulate data to pack;

– Moreover, we proposed an heuristic approach, called Best-Bandwidth-Fit-Decreasing

(BBFD), to find the most resource efficient MSP strategy in a polynomial time. Fur-

thermore, a Branch & Bound algorithm to find the optimal MSP configuration has

been investigated. A comparative performance analysis to select the most adapted

solving approaches was conducted. The obtained results have shown the accuracy

of our proposed heuristic with lower computational complexity compared to Branch

& Bound algorithm for industrial scale case study. Therefore, BBFD heuristic was

selected as the most efficient approach, among our proposed ones, for MSP frame

packing strategy optimization.

– Furthermore, to find the best HTS shapers parameters, i.e., minimizing the AFDX

bandwidth consumption and meeting time constraints, we proposed an heuristic ap-

proach which iteratively partitions the set of downstream flows to build the set of

shapers of the HTS structure used within our proposed RDC device.

The application of these proposed heuristic approaches to tune our enhanced RDC

configuration was illustrated through various test scenarios. The obtained results of the

RDC device with optimal configurations have confirmed the role of frame packing process

combined with HTS mechanism to maximize network resource saving, i.e., AFDX band-

width consumption in our case.

Finally, to validate the performance of our optimized RDC, we considered an

133

Conclusions and Prospectives

industrial scale avionics case study. The performance guarantees of this network architec-

ture were analyzed when considering various I/O CAN bus loads to check the scalability

of our proposed RDC functions. We proceeded as following:

– First, we conducted a comparative analysis between the two proposed frame packing

strategies in terms of AFDX bandwidth consumption savings in the case of specific

I/O CAN buses either for sensors or actuators, to focus on the role of frame packing

process applied for upstream flows. The obtained results have shown that MSP

strategy is more efficient and offers up to 15% of bandwidth consumption reduction

with reference to FWT. Furthermore, these results have confirmed the capacity of

our proposed RDC device to save avionics resources under different traffic load con-

ditions, while meeting the real-time requirements of avionics networks. For instance,

frame packing process used within the RDC device showed an AFDX bandwidth

consumption reduction of up to 40%, with reference to the (1:1) strategy used within

the currently used RDC device.

– In the case of shared I/O CAN buses between sensors and actuators, the contention

between upstream and downstream flows has shown negative impact on the effi-

ciency of frame packing, and consequently there is less AFDX bandwidth savings.

The activation of the HTS mechanism in the RDC combined with MSP strategy

has shown better performance and increases AFDX bandwidth savings.

Hence, the use of frame packing process combined with HTS mechanism within the

RDC device has shown significant network resource savings with reference to the currently

used RDC device, i.e., up to 40% of AFDX bandwidth utilization.

Prospectives

– CAN-AFDX RDC Implementation and Testing: the hardware implementa-

tion of our enhanced RDC device introduced to connect I/O CAN buses to AFDX

is necessary to confirm its real-time guarantees and its capacity to improve AFDX

bandwidth management. The ARINC 655 specifications [4] provides guidelines for

RDC hardware implementation. This latter offers a starting point for our CAN-

AFDX RDC device implementation with frame packing and traffic shaping func-

tions. Then, a testing phase should consider analyzing the robustness of the en-

hanced RDC device implementing new elementary functions, i.e., frame packing

134

and hierarchical traffic shaping, to improve AFDX bandwidth utilization.

– Extension of the RDC to CAN-like buses: TTCAN [43] and ARINC 825 [31]

are two CAN-like buses which present some dissimilarities with the native CAN.

Therefore, it could be interesting to extend our proposed RDC device to fit the char-

acteristics of these technologies. For instance, a preliminary analysis of a possible

extension of the frame packing strategies, namely FWT and MSP and HTS mech-

anism, for TTCAN is proposed in Appendix B. Unlike the native CAN, TTCAN is

based a Time-Triggered communication with a precise schedule of messages trans-

missions. To take into account this aspect, we revised our proposed frame packing

strategies. Then, the HTS mechanism is deactivated, as the isolation between up-

stream and downstream flows is already supported by the time-triggered scheme.

For instance, the triggering of the packing process, the virtual link allocation and

the impact on the end-to-end delay are revised. On the other hand, the ARINC

825 introduces a bandwidth management mechanism which impacts the transmis-

sion scheme of CAN messages compared to the case of native CAN. Therefore, the

extension of the RDC functions to fit the specificities of ARINC 825 may be more

complex than TTCAN.

– Generalization of the RDC design to the MIL-STD-1553B: MIL-STD-1553B

is a master/slave avionics data-bus used especially for military aircraft. The MIL-

STD-1553B present many dissimilarities with native CAN bus. First, it has a mas-

ter/slave communication scheme which is a centralized transmission control, unlike

the distributed control mechanism (CSMA/CA) of CAN bus. Then, it admits bigger

frame size with up to 64 bytes of payload, unlike the maximum payload of 8 bytes

with CAN. Hence, the generalization of our enhanced RDC device requires revising

the RDC functions, especially the frame mapping, frame packing process and the

HTS mechanism. For instance, the efficiency of the frame packing strategies may be

affected by the relatively big size of MIL-STD-1553B frames. Moreover, the timing

analysis has to take into account the communication overheads due to the master

node. The selection of the RDC as the master node may be considered to evaluate

the impact of such a design choice on the RDC efficiency and the end-to-end com-

munication performance.

135

Conclusions and Prospectives

136

Appendix A

Network Calculus Overview

The Network Calculus (NC) is a framework extensively used to model and analyze

communication networks. This theory is based on Min-Plus algebra [20]. Network calcu-

lus has been used for analyzing performance guarantees for different types of computer

networks. For instance, it was applied to AFDX network to prove the determinism of

communication in [17] [21]. This leads to the certification of AFDX network for A380

aircraft. Network Calculus theory and its main results are presented in this appendix and

more details can be found in [20].

A.1 Network Calculus Theory

To provide performance guarantees for flows crossing a network, the network must

guarantee resources to process data flows and sources of traffic have to guarantee a max-

imum traffic emission. Using Network Calculus, the data generated by network elements

(sources) is modeled using arrival curve concept. Then, the network element capacity

guaranteed for its crossing data flows is modeled using the service curve concept. The

service curve takes into account the packet scheduling used by the network element. Then,

given the arrival and service curves, Network Calculus provides maximum bounds on de-

lays and backlogs.

