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ABSTRACT

In many real–life Bayesian estimation problems, it is appropriate

to consider non-Gaussian noise distributions to model the existence

of outliers, impulsive behaviors or heavy-tailed physical phenom-

ena in the measurements. Moreover, the complete knowledge of the

system dynamics uses to be limited, as well as for the process and

measurement noise statistics. In this paper, we propose an adaptive

recursive Gaussian sum filter that addresses the adaptive Bayesian

filtering problem, tackling efficiently nonlinear behaviors while be-

ing robust to the weak knowledge of the system. The new method is

based on the relationship between the measurement noise parameters

and the innovations sequence, used to recursively infer the Gaussian

mixture model noise parameters. Numerical results exhibit enhanced

robustness against both non-Gaussian noise and unknown parame-

ters. Simulation results are provided to show that good performance

can be attained when compared to the standard known statistics case.

Index Terms— Adaptive Bayesian filtering, Gaussian sum fil-

ter, robustness, noise statistics estimation, innovations, tracking

1. INTRODUCTION

The problem under study concerns the derivation of efficient and ro-

bust methods to solve the recursive Bayesian filtering problem for

nonlinear systems corrupted by non-Gaussian noise with unknown

statistics. The classic filtering problem involves the recursive esti-

mation of time-varying unknown states of a system using the incom-

ing flow of information along some prior statistical knowledge about

the variations of such states. The general discrete state-space model

can be expressed as

xk = fk−1(xk−1) + vk ; zk = hk(xk) + nk , (1)

where xk ∈ R
nx is the hidden state of the system at time k, fk−1(·)

is a known, possibly nonlinear, function of the states; and vk is re-

ferred to as process noise; zk ∈ R
nz is the measurement at time k,

hk(·) is a known, possibly nonlinear, function, which relates mea-

surements with states; and nk is referred to as measurement noise,

independent of vk. The optimal Bayesian filtering solution is given

by the marginal distribution p(xk|z1:k), which gathers all the in-

formation about the system contained in the available observations,

with z1:k = {z1, . . . , zk}.

The Kalman filter (KF) provides the closed form solution to the

optimal filtering problem in linear/Gaussian systems, assumptions
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that not always hold, reason why suboptimal techniques have to be

used. A plethora of alternatives have been proposed to solve the

nonlinear estimation problem, among them, the Extended KF (EKF)

and the family of Sigma–Point KFs (SPKF) [1] within the Gaus-

sian framework, and the family of Sequential Monte Carlo (SMC)

methods [2], and Gaussian Sum Filters (GSFs) [1], for arbitrary

noise distributions. The latter constitutes an appealing alternative

to SMC methods, which provide a powerful framework to deal with

nonlinear/non–Gaussian systems at expense of a high computational

load, being difficult to embed in digital light processors or in real–

time applications. But the main limitation of all these methods is

that they assume some a priori knowledge of the noise statistics

affecting the system (i.e., not only its distribution but its parame-

ters). In many real-life systems, Gaussian noise models do not apply

and the noise statistics are unknown. In these scenarios the meth-

ods based on the standard Gaussian Kalman framework give poor

performance or even diverge, and we cannot directly apply SMC

methods and GSFs because we need to estimate the states together

with the noise statistics. Dropping these two classical assumptions,

Gaussianity and known statistics, is the starting point of this work.

In this contribution, our attention focuses on the adaptive/robust

filtering problem in this context, to deal with state-space models cor-

rupted by non-Gaussian measurement noise with unknown statistics.

Several improvements to the standard GSF and related methods have

been proposed in the literature [3, 4, 5, 6], showing the promising ap-

plicability of GMMs, but all of them still considering known statis-

tics. To the authors’ knowledge, an adaptive filtering solution (e.g.,

adaptive filtering referring to the unknown statistics estimation and

robustness concepts) within the GSF framework to deal with systems

corrupted by GMM non-Gaussian noise with unknown statistics is

still an open problem.

