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a b s t r a c t

When supervising aircraft, air traffic controllers need to know the current wind magnitude and direction

since they impact every flying vessel. The wind may accelerate or slow down an aircraft, depending on its

relative direction to the wind. Considering several aircraft flying in the same geographical area, one can

observe how the ground speed depends on the direction followed by the aircraft. If a sufficient amount of

trajectory data is available, approximately sinusoidal shapes emerge when plotting the ground speeds.

These patterns characterize the wind in the observed area. After visualizing this phenomenon on

recorded radar data, we propose an analytical method based on a least squares approximation to retrieve

the wind direction and magnitude from the trajectories of several aircraft flying in different directions.

After some preliminary tests for which the use of the algorithm is discussed, we propose an interactive

procedure to extract the wind from trajectory data. In this procedure, a human operator selects appropri-

ate subsets of radar data, performs automatic and/or manual curve fitting to extract the wind, and vali-

dates the resulting wind estimates. The operators can also assess the wind stability in time, and validate

or invalidate their previous choices concerning the time interval used to filter the input data.

The wind resulting from the least squares approximation is compared with two other sources – the

wind data provided by Météo-France and the wind computed from on-board aircraft parameters – show-

ing the good performance of our algorithm. The interactive procedure received positive feedback from air

traffic controllers, which is reported in this paper.

1. Introduction

Aircraft fly through the air, and the air flows over the Earth’s

surface. This simple statement highlights the crucial need to know

the winds aloft when one wants to navigate over the Earth’s sur-

face in a flying machine. Alternatively, one can also guess how

the wind flows simply by observing the trajectories of aircraft rel-

ative to the ground. Interestingly enough, air traffic controllers al-

ready apply this idea in their everyday work. Experienced

controllers can roughly estimate the wind force and direction by

observing the aircraft trajectories, and comparing the ground

speeds of aircraft flying in different directions: aircraft facing the

wind have a lower ground speed than aircraft flying in the opposite

direction. This basic idea is at the core of the interactive process

proposed in this paper, which allows users to extract the wind

direction and magnitude from aircraft radar tracks.

Air Traffic Controllers need accurate wind parameters to per-

form their activity efficiently. For instance, one can reduce the con-

verging speed of two conflicting aircraft by turning one aircraft so

that it will face the wind. The wind impact on aircraft ground speed

is also used to slow down or speed up aircraft in order to respect a

paced landing sequence, optimizing runway usage (i.e. one landing

every 3 min). The wind parameters are also necessary to make

reliable short/medium term trajectory predictions, so as to avoid

trajectory conflicts. With the emergence of new operational con-

cepts (SESAR Consortium, 2007; Swenson, Barhydt, & Landis,

2006) and automated tools for air traffic management, predicting

aircraft trajectories with great accuracy has become more and

more critical in recent years. For example, medium-term conflict

detection and resolution is very sensitive to trajectory prediction

uncertainties (Alliot, Durand, & Granger, 2001). In this context, it

is crucial to forecast the wind with accuracy within a prediction

window of 15–30 min, at any point in the airspace. The current

meteorological forecasting models do not operate within such
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timeframes and the best alternative is most probably to use the

current wind, assuming that it will remain constant during the

time interval of the prediction.

Estimating the current wind numerically still remains a difficult

problem, as wind measurements through sensors such as meteoro-

logical balloons or radar wind profilers are sparse in both space and

time. These wind measurements must be processed by a numerical

model and the meteorological wind, pressure, and temperature

data is updated every N hours (3 h, usually).

In this paper, flying aircraft are used as passive wind sensors,

with their positions and velocities measured through radar detec-

tion. These radar measurements are currently used for air traffic

management purposes and are easily available to ground systems,

in great quantities. When plotting the ground speed magnitude as

a function of ground speed direction, for a number of aircraft, some

roughly sinusoidal patterns emerge. These visual patterns are a

straightforward result of the wind influence on aircraft trajectories

(Fig. 1).

In the following, we propose an analytical method to extract the

wind from these patterns, using a least squares regression. Instead

of focusing on one or two aircraft as in Delahaye and Puechmorel

(2009), the idea is to take advantage of the amount of data, and

consider categories of aircraft with the same speed characteristics.

The wind magnitude and direction is then approximated by apply-

ing a least squares method to selected radar tracks, considering all

flights in the vicinity of the points where the wind is estimated. A

simplified ground speed and wind model is used, neglecting the

influence of lateral drift (the drift angle is the angle between the

longitudinal axis of an aircraft and its path relative to the ground)

on the along-track ground speed. With this approximation, which

is justified for aircraft flying at high speeds, the number of un-

known variables can be considerably reduced and the model can

be linearized.

We also propose an interactive semi-automatic process, where

the least squares computation is driven by the user who selects

the input data and validates the results through a visual interface.

The remainder of the paper is organized as follows: Section 2

details the related works on trajectory exploration and wind

extraction, while Section 3 introduces the principles of wind

extraction from a dataset of aircraft trajectories. The dataset itself

is described in Section 4. The issues that were raised during some

preliminary tests of the automatic extraction method are detailed

in Section 5. The interactive extraction procedure mixing the least

squares algorithm and user filtering and adjustments is presented

in Section 6. Section 7 shows how the wind dynamics can be ex-

tracted and displayed in order to help the user to select time win-

dows when filtering the data. Finally, in Section 8, we visually

compare our results with Météo-France data. We also discuss the

confidence intervals of the least squares method and give some

numerical results on the comparison with the Météo-France wind

data and the wind computed from downlinked aircraft data.

Section 9 concludes the paper and gives some perspectives about

further improvements and possible applications of our method.

2. Related work

2.1. Trajectory exploration

The data-flow model in Card, Mackinlay, and Schneiderman

(1999) is widely used to perform data exploration. In this paper,

we also use this data flowmodel to transform raw data (i.e. aircraft

records) into visualization with a sequence of transformation steps.

There is a rich bibliography on trajectory analysis in informa-

tion visualization, in particular on direct manipulation to filter

and extract relevant aircraft information (Hurter, Tissoires, &

Conversy, 2009; Hurter, Ersoy, & Telea, 2011), density map compu-

tation to discover boat trajectory interactions (Scheepens et al.,

2011), aircraft trajectory schematization (Hurter, Serrurier, Alonso,

Tabart, & Vinot, 2010), trajectory bundling (Hurter, Ersoy, & Telea,

2013), Visual Analytics (Andrienko & Andrienko, 2013), knowledge

discovery in databases (Giannotti, Giannotti, & Pedreschi, 2008;

Andrienko & Andrienko, 2005), geocomputations (Laube, 2009),

moving object databases (Güting & Schneider, 2005), and detection

of landing areas (Andrienko, Andrienko, Hurter, Rinzivillo, &

Wrobel, 2012). However, none of these previous works tried to

extract wind parameters from trajectories.