A.1.1 Cumulative Functions

Network Calculus describes data flows by means of the cumulative function R(t), de-

fined as the number of transmitted bits during the time interval [0, t]. Function R(t) is

always a non-decreasing function of time and it is generally assumed that R(0) = 0.

137

Appendix A. Network Calculus Overview

Consider a system S receiving input data with cumulative function R(t), called in-

put function. The received data is processed and then transmitted at the output. The

output data is described using another cumulative function R∗(t), called output function.

In Figure A.1, two examples of input and output functions are shown. The horizontal

distance d(t) between the input and output function graphs represents the delay that an

input data received at time t will experience in the system. The vertical distance x(t)

between input and output function graphs represents the backlog, i.e., total number of

bits present in the system at time t. Cumulative functions R1(t) and R∗
1(t) correspond to

a fluid model, i.e., we assume that packets arrive bit by bit. Functions R2(t) and R∗
2(t)

show packetized model, i.e., we assume that a packet is received only when the last bit is

received.

Figure A.1: Examples of Input and Output cumulative functions

A.1.2 Arrival Curve

To model the traffic sent by a network source, Network Calculus introduces the concept

of arrival curve. An arrival curve constrains the traffic emission for a network element, as

shown in Figure A.2. Given a wide-sense increasing function α defined for t ≥ 0, we say

that function α is an arrival curve for flow with cumulative function R(t), if and only if

for all s ≤ t:

R(t)− R(s) ≤ α(t− s) (A.1)

A very useful example of arrival curve is a leaky bucket curve γr,b illustrated in Figure

A.3, where b represents the maximum data burst and r represents the steady rate of data

138

A.1. Network Calculus Theory

Figure A.2: Arrival curve

emission by the source node. This leaky bucket function is defined as follows:

γb,r(t) =

0 if t < 0

rt+ b if otherwise

(A.2)

Figure A.3: Example of leaky bucket arrival curve

139

Appendix A. Network Calculus Overview

Figure A.4: Example of rate latency service curve

A.1.3 Service Curve

For a network element S and a flow f crossing S with an input function R and an

output function R∗, to model the service guarantees offered by the node S to flow f ,

Network Calculus introduces the concept of service curve. We say that S offers a service

curve β to flow f , if and only if β is a wide sense increasing function and β(0) = 0 for all

s ≤ t:

R∗(t) ≥
(
R(s) + β(t− s)

)
(A.3)

This latter condition can be written as R∗ ≥ R⊗ β using the ⊗ min-plus convolution

operator defined as following:

f ⊗ g(t) = inf
s≤t

(
f(s) + g(t− s)

)

This means that the system S offers a minimum guaranteed service to input flow f

and the guaranteed service is characterized by the function β. A very useful service curve

is the rate latency curve βR,T illustrated in Figure A.4, where R represents the minimum

guaranteed rate and T represents the maximum initial latency. This rate latency function

is defined as follows:

βR,T (t) =

0 if t < T

R(t− T) if otherwise

(A.4)

140

A.1. Network Calculus Theory

A.1.4 Network Calculus Bounds

Figure A.5: Backlog and delay bounds

For a network system S offering a service curve β to a data flow f characterized by

arrival curve α, Network Calculus provides three main results:

– Backlog bound: an upper bound on backlog in system S processing flow f is equal

to the vertical distance (denoted by v(α, β)) between arrival curve α and service

curve β, as shown in Figure A.5. If flow f has a cumulative function R and an out-

put function R∗, then the backlog R(t)−R∗(t) in S satisfies the following inequality:

R(t)−R∗(t) ≤ v(α, β) = sup
s≥0

(
α(s)− β(s)

)
(A.5)

– Delay bound: an upper bound on the traversal delay of system S by flow f is equal

to the horizontal distance (denoted by h(α, β)) between arrival curve α and service

curve β, as shown in Figure A.5. The delay d(t) for all values of time t satisfies the

following inequality;

d(t) ≤ h(α, β) = sup
z≥0

(
β−1(z)− α−1(z)

)
(A.6)

– Output arrival curve: the output flow is constrained by the arrival curve α∗,

obtained by min-plus deconvolution of arrival curve α and service curve β:

141

Appendix A. Network Calculus Overview

α∗ ≥ α⊘ β (A.7)

where, the operator ⊘ is defined as following :

f ⊘ g(t) = sup
s≥0

(
f(t+ s) + g(t)

)

A.1.5 Concatenation and Blind Multiplexing

An important result of Network Calculus introduced in [20] is about concatenation of

the services of network systems:

Theorem 1: assume a flow with arrival curve α(t) traverses systems S1 and S2 in

sequence where S1 offers service curve β1(t) and S2 offers β2(t). Then, the concatenation

of these two systems offers the following single service curve β(t) to the traversing flow:

β(t) = β1 ⊗ β2(t) (A.8)

There is also another interesting result introduced in [20] concerning the blind multi-

plexing:

Theorem 2: assume flows 1 and 2 with arrival curves α1(t) and α2(t) traverse system

S which offers a strict service curve β(t). Then, the minimal service curve offered to flow

1 is:

β1(t) = max(0, β(t)− α2(t)) (A.9)

However, this result has to be used carefully because the strict service curve assumption

is essential and it is not verified in the general case except when the crossed node has a

constant rate service or a FIFO multiplexing service. Further explanations can be found

in [20].

A.1.6 Application to AFDX

As described in Section 1.2.1 from Chapter 1, AFDX network connects a set of end-

systems using a set of AFDX switches. Traffic flows are constrained using virtual links

(VLs) which are mono-sender multicast channels with a minimum frame size MFS and a

142

A.2. WoPANets Performance Analysis Tool

minimum interval between two consecutive frames called BAG. To use Network Calculus

theory to analyze the performance guarantees of AFDX network, we model AFDX data

flows and network elements as following:

– a VL is modeled as a leaky bucket arrival curve γMFS
BAG

,MFS;

– a source end-system is modeled as a rate latency service curve βR,0, where R the

throughput of the output AFDX link;

– each switch input port is modeled using δLmax
C

for Store & Forward technique as

shown in Figure A.6;

– each switch output port is modeled as a rate latency service curve βR,T , where R is

the throughput of the output AFDX link and T the technological latency.

