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Monotone Temporal Planning: Tractability,
Extensions and Applications⋆

(Extended Abstract)

Martin C. Cooper, Frédéric Maris, and Pierre Régnier

IRIT, University of Toulouse III, 31062 Toulouse, France
{cooper,maris,regnier}@irit.fr

Abstract. Wedescribe apolynomially-solvable class of temporal planning
problems. Polynomiality follows from two assumptions. Firstly, by sup-
posing that each fluent (fact) can be established by at most one action, we
can quickly determine which actions are necessary in any plan. Secondly,
the monotonicity of fluents allows us to express planning as an instance
of STP6= (Simple Temporal Problemwith difference constraints). This class
includes temporally-expressive problems requiring the concurrent execu-
tion of actions, with potential applications in the chemical, pharmaceuti-
cal and construction industries. Any (temporal) planning problem has a
monotone relaxation, which can lead to the polynomial-time detection of
its unsolvability in certain cases. Indeed our relaxation is orthogonal to
the relaxation based on ignoring deletes used in classical planning since
it preserves deletes and can also exploit temporal information.

1 Temporal Planning

Temporal planning is an important extension of classical planning in which ac-
tions are durative and may overlap. Classical propositional planning is already
PSPACE-Complete [1], and temporal planning is EXPSPACE-complete [8].
An important aspect of temporal planning is that, unlike classical planning,
it permits us to model so-called temporally-expressive problems in which the
execution of two or more actions in parallel is essential in order to solve the
problem [5]. We define the first polytime-solvable class of temporal planning.
This class includes temporally-expressive problems. It also leads to a novel re-
laxation of arbitrary temporal planning problems which provides a polytime
sufficient condition for the detection of certain properties of actions, fluents and
instances. Preliminary (and weaker) versions of this tractable class and tempo-
ral relaxation appeared in conference proceedings [2,3] before being improved
in the journal paper [4] corresponding to this extended abstract.

A fluent is an atomic proposition (such as door-open). Changes to the value
of a fluent are instantaneous, but conditions on the value of a fluent may be
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imposed over an interval. An action a = 〈Cond(a),Add(a),Del(a),Constr(a)〉
consists of a set Cond(a) of fluents which are required to be true for a to be
executed, a set Add(a) of fluents which are established by a, a set Del(a) of
fluents which are destroyed by a, and a set Constr(a) of interval constraints be-
tween the relative times of events which occur during the execution of a. An
event corresponds to one of four possibilities: the establishment or destruction
of a fluent by an action a, or the beginning or end of an interval over which a
fluent is required by an action a. We represent an action by a rectangle whose
length corresponds to its duration. Conditions are written above an action, and
effects (adds or deletes) below. For example, consider the two actions shown
below: LIGHT-MATCH and LIGHT-CANDLE. The action LIGHT-MATCH re-
quires that the match be live, in order to light it. The match remains lit until it
is blown out at the end of the action. A constraint in Constr(LIGHT-MATCH)
imposes that the duration of the action is at most 10 seconds (at which moment
the whole match has burnt). The second action LIGHT-CANDLE requires that
the match be lit during two seconds for the candle to be lit.

Live

LIGHT-MATCH

¬Live

Match-lit
¬Match-lit

Match-lit

LIGHT-CANDLE

Candle-lit

A temporal planning problem 〈I, A,G〉 consists of a set of actions A, an initial
state I and a goal G, where I and G are sets of fluents. In a positive problem all
fluents inG and Cond(a) (for all actions a) are positive. A temporal plan P for the
problem 〈I, A,G〉 is a mapping τ from the events in a set of instances of actions
from A to the time dimension such that all conditions of actions are true when
required, all goal fluents g ∈ G are true at the end of the execution of P and
the constraints Constr(a) of each action a are satisfied (together with a technical
condition ensuring that P is robust under infinitesimal shifts in the starting
times of actions). Thus a temporal plan does not schedule its action-instances
directly but schedules all the events in its action-instances. A plan is minimal if
removing any non-empty subset of action-instances produces an invalid plan.
For an initial state I = {live, ¬Match-lit} and a set of goals G = {Candle-
lit}, it is clear that all minimal temporal plans for our example problem involve
executing the two actions in parallel with the start (respectively, end) of LIGHT-
MATCH being strictly before (after) the start (end) of LIGHT-CANDLE.

2 Monotonicity and Establisher-Uniqueness Imply
Tractability

A set of actions A is establisher-unique (EU) if no fluent can be established by
two distinct actions of A.



A fluent f is −monotone* (relative to a positive temporal planning problem
〈I, A,G〉) if, after being destroyed f is never re-established in any minimal tem-
poral plan for 〈I, A,G〉. Similarly, a fluent f is +monotone* if, after having been
established f is never destroyed in any minimal temporal plan. A fluent is
monotone* if it is either + or −monotone*.

An action a ∈ A is unitary for a temporal planning problem 〈I, A,G〉 if each
minimal temporal plan for the 〈I, A,G〉 contains at most one instance of a. An
action landmark is an action which occurs in each temporal plan [7].

In our example problem, both actions are clearly essential and hence land-
marks. There is only one match available, which means that LIGHT-MATCH
can be executed at most once (and is hence unitary). This means that the fluent
Match-lit is −monotone* since it cannot be established after being destroyed.
This same fluent Match-lit is not +monotone* since it is destroyed after be-
ing established. If ∄ai, aj ∈ A such that f ∈ Add(ai) ∩ Del(aj), then f is both
+monotone* and −monotone*. This is the case for f = Candle-lit in our exam-
ple. In certain IPC benchmark domains (parcprinter, crewplanning, tms), we
found that many fluents were monotone* (respectively, 100%, 95% and 50% of
those fluents that are either goals or liable to be established in minimal plans).

The following theorem follows from a reduction to STP 6= [6]. The constraints
created by this reduction are given in Section 3. The proof of this and all other
results are given in the journal version [4] of this extended abstract.

Theorem 1. The class of positive temporal planning problems 〈I, A,G〉 in which A is
establisher-unique, all fluents are monotone* and all fluents in I are −monotone* can
be solved in O(n3) time and O(n2) space, where n is the total number of events in the
actions in A. Indeed, we can even find a temporal plan with the minimum number of
action-instances or of minimal cost in the same complexity. Furthermore, if all actions
in A are rigid (i.e. intervals between different events in the action are fixed) then the
problem of finding a plan with minimum makespan is polytime approximable.

3 Temporal Relaxation

Relaxation is ubiquitous in Artificial Intelligence. A valid relaxation of an in-
stance I has a solution if I has a solution. Hence when the relaxation has no
solution, this implies the unsolvability of the original instance I . A tractable
relaxation can be built and solved in polynomial time. Our tractable class of
EU monotone planning allows us to define a relaxation TR (temporal Relax-
ation) which is an alternative to the traditional relaxation of propositional non-
temporal planning problems consisting of simply ignoring deletes. In fact, TR
is a solution procedure for the class described in Theorem 1 (see [4] for a proof).

We use the notation a → f (resp., a → ¬f ) to denote the event that action a

establishes (destroys) fluent f , and f |→ a and f →|a, respectively, to denote
the beginning and end of the interval over which action a requires condition f .
We use the notation τfirst(e) (respectively, τlast(e)) to represent the time in a plan
at which an event e occurs first (resp., last).



By applying the following simple rule until convergence we can transform
(in polynomial time) any temporal planning problem into a relaxed version
which is EU: if a fluent f is established by two distinct actions, then delete
f from the goal G and from Cond(a) for all actions a. From now on we as-
sume the temporal planning problem is EU. We denote byALM the set of action
landmarks that have been detected. Establisher-uniqueness implies that we can
easily identify many such actions. The constraints of TR are as follows:

intrinsic constraints: ∀a ∈ ALM, for all events e of a, τfirst(e) ≤ τlast(e).
inherent constraints: ∀a ∈ ALM, τfirst and τlast both satisfy the interval con-

straints in Constr(a).
contradictory-effects constraints: no fluent is simultaneously established and

destroyed by two actions.
−authorisation constraints: For each positive fluent f which is known to be

−monotone*, ∀ai, aj ∈ ALM, if f ∈ Del(aj) ∩Cond(ai), then τlast(f →|ai) <
τfirst(aj → ¬f). (If i = j then the inequality is not strict [4]).

+authorisation constraints: For each positive fluent f which is known to be
+monotone*, ∀ai, aj ∈ ALM, if f ∈ Del(aj)∩Add(ai), then τlast(aj → ¬f) <
τfirst(ai → f).

causality constraints: For each positive fluent f , ∀ai, aj ∈ ALM, if f ∈
(Cond(aj) ∩Add(ai)) \ I then τfirst(ai → f) < τfirst(f |→ aj). (If i = j then
the inequality is not strict).

goal constraints: Cond(ALM) ⊆ I ∪ Add(A), G ⊆ (I \ Del(ALM)) ∪ Add(A),
and for each g ∈ G, ∀ai, aj ∈ ALM, if g ∈ Del(aj) ∩ Add(ai), then τlast(aj →
¬g) < τlast(ai → g).

unitary constraint: For each action a which is known to be unitary (see [4] for
rules for the polytime detection of unitary actions), for all events e in a,
τfirst(e) = τlast(e).

Theorem 2. A temporal planning problem in the tractable class described in Theo-
rem 1 has a solution if and only if TR has a solution.

We can use TR to detect certain properties of actions, fluents and problems.

Lemma 1. If the temporal relaxation TR(I, A,G) of a positive temporal planning prob-
lem 〈I, A,G〉 has no solution, then 〈I, A,G〉 has no solution. If TR(I, A \ {a}, G) has
no solution, then a is a landmark action in 〈I, A,G〉.

The detection of monotonicity* is theoretically as difficult as temporal plan-
ning, since it is EXPSPACE-complete [4]. However, TR together with extra con-
straints provides a powerful polytime method for detecting monotonicity*.

Lemma 2. If ∀a, b ∈ A s.t. f ∈ Add(a) ∩ Del(b), TR together with the constraint
τfirst(a → f) < τlast(b → ¬f) is inconsistent, then f is +monotone*. If ∀a, b ∈ A s.t.
f ∈ Add(a) ∩Del(b), TR together with the constraint τfirst(b → ¬f) < τlast(a → f)
is inconsistent, then f is −monotone*.



The class of temporal planning problems described in Theorem 1 which also
have the property that all fluents can be detected as monotone* by Lemma 2
constitutes a tractable class that can be detected and solved in polynomial time.

Further research is required to determine if interesting tractable classes can
be defined without the restrictive assumption of establisher-uniqueness.
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