
Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 13221

To link to this article : DOI :10.1007/978-3-319-10073-9_21
URL : http://dx.doi.org/10.1007/978-3-319-10073-9_21

To cite this version : Gutiérrez-Soto, Claudio and Hubert, Gilles 
Probabilistic Reuse of Past Search Results. (2014) In: International 
Conference on Database and Expert Systems Applications - DEXA 
2014, 1 September 2014 - 5 September 2014 (Munich, Germany). 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78384916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13221/
http://dx.doi.org/10.1007/978-3-319-10073-9_21
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Probabilistic Reuse of Past Search Results

Claudio Gutiérrez-Soto1,2 and Gilles Hubert1

1 Université de Toulouse, IRIT UMR 5505 CNRS
118 route de Narbonne, F-31062 Toulouse cedex 9

2 Departamento de Sistemas de Información
Universidad del B́ıo-B́ıo, Chile

Abstract. In this paper, a new Monte Carlo algorithm to improve pre-
cision of information retrieval by using past search results is presented.
Experiments were carried out to compare the proposed algorithm with
traditional retrieval on a simulated dataset. In this dataset, documents,
queries, and judgments of users were simulated. Exponential and Zipf
distributions were used to build document collections. Uniform distribu-
tion was applied to build the queries. Zeta distribution was utilized to
simulate the Bradford’s law representing the judgments of users. Empir-
ical results show a better performance of our algorithm compared with
traditional retrieval.

1 Introduction

A wide range of approximations in information retrieval (IR) are devoted to im-
proving the list of documents retrieved to answer particular queries. Among these
approaches, we can find solutions that involve efficient assignments of systems
to respond to certain types of queries, by applying data mining techniques [1].
Nonetheless, some tasks of data mining can imply not only long periods of time,
but also a high cost in money [2]. In addition, solutions that involve an exhaustive
analysis of all possible alternatives to find the best answer to a query (i.e., the
best precision for each type of query) can be found in IR context. Prior solutions
correspond to approaches based on learning techniques (e.g., neural networks,
genetic algorithms, and machines support vectors). However, these approaches
should imply a high cost in learning time as well as diverse convergence times
when the datasets used are heterogeneous [3]. Additionally, characteristics, such
as the scopes where these types of algorithms are applied and the performance
achieved in different environments, are complex to address [4].

In the IR literature, two types of approaches used in the context of past queries
are easily identifiable. The first approaches are based on TREC collections. Most
of these approaches use simulation to build similar queries with the aim to
provide a suitable framework of evaluation. The second type of approaches rooted
in the use of historical queries on the Web, most of which are supported on
repetitive queries. As a result, having ad-hoc collections which allow to evaluate
the use of past queries in an appropriate way, is a hard task. Therefore, one way
to provide an ad-hoc environment for approximations based on past queries is
simulation.



Our main contribution is a Monte Carlo algorithm, which uses relevant doc-
uments from the most similar past query to answer a new query. The algorithm
splits the list of retrieved documents from the most similar past query in subsets
of documents. Our algorithm is simple to implement and effective. Moreover,
it does not require learning time. Documents, query collections, and relevance
judgments of users were simulated to built a dataset for evaluating the perfor-
mance of our algorithm. A wide range of experiments have been carried out.
We have applied the Student’s paired t-test to support the experimental results.
Empirical results show better results of our algorithm (in particular the precision
P@10) than traditional retrieval.

The paper is organized as follows. In section 2, related works on past searches,
randomized algorithms, and simulation in IR context are presented. In section 3,
we present our approach to simulate an IR collection, in the context of past
search results. Section 4 details our approach using past search results, with
mathematical definitions. In section 5, empirical results are described. Finally,
conclusions are presented in section 6.

2 Related Work

Two categories of approaches employed in the context of past queries are eas-
ily identifiable. The first category is based on TREC collections. In a recent
work [5], a distributed approach is presented in the context of past queries.
Similar queries are simulated from a traditional set of queries. Moreover, the
judgments of users are omitted. In [6], two strategies aiming at improving pre-
cision were implemented. The first strategy corresponds to the combination of
results from previous queries, meanwhile the second implies the combination of
query models. An extended work is exposed in [7]. The authors address models
based on implicit feedback information to increase precision. Implicit feedback
information is given by queries and clickthrough history in an active session. It
is important to emphasize that TREC collections used here have been modified
to evaluate approximations based on past queries.