2.2. Wind extraction

De Haan and Stoffelen De Haan and Stoffelen (2012) show that

high resolution wind and temperature observations can be

obtained using on-board measurements made by aircraft and

transmitted through the data-link capabilities of the Enhanced

Mode-S radars (these data will be detailed in the following). They

also show how these measurements can be used as input to

Fig. 1. right ‘‘Top view’’, one day of recorded aircraft trajectories over Paris area. Left ‘‘wind view’’, scatterplot with aircraft headings, and their corresponding ground speeds.

Sinus shapes emerge which show the wind influence on aircraft ground speed.



meteorological models to improve the short-term and small-scale

prediction of wind and temperature. These are significant improve-

ments when compared with the current weather forecasts used in

Air Traffic Control (ATC), and they will probably benefit ATC oper-

ations in the future.

In the meantime, it is still worthwhile to investigate whether

basic radar measurements (position, velocity) are sufficient to esti-

mate the wind. Extracting the wind from radar tracks has already

been tried in other works. In Delahaye and Puechmorel (2009),

an extended Kalman filter is used to estimate the wind from sim-

ulated radar tracks. This method requires two trajectory turns for a

single cruising aircraft, or, if two aircraft are considered, one turn

per aircraft. The airspeed and the turning rate (in the air) are sup-

posed to be constant for each aircraft. The influence of the wind on

the trajectory is modeled by the ‘‘wind triangle’’ stating that the

ground speed vector of each aircraft is the sum of its airspeed vec-

tor and the wind vector. In Lymperopoulos and Lygeros (2010), a

multi-aircraft trajectory prediction problem is addressed with

sequential Monte Carlo methods, focusing on the inaccuracies re-

lated to wind forecast errors. The wind is modeled as the sum of

two components: the nominal weather forecast and a stochastic

error on this weather forecast. The dimensionality and non-linea-

rites of the multi-aircraft problem lead the authors to introduce a

new particle filtering algorithm in order to estimate the error on

the wind forecast, discarding standard methods such as Kalman

filters. The aircraft airspeeds are assumed to be known. As in

Delahaye and Puechmorel (2009), the method is validated on sim-

ulated trajectories only. All these approaches are based on specific

assumptions about the trajectories (e.g. constant turning rate). As

these assumptions cannot be ensured for radar-recorded air traffic

data, a different approach is required.

3. Wind extraction principle

Our idea is to take advantage of the amount of data, and to con-

sider categories of aircraft having the same speed characteristics.

Contrary to Delahaye et al. Delahaye and Puechmorel (2009), our

method is validated with real aircraft trajectories instead of simu-

lated ones, and it relies on more than one or two aircraft. Our sys-

tem uses Information Visualization (Infovis) techniques (Card

et al., 1999) including a scatterplot and the visualization of aircraft

ground speed and aircraft heading. With enough data, approxi-

mately sinusoidal shapes emerge, one for each aircraft category

(or average speed category). Fig. 1-right shows recorded aircraft

trajectories in 2D with their latitude and longitude. We will refer

to this view as the ‘‘top view’’. Fig. 1-left shows the same dataset

in a scatterplot with the X-axis showing the aircraft direction rela-

tive to the ground, and the Y-axis showing the aircraft ground

speed. This view will be referred to as the ‘‘wind view’’. The emerg-

ing sinusoidal shape is due to the wind influence on aircraft ground

speed. The sine angle shift gives the wind direction (aircraft facing

the wind have the lowest ground speed), the amplitude of the sine

curve gives the wind speed (the amplitude must be divided by two

to retrieve the actual wind speed).

Specific units are used in the Air Traffic Control (ATC) commu-

nity: aircraft altitudes are given in feet (ft) or Flight Levels (FL).

For example, FL350 means 35,000 feet above isobar 1013.25 hPa.

Distances are given in nautical miles (NM) with 1 NM ¼ 1852 m,

and speeds in Knots (Kts = NM/h). In order to assess our software

with air traffic controllers, we have kept these ATC-specific units

in the following, instead of using international units.

3.1. Wind influence on aircraft velocities

Fig. 1 shows a scatterplot of the aircraft velocities for one day of

recorded traffic. The direction followed by the aircraft (ground

track angle) is represented on the x-axis and the magnitude of

the ground speed on the y-axis. When drawing this graph, we used

a 40% transparency setting in order to emphasize the emergence of

dense areas: pixels become visible only if many plots are drawn at

the same location. As seen in Fig. 1, some approximately sinusoidal

shapes, stacked one upon the other, emerge from our scatterplot.

Apart from the sinusoidal curves, this visualization also shows ver-

tical lines which correspond to the accumulation of pixels repre-

senting aircraft with the same direction but different speed.

The emerging sinusoidal curves give a visual clue as to how the

wind globally impacts the ground speed of flying aircraft. Indeed,

for each sinusoidal shape, the lateral distance (along the x-axis) be-

tween the x-coordinate of the maximum and minimum ground

speed values is 180 degrees (i.e. aircraft facing the wind have the

minimum ground speed, and those with the wind behind them

have the maximum ground speed). The wind magnitude can there-

fore be deduced by retrieving the maximum and minimum values

of each sinusoidal shape and dividing their difference by two. The

wind direction can be directly deduced by considering the direc-

tion for which the ground speed is at a maximum (i.e. when the

wind is pushing the aircraft).

The fact that several sinusoidal patterns emerge reveals several

categories of aircraft. Since it is quite rare that a commercial air-

craft flies in circles, one such sinusoid cannot be caused by a single

aircraft. Each pattern is due to several aircraft flying in different

directions, belonging to a same category regarding their airspeed.

Therefore it does make sense to group aircraft which have similar

average airspeeds.

In order to highlight the wind influence of aircraft ground

speed, we used the multivariate visualization software FromDaDy

Fig. 2. Wind view with one day of recorded aircraft trajectories. Data filtering to highlight wind influence on aircraft trajectories.



(Hurter et al., 2009). Fig. 2 represents one day of recorded aircraft

trajectories; image 1 shows the aircraft heading on the X axis, and

the aircraft ground speed on the Y axis. In order to emphasize the

sinus wave on aircraft ground speed, one can filter out low altitude

records (which corresponds to aircraft landing or taking off) in im-

age 2, and remove aircraft with a vertical speed (climbing or

descending aircraft) in image 3. Low altitude or climbing/descend-

ing aircraft do not have a stable airspeed magnitude, therefore the

ground speed evolutions cannot fit a sinus shape. These records

can be considered as noise, and can be removed.