The noise statistics estimation problem has been mainly studied

for linear/Gaussian systems [7], and its extension to nonlinear sys-

tems usually makes use of linearization techniques. In order to deal

with more general models, the problem has also been considered into

the system parameters estimation framework using SMC approaches

[8, 9, 10]. In the case of GSFs, the noise statistics estimation reduces

to the estimation of the GMM parameters. To solve this problem and

provide a robust filtering solution, this paper proposes the Adaptive

Gaussian Sum Filter (AGSF), which adjusts the parameters of the

GMM distributions adaptively with no prior statistical information.

2. GAUSSIAN SUM FILTERING

In many applications, the Gaussian assumption does not hold [11,

12] and non-Gaussian distributions have to be used in order to cap-

ture the statistical behavior of the system dynamics and/or the prior



knowledge. On the basis of the Wiener approximation theory, any

probability density function (pdf) can be expressed, or approximated

with a given level of accuracy, using a finite sum of Gaussian densi-

ties, what is known as a Gaussian mixture model (GMM): px(x) =
∑L

i=1 αiN (x;mi,Bi), where
∑L

i=1 αi = 1, αi ≥ 0 for i =
1, . . . , L, and N (x;mi,Bi) represents a Gaussian distribution with

mean mi and covariance matrix Bi (i.e., for the sake of simplic-

ity we use the notation p(x) ∼ {αi,mi,Bi}
L
i=1 ). Therefore,

any non-Gaussian distribution of interest can be expressed with a

GMM, and considering GMM distributed additive noises, the pre-

dictive and posterior densities can also be expressed using Gaus-

sian sums by using the following equalities. Assume that the pos-

terior distribution, p(xk|z1:k), can be represented with a GMM,

p(xk|z1:k) =
∑m

i=1 αi,kN (xk;mi,k,Bi,k), then the mean and co-

variance matrix can be easily computed as,

x̂k|k = E(xk|z1:k) =
m
∑

i=1

αi,kmi,k, (2)

Σk|k =
m
∑

i=1

αi,k[Bik + (x̂k|k −mi,k)(x̂k|k −mi,k)
T ]. (3)

To obtain the recursive Bayesian filter in the GMM framework,

the initial state (prior knowledge), and both process and measure-

ment noise distributions, are assumed to follow a GMM distribution:

p(x0) ∼ {αi,0,µi,0,Σx,i,0}
l0
i=1, p(vk) ∼ {βi,k,νj,k,Σv,j,k}

sk
i=1

and p(nk) ∼ {γl,k,ηl,k,Σn,l,k}
mk
i=1. Let us also assume that the

posterior distribution at time k − 1 is given by the following GMM,

p(xk−1|z1:k−1) ∼ {αi,k−1|k−1, x̂i,k−1|k−1,Σx,i,k−1|k−1}
lk−1

i=1 .

The predictive density p(xk|z1:k−1) is obtained using the transition

density and the Chapman-Kolmogorov equation, and approximated

within the KF framework using a bank of nk = sklk−1 time update

steps of the EKF,

sk
∑

j=1

lk−1
∑

i=1

βj,kαi,k−1|k−1N (xk; x̂ij,k|k−1,Σx,ij,k|k−1), (4)

where for each Gaussian term the state prediction and the corre-

sponding error covariance matrix are

x̂ij,k|k−1 = fk−1(x̂i,k−1|k−1) + νj,k, (5)

Σx,ij,k|k−1 = Fi,k−1Σx,i,k−1|k−1F
T
i,k−1 +Σv,j,k, (6)

with Fi,k−1 =
∂fk−1(x)

∂x

∣

∣

∣

x=x̂i,k−1|k−1

. At this point, note that

the predicted states are x̂k|k−1 =
∑sk

j=1

∑lk−1

i=1 αij,k|k−1x̂ij,k|k−1

with αij,k|k−1 = βj,kαi,k−1|k−1. The likelihood density can be

written as p(zk|xk) ∼ {γl,k,hk(xk) + ηl,k,Σn,l,k}
mk
i=1 and the

posterior distribution, p(xk|z1:k), as done before with the predictive

distribution, can be approximated using a GMM and a Kalman ap-

proach with a bank of rk = mksklk−1 measurement update steps of

the EKF as
∑mk

l=1

∑sk
j=1

∑lk−1

i=1 αijl,k|k N (xk; x̂ijl,k|k,Σx,ijl,k|k).
For each term the state estimation and the corresponding error co-

variance matrix are x̂ijl,k|k = x̂ij,k|k−1+Kijl,k

(

zk − ẑijl,k|k−1

)

and Σx,ijl,k|k = (I − K
T
ijl,kHij,k)Σx,ij,k|k−1, with Hij,k =

∂hk(x)
∂x

∣

∣

∣

x=x̂ij,k|k−1

. Refer to Algorithm 2 for the computation of

the Kalman gain Kijl,k, the predicted measurement ẑijl,k|k−1, and

the innovations covariance matrix Σzz,ijl,k|k−1. The weighting

factor can be written as

αijl,k|k =
γl,kβj,kαi,k−1|k−1Ωijl,k

∑mk
l=1

∑sk
j=1

∑lk
i=1 γl,kβj,kαi,k−1|k−1Ωijl,k

, (7)

with Ωijl = N (zk; ẑijl,k|k−1,Σzz,ijl,k|k−1). The final state esti-

mate is x̂k|k =
∑mk

l=1

∑sk
j=1

∑lk−1

i=1 αijl,k|kx̂ijl,k|k.

Notice that within one time step k, the number of Gaussian terms

increased from lk−1 to mksklk−1. In practice, Gaussian mixture

reduction techniques [13, 3] have to be used to reduce the number of

Gaussian terms after each iteration (in this work the implementation

reported in [14] was used).

3. ADAPTIVE RECURSIVE BAYESIAN FILTER

This section proposes a new AGSF to solve the robust adaptive

Bayesian filtering problem for nonlinear discrete state-space models

corrupted by non-Gaussian measurement noise. This method es-

timates the statistical parameters of the GMM measurement noise

using the innovations provided by the GSF.

3.1. Innovations and Measurement Noise

The innovations are denoted as z̃k and the predicted state estimates

are obtained as x̂k|k−1 = E(xk|z1:k−1), which are available from

the Time Update step of the GSF. The innovations sequence is de-

fined as z̃k = zk −hk(x̂k|k−1) ≈ Hkx̃k|k−1 +nk, with x̃k|k−1 =

xk − x̂k|k−1 and Hk = ∂hk(x)
∂x

∣

∣

∣

x=x̂k|k−1

. If the measurement

function hk is linear, the above approximation will turn into equal-

ity. Therefore, the pdf of innovations is equal to the convolution

of the one-step prediction error’s distribution and the measurement

noise distribution,

p(z̃k|z1:k−1) ≈ p(Hkx̃k|k−1|z1:k−1)⊗ p(nk), (8)

where ⊗ stands for the convolution operator. It is easy to see that

both p(Hkx̃k|k−1|z1:k−1) and p(nk) are Gaussian mixture dis-

tributed. Therefore, the essence of estimating p(nk) from z̃k is

a deconvolution problem. Using (4), the pdf of x̃k|k−1 follows a

GMM and is given by,

p(x̃k|k−1|z1:k−1) = p(xk − E(xk|z1:k−1)|z1:k−1)

=

sk
∑

j=1

lk
∑

i=1

αij,k|k−1 N (xk; x̂ij,k|k − x̂k|k−1,Σx,ij,k|k−1). (9)

where αij,k|k−1 = βj,kαi,k−1|k−1. To simplify, we assume that

the prediction error, x̃k|k−1 is Gaussian distributed, which means

that we are only interested in the first and second moments of the

distribution: E(x̃k|k−1|z1:k−1) = E(xk|z1:k−1)− x̂k|k−1 = 0 and

Σk|k−1 =
∑sk

j=1

∑lk
i=1 αij,k|k−1

[

Σx,ij,k|k−1+

(x̂ij,k|k−1 − x̂k|k−1)(x̂ij,k|k−1 − x̂k|k−1)
T
]

.

Then, we conclude that

p(Hkx̃k|k−1|z1:k−1) = N (x̃k|k−1;0,HkΣk|k−1H
T
k ). (10)

Using (10) and (8), p(z̃k|z1:k−1) =
∑mk

l=1 γlkN (z̃k;ηl,k,Sl,k),

where Sl,k = Σn,l,k + HkΣk|k−1H
T
k . Therefore, the GMM in-

novations distribution has the same number of Gaussian terms than

the measurement noise distribution.

3.2. Adaptive Estimation of the Noise Statistics

The adaptive filtering solution essentially refers to the estima-

tion of the GMM parameters of the measurement noise based on the

innovations sequence. The proposed method uses an Expectation

Maximization (EM) solution [15], which is applied to process the



Algorithm 1 Recursive noise statistics estimation

1: Compute the auxiliar weights:

wl,k =
γ̂l,k−1N (z̃k; η̂l,k−1, Ŝl,k−1)

∑mk
l=1 γ̂l,k−1N (z̃k; η̂l,k−1, Ŝl,k−1)

for l = 1, . . . ,mk

2: Estimate the mk weights: γ̂l,k = γ̂l,k−1 + 1
k
(wl,k − γ̂l,k−1).

3: Estimate the mk means: η̂l,k = η̂l,k−1 + Gl,k(z̃k − η̂l,k−1).
4: Estimate the mk covariance matrices:

Ŝl,k = Ŝl,k−1 + Gl,k[
1

1−Gl,k

(z̃k − η̂l,j)(z̃k − η̂l,k)
T − Ŝl,k−1],

innovations, which obey a Gaussian mixture distribution, and finally

get the GMM parameters estimates.

Assume that K innovations are collected from time instant 1 to

K, and stacked in ZK = (z̃1, z̃2, . . . , z̃K). The Gaussian mixture

parameters for the lth Gaussian term at time instant k are θl,k =
(γl,k,ηl,k,Sl,k), and the full set is Θk = (θ1,k,θ2,k, . . . ,θmk,k).
The log-likelihood of the innovations sequence is L(ZK |Θ1:K) =

log
∏K

k=1

∑mk
l=1 γl,kN (z̃k;ηl,k,Sl,k). In this case, the parameters

of each Gaussian term and the number of terms are assumed to

be constant within the innovations sequence, so the time index is

dropped to simplify. The parameters estimated in the previous iter-

ation are denoted as θ
g
l = {γg

l ,η
g
l ,S

g
l }

m

l=1
. From the likelihood

expression, an EM method is applied to find the ML estimates of the

GMM measurement noise parameters [15]. Two steps are performed

recursively until convergence:

• E-step: wl,k = E(γl|z̃k, η̂
g
l , Ŝ

g
l ) =

γ
g
l
N (z̃k;η̂

g
l
,Ŝ

g
l
)

∑

m
l=1

γ
g
l
N (z̃k;η̂

g
l
,Ŝ

g
l
)

for

l = 1, . . .m, and k = 1, . . . ,K.

• M-step: γ̂l = 1
K

∑K

k=1 wl,k, η̂l =
∑K

k=1 wl,k z̃k
∑

K
k=1

wl,k
and

Ŝl =
∑K

k=1 wl,k(z̃k−η̂l)(z̃k−η̂l)
T

∑

K
k=1

wl,k
.

The final estimates are obtained as γl,k = γ̂l, ηl,k = η̂l, and

Σn,l,k = Ŝl − HkΣk|k−1H
T
k , for k = 1, . . . ,K. This is a good

solution if data can be stored and processed off-line, but in standard

filtering applications the measurement noise parameters need to be

estimated online. The sequential counterpart is presented hereafter.

First, the auxiliar weights are obtained from the previous estimates

and the current innovation, wl,k =
γ̂l,k−1N (z̃k;η̂l,k−1,Ŝl,k−1)

∑mk
l=1

γ̂l,k−1N (z̃k;η̂l,k−1,Ŝl,k−1)
,

and then the new estimates are obtained as:

γ̂l,k = γ̂l,k−1 +
1
k
(wl,k − γ̂l,k−1),

η̂l,k = η̂l,k−1 +Gl,k(z̃k − η̂l,k−1), and

Ŝl,k = Ŝl,k−1+Gl,k

[

1
1−Gl,k

(z̃k − η̂l,k)(z̃k − η̂l,k)
T − Ŝl,k−1

]

,

where Gl,k =
wl,k

Ul,k
and Ul,k = Ul,k−1 + wl,k(Ul,1 = wl,1, l =

1, · · · ,mk). One iteration (at time instant k) of the noise statistics

estimation method is sketched in Algorithm 1 (i.e., the previous es-

timates and the current innovation z̃k are available), and marked in

red in the complete AGSF sketched in Algorithm 2.

4. COMPUTER SIMULATIONS

In order to provide illustrative numerical results, the performance of

the proposed method was evaluated in a 2-D radar target track-

ing application. The measurements were range and azimuth,

zk = [rk ψk]
T , and the states to be tracked were position

and velocity of the target, respectively gathered in vector xk =

Algorithm 2 Adaptive Gaussian Sum Filter

Require: z1:∞, {αi,0,µi,0,Σx,i,0}|
l0
i=1, {βj,1, νj,1,Σv,j,1}|

s1
j=1 ,

{γl,1,ηl,1,Σn,l,1}|
m1
l=1, l0, s1, m1.

1: Initialization: x̂i,0 ∼ N (µi,0,Σx,i,0) for i = 1, . . . , l0.
2: for k = 1 to∞ do

3: Time update:
4: for j = 1 to sk do
5: for i = 1 to lk do
6: Estimate the predicted states:

x̂ij,k|k−1 = fk−1(x̂i,k−1|k−1) + νj,k .

7: Estimate the error covariance matrices:
Σx,ij,k|k−1 = Fi,k−1Σx,i,k−1|k−1F

T
i,k−1 + Σv,j,k .

8: end for
9: end for

10: Predicted states: x̂k|k−1 =
∑sk

j=1

∑lk
i=1 αij,k|k−1x̂ij,k|k−1.

11: Innovation: z̃k = zk −Hkx̂k|k−1 with Hk =
∂hk(x)

∂x

∣

∣

∣

x=x̂k|k−1

.

12: Noise statistics estimation using Algorithm 1.

13: Measurement update:
14: for l = 1 to mk do
15: for j = 1 to sk do
16: for i = 1 to lk do
17: Estimate the predicted measurements:

ẑijl,k|k−1 = hk(x̂ij,k|k−1) + ηl,k .

18: Estimate the innovations covariance matrices:
Σzz,ijl,k|k−1 = Hij,kΣx,ij,k|k−1H

T
ij,k + Σn,l,k .

19: Calculate the weights αijl,k|k using (7).

20: Estimate the Kalman gains:

Kijl,k = Σx,ij,k|k−1H
T
ij,kΣ

−1
zz,ijl,k|k−1

.

21: Estimate the updated states:
x̂ijl,k|k = x̂ij,k|k−1 + Kijl,k

(

zk − ẑijl,k|k−1

)

.

22: Estimate the corresponding error covariances:

Σx,ijl,k|k = (I−K
T
ijl,kHij,k)Σx,ij,k|k−1.

23: end for
24: end for
25: end for

26: Final state estimate: x̂k|k =
∑mk

l=1

∑sk
j=1

∑lk
i=1 αijl,k|kx̂ijl,k|k ,

27: Gaussian mixture reduction: pruning and merging.
28: end for

[px,k, vx,k, py,k, vy,k]
T . A two–terms GMM measurement noise

was considered to model possible outliers in the measurement and

the clutter effect in radar tracking systems. Notice that the standard

GSF with known statistics was used as the benchmark, being the

ultimate performance achievable for the proposed method.

The dynamics of the target were xk = Φxk−1 + Γwk, with

Φ =







1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1






and Γ =









1
2
T 2 0
0 T

1
2
T 2 0
0 T









, T = 0.1s

the sampling period and wk ∼ N (0, 0.01 · I2) a Gaussian process

noise. The covariance of the resulting process noise can be expressed

as Q = E[Γwkw
T
k Γ

T ] = 0.01 · ΓI2Γ
T . The initial state estimate

was drawn from N (x0,P0) for each Monte Carlo trial (L = 500
independent Monte Carlo runs), with x0 = [100 1 100 1]T

being the true value, and P0 = diag([100 1 100 1]).
The measurements were modeled as

zk =

[

zk,1
zk,2

]

=

(
√

p2x,k + p2y,k

tan−1(
py,k

px,k
)

)

+ nk, (11)

where nk followed a GMM distribution, nk ∼ γ1N (η1,S1) +
γ2N (η2,S2), with γ1 = 0.3, γ2 = 0.7, η1 = [−7 − 0.35]T ,

η2 = [3 0.15]T and S1 = S2 =

(

1 0
0 0.01

)

. This noise was



0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time [s]

R
M

S
E

 [
m

]

m̂ = 1

m̂ = 2

m̂ = 3

Known statistics

n̂k,1

m̂=1

m̂=2

m̂=3

True GMM pdf

Fig. 1. (Top) RMSE for the AGSF (m̂ = 1, 2, 3) and the GSF with

known statistics. (Bottom) Approximated pdf of the GMM measure-

ment noise for nk,1.

initialized as γi,0 = γi + 0.05δγi, where δγi ∼ U [0, 1], ηi,0 =
ηi + δηi · [0.1 0.01]T , where δηi ∼ N (0, 1), Si,0 = 2Si, for

i = 1, 2.
Figure 1 (top) shows the filtering results of the AGSF when

m̂ = 1, 2, 3, and the GSF with known statistics. In this case, when

considering 2 or 3 terms for the measurement noise approximation,

good performances were obtained. The best results were obtained

when the number of terms was exactly the correct one (2 in this

case), but with a higher number of terms the loss in performance was

not significant. In these cases the AGSF estimates the states of the

system and the measurement noise statistics accurately, with limited

performance degradation on the state estimation performance when

compared to the benchmark, i.e., the GSF with known statistics.

It seems obvious that the filtering results considering only one

term were the worst, showing the improvement and therefore the

interest of using the proposed method rather than an Adaptive KF

when dealing with non-Gaussian measurement noise. Figure 1 (bot-

tom) depicts the approximation of the true measurement noise pdf

for three different approximations, m̂ = 1, 2, 3 terms, verifying

the previous performance results because the approximation of the

noises’ pdf with 2 and 3 terms are almost the same, and much better

than the approximation using only 1 Gaussian term.

5. CONCLUSIONS

This paper presented a solution to the robust Bayesian filtering

problem. The new Adaptive Gaussian Sum Filter, based on an

Expectation-Maximization type solution, is able to deal with non-

Gaussian measurement noise distributions with unknown statistics.

This adaptive scheme can get rid of the limitations on the knowledge

of the measurement noise, which means that the filter estimates

the parameters of the Gaussian mixture model measurement noise

exploiting information from the innovations. The method was

validated by computer simulations, showing that the proposed algo-

rithm can efficiently cope with the state estimation problem while

correctly dealing with the unknown statistics of the non-Gaussian

measurement noise. Future work goes towards formally proving the

convergence of the algorithm.

6. REFERENCES

[1] P. Stano et al., “Parametric bayesian filters for nonlinear

stochastic dynamical systems: A survey,” IEEE Trans. on Cy-

bernetics, vol. 43, no. 6, pp. 1607–1624, Dec. 2013.

[2] A. Doucet, N. De Freitas, and N. Gordon, Eds., Sequential

Monte Carlo methods in practice, Springer, 2001.

[3] I. Arasaratnam, S. Haykin, and R. J. Elliot, “Discrete-time non-

linear filtering algorithms using Gauss-Hermite quadrature,”

Proc. of the IEEE, vol. 95, no. 5, pp. 953–977, 2007.

[4] G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Adaptive

Gaussian sum filter for nonlinear Bayesian estimation,” IEEE

Trans. Automat. Contr., vol. 56, no. 9, pp. 2151–2156, 2011.

[5] M. J. Caputi and R. L. Moose, “A modified Gaussian sum

approach to estimation of non-Gaussian signals,” IEEE Trans.

Aerosp. Electron. Syst., vol. 29, no. 2, pp. 446–451, 1993.
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