The second category of approaches focuses on log files in the context of the
Web. In [8], an automatic method to produce suggestions based on previously
submitted queries is presented. To achieve this goal, an algorithm of association
rules was applied on log files. The 95 most popular queries were considered.
Nonetheless, the percentage of these 95 queries over 2.3 millions of records is
unknown. Hence, it is infeasible to estimate the impact of this approximation.
Moreover, [9] claims that there is no easy way to calculate the real effect of
approximations founded on association rules. It is mainly due to the complexity
to determine the successive queries that belong to the same session (i.e., for the
same user). In [10], an approximation based on repeated queries is exposed. The
aim is the identification of identical queries executed in the same trace. In [11],
two contributions, which take advantages from repeated queries, are presented.
The first contribution is aligned on efficiency in execution time and the second
is focused on repetitive document access by the search engines.



Simulation to evaluate information retrieval systems (IRSs) is presented as a
novel branch of research [12]. Simulation in IR is an automatic method, where
documents, query collections, and judgments of users can be built without user
intervention [13].

In addition, the IR literature is crammed with contributions based on prob-
abilistic algorithms. The major part of probabilistic algorithms in IR can be
categorized in two classes, learning techniques and optimization. Typically, ap-
proximations rooted in learning techniques involve the use of Bayesian Networks
and their variants. The PrTFIDF algorithm, which is a probabilistic version of
TFIDF algorithm is presented in [14]. PrTFIDF provides a new vision of vector
space model, where the theorem of total probability, the Bayes’ theorem, and a
descriptor for every document are used. Final results show a better performance
than TFIDF. In [15], the classification of documents in an unsupervised manner
is carried out. It uses Poisson distribution according to the query or topic.

Several optimization techniques involve the use of Genetic Algorithms (GA).
Inspired by the formula proposed by Salton [16] (where the term weights for
documents and queries are the product between the term frequency multiplied
by an inverse collection frequency factor), a new fitness function is presented
in [17]. Both, vectors of documents and queries are normalized by using the
formula. Experimental results show better effectiveness when using this approach
than traditional retrieval (i.e., using cosine distance). Eventually, the Probfuse
algorithm proposed in [18], whose aim is to combine results from several IR
algorithms, outperforms the widely used CombMNZ algorithm.

Different to Bayesian Networks and GA, Monte Carlo and Las Vegas algo-
rithms are used usually when the problem is hard to solve like NP problems
or when algorithm input is non-deterministic. Las Vegas algorithms provide an
answer, which is always correct and where in the worst case the execution time
is the same as the deterministic version. In contrast to Las Vegas algorithms,
Monte Carlo algorithms give an answer, which can be incorrect (i.e., the algo-
rithm returns true, when the answer should be false, or vice-versa). When one
of these answers is correct, it is called true-biased (the correct answer is true) or
false-biased (the correct answer is false). When both answers can be incorrect,
it is called two-sided errors.

Our Monte Carlo algorithm corresponds to the type two-sided errors. This
is due to the fact that we are not sure about judgments of users with respect
to whether a document is either relevant or not relevant regarding the query.
Nonetheless, we assume that documents that appear at the top of the result list
have more probability to be relevant than documents that appear at the bottom
of the list.

3 Simulating IR Collections

Our method consists of two steps, based on prior work [19]. The first step aims at
creating terms, documents, and queries. Both Heaps’ and Zipf’s laws are consid-
ered to build document collections. We assume that both processes, elimination



of stop words, and stemming were carried out. Due to terms which compose a
document can belong to several subjects, Zipf’s law is applied to select terms
from topics [20]. Exponential distribution can be applied as an alternative to
Zipf’s law. Then, past queries are created from documents and new queries are
built from past queries. In the final step, to simulate judgments provided by users
about relevance of documents for a specific query, Bradford’s law is applied [21].