In Fig. 3 (the filtered view of aircraft trajectories) the sinus

shape shows the wind influence on aircraft ground speed at three

different clusters of altitudes (FL100, FL200 and FL300). High speed

aircraft fly at high altitude (visible in image 2) and have different

sinus shape parameters compared to the two other clusters. Each

sinus shape corresponds to specific wind parameters (direction

and speed). These images clearly show the wind influence on air-

craft trajectories at different altitudes.

3.2. Ground speed and wind model

Now that we have seen how the wind characteristics

emerge from the visualized data, let us introduce a mathematical

formulation of the wind influence on aircraft movement. In this

section, we will show that the hypothesis of a sinusoidal curve

oscillating around an average speed is not exactly true, and that

it requires some simplifications and approximations in the

underlying model relating the ground speed to the wind.

Considering a flight i, let us denote V i the ground speed along the

track followed by the aircraft, and hi the track angle counted clock-

wise from the north reference. T i will denote the true airspeed

(TAS), and ai the direction towards which the aircraft is heading,

i.e. the angle between the longitudinal axis of the airframe and

the North reference. Let us denote W the wind magnitude, and /

the wind direction. In the following, vectors will be denoted in bold

font (e.g. W), whereas vector magnitudes will be in normal font

(W).

The relationship between the true airspeed, the ground speed and

the wind is illustrated in Fig. 4 and simply expressed as follows,

using vector notations:

Vi ¼ Ti þW ð1Þ

When projecting all vectors on the along-track axis, we obtain:

V i ¼ T i cosðai ÿ hiÞ þW cosð/ÿ hiÞ ð2Þ

Our aim is to deduce W and / from several measurements of

ðhiðtÞ;V iðtÞÞ made at different times t in a chosen time interval,

using several flights i. In this work, we shall assume that all flights

belonging to a same category (i.e. similar performances for the air-

frame structure and engines) fly at the same average cruising

speed. Of course, there will remain some disparities within a same

category. Even if all aircraft had the same cruising speed in theory,

this hypothesis could only be a statistical one, as airlines may oper-

ate their flights differently depending on their cost policies.

So, on one hand, the actual dispersion of speeds within one such

aircraft category is expected to be relatively large. On the other

hand, for aircraft flying at high speeds, the drift angle ai ÿ hi is ex-

pected to be relatively small: for an aircraft flying at about

T i ¼ 450 Kts with a cross-wind of 70 Kts, the error made when con-

sidering that cosðai ÿ hiÞ � 1 is about 1 percent of the aircraft

speed.

Taking these considerations into account, the exact model of

Eq. 2 can be simplified by replacing T i cosðai ÿ hiÞ by a unique

speed V , for all flights i belonging to a same category. For a flight

i with a velocity V iðtÞ and a track angle hiðtÞ measured at time t

Fig. 3. The sinus shapes show the wind influence on aircraft ground speed at three different clusters of altitudes.

Fig. 4. Wind and aircraft velocity. T i, True Airspeed. V i ground speed, hi track angle,

ai aircraft heading angle, W wind magnitude, / wind direction.



by radar detection, we then obtain the following simplified model,

considering that W and / remain constant over the chosen time

interval:

V iðtÞ ¼ V þW cosð/ÿ hiðtÞÞ ð3Þ

with V 2 f �Vkjk 2 f1; . . . ; cgg the average speed corresponding to the

category of aircraft i.

The average speed V does not have to be known and can be con-

sidered as an unknown variable, like W and /. The only pre-requi-

site is that every flying aircraft must be assigned to one of the

existing classes f1; . . . ; cg that must be determined in advance,

considering the theoretical cruising speed of each aircraft type.

These theoretical cruising speeds are the results of a model (BADA,

2009) of the airframe and engine performances provided by the

aircraft manufacturers. They are available in the Eurocontrol Base

of Aircraft Data (BADA, see Nuic, 2011).

The above model can be linearized by introducing two new

variables WX ¼ W cos/ and WY ¼ W sin/, and considering that

cosð/ÿ hiðtÞÞ ¼ cos/ cos hiðtÞ þ sin/ sin hiðtÞ:

V iðtÞ ¼ V þWX cos hiðtÞ þWY sin hiðtÞ ð4Þ

As the hiðtÞ are numerical values obtained from our radar re-

cords, we see that Eq. 4 is linear with respect to V ;WX , and WY .

This simplification of the initial model drastically reduces the

number of unknown variables. With Eq. 2, the aircraft headings

ai were unknown variables. We had one new unknown variable

for each straight trajectory segment of each aircraft. With our

approximation for the drift angle, we now have only 3 unknown

variables WX ;WY , and V when considering one category of aircraft,

or c þ 2 unknown variables WX ;WY ; �V1; . . . ; �V c when considering c

categories.

In the following, we see how the least squares approximation

method can be applied to extract the wind from an over-deter-

mined system of equations resulting from several measurements

of ðhiðtÞ;V iðtÞÞ from several flights i, over a chosen time interval.

3.3. Least squares approximation of the wind

Let us now consider an airspace volume A over a time interval

½t1; t2�, assuming the wind remains constant within this 4D-vol-

ume. Let us consider N measurements fðhj;V jÞjj 2 f1; . . . ;Ngg of

the track angle hiðtÞ and ground speed V iðtÞÞ, made at different

times t within the interval ½t1; t2�, measured from several flights i.

Let us start with a simple case, and imagine that all aircraft fly-

ing through A belong to a single aircraft category of mean speed V .

If the quality of the available data is sufficient, that is if we have

enough data with a correct dispersion of the hj values, the un-

known variables W;/, and V can be computed from the N mea-

surements of the track angle and velocity, considering the N

corresponding instances of Eq. 4.

In general, Nwill be much greater than the number of unknown

variables, and our model (Eq. 4) will not fit the observed data ex-

actly. Let us introduce �j, the difference between the velocity V̂ j

computed from the model and the observed velocity V j. We now

have a system of equations expressing linear relationships be-

tween the three unknown variables WX ;WY , and V:

�j ¼ V j ÿWX cos hj ÿWY sin hj ÿ V j 2 f1; . . . ;Ng ð5Þ

We can use the ordinary least squares method to determine the

optimum values of WX ;WY , and V minimizing the quadratic error:

EðWX ;WY ;VÞ ¼
X

N

j¼1

�2j ¼
X

N

j¼1

ðV j ÿWXcoshj ÿWYsinhj ÿ VÞ
2

This is done by solving the linear system involving the partial

derivatives of the error with respect to the unknown variables:

@EðWX ;WY ;VÞ

@WX

¼ 0
@EðWX ;WY ;VÞ

@WY

¼ 0
@EðWX ;WY ;VÞ

@V
¼ 0

ð6Þ

When the associated matrix is invertible, this system will have

solution ðŴX ; ŴY ;
^VÞ that minimizes the sum-of-squares error. This

solution is meaningful when the matrix is well-conditioned.

Finally the wind is obtained using the following equations,

remembering that WX ¼ W cos/ and WY ¼ W sin/:

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŴX
2 þ ŴY

2

q

/ ¼ arctan2
ŴY

ŴX

!

ð7Þ

4. Available datasets

For this study, two datasets of aircraft trajectories were avail-

able, the first one containing one day of Mode-C multi-radar re-

cords from the Paris area (France), and the second one containing

one-day records from the experimental Mode-S radar in Toulouse

(South-West of France). The dataset details and the differences be-

tween Mode-C and Mode-S radar data are explained in the follow-

ing section. Meteorological data including wind and temperature

on a fixed-size 4D-grid have been collected from Météo-France,

for the corresponding days.

4.1. Trajectory datasets

Aircraft positions are detected by radars dispatched all over

Europe. There are two technologies for aircraft position monitor-

ing: primary and secondary radars. Primary radars use an emitted

beam and its corresponding reflection on the aircraft body to

compute an azimuth (radar angle) and a distance (echo response

time). This kind of radar is passive: no data communication

is required between the aircraft and the ground station.

Nowadays, the use of primary radars is mostly limited to military

applications, where the aircraft are assumed to be potentially

non-cooperative.

Secondary radars, widely used in Civil Aviation, emit a beam

which embeds a query and then compute an azimuth and a dis-

tance thanks to the response beam emitted by the aircraft which

embeds specific data. There are different types of secondary radars,

depending on the data embedded in the aircraft response. Mode-C

data contains the aircraft identity and altitude reports in 100 ft

intervals. Elementary Mode-S data contains the aircraft identity,

altitude reports in 25 ft intervals, and some basic information

(flight status, equipment status). Enhanced Mode-S contains useful

additional information such as the aircraft velocities (ground

speed, true airspeed, indicated airspeed, Mach number), magnetic

heading, roll angle, etc.

All of our radar records were obtained from secondary radars,

either from a Mode-C multi-radar system located in Paris (France),

or from an experimental Enhanced Mode-S radar located in

Toulouse (South-West of France). We used the Paris Mode-C data-

set in preliminary experiments (see Section 5) to test the least

squares approximation method presented in Section 3.3. This

was facilitated by the presence in this data of some extra informa-

tion – the aircraft categories relative to airspeed capabilities and

operating mode (constant calibrated airspeed, or constant Mach

number) – made available by a previous post-processing of this

data. These preliminary tests showed some of the drawbacks of

the fully automatic wind extraction, and motivated the semi-

automatic procedure presented in Section 6.1. When the Toulouse

Mode-S data became available, we decided to evaluate the



interactive wind extraction procedure on this new data, allowing

us to compare the results (see Section 8) with Météo-France data,

and also with a wind computed from on-board measurements of

the aircraft ground speed and true airspeed. The two trajectory

datasets are detailed below.

4.1.1. Mode-C radar data, Paris area

Our Mode-C records were made over an extended area in the

Northern part of France, centered on Paris (see Fig. 1). The dataset

contains 3712 trajectories composed of 571580 points with one

point every 15 s for each aircraft. The recorded attributes are the

location (X, Y, using a Polar Stereographic WGS84 projection cen-

tered on 47 N 0E), the altitude measured by the difference of pres-

sure with isobar 1013.25 hPa, the ground speed and ground track

angle, and a unique aircraft identifier. This unique identifier is

helpful to draw lines in the visualization. Distances are counted

in nautical miles (NM), speeds in knots (Kts = NM/h), and altitudes

in feet (ft). The angles are in degrees, counted clockwise relative to

the North reference. Since we recorded the data from Paris air traf-

fic control center, the lines representing the aircraft trajectories

(Fig. 1, right) end at the border of the image which corresponds

to the limits of the multi-radar coverage of this center.

4.1.2. Mode-S radar data, Toulouse area

We also investigated a second dataset from a single radar

ground station located in Toulouse (South of France, Fig. 5). We

used this second dataset to validate our wind extraction algorithm

since it contains additional Mode-S data. Thanks to the wind trian-

gle principle (see 4), we can compute the wind measured on-board

the aircraft. We use this wind computed from downlinked Mode-S

data as another source of meteorological data, in addition to the

reference wind provided by Météo-France presented in the next

section.

Geographically, the dataset covers a circular area of radius 170

NM (315 km) centered on Toulouse. The dataset comprises 1917

aircraft trajectories, with 169468 radar reports. The average time

span of a trajectory is 25 min, with one point every 15 s.

4.2. Météo-France dataset

The meteorological data provided by Météo-France is a 4D-

datagrid (latitude, longitude, isobar altitude, time) containing val-

ues of temperature, wind direction and magnitude. Météo-France

provided us with two different meteorological datasets corre-

sponding to the recorded days in our two radar datasets.

The 4D-grids are slightly different for these two datasets. For

the one corresponding to the Mode-C radar data, the grid at a given

time and altitude is composed of 151 rows and 101 columns, and is

587 NM wide and 625 NM high. The altitude varies from isobar

1013.25 hPa to Flight Level 340 (34,000 feet above isobar

1013.25 hPa), this range being split into 10 steps. The data is given

every 3 h. The grid location starts from the North east, and contin-

ues to the South west of France and covers the whole country.

However, in our investigation, we will only consider the area

which corresponds to our multi-radar coverage.

The grid corresponding to the Mode-S radar dataset is made of

42 altitude levels, and refreshed every hour. Horizontally, the grid

size is 0.1° (in latitude and longitude). The visual and numerical

comparisons made in Section 8 use this 4D-grid. Note however that

this precise 4D-grid is not currently available in the French air traf-

fic control centers: The wind data is still updated every 3 h.

Fig. 6 shows the grid of wind magnitude at low and high alti-

tudes. We can observe that at low altitude the wind shows boister-

ousness whereas the wind gradient is smoother at high altitude.

One must be aware that this wind data from Météo-France is actu-

ally not the ‘‘true’’ wind experienced by flying aircraft. It is the re-

sult of a process of data assimilation and smoothing, using

observations from various sensors (sounding balloons, wind profil-

ing radars, etc.). Collecting and smoothing this data is a relatively

long process (a cycle of several hours), so the resulting wind field

may not be up-to-date and accurate at the time the user will ex-

ploit it. Much can be learned, however, from the comparison of

our results with this Météo-France wind model, knowing the

amount of scientific and computational effort that is devoted to

developing high-quality meteorogical models.

5. Preliminary tests and algorithm tuning

The preliminary tests presented in this section give us some in-

sights into the behavior of the least squares method, when it is

used to extract the wind parameters from aircraft trajectory data

automatically. The potential issues are illustrated by several exam-

ples. We introduce two quality criteria for the wind estimation. Fi-

nally, we summarize the remaining issues with the automatic

extraction method, and motivate the choices made when designing

Fig. 5. Radar data (top view, right) from Toulouse Mode-S experimental radar, and ‘‘wind view’’ (left). In the wind view, records are in transparent black, and those of a same

trajectory are connected by a colored line (low altitude records are in green, high altitude in blue). (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)



the interactive wind extraction procedures presented in

Section 6.1.

The preliminary tests were run on the Paris Mode-C radar re-

cords, because this data was readily clusterized by categories of

airspeed and operating mode. This clustering allowed us to assume

that all radar records within a same category belonged to aircraft

with approximately the same average true airspeed in the cruising

phase.

5.1. Data quality issues

Basically, wind extraction consists in retrieving the estimated

wind at a requested 3D-location Pðx; y; zÞ and at a given time t. This

requires the data to be filtered in time and space, so as to select the

radar plots in the neighborhood of Pðx; y; z; tÞ. The least squares

approximation is then applied to the filtered data, as described in

Section 3.3.

Some issues regarding the quality of the input data were

encountered during the preliminary tests, when applying this basic

automatic procedure. For example, if the filtered aircraft plots are

not numerous enough, the automatic extraction can fit a sinus

shape, but the wind estimation may not be accurate (Fig. 7).

Even if the number of aircraft plots is sufficient, the wind

estimation can be incorrect due to a limited angle distribution

(Fig. 8).

If the aircraft record angles have a large distribution, the wind

estimation can still be erroneous due to multiple possible solutions

(Fig. 9).

The automatic wind regression tries to minimize the quadratic

error taking into account every aircraft record. This creates an

incorrect wind estimation when a cluster of records contains out-

liers. A few outliers can drastically change the wind estimation

parameters (Fig. 10).

5.2. Data quality criteria, and algorithm tuning

In order to cope with some of the issues presented in the

previous section, we designed a quality criterion combining

the entropy of the ground speed directions and a threshold on

the mean-square error after regression. The entropy criterion

ensures that we have a sufficient dispersion of the ground track

angles, whereas the mean-square criterion limits the dispersion

of velocities around the fitted sinusoidal curve. Good entropy

is sufficient to ensure that the associated matrix is well-

conditioned.

The entropy is computed as follows, considering the distribu-

tion of the ground speed directions among n equal bins partition-

ing the interval [0°,360°]:

Ent ¼ ÿ
X

i

Pi ln Pi ð8Þ

with the convention 0� ln0 ¼ 0, and where Pi is the empirical prob-

ability (using normalized histograms) that a ground speed direction

falls in the ith bin. The entropy value is maximum for uniform dis-

tribution and falls when the distribution concentrates.

Fig. 6. Wind speed data provided by Météo-France at low altitude (below FL10, left), and high altitude (above FL340, right).

Fig. 7. Not enough data to find a suitable sinus shape.

Fig. 8. Limited range distribution.

Fig. 9. Impossibility of finding a wind estimation due to multiple solutions.



Taking into account these data quality criteria, the wind extrac-

tion algorithm is the following:

1. filter the data in time and space, in the vicinity of Pðx; y; z; tÞ,

2. assess the quality of the filtered data (entropy criterion),

3. if the entropy criterion is met, apply the ordinary least squares

method described in Section 3.3 to find a suitable sinus shape,

4. assess the quality of the sinus shape fitting (mean-square error

criterion).

5. if the quality criteria (i.e. entropy, and mean-square error) are

not met, then return to first step and filter data from a larger

neighborhood (up to a given maximum size) of Pðx; y; zÞ and

repeat the procedure.

After several tests, we empirically defined acceptable criteria

with an entropy value above 1.7 (with 20 bins) and a mean-square

error below 0.35.

5.3. Summary of our preliminary findings

During our preliminary tests, we found that the introduction of

data quality criteria solved the issues illustrated in Figs. 7 and 8,

thus improving the efficiency of our extraction method. However,

other issues still remain: presence of outliers, incorrect clustering

and multiple solutions. We are convinced that the automatic pro-

cedure could be improved again, for example by using robust esti-

mation methods instead of the least squares approximation, or by

applying more efficient clustering and filtering techniques to the

input data. These improvements are left for future work.

In the current paper, we propose to leave some decisions and

choices to the human operator about the assessment of the quality

of both the input data and the resulting wind estimates. While

experimenting with the automatic procedure, we noticed that

inconsistent wind estimations could often and easily be spotted

by a human being, by visually comparing the wind estimates in

neighboring grid cells. In the next section, we propose an interac-

tive procedure combining the wind extraction algorithm with

manual data-filtering and curve adjustments.

6. Interactive wind extraction

In this section, we describe our process to extract wind direc-

tion and speed with an interactive system. In order to extract wind

parameters, the user can perform an initial automatic process. He

or she defines the number of cells to investigate, and then launches

the wind extraction. The software then clusters the aircraft posi-

tions into 3D space and time, and tries to fit a sinus shape for each

cell. The entropy and error criteria are used to automatically inval-

idate cells with insufficient angle repartition. The extracted wind

parameters are then displayed in small multiples with an arrow

in each cell.

Fig. 11 shows a top view of the adjusted wind in several grid

cells at flight level 350, and also the evolution of wind over time

in one of the grid cells. We see in this example that the wind

changes orientation from North to West during the day. The com-

putation process lasts 2 s with a 4 � 4 grid and 150,000 records.

The software provides geographical grids at 4 different altitudes

(FL 250–FL 450). The arrow indicating the wind direction is

Fig. 10. Cluster of outlier records create incorrect wind estimation.

Fig. 11. Wind parameter extraction at flight level 350 (top view). The small multiples below show the wind in one cell at incremental times (morning, mid-day, afternoon,

night).



displayed with a length proportional to the corresponding wind

speed.

The user can then easily recognize inconsistent wind extraction

when the direction of arrows does not correspond to the neighbor-

ing ones. Wind cannot drastically change direction with neighbor-

ing cells. The user can then select each cell and manually adjust

extracted wind (i.e. use direct manipulation to adjust a better sinus

shape), applying a semi-automatic procedure (see Section 6.1). The

user can also invalidate the cell if there is not enough data or if a

suitable sinus shape cannot be adjusted.

This data validation and adjustment is fast: a few seconds for

each cell that needs to be adjusted or invalidated. In order to check

if the software and procedure are easy enough to use, we asked an

air traffic controller to adjust the extracted wind parameters. With-

in 2 min, he corrected more than 10 cells (the ones with strong

wind amplitudes and those with inconsistent wind directions).

6.1. Semi-automatic procedure

The interactive procedure allowing the user to adjust the wind

in a grid cell is the following:

(a) Filtering stage: filtering is performed in space and time. As

explained in Section 3.1, aircraft with a vertical speed must be

removed. Since aircraft with similar cruising performances tend

to fly at similar altitudes (see Section 3.1), it is not essential to

cluster records by aircraft category. The radar position reports

can simply be filtered by altitude range.

(b) Data quality check: records must have various ground speed

directions. An entropy value above 1.7 with 20 angle bins vali-

dates the data quality.

(c) Sinus shape extraction: thanks to the least squares estima-

tion, a sinus shape can be extracted from the filtered data. If

the quadratic error between the filtered data and the estimated

sinus shape is below 0.35, the extraction is valid.

(d) User adjustment stage: in order to add flexibility to our wind

extraction process, the user can manually adjust the sinus

shape for the grid cells exhibiting inconsistent wind

estimations.

The following three sections describe the views available to the

user when adjusting the wind in a grid-cell, how the user interacts

with the system and assesses the results of his manual adjustment.

6.2. Visualization

Our tool displays two main plots: the ‘‘top view’’ and the ‘‘wind

view’’ (Fig. 12). The top view displays trajectories with a top visu-

alization: the X-axis shows the longitudes, the Y-axis the latitudes.

We also use a color gradient to display aircraft altitude: green

shades represent low altitudes and blue shades high altitudes.

The top view helps users to observe the selected 2D volume which

is used to extract wind parameters. More filtering can be per-

formed with range sliders (Fig. 12, lower right part).

The wind view displays the same trajectories as shown in the

top view but with a different scatterplot configuration. The X-axis

shows the aircraft direction (0–360°), whereas the Y-axis shows

the aircraft ground speed. We display transparent dots that corre-

spond to recorded aircraft parameters. In order to visualize

whether dots belong to the same trajectory, we connect them with

a line. Since the Y-axis represents aircraft direction, many long hor-

izontal lines appear when aircraft direction changes around 0. In

order to remove these visual artifacts and reduce cluttering, we

connect trajectory points only if the distance between dots is lower

than one third of the scatterplot width.

6.3. Interactions

In the interactive procedure described at the beginning of

Section 6.1, the user must be able to:

� define the extent of spatio-temporal data to be investigated

(view filtering),

� adjust a sine curve so that it best fits the filtered data, when the

default curve adjusted by the least squares algorithm seems

inconsistent,

� assess the wind estimation error and, if necessary, change the

spatio-temporal data to be investigated.

Each of these steps is described in detail below.

6.3.1. View filtering

In order to extract wind parameters, the user defines the tem-

poral bounding volume to investigate. We use the same interaction

techniques available in Hurter et al. (2009). The user left-clicks

with the mouse pointer on the top view (Fig. 12) to define the cen-

ter of the selected volume and then manipulates range sliders to

define the time range, the altitude range and the latitude and lon-

gitude range (Fig. 12). When manipulating range sliders, the top

and the wind view are automatically updated with the filtered air-

craft records. The top view displays the full dataset (to provide data

context) but with the selected aircraft shown in color, and the non-

selected ones in gray (Fig. 12).

6.3.2. User adjustments of the sine curve

In the next step, the user adjusts the shape of the sine curve

shown in gray so that it best fits the visualized aircraft plots in

the wind view. The shape of the sine curve is defined by the follow-

ing formula:

f ðangleÞ ¼ Amplitude: sinðangleþ ShiftÞ

The user can change its phase (the Shift angle value) by dragging

the sinus shape across the wind view. The user can change the si-

nus curve Amplitudewith the mouse wheel. When the user changes

the sine wave parameters, the view updates the corresponding

estimated wind speed (Amplitude=2) and direction (Shift). These

parameters are displayed as text values; in addition an oriented ar-

row shows the wind direction (Fig. 13).

6.3.3. User assessment of the estimated wind

In order to assess the validity of the sine wave parameters, the

user can display two estimation error metrics (Fig. 14). The system

computes the distance to the sine curve for every aircraft plot. This

Fig. 12. Interface layout with top view (latitude, longitude), wind view (aircraft

speed, aircraft direction) and filters with range sliders used to define the 3D

temporal volume to investigate.



distance is displayed with vertical yellow lines which start from

the middle of the sine wave and whose length is proportional to

the computed distance. In addition, the quadratic error is displayed

as a transparent red rectangle.

The user can visually assess if the sine curve fits the aircraft

plots correctly by trying to reduce the size of the transparent red

rectangle (quadratic error), and by reducing the height of the ver-

tical yellow lines (distance to the sine curve for each aircraft

record).

7. Wind dynamic

In Section 6, the illustration of the interactive procedure

(Fig. 11) showed the extracted wind at several time intervals. This

gave us a succinct view of the wind evolution during the day. In

addition to this interactive inspection procedure, we propose a

more systematic way to investigate the dynamics of the wind. Gen-

erally, the goal is to find a compromise between the need to use as

many trajectories as possible (to ensure sufficient coverage of the

3D space) and the need to use the most recent data (to avoid using

outdated records after the wind has changed).

The procedure starts with a user-defined division of the terri-

tory into compartments. One possibility is to use a regular grid,

either rectangular or hexagonal. A more sophisticated alternative

is to use a Voronoi tessellation that reflects the distribution of po-

sition records and minimizes trajectory distortions (Andrienko &

Andrienko, 2011).

Next, the user divides the time range of available data into

equal time intervals (for example, with a length of 1 h). For each

cell of the territory division and each time interval the automatic

wind assessment procedure is applied. In the result, time series

of wind speed and direction values are produced. These time series

are presented for inspection on time graphs and maps. Fig. 15-left

shows the spatial distribution of speed dynamics at flight level 350.

Similarly, Fig. 15-right shows the dynamics of directions. In both

maps cell 1 � 1 is highlighted.