Figure A.6: δT service curve

A.2 WoPANets Performance Analysis Tool

WoPANets (Worst case Performance Analysis of embedded Networks) [6] is a design

aided-decision tool developed for embedded networks. This tool offers an interface to

the designer to describe the network and the circulating traffic and embodies a static

performance evaluation technique based on the Network Calculus theory combined with

optimization analysis to support early system design exploration for embedded networks.

143

Appendix A. Network Calculus Overview

In what follows, we present the main features of the WoPANets tool and we provide

analysis in the case of a realistic Switched Ethernet to illustrate the use of WoPANets

tool for network performance analysis.

A.2.1 WoPANets Features and Structure

The WOPANets tool can handle the following parameters:

– Traffic types: periodic and aperiodic traffic with jitter or not.

– Different communication types: unicast, multicast and broadcast.

– Technology types: Ethernet, AFDX and CAN.

– Different scheduling policies: First Come First Served (FCFS), Static Priority (SP),

Weighed Fair Queuing (WFQ), Round robin (RR); and many control mechanisms

like TDMA and Master/Slave.

– Different performance metrics: end-to-end delays, backlog, network load and loss

rate.

WOPANets tool consists of three main modules as described in the Figure A.7: the

Graphical User Interface, the Network Calculus Analyzer and the Optimization Analyzer.

First, the network to analyze is defined using the Graphical User Interface of WoPANets.

For instance, the used network elements, the topology of the network and the communica-

tion flows have to be defined by the network designer. Then, the performance metrics to

work with in WoPANets have to be selected. Second, the performance analyzer defines the

arrival curve of each flow according to its characteristics and the service curve of each node

in the network according to its policy or its control mechanism. Then, the performance

analysis is done using Network Calculus algorithms. Third, the Optimization Analyzer

allows network designer to find the optimal network configuration given a specific objec-

tive function, a set of variables corresponding to the network elements parameters that

can be tuned by the network designer and a set of constraints. The obtained results after

an analysis or an optimization process in WoPANets are displayed in the Graphical User

Interface.

144

A.2. WoPANets Performance Analysis Tool

Figure A.7: WOPANETS Structure

A.2.2 Propagation Analysis Algorithm

To compute the metric selected by the user, which could be either the maximal end-

to-end delay bound, the maximal backlog bound or the maximal loss rate bound, there

are mainly two possible performance analysis algorithms: Propagation Analysis algorithm

and PBOO (Pay Burst Only Once) algorithm. The former is the easiest one where the

flows are analyzed as a whole in each crossed node and the calculus is propagated from

one node to another; whereas the latter gives less pessimistic bounds for each individual

flow using the concatenation (A.8) and the blinding multiplexing (A.9) theorems.

The propagation analysis algorithm is described in Algorithm 1. First, the sets of

received flows at each terminal are identified (line 6). Then, for each flow in the identified

set, it determines its initial arrival curve (line 9), its associated path (line 10) and the

service curves offered by crossed components along that path according to their processing

mechanism (line 11). Afterwards, the delay bound calculation is propagated from one

crossed component to another by resolving the burstiness constraint evolution of each

flow. Knowing the arrival curve and service curves, the submitted delay and backlog

145

Appendix A. Network Calculus Overview

Algorithm 1 Propagation Analysis Algorithm

1: T ← {T1, T2...Tnterminals
}

2: S ← {s1, s2...snstreams}
3: EEDDEST ← HashMap <Terminal, List <double>>

4: Backlogs← HashMap <Terminal, double>

5: for i = 1 to nterminals do

6: R← Vector-rcv-streams(Ti, S)

7: EDDstreams ← List (R.length)

8: for j = 1 to R.length do

9: α← Initial-arrival-curve(R(j))

10: Path ← Vector-crossed-components(R(j))

11: β ← Vector-service-curves(Path)

12: for k = 1 to Path.length do

13: D ← Delay-calculus (α, β(k))

14: B ← Backlog-calculus (α, β(k))

15: α← ShiftLeft (α,D)

16: EEDstreams(j)← EEDstreams(j) +D

17: end for

18: end for

19: EEDDEST (i)←< Ti, EEDstreams >

20: Backlogs(i)←< Ti, B >

21: end for

146

A.2. WoPANets Performance Analysis Tool

bounds are calculated for each flow (lines 13-14) and then its output arrival curve (line

15). This latter curve will be the input arrival curve for the next network component and

so on until the last component. Since submitted delay bounds are known for each flow

and in each point of the network, a maximal end-to-end delay bound can be determined

for each flow along its path (line 16).

A.2.3 Illustrative Example

Figure A.8: The Input Topology of the Case Study

Table A.1: Periodic Traffic Description

Period (ms) Number of flows Data payload (bytes)

20 698 92

40 60 92

80 56 92

160 630 1492

Consider the Switched Ethernet network architecture shown in Figure A.8 consisting

of about eighty end-systems and seven switches. The different categories of the real-time

traffic circulating between the equipments are described in Tables A.1 and A.2. So, one can

147

Appendix A. Network Calculus Overview

Table A.2: Aperiodic Traffic Description

Response time (ms) Number of flows Data payload (bytes)

3 106 14

20 420 92

160 215 92

infinity 360 1492

see that for periodic messages, the largest period is about 160 ms and the most common

value is 20 ms; and for aperiodic messages, there are different response time bounds and

the most urgent one is about 3 ms. We assume that all the switches implement a simple

First Come First Serve (FCFS) scheduling.

A.2.4 Obtained Results

For the considered network, the objective of the designer is to have zero loss, i.e., all

the messages meet their respective deadlines. The obtained distribution of the maximal

end-to-end delay bounds is described in figure A.9 and as it can be noticed 93% of mes-

sages have delay bounds less than 1ms. The obtained loss rate is equal to zero which

means that the network architecture is schedulable. Hence, this architecture could be

considered as a satisfying solution given the required temporal constraints.

Figure A.9: Maximal Delay Bounds Histogram (1Gbps)

148

A.2. WoPANets Performance Analysis Tool

The tool run time for this case study was about 3 seconds and as shown in Figure

A.10, the tool run time is less than 15 seconds for different network configurations with a

number of hops that varies from 1 to 5 and a number of flows that varies from 200 to 6000.

Figure A.10: Tool run time as a function of the number of hops and flows

Hence, we have shown through this case study the ability of WOPANets tool to help

the designer to prove the schedulability of an embedded network in a very short time.

149

Appendix A. Network Calculus Overview

150

Appendix B

Generalization for TTCAN bus

In this appendix, we propose a preliminary study of the extended RDC device when

using TTCAN [43] instead of native CAN to connect sensors and actuators to the avionics

AFDX backbone. This network technology is based on CAN specifications for the phys-

ical and data link layers, and specific application layer which presents some differences

with the native CAN behavior. The design of our proposed RDC device to interconnect

TTCAN with the AFDX is discussed in this appendix and some RDC’s functions exten-

sions are proposed. First, the main relevant features of TTCAN for our interconnection

problem are presented. Afterwards, some extensions of our proposed RDC device for

TTCAN are proposed. Finally, the corresponding timing analysis is detailed.

B.1 TTCAN Description

TTCAN [43] is a Time-triggered variant of CAN protocol. It adds a session layer to

the native CAN protocol [3] and introduces the idea of a predefined schedule known as

the TTCAN matrix cycle to control the exchange of messages.

As shown in Figure B.1, TTCAN matrix cycle consists of several basic cycles. Each

Basic Cycle (BC) starts with the transmission of a reference message which is transmitted

by the master node and consists of several time windows of different sizes and properties.

The different types of windows defined by TTCAN protocol are as following:

– Exclusive time windows: supporting a predefined periodic message. The network

designer has to decide off-line which message must be sent at which exclusive time

window in the TTCAN matrix;

151

Appendix B. Generalization for TTCAN bus

Figure B.1: TTCAN matrix cycle

– Arbitrating time windows: the native CAN access mechanism decides which

message in the TTCAN network will succeed to transmit on the bus. At design

time it is allowed to schedule more than one message for an arbitrating time window;

– Free time windows: reserved for further extensions of the network. They can be

changed to arbitrating or exclusive time windows if new nodes need further band-

width for communication.

The timing analysis of TTCAN is directly affected by the choice of TTCAN matrix,

since the assignment of a time window to a given TTCAN message determines the re-

spect or not of its time constraint. In [44], the authors addressed the problem of building

the optimal TTCAN matrix, i.e., which meets temporal constraints and minimizes the

TTCAN capacity utilization. Another approach for constructing the TTCAN matrix for

a given messages set consists in using a scheduling algorithm to define slots and their

number and order in each BC cycle. This latter approach based on scheduling algorithms

offers the advantages of simplicity and scalability compared to the approach in [44]. In

[45], two scheduling algorithms were proposed for TTCAN matrix construction:

– Time Division Multiple Access (TDMA): With this algorithm, the TTCAN

152

B.1. TTCAN Description

matrix consists of time slots of equal sizes. The TDMA algorithm assigns each free

time slot according to the priority order of the messages. Following this rule, the

highest priority message is assigned to the first time slot, then the second highest

priority message and so on. A message has a pre-allocated window that can remain

free when no message instance occurs. An illustrative example is given in Figure

B.2 where a dedicated slot of time is affected to each message in the basic cycle.

The order and the size of slots are kept even if no message is ready to be sent in a

time slot window. The TDMA scheduling induces a higher TTCAN bus utilization

rate and leads to an over-dimensioning of communication resources.

Figure B.2: Example of TTCAN matrix obtained using TDMA scheduling

– Pre-Scheduling based on Preemptive Queue (PSPQ): Based on a preemp-

tive SP queue, this algorithm presents the same messages order pattern as with

native CAN protocol when considering a synchronous production of data by all

CAN source nodes. An illustrative example is given in Figure B.3 where 7 periodic

messages are scheduled using PSPQ. Message 1 is the most prior and thus it is as-

signed to the first slot of the first BC cycle. Message 7 is the least prior, therefore,

it will wait for messages 2, 3, 4, 5 and 6 to be assigned to their slots before being

scheduled. For instance, it is assigned to a slot in the second BC cycle since one

BC cycle cannot support all the messages. Compared to the TDMA scheduling,

the PSPQ approach allows a better network resource utilization since the periods

of allocated slots corresponds to the production periods of their associated messages.

It is worth noticing that these two algorithms are used to assign exclusive windows in

the TTCAN matrix. However, arbitrating and free windows can be taken into account by

considering additional messages with appropriate sizes and priorities and assigning exclu-

sive windows for them. In our case, we focus on the assignment of TTCAN messages to

exclusive windows. The free remaining windows can then be used as arbitration windows

or simply as free windows for future evolution of the TTCAN network. We make the

153

Appendix B. Generalization for TTCAN bus

Figure B.3: Example of TTCAN matrix obtained using PSPQ scheduling

choice of TDMA algorithm to build the TTCAN matrix.

In the rest of this Appendix, we revise our proposed RDC device to support TTCAN

interconnection with AFDX. In particular, the frame packing parameters are revised to

fit TTCAN time-triggered communication scheme. Then, the timing analysis is adjusted

to take into account the frame packing strategies adaptations.

B.2 TTCAN-AFDX RDC design

To interconnect an I/O TTCAN bus to AFDX, we make the following changes to our

proposed CAN-AFDX RDC in Chapter 3:

– since the TTCAN defines the order of slots and their durations for transmitting each

upstream or downstream message, which ensures an isolation between upstream and

downstream flows, then we deactivate the HTS mechanism.

– we propose to extend both frame packing strategies, namely FWT and MSP, to take

into account the time-triggered behavior of TTCAN bus. Compared to CAN proto-

col, TTCAN offers more precision on data transmission instants since it implements

a TDMA mechanism. This fact will impact the parameters of our proposed frame

packing strategies, and probably enhances their performance.

B.2.1 FWT strategy

Consider the example shown in Figure B.4 where a set of upstream flows (7 periodic

flows) needs to be sent to the AFDX backbone via the RDC device, and this set is sup-

154

B.2. TTCAN-AFDX RDC design

ported by a TTCAN bus. For an arbitrary value of ∆, i.e., waiting time parameter of

FWT packing strategy, we need a set of 2 AFDX VLs to support the incoming TTCAN

traffic. As can be noticed, the allocated VLs have a common BAG value equal to the basic

cycle. However, each VL may have a different MFS, unlike the FWT strategy defined in

Chapter 3 for the native CAN.

Figure B.4: FWT strategy for TTCAN I/O network

Hence, to define a sufficient set of AFDX VLs to support packed AFDX frames for a

TTCAN-AFDX RDC device implementing a FWT strategy with a waiting time ∆, we

follow the allocation methodology illustrated in Figure B.4. After the end of reception of

the first message, a waiting time ∆ is started. Then, when it expires the TTCAN frames

that are totally received into the RDC device are packed into the same AFDX frame. The

next TTCAN frame will start another instance of ∆ to activate the packing of another

group of frames, and so on. By repeating this packing process to cover the basic cycle

duration, we define the AFDX VLs including upstream messages as following:

– Each VL has a BAG equal to the TTCAN basic cycle;

– Each VL has a MFS equal to the size of an AFDX frame built with an explicit

structure and including the group of TTCAN data to pack, as described in Section

3.4.2 from Chapter 3. The MFS depends on the number of grouped TTCAN data

and their sizes. However, to keep the implementation of FWT strategy simple, we

consider a common MFS for the different VLs equal to the maximum AFDX frame

155

Appendix B. Generalization for TTCAN bus

size resulting from the FWT packing process.

B.2.2 MSP strategy

The MSP strategy consists in partitioning the set of upstream flows incoming to the

RDC device from the TTCAN bus to form the set of VLs on the AFDX. Each sub-set

of TTCAN frames resulting from the partitioning process of upstream flows will be sup-

ported by the same VL on the AFDX side. Then, there are two options to set up the

MSP packing process in the RDC device:

– Option 1: The transmission of a packed AFDX frame is triggered by the end of

reception of the most urgent message among the corresponding sub-set of upstream

flows;

– Option 2: The transmission of a packed AFDX frame is triggered by the expiration

of a timer activated at the reception of the most urgent message among the corre-

sponding sub-set of upstream flows. The duration of this timer has to be selected

such to meet timing constraints of upstream flows.

Option 1 was used in Chapter 3 for native CAN bus, and it presents the advantage

of favouring urgent flows. However, non-urgent flows may suffer from high waiting delays

if they miss the current transmission of the urgent message. Option 2 does not favour

urgent messages, however, it keeps relatively low waiting delays for all flows.

Under TTCAN, the order and transmission instants of frames are predefined, and the

waiting delays when considering option 2 can be computed with a high precision. Hence,

unlike CAN-AFDX RDC, the option 2 will be considered to trigger the frame packing

process under MSP strategy for TTCAN-AFDX RDC device.

In Figure B.5, MSP packing strategy is applied for 7 upstream flows which are parti-

tioned into two sub-sets: the first sub-set is composed of flows 1,2 and 3 and the second

sub-set is composed of flows 5, 6 and 7. A waiting timer is used to collect messages for

each sub-set of flows to form the payload of the packed AFDX frame to send in the cor-

responding VL. In the example of Figure B.5, two VLs are allocated to upstream flows:

VL 1 with a BAG 1 equal to the basic cycle of the TTCAN matrix and an MFS equal to

the size of an AFDX frame including messages 1 and 2; and VL 2 with a BAG 2 equal

to the basic cycle and an MFS equal to the size of an AFDX frame including messages

156

B.3. Timing Analysis

Figure B.5: MSP strategy for TTCAN bus

3, 5, 6 and 7. To set up this MSP strategy in the RDC device, we use a packing queue

and a waiting timer Wi per sub-set of flows packed in VL vi. The waiting time Wi for a

given sub-set of flows is chosen as follows: (i) for each basic cycle we find the minimum

waiting time to collect data belonging to this sub-set of flows during the considered basic

cycle and we form a list of waiting times LWi
. The waiting time is started at the end

of reception of the first received data belonging to the sub-set of flows; (ii) we select the

maximum value in LWi
as the waiting time Wi. For example, as shown in Figure B.5,

waiting time W1 is used for the sub-set of flows {1, 2}. This timer is started at the end

of reception of the message 1, and when it expires an AFDX frame is built and supports

the collected messages within the sub-set {1, 2}.

B.3 Timing Analysis

We consider the same notation of Section 4.2 in Chapter 4. For an upstream or a

downstream message m, we write the schedulability condition using the end-to-end delay

metric as following:

∀m ∈ Sup ∪ Sdown:

157

Appendix B. Generalization for TTCAN bus

deed(m) ≤ Dlm

dTTCAN(m) + dRDC(m) + dAFDX(m) ≤ Dlm

(B.1)

With reference to timing analysis provided in Section 4.2, dRDC(m) and dTTCAN(m)

have to be revised to take into account the specificities of TTCAN protocol and the

adapted FWT and MSP frame packing strategies for TTCAN.

B.3.1 Timing Analysis for RDC

For Upstream Flows:

For an upstream TTCAN message mj crossing the RDC device, the upper bound of RDC

delay dRDC(mj) is the sum of: (i) a technological latency ǫ due to payload extraction and

relaying process, called ǫ; (ii) waiting time in the RDC due to the frame packing process

between the reception instant of the CAN message and the transmission instant of its

associated AFDX frame WT (mj),

dRDC(mj) = ǫ+WT (mj) (B.2)

For FWT strategy, there is no difference in terms of the maximum waiting time com-

pared to results of Section 4.2. The maximum waiting time WT (mj) in the RDC device

is equal to ∆ foll all upstream messages mj.

For MSP strategy, a message mj has to wait for the expiration of the waiting timer

Wj used to collect data belonging to its corresponding sub-set of flows, as illustrated in

Figure B.4. Therefore, an upper bound on WT (mj) under MSP strategy is:

dRDC(mj) = ǫ+Wj (B.3)

For Downstream Flows:

Since the HTS mechanism is deactivated within TTCAN-AFDX RDC, the delay dRDC for

downstream flows is simply the technological latency ǫ. This latency is due to the payload

extraction, unpacking and data encapsulation applied for downstream flows.

158

B.3. Timing Analysis

B.3.2 Timing Analysis on TTCAN

For an upstream or a downstream message mj to be transmitted on the TTCAN bus

given a predefined schedule, we compute a worst case response time. The TTCAN ma-

trix is obtained using TDMA algorithm and an example is described in Figure B.6 for 7

periodic flows.

Figure B.6: Worst Case Response Time on TTCAN

Following the transmission schedule of Figure B.6, the worst case for the transmission

of a message corresponds to its arrival immediately after the end of its allocated slot in

the currently basic cycle. The message must wait for its slot in the next basic cycle to be

transmitted on TTCAN bus. Hence, the worst case response time on TTCAN for message

mj is simply:

dTTCAN(mj) = BC (B.4)

where BC is the basic cycle duration.

B.3.3 Illustrative Example

To illustrate the extension of our proposed RDC device to TTCAN bus, we consider

the test case shown in Figure B.7. In this test case, one sensors TTCAN bus is connected

to the AFDX backbone using our enhanced RDC device implementing the adapted FWT

159

Appendix B. Generalization for TTCAN bus

Figure B.7: TTCAN bus interconnected to the AFDX

and MSP strategies. The TTCAN supports upstream flows reported in Table B.1. Espe-

cially, we focus on the impact of frame packing on the AFDX bandwidth consumption.

Table B.1: Upstream flows description

Messages Number Payload(bytes) Period(ms)

m1 3 8 4

m2 2 8 8

m3 16 2 16

m4 4 2 32

The considered TTCAN schedule to transmit these upstream flows is shown in Figure

B.8. The basic cycle is considered equal to T1/2 = 2ms. For space limitation reasons,

we reported the consecutive slots assigned for messages from the same type as one slot

denoted by nj × mj , where nj is the number of messages from type mj . For example, cell

3 × m1 in the schedule of Figure B.8 corresponds to three consecutive slots supporting

messages of type m1.

160

B.3. Timing Analysis

Figure B.8: TTCAN schedule example for TTCAN upstream flows

Table B.2: VLs characteristics under FWT for TTCAN

FWT configuration BAG (ms) MFS (bytes) VLs number rate (Mbps)

∆1 = 0.5ms 2 99 5 1.98

∆1 = 1ms 2 117 3 1.4

Table B.3: End-to-end delay bounds under FWT strategy with ∆ = 1ms

Message type T (ms) deed(ms)

m1 4 3.95

m2 8 4.1

m3 16 4.3

m4 32 4.7

The allocated VLs for upstream flows under FWT strategies with ∆ equal to 0.5ms

and 1ms are reported in Table B.2. For instance, implementing FWT strategy with

∆ = 1ms requires 3 VLs with a BAG of 2 ms and a MFS of 117 bytes. The end-to-end

delay bound is computed for each message under each of the considered FWT configu-

rations and is then compared to its respective deadline. For instance, in Table B.3, the

end-to-end delay bounds for upstream flows of Table B.1 under FWT strategy in the

RDC device with waiting time ∆ = 1ms are reported. As we can see, the RDC device

configuration is schedulable, when considering the deadline of each message equal to its

period. The technological latency of the RDC device is assumed ǫ = 0.05ms.

161

Appendix B. Generalization for TTCAN bus

Table B.4: MSP configurations

VL allocation Waiting Timers (Wj)

conf1 v1 : {3 ∗m1}, v2 : {2 ∗m2}, v3 : {16 ∗m3}, v4 : {4 ∗m4} W1 = 0.42ms, W2 = 0.14ms, W3 = 1.2ms, W4 = 0.24ms

conf2 v1 : {3 ∗m1, 2 ∗m2}, v2 : {16 ∗m3, 4 ∗m4} W1 = 0.7ms, W2 = 1.55ms

Then, we consider two MSP packing configurations in the RDC device as shown in

Table B.4. Configuration conf1 corresponds to packing all the messages of type mi within

the same AFDX frame supported by the virtual link vi. Whereas, configuration conf2

consists in packing messages from types m1 and m2 in virtual link v1, and packing mes-

sages from types m3 and m4 in virtual link v2. The waiting timers used to perform the

frame packing process for each configuration are also provided. For instance, to set up

conf2 in the RDC device, we have W1 = 0.7ms for v1 and W2 = 1.55 for v2.

Table B.5: TTCAN-AFDX RDC: schedulability test and AFDX bandwidth consumption

Configuration Number of VLs AFDX Bandwidth (in Mbps) Schedulability

(1:1) 25 1.42 OK

FWT (∆ = 1ms) 3 1.4 OK

MSP (conf1) 4 1.39 OK

MSP (conf2) 2 0.85 OK

As we can notice from Table B.5, although the FWT strategy with ∆ = 1ms reduces

the number of allocated VLs for the RDC device on AFDX, the induced bandwidth con-

sumption is similar to (1:1) strategy. The MSP strategy offers the best resource utilization

performance, with reference to (1:1) and FWT strategies. For instance, using the adapted

MSP strategy for TTCAN under conf2 reduces the AFDX bandwidth consumption where

a reduction of 40% is noticed with reference to the (1:1) and FWT strategies. Hence, the

FWT does not offer AFDX bandwidth enhancements when used in the RDC device with

TTCAN, whereas, MSP offers an improvement compared to the (1:1) strategy. This is

mainly due to the fact that TTCAN is based on a static schedule for data transmission

and it is more convenient to use MSP which is a static packing strategy. The MSP per-

forms a more accurate VLs allocation and overcomes the over-dimensioning problem of

the FWT strategy.

162

Bibliography

[1] Airlines Electronic Engineering Committee. Aircraft Data Network Part 7, AFDX

network, Arinc Specification 664. Annapolis, Maryland, 2002. Aeronautical Radio.

[2] Avionic Systems Standardisation Committee. Guide to avionics data buses, ARINC

429. 1995.

[3] Robert Bosch GmbH. CAN specification Version 2.0. 1991.

[4] Airlines Electronic Engineering Committee. ARINC Report 655: Remote Data Con-

centrator(RDC) generic description. Annapolis, Maryland, 1999. Aeronautical Radio.

[5] Avionic Systems Standardisation Committee. Avionics Application Software Stan-

dard Interface Part 1-2, ARINC Specification 653P1-2. 2005.

[6] A. Mifdaoui and H. Ayed. WOPANets: a tool for WOrst case Performance Analysis

of embedded Networks. CAMAD 2010.

[7] C. Watkins and R. Walter. Transitioning From Federated Avionics Architectures To

integrated Modular Avionics. Digital Avionics Systems Conference (DASC), 2007.

[8] Condor Engineering Incorporated. MIL-STD-1553 Designer guide.

http://www.condoreng.com/support/downloads/tutorials/MIL-STD-1553Tutorial,

1982.

[9] Avionic Systems Standardisation Committee. ARINC 629 P1-4 Multi-Transmitter

Data Bus, Part1, Technical Description. 1995.

[10] P. Bieber, F. Boniol, M. Boyer, E. Noulard, and C. Pagetti. New Challenges for

Future Avionic Architectures. Aerospacelab, Issue 4, May 2012.

[11] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. CAN schedulability analysis:

Refuted, revisited and revised. Real-Time Systems, 35(3):239–272, 2007.

[12] A. Al Sheikh, O. Brun, M. Cheramy, and P.E. Hladik. Optimal Design of Virtual

Links in AFDX Networks. Real-Time Systems, May 2013.

[13] A. Al Sheikh, O. Brun, and P.E. Hladik. Partition Scheduling on an IMA Platform

with Strict Periodicity and Communication Delays. In 18th International Conference

on Real-Time and Network Systems, November 2010.

163

Bibliography

[14] R. Saket and N. Navet. Frame packing algorithms for automotive applications. Jour-

nal of Embedded Computing, 2:93–102, 2006.

[15] S.M. Ricardo, N. Navet, and F. Simonot-Lion. Frame Packing under real-time con-

straints. 5th IFAC, 2003.

[16] P. Pop, P. Eles, and Z. Peng. Schedulability-driven frame packing for multicluster

distributed embedded systems. ACM Transactions on Embedded Computing Systems

(TECS), February 2005.

[17] J. Grieu. Analyse et valuation de techniques de commutation Ethernet pour

l’interconnexion de systemes avioniques. PhD thesis, INP, Toulouse, 2004.

[18] Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. Improving the worst-case

delay analysis of an AFDX network using an optimized trajectory approach. IEEE

Transactions on Industrial Informatics, 2010.

[19] E. Clarke, O. G. Jr., and D. A. Peled. Model Checking. MIT Press, Cambridge, MA,

USA, 2000.

[20] J.Y. Leboudec and P. Thiran. Network Calculus. Springer Verlag LNCS volume 2050,

2001.

[21] F. Frances, C. Fraboul, and J. Grieu. Using Network Calculus to optimize the AFDX

Network. Proceedings of the 3rd European Congress Embedded Real Time Software,

2006.

[22] S. Martin. Mâıtrise de la dimension temporelle de la qualité de service dans les

réseaux. PhD thesis, Université Paris XII, 2004.

[23] J. Migge. L’ordonnancement sous contraintes temps-réel : un modéle à base de

trajectoires. PhD thesis, INRIA, Sophia Antipolis, 1999.

[24] H. Charara, J.L Scharbarg, J. Ermont, and C. Fraboul. Methods for bounding end-to

end delays on an AFDX network. Proceedings of the 18th Euromicro Conference o

n Real-Time Systems, 2006.

[25] K.W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area Network

(CAN) message response times. Control Engineering Practice, 3, August 1995.

[26] R.I. Davis, S. Kollmann, V. Pollex, and F. Slomka. Controller Area Network (CAN)

Schedulability Analysis with FIFO Queues. 23rd Euromicro Conference on Real-Time

Systems, 2011.

[27] R.I. Davis, N. Navet, D. Bertrand, and P.M. Yomsi. Controller Area Network (CAN):

Response Time Analysis with Offsets. Real-Time Systems, 35(3):239–272, 2007.

[28] J.L. Scharbarg, M. Boyer, and C. Fraboul. CAN-Ethernet architectures for real-time

applications. IEEE ETFA, 2005.

164

[29] B. Somers. Investigation of a Flexray - CAN Gateway in the Implementation of

Vehicle Speed Control. PhD thesis, Waterford Istitute of Technology, Ireland, 2009.

[30] Stock Flight Systems. CANAerospace: Interface specification for airborne CAN ap-

plications V 1.7. 2006.

[31] Airlines Electronic Engineering Committee. ARINC Specification 825-2: General

standardization of CAN (Controller Area Network) bus protocol for airborne use.

Annapolis, Maryland, 2011. Aeronautical Radio.

[32] S. Zeng and N. Uzun. A hierarchical traffic shaper for packet switches. Global

Telecommunications Conference, GLOBECOM, 1999.

[33] J. S. Turner. New Directions in Communications (or Which Way to the Information

Age?). IEEE Communications Magazine, 1986.

[34] J.L. Valenzuela, A. Monleon, I. San Esteban, M. Portoles, and O. Sallent. A hierarchi-

cal token bucket algorithm to enhance qos in ieee 802.11: proposal, implementation

and evaluation. In Vehicular Technology Conference, 2004.

[35] T. Nolte, M. Sjodin, and H. Hansson. Server-based scheduling of the CAN bus.

Emerging Technologies and Factory Automation (ETFA), 2003.

[36] Z. Iqbal, L. Almeida, R. Marau, M. Behnam, and T. Nolte. Implementing hierarchical

scheduling on cots ethernet switches using a master/slave approach. In 7th IEEE

International Symposium on Industrial Embedded Systems, 2012.

[37] E. Wandeler, A. Maxiaguine, and L. Thiele. On the Use of Greedy Shapers in Real-

Time Embedded Systems. Embedded Computing Systems, 2012.

[38] R.I. Davis and N. Navet. Traffic Shaping to Reduce Jitter in Controller Area Network

(CAN). 24th Euromicro Conference on Real-Time Systems, 2012.

[39] P. Narasimhan, L. Moser, and P. Melliar-Smith. Message packing as a performance

enhancement strategy with application to the totem protocols. In Global Telecom-

munications Conference (GLOBECOM), 1996.

[40] R. Marau, N. Figueiredo, R. Santos, P. Pedreiras, L. Almeida, and T. Nolte. Towards

Server-based Switched Ethernet for real-time communications. Proceedings of the

1st Workshop on Compositional Theory and Technology for Real-Time Embedded

Systems, 2008.

[41] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for

NP-hard problems. PWS Publishing Company, 1996.

[42] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey. Operations

Research, 1966.

165

Bibliography

[43] A. Albert, R. Strasser, and A. Trachtler. Migration from CAN to TTCAN for a

Distributed Control System. ICC, 2003.

[44] Xin Qiao, Kun-FengWang, Yuan Sun, Wu-Ling Huang, and Fei-YueWang. A Genetic

Algorithms based optimization for TTCAN. In IEEE International Conference on

Vehicular Electronics and Safety, 2007.

[45] A. Hara, K. Fonseca, and L. Scandelari. CAN/TTCAN Simulator System based on

Educational DSP Hardware Kits. ICC, 2003.

166

	Acknowledgments
	Abstract
	List of Publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Original Contributions
	Thesis Outline
	Chapter 1 Background and Problem Statement
	1.1 Progress of Avionic Communication Architecture and Main Challenges
	1.1.1 History of Avionic Architecture
	1.1.2 Appearance of Multi-cluster Avionic Networks
	1.1.2.1 Avionics Requirements
	1.1.2.2 Description and Main Challenges

	1.2 Description of Network Standards
	1.2.1 ARINC 664: Backbone Network
	1.2.1.1 Virtual Link
	1.2.1.2 Message flows & Frame Structure
	1.2.1.3 Application Layer: ARINC 653 Specifications

	1.2.2 Sensors/Actuators Networks
	1.2.2.1 ARINC 429
	1.2.2.2 CAN

	1.3 Description of RDC Standard: ARINC 655
	1.3.1 RDC Requirements
	1.3.2 Functional Specifications
	1.3.3 Architectural Specifications

	1.4 Design Opportunities for Multi-Cluster Avionic Networks
	1.5 Conclusion

	Chapter 2 Related Work : Performance Optimization for Multi-Cluster Networks
	2.1 Optimizing Traffic-Source Mapping
	2.1.1 Avionics End-Systems
	2.1.2 Automotive End-Systems

	2.2 Optimizing Communication Network Performance
	2.2.1 Work on the AFDX Network
	2.2.1.1 Timing Analysis techniques
	2.2.1.2 Optimal Routing for AFDX

	2.2.2 Work on Sensors/Actuators Networks

	2.3 Optimizing Interconnection Devices
	2.3.1 CAN-Ethernet Bridge
	2.3.2 CAN-FlexRay Gateway
	2.3.3 ARINC 429-AFDX Gateway

	2.4 Need for Optimized CAN-AFDX Gateway
	2.5 Conclusion

	Chapter 3 Design of an Enhanced CAN-AFDX RDC
	3.1 Current RDC Device
	3.2 Enhanced RDC Functional Overview
	3.3 Frame Packing Strategies
	3.3.1 Related Work
	3.3.2 Dynamic Strategy: FWT
	3.3.3 Static Strategy : MSP

	3.4 Data Mapping & Formatting
	3.4.1 Data Mapping
	3.4.2 Frame Formatting

	3.5 Traffic Shaping Mechanism
	3.5.1 Related Work
	3.5.2 HTS Algorithm

	3.6 Conclusion

	Chapter 4 Modeling and Timing Analysis of the Enhanced RDC
	4.1 CAN-AFDX RDC Modeling
	4.1.1 Frame Packing Strategies Modeling
	4.1.1.1 FWT Strategy
	4.1.1.2 MSP Strategy

	4.1.2 HTS Mechanism Modeling

	4.2 Timing Analysis
	4.2.1 Sufficient Schedulability Test
	4.2.2 Timing Analysis for Upstream Flows
	4.2.2.1 RDC Traversal Delay Computation
	4.2.2.2 CAN Worst Case Response Time Computation
	4.2.2.3 CAN analysis : upper bound vs exact WCRT

	4.2.3 Timing Analysis for Downstream Flows
	4.2.3.1 RDC Traversal Delay Computation
	4.2.3.2 CAN Worst Case Response Time Computation

	4.3 Preliminary Performance Analysis
	4.3.1 Considered Test Cases
	4.3.1.1 Test Case 1
	4.3.1.2 Test Case 2

	4.3.2 Impact of Frame Packing Strategy
	4.3.2.1 Under FWT
	4.3.2.2 Under MSP
	4.3.2.3 Comparative Analysis

	4.3.3 Impact of HTS Mechanism

	4.4 Conclusion

	Chapter 5 Performance Optimization of the Enhanced RDC
	5.1 Problem Formulation
	5.2 Optimization Process under FWT Strategy
	5.3 Optimization Process under MSP Strategy
	5.3.1 Bandwidth Best Fit Decreasing Heuristic
	5.3.1.1 Initialization
	5.3.1.2 Iterative partitioning
	5.3.1.3 Schedulability analysis
	5.3.1.4 Decomposition

	5.3.2 Branch & Bound Algorithm
	5.3.2.1 Upper bound
	5.3.2.2 Lower bound
	5.3.2.3 Branching-Strategy
	5.3.2.4 Discarding-Policy
	5.3.2.5 Algorithm process & example

	5.4 Optimization process under HTS Mechanism
	5.4.1 Heuristic Approach
	5.4.2 Example

	5.5 Preliminary Performances Analysis
	5.5.1 Results under Optimized FWT Strategy
	5.5.2 Results under Optimized MSP Strategy
	5.5.3 Results under Optimized HTS Mechanism

	5.6 Conclusion

	Chapter 6 Avionics Case Study
	6.1 Description
	6.1.1 CAN-AFDX Architecture
	6.1.2 Communication Traffic
	6.1.2.1 AFDX Flows
	6.1.2.2 Upstream and Downstream Flows

	6.1.3 Test Scenarios

	6.2 Benefits of Frame Packing Strategies
	6.2.1 Under FWT
	6.2.2 Under MSP
	6.2.3 Comparative Analysis and Conclusion

	6.3 Benefits of HTS Mechanism
	6.3.1 Impact of I/O CAN Bus Sharing on Frame Packing
	6.3.2 On the Effects of HTS Mechanism

	6.4 Conclusion

	Conclusions and Prospectives
	Conclusions
	Prospectives
	Appendix A Network Calculus Overview
	A.1 Network Calculus Theory
	A.1.1 Cumulative Functions
	A.1.2 Arrival Curve
	A.1.3 Service Curve
	A.1.4 Network Calculus Bounds
	A.1.5 Concatenation and Blind Multiplexing
	A.1.6 Application to AFDX

	A.2 WoPANets Performance Analysis Tool
	A.2.1 WoPANets Features and Structure
	A.2.2 Propagation Analysis Algorithm
	A.2.3 Illustrative Example
	A.2.4 Obtained Results

	Appendix B Generalization for TTCAN bus
	B.1 TTCAN Description
	B.2 TTCAN-AFDX RDC design
	B.2.1 FWT strategy
	B.2.2 MSP strategy

	B.3 Timing Analysis
	B.3.1 Timing Analysis for RDC
	B.3.2 Timing Analysis on TTCAN
	B.3.3 Illustrative Example

	Bibliography