The most basic element that composes a document is a term. A term is
composed of letters from the English alphabet. Both documents and queries
are composed of terms. Each document is unique. Past queries are built from
documents and their intersections are empty. A topic (i.e., subject of docu-
ments) is defined by terms. Several topics are used to built a document. The
intersection among topics is empty. Aiming to build documents, Zipf and Ex-
ponential distributions are used to select terms from different topics. Uniform
distribution is used to select documents, where terms are selected to built the
past queries. Then, past queries are built from the documents. New queries
are made up from past queries by either adding a new term or deleting a
term. Bradford’s law has been applied through Zeta distribution. In order to
explain the mechanism to obtain the precision, we can assume two lists of doc-
uments. The first list of documents (for the query 1) is composed of the docu-
ments d1(1), d3(1), d5(1), d6(0), d8(0), d9(0) where di(1) is a relevant document,
meanwhile di(0) is irrelevant. In the same way, the second list of documents is
composed by the documents d2(0), d3(1), d5(1), d6(0), d7(1), d10(0). Thus, first, a
subset of common documents is found (d3, d5 and d6). Second, from the common
subset, relevant documents are determined for both queries by using Bradford’s
law (d3 and d5). Third, Bradford’s law is applied for each list by conserving the
relevant documents that belong to the common subset (for the first list d1, d3
and d5 are relevant documents). As a consequence, the precision (in our case
P@10) is different for both queries.

4 Retrieval Using Past Queries

At the beginning, each submitted query is saved with its documents. After-
wards, each new query is compared with the past queries stored in the sys-
tem. If there is a past query quite similar, then the relevant documents are
retrieved from the most similar past query using our algorithm. Broadly speak-
ing, our algorithm divides the list of documents retrieved from the past query,
in groups of power two. For example, if the list of documents comprises 30 doc-
uments, the number of documents will be rounded up to the next number in
power two, i.e., n = 32. Later on, groups of documents are defined as follows.
The first group comprises 20 documents. The second group involves 21 docu-
ments, the third group is composed of 22 documents, and so on, in such a way
that the sum of the documents does not outperform n = 32. Thus, the num-
ber of groups is 5. The biggest group is composed of documents that appear
in the first positions (between the position 1 and 16). The next biggest group



comprises documents that appear from the position 17 to 24, and so on. The
likelihood of a document to be relevant is determined by two factors: the group
it belongs to and its position in the group. The algorithm and a more detailed
example are displayed in the next sections.

4.1 Definitions and Notations

Let DB be an IR dataset, composed of a set of documents D, and a set of past
queries Q. Besides, let Q′ be the set of new queries. VN (q) is a set of N retrieved
documents given q, and sim(q, dj) is the cosine distance between query q and the
document dj . Besides, VN (q) = A(q) ∪A′(q), where A(q) corresponds to the set
of all relevant documents for the query q. A′(q) is the set all irrelevant documents
for the query q. C =

⋃

c(q, VN (q)) is the set of all retrieved documents with their
respective queries.

Definition 1. ∂ : Rc(q
′) → A(q′) is a function, which assigns the most relevant

documents to the new query q′, such as q′ ∈ Q′ and Rc(q
′) corresponds to a set

of retrieved documents, from the most similar past query. (see Definition 2 and
Definition 4).

In addition, let ‖x‖ be the integer part of a real number x, ⌈x⌉ corresponds
to the upper integer of x and ⌊x⌋ corresponds to the lower integer of x. B[N ] is
a binary array such as B has N elements, and a

b
is the proportion of values in B

(see Algorithms 1, lines from 9 to 12), which have the value 1 (true). This array is
the base to provide a level of general probability for all documents. Nevertheless,
the probability of each document according to the position in VN (q), is computed
by the Algorithm 1.

Definition 2. M(N) = min{m | m ∈ N∧
∑m

k=0 2
k ≥ N∧N < 2m+1} be the up-

per bound set, which involves documents of VN (q)(in power two) (see Algorithm
1, lines from 2 to 4).

Definition 3. Let i be the position of a document in VN (q), such as the first
element (i = 1) represents the most similar document, then fx(i, N) = min{x |

x ∈ N ∧ i ≤
∑x

k=1
2M(N)

2k
}, corresponds to the number of set assigned for the

document i (see Algorithm 1, line 5).

Definition 4. Let
v(i, N) = (2M(N)−fx(i,N) − 1) − [〈(

∑fx(i,N)
k=1 2M(N)−k) − i〉mod(2M(N)−fx(i,N))]

be the value assigned to i, from 0 to 2M(N)−fx(i,N) (see Algorithm 1, line 15).

Definition 5. Φ(i, N) = log2(2
M(N)−fx(i,N) − v(i, N))−‖log2(2

M(N)−fx(i,N) −
v(i, N))‖ a decimal number, which is [0, 1[ (see Algorithm 1, lines from
16 to 19).



Definition 6. Let

K(i, N) =

{

⌈Φ(i, N)⌉ ∗ ‖M(N)− fx(i, N)‖ : if Φ(i, N) ≥ 0.5
⌊Φ(i, N)⌋ ∗ ‖M(N)− fx(i, N)‖ : if Φ(i, N) < 0.5

be the num-

ber of iterations to look for a hit in the array B (see Algorithm 1, lines from 20
to 25).

Thus, β : F (i) → {0, 1}, is the hit and miss function.

F (i) =

{

1 : Pri(1) =
∑K(i,N)

l=1
2‖M(N)−fx(i,N)‖

(2M(N))l
,

0 : Pri(0) = 1− Pri(1)

where Pri(1) is the probability of a hit (1), and Pri(0) corresponds to the
probability of a miss (0) for the element i.

Our algorithm works as follows. The list of retrieved documents is split in subsets
of elements in power two. In our case, VN (q) has 30 documents, however it can be
approximated to 32 documents. Thus, if we apply Definition 2, then M(N) = 5.
Therefore, VN (q) is split in 5 subsets. In general terms, Pri(1) for every subset is

different. Specifically on 2‖M(N)−fx(i,N)‖

(2M(N))
. Thus, the space of possible candidates

for the first subset is 2‖5−1)‖

(25) = 1
2 , for the second subset is 2‖5−2)‖

(25) = 1
4 and so on.

To show how the probability decreases according to the subsets, two examples
are provided, for the first subset and the third subset. The second element of
the first subset is i = 2, thus applying the Definition 3, fx(2, 30) = 1, therefore,

v(2, 30) = (25−1 − 1) − [〈(
∑1

k=1 2
5−1) − 2〉) mod 25−1] = 1 (see Definition 4 ).

Applying Definition 5.
Φ(2, 30) = log2(2

5−1 − 1) − ‖log2(2
5−1 − 1)‖ = 3.906− 3 = 0.906. Applying

Definition 11, K(2, 30) = ⌈Φ(2, 30)⌉ ∗ ‖5− 1‖ = 1 ∗ 4 = 4.

Thus, Pr2(1) =
∑4

l=1
2‖5−1‖

(25)l
= 0.757. In the same way, v(26, 30) = (25−3 −

1)− [〈(16+ 8+4)− 26〉)mod 25−3] = 1. Finally, Pr26(1) =
∑2

l=1
2‖5−3‖

(25)l
= 0.128

5 Experiments

5.1 Experimental Environment and Empirical Results

The experimental environment was instantiated as follows. The length of a term
is between 3 and 7. The length was determined using Uniform distribution. The
total number of terms used in each experiment corresponds to 800. A document
can contain between 15 and 30 terms. The number of topics used in each ex-
periment is 8. Each topic is defined by 100 terms. Each experiment used 800,
1600, 2400, 3200, and 4000 documents. Terms for a query were between 3 and
8. We built 15 past queries from documents. From the set of past queries, 15
new queries were built. Thereby, we used 30 distinct queries. Simulations were
implemented on C language and run on Linux Ubuntu 3.2.9, with Centrino 1350,
1.8 Ghz Intel processor, 1GB RAM, and gcc 4.6.3 compiler.

Three experimental scenarios were defined. For the first and second experi-
ments, Exponential distributions (with parameters θ = 1.0 and θ = 1.5 ) were



Algorithm 1. B[N ], APast(q), VN (q), q′

Require: B[N ] is a boolean array, APast(q) is a set of relevant documents for the
query q, VN(q) is the set of retrieved documents for the query q, q′ is the most
similar query for q

Ensure: ANew(q
′) is a set of relevant documents for the query q′

1: ANew(q)← ∅
2: for i← 0, sum← 0, sum < N + 1 do

3: sum← sum+ 2i

4: end for

5: k ← i− 1
6: for i← 1, N do

7: B[i]← false

8: end for

9: for i← 1, N

2
do

10: j ← random(1, ..., N)
11: B[j]← true

12: end for

13: l ← 1
14: while do k ≥ 0 AND l < N

15: for i← 0, i < 2k do

16: I ← 2k − i

17: u← log2(I)
18: U ← ‖u‖
19: u← u− U

20: if u− 0, 5 ≥ 0 then

21: K ← ⌈log2(I)⌉
22: else

23: K ← ⌊log2(I)⌋
24: end if

25: for j ← 1, j ≤ k ∗K do

26: if 2k ∗ 2 ≥ N then

27: index = N

28: else

29: index = 2k ∗ 2− 1
30: end if

31: if B[index] = true then

32: if ([idDoc = Position(l of VN (q))] is in APast(q)) then

33: ANew(q
′)← ANew(q

′) ∪ didDoc

34: l ← l + 1
35: end if

36: else

37: l ← l + 1
38: end if

39: end for

40: end for

41: k← k − 1
42: end while

43: return(ANew(q
′))



applied to build the collection of documents D. In the third experiment, Zipf dis-
tribution (with parameter θ = 1.6) was applied to build D. Simulations of user
judgments were carried out under Zeta Distribution. Zeta distribution with pa-
rameters 2, 3, and 4 were applied on the 30 most similar documents with respect
to the queries. Besides, the Student’s Paired t-Test (Two Samples test) over each
average P@10 (our approach with respect to traditional retrieval) were used to
support the results. Final results are summarized and displayed in Table 1.

Table 1. Results comparing our approach of reusing past queries with cosine distance

Experiment Relevance simulation Percentage of Average
Distribution to build Zeta distribution improved queries improvement
collection D with parameter S (Measure: P@10)

Experiment 1 S = 2 83% +21%**
Exponential distribution S = 3 74% +17%**
(with parameter θ = 1.0) S = 4 65% +20%**

Experiment 2 S = 2 77% +17%**
Exponential distribution S = 3 73% +18%**
(with parameter θ = 1.5) S = 4 65% +16%**

Experiment 3 S = 2 85% +21%**
Zipf distribution S = 3 84% +18%**
(with parameter θ = 1.6) S = 4 77% +23%**

** p-value<0.01 (two sample t-test).

5.2 Discussion

Accepted ranges for Zipf’s law regarding the distribution of word frequencies in
a vocabulary are between 1.4 and 1.8. In our experiments, Zipf distribution was
used with value 1.6 to select terms from topics. It is important to emphasize
that every time the parameter S of Zeta distribution (to apply Bradford’s law)
was incremented, both averages of P@10, using Past Result (i.e., our approach)
and Cosine (i.e., traditional IR) declined similarly. Additionally, if the number
of queries was increased in the experiments, it should not have different final
results. This is because for every past query it exists just one and unique query for
which the intersection is not empty. Also, the final results show that increasing
the number of documents have no impact on the significance test p-values.

6 Conclusions

In this paper, a new Monte Carlo algorithm for information retrieval using past
queries have been presented. It is easy to implement, does not require time to
learning, and provides acceptable results improving precision (i.e., P@10). Fur-
thermore, this algorithm can be implemented not only inside an information



retrieval system but also as external interface outside search engines. This algo-
rithm relies on reuse of relevant documents retrieved from the most similar past
query. In addition, different evaluation scenarios have been simulated. Simula-
tion provides two advantages. First, it provides an ideal environment to evaluate
our algorithm. Second it makes possible to build not only document and query
collections but also relevance judgments for documents given a query. Empirical
results showed better precision (P@10) of our algorithm compared with tradi-
tional retrieval.

References

1. Bigot, A., Chrisment, C., Dkaki, T., Hubert, G., Mothe, J.: Fusing different infor-
mation retrieval systems according to query-topics: a study based on correlation
in information retrieval systems and trec topics. Inf. Retr. 14(6), 617–648 (2011)

2. Gray, P., Watson, H.J.: Present and future directions in data warehousing. SIGMIS
Database 29(3), 83–90 (1998)

3. Nopiah, Z.M., Khairir, M.I., Abdullah, S., Baharin, M.N., Arifin, A.: Time com-
plexity analysis of the genetic algorithm clustering method. In: Proceedings of the
9th WSEAS International Conference on Signal Processing, Robotics and Automa-
tion, ISPRA 2010, Stevens Point, Wisconsin, USA, pp. 171–176. World Scientific
and Engineering Academy and Society, WSEAS (2010)

4. Kearns, M.J.: The Computational Complexity of Machine Learning. PhD thesis,
Harvard University, USA, Cambridge, MA, USA (1989)

5. Cetintas, S., Si, L., Yuan, H.: Using past queries for resource selection in distributed
information retrieval. Technical Report 1743, Department of Computer Science,
Purdue University (2011)

6. Shen, X., Zhai, C.X.: Exploiting query history for document ranking in interactive
information retrieval. In: Proceedings of the 26th Annual International ACM SIGIR
Conference on Research and Development in Informaion Retrieval, SIGIR 2003,
pp. 377–378. ACM, New York (2003)

7. Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit
feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2005, pp. 43–50.
ACM, New York (2005)

8. Fonseca, B.M., Golgher, P.B., de Moura, E.S., Ziviani, N.: Using association rules
to discover search engines related queries. In: Proceedings of the First Conference
on Latin American Web Congress, LA-WEB 2003, pp. 66–71. IEEE Computer
Society, Washington, DC (2003)

9. Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query recommendation using query
logs in search engines. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y., Vakali,
A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Heidelberg (2004)

10. Teevan, J., Adar, E., Jones, R., Potts, M.A.S.: Information re-retrieval: repeat
queries in yahoo’s logs. In: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR
2007, pp. 151–158. ACM, New York (2007)

11. Garcia, S.: Search Engine Optimisation Using Past Queries. PhD thesis, RMIT
University, Australia (2007)

12. Clough, P., Sanderson, M.: Evaluating the performance of information retrieval
systems using test collections. Information Research 18(2) (2013)



13. Huurnink, B., Hofmann, K., de Rijke, M., Bron, M.: Validating query simulators:
An experiment using commercial searches and purchases. In: Agosti, M., Ferro,
N., Peters, C., de Rijke, M., Smeaton, A. (eds.) CLEF 2010. LNCS, vol. 6360, pp.
40–51. Springer, Heidelberg (2010)

14. Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization. In: Proceedings of the Fourteenth International Conference on Ma-
chine Learning, ICML 1997, pp. 143–151. Morgan Kaufmann Publishers Inc., San
Francisco (1997)

15. Chan, E.P., Garcia, S., Roukos, S.: Probabilistic modeling for information retrieval
with unsupervised training data. In: Proceedings of the Fourth International Con-
ference on Knowledge Discovery and Data Mining (KDD), pp. 159–163. AAAI
Press (1998)

16. Salton, G., Buckley, C.: Readings in information retrieval. In: Sparck Jones, K.,
Willett, P. (eds.) Readings in Information Retrieval, pp. 355–364. Morgan Kauf-
mann Publishers Inc., San Francisco (1997)

17. Radwan, A.A.A., Latef, B.A.A., Ali, A.M.A., Sadek, O.A.: Using genetic algorithm
to improve information retrieval systems. World Academy of Science, Engineering
and Technology 17, 1021–1027 (2008)

18. Lillis, D., Toolan, F., Mur, A., Peng, L., Collier, R., Dunnion, J.: Probability-based
fusion of information retrieval result sets. Artif. Intell. Rev. 25(1-2), 179–191 (2006)

19. Gutiérrez-Soto, C., Hubert, G.: Evaluating the interest of revamping past search
results. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA
2013, Part II. LNCS, vol. 8056, pp. 73–80. Springer, Heidelberg (2013)

20. Poosala, V.: Zipf’s law. Technical Report 900 839 0750, Bell Laboratories (1997)
21. Garfield, E.: Bradford’s Law and Related Statistical Patterns. Essays of an Infor-

mation Scientist 4(19), 476–483 (1980)