We can observe in Fig. 15, that the wind speed was quite stable

over the whole time period, with a monotonous change from direc-

tion 50� in the morning to direction 110� in the evening. According

to Fig. 15, the wind started to blow in the morning, slowed down at

mid-day, and started again in the evening. As a result, it can be rec-

ommended to apply the analytical procedures, either fully auto-

matic or interactive, only to the recent data.

If the amount of trajectory data is sufficient, this procedure can

be applied separately for different ranges of flight levels. By

Fig. 13. Using direct manipulation techniques, the user can adjust the sine wave

curve location (mouse drag), and amplitude (mouse wheel).

Fig. 14. After adjustment, the yellow peaks correspond to the difference between the sinus shape and the actual aircraft record. The red rectangles correspond to the

quadratic error. The figure on the right shows incorrect sinus shape adjustment, with large errors. The left figure shows a better adjustment, with smaller errors. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Wind dynamic extraction with a 4 � 4 grid at FL 350. Each time series shows the direction or speed evolution over time. Cell 1 � 1 shows how the wind changed

direction and speed during the day: in the morning 50� , 15 Kts, mid-day 70� , 5 Kts, in the evening 110� , 25 Kts.



inspecting outliers on the time graph, it is possible to identify re-

gions that require special attention. In particular, it is necessary

to apply manual curve fitting to these cells.

8. Wind extraction results

In this section, we detail our investigations to validate our wind

extraction method. We first compare our results with two other

sources of meteorological data. Then, we report informal discus-

sions with air traffic controllers. The results presented here were

obtained with the second dataset (Mode-S radar data, South-West

of France), which contains additional data that can be used to val-

idate our wind extraction, in addition to the Météo-France data.

8.1. Visual comparison with Météo-France data

In order to ease parameter comparisons, we used two different

designs to compare wind speeds and directions. Both designs use a

color gradient (green to red) to show the error magnitude (Fig. 16).

In addition, the ‘‘speed’’ design uses a vertical line whose length

corresponds to the difference in wind magnitude between our

approximation and the Météo-France data. The ‘‘angle’’ design uses

two lines: The white line shows the wind direction approximated

by our method, whereas the gray line shows the direction of the

Météo-France wind.

Fig. 17 shows the differences between the approximated wind

and the reference wind provided by Météo-France, at various alti-

tudes and for three different grid sizes. The three grids at the top of

Fig. 17 display the automatic wind estimation, without user adjust-

ment. Image 1, below these three grids, shows how the user can

adjust the sinus shape to better fit the points, and ignore many out-

liers. Image 2 shows a cell with a low entropy criteria (not enough

data). Image 3 shows a perfect match between the extracted wind

parameters and the meteorological data.

We can see that the best results are obtained for the altitudes

ranging from flight level 300 to flight level 400. There are much

fewer valid cells at very high (above flight level 400) and very

low altitudes (below flight level 300), and a few of the remaining

valid cells show marked differences with the Météo-France wind.

Investigating our dataset, we observed that very high altitudes

do not contain enough data to produce accurate wind estimations.

Furthermore, at low altitudes, most aircraft are climbing or

descending and there are few trajectories at a cruising altitude

with a stable airspeed. As the records have been filtered so as to re-

move climbing or descending aircraft, low altitude cells do not con-

tain enough leveled trajectories, with a sufficient variety of ground

speed directions.

Comparing the results for wind magnitude (‘‘speed’’) and wind

direction (‘‘angle’’) in Fig. 17, we can observe that the displayed

error (in percentage) is smaller in direction than in magnitude,

whatever the altitude.

From this visual comparison, we can conclude that our wind

approximation is closest to Météo-France data in the grid cells

and at altitudes where there are many aircraft flying in different

directions, at their cruising flight level, with a stable airspeed. This

was to be expected, considering that the quality of the least

squares approximation depends on the quality of the input data.

8.2. Numerical comparison with Météo-France and Mode-S winds

Let us now present some numerical results, comparing three

different wind values: the wind approximated with the least

squares method, the Météo-France wind, and a wind computed

from the ground speed and the true airspeed downlinked from

the aircraft, and available in the Mode-S data provided by the

experimental radar in Toulouse (France). These three different

wind values are denoted LS, MTO, and Mode-S, respectively.

Fig. 18 shows boxplots1 of the differences in wind

magnitude – in Knots (left) or in percentage of the reference wind

(middle) – and wind direction (right) obtained when comparing

the three different wind values (LS, MTO, and Mode-S) pairwise.

The results in Fig. 18 were obtained considering all flight levels, with

a 4 � 4 grid and a time window of 3 h.

Considering this pairwise comparison of the three different

sources, we can see that they all provide consistent wind values.

In Fig. 18, the difference between the LS approximated wind and

the wind obtained from the two other sources (MTO and Mode-

S) is higher than the difference between the wind computed from

Mode-S data and the Météo-France wind. This is because Fig. 18

shows the results for all flight levels, including the LS wind esti-

mates obtained with low quality input data.

Of course, results are better when focusing on flight levels

where the input data is of sufficient quality. In practice, the quality

of the input data depend on several factors: the altitude range and

geographic location, and also the time window chosen when filter-

ing the data. Let us now focus on the upper airspace, at flight levels

ranging from 350 to 400, and consider the use of several time win-

dows for the estimation of the wind at a given time (16 h, as in

Fig. 18). Figs. 19 and 20 show the wind deviations in magnitude,

for the chosen altitude range (FL 350 to 400) and for several time

windows (30 mn, 1 h, 2 h, 3 h). Fig. 21 shows the deviations in

wind direction.

Considering sub-Figs. 19d, 20d and 21, where the time window

(3 h) is the same as in Fig. 18, we see that the differences in

Fig. 16. Visual conventions for the display of speed or angle differences.

1 These boxplots were obtained using the boxplot function of the R environment

for statistical computing, with its default settings. The box itself represents the

interquartile interval, the bold line is the median, and the whiskers represent either

an extremum value or at most 1.5 times the interquartile distance.



magnitude and direction between the three wind values at flight

levels ranging from 350 to 400 are much closer one from the other

than when considering all flight levels.

In Figs. 19–21, we can see how the choice of the time window

influences the wind estimates. Clearly, a 30-min time window is

too short. It seems that the best results are obtained with time

windows of 2 or 3 h. However, we must be aware that the boxplots

are drawn from data of different sizes. As shown in Table 1, the

number of valid cells (i.e. those satisfying our quality criteria) is

smaller for the shortest time windows. This should mitigate the

Fig. 17. Wind parameter extraction and comparison with Météo-France data, with three different grid sizes. Image 1 illustrates a manual user adjustment. Image 2 shows an

invalidated cell. Image 3 shows a valid wind extraction.

Fig. 18. Boxplots of wind deviations – in magnitude (left and middle) and direction (right) – for all flight levels, with a 4 � 4 grid and a time window of 3 h.



Fig. 19. Boxplots of wind magnitude errors (in Kts), for a 4 � 4 grid, at flight level 350.

Fig. 20. Boxplots of relative wind magnitude deviations (in p.c.), for a 4 � 4 grid, at flight level 350.



statistical interpretation of the boxplots, and especially concerning

the 1 h-time-window, where the apparent bias towards higher val-

ues for the deviations of the wind direction might be explained by

the small sample size. Actually, a time window of 1–2 h size might

be the best compromise if we want the estimates to be sufficiently

up-to-date.

The results for altitudes ranging from flight level 300 to 350 are

similar to the ones presented here (FL350–400). All these numeri-

cal results confirm the conclusion of the visual comparison made in

Section 8.1. They show the good performances of the proposed

wind approximation method when the input data is of sufficient

quantity and quality. In practice, the domain of application of our

method is the upper airspace, at altitudes ranging from flight level

300 to 400, with relatively dense traffic flying in various directions.

At these altitudes, we find commercial aircraft of similar perfor-

mances, flying at their cruising flight level at approximately the

same true airspeed.

8.3. Confidence intervals and significance testing

The numerical comparisons in the previous section are relevant

only if the confidence intervals associated to the least squares esti-

mations of the wind are of a smaller order of magnitude than the

differences with the two other winds (MTO and Mode-S). Assum-

ing we had a very large confidence interval around the wind

estimate, and assuming that the Météo-France and Mode-S wind

values fall within this interval, the wind estimates and the differ-

ences between the three wind values observed in the previous

section would lose their significance.

Let us check the size of the confidence intervals associated with

the least squares approximation. In the application described in the

paper, a QR decomposition of the design matrix is preferred to the

classic normal equations, trading computational efficiency for

numerical stability. One benefit of the QR solution is the ease of

computation of the terms involved in the expression of the test

statistics.

Denoting ~w ¼ Wx;Wy;V
ÿ �

the vector of unknowns, for each of

the components ~wi; i ¼ 1 . . .3, of ~w, a confidence interval at level

a is given by:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ii
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where Z is the design matrix and tNÿ3
a=2 is the value of the student test

statistics for confidence level a=2 and N ÿ 3 degrees of freedom.

On the data available for the study, a very good adequation be-

tween the size of the confidence interval and the quality of the

sample assessed using the entropy criterion was observed.

Fig. 22 shows the size of the confidence interval for each cell of a

4 � 4 grid, for ðWx;WyÞ (left) and V (right), in Kts, for altitudes

ranging from flight level 350 to 400. We see that the order of mag-

nitude of these confidence intervals is much smaller than the dif-

ference between the estimated wind (LS) and the other winds

(MTO and Mode-S), which comforts our analysis of the results pre-

sented in the previous section.

Fig. 21. Boxplots of wind direction errors, for a 4 � 4 grid, at flight level 350.

Table 1

Number of valid cells, using a 4 � 4 grid at flight levels 350–400, for time horizons of

30 mn, 1 h, 2 h, and 3 h.

Time window size 30 mn 1 h 2 h 3 h

Number of valid cells 5 9 13 12



8.4. Air traffic controllers’ feedback

In order to assess the potential operational interest of our wind

extraction process, we conducted informal discussions with air

traffic controllers from Aix ATCC.2 Our goal was to assess the valid-

ity of our wind extraction process and to understand how air traffic

controllers use wind parameters in their aircraft monitoring tasks.

We performed three interviews. Firstly we asked a set of simple

questions:

� ‘‘How is the wind important in your daily work activity?’’

� ‘‘How do you retrieve wind parameters?’’

� ‘‘How often do you verify wind parameters?’’

Secondly, we gave a software demonstration and thirdly we ex-

plained our algorithm’s rationale.

During the interview, all the controllers confirmed that wind

parameters are important to their daily activity, but when we

asked them how they retrieved these parameters, their response

was not unanimous. They often estimate wind parameters only

by looking at the aircraft behavior. ‘‘When I compare how aircraft

turn when facing north or south, I can assess the wind direction and

the wind speed’’. This estimation is not accurate but sufficient to as-

sess approximate wind parameters. Controllers also have a screen

which displays estimated wind parameters provided by Météo-

France. This data is displayed in 2 tables with four geographically

specific points each: South points (Barcelona, Montpellier, Nice,

Ajaccio) and North points (C. Ferrand, Dijon, Lyon, Geneva) with

5 Flight Levels (180–390). These tables are updated every 3–6 h.

The controllers confirmed the validity and interest of our wind

parameter extraction method. They also explained that our tool is

not designed for air traffic controllers who monitor aircraft but

rather for the regulator controller, the one that supervises the traf-

fic regulation and does not have to deal in real-time with aircraft.

The regulator controller needs to forecast traffic evolution and

therefore our dynamic wind parameter extraction could provide

valuable information for this operator.

9. Conclusion

In this paper, after visualizing the sinusoidal patterns resulting

from the wind influence on aircraft ground speeds, we have pro-

posed an analytical method to extract the wind magnitude and

direction from the radar tracks of aircraft belonging to various

speed categories. A simplified model has been introduced, allowing

us to drastically reduce the number of unknown variables and to

apply the ordinary least squares method to a linearized problem.

The proposed simplification consists in neglecting the effects of lat-

eral drift on the along-track speed for aircraft flying at high speeds.

As the performance disparities among flying aircraft (even within a

same speed category) are of a greater order of magnitude than the

effects of the lateral drift, this approach is justified.

An interactive Visual Analytics system has been developed to

demonstrate the results of our automatic approach on recorded ra-

dar tracks. Users can explore, validate, or adjust the extracted wind

parameters. The wind dynamics can also be extracted from the ra-

dar tracks and displayed as time series: Knowing the trends in

wind evolution can help the operator in the choice of a time win-

dow, when filtering the data before extracting the wind. Filtering

the data is a compromise between the quantity of data required

to perform the extraction, and its temporal and spatial proximity

to the point where the wind is approximated.

The extracted wind has been compared with the Météo-France

wind grid, and with the wind computed fromMode-S data (ground

speed and true airspeed) downlinked from the aircraft. For this

purpose, we used a dataset of radar reports from the experimental

Mode-S radar in Toulouse (France). As a result, we have shown that

the approximated wind is very close to the wind obtained from the

other two sources, at least in airspace volumes where sufficient

data is available. We have also discussed the limitations of our

method: it requires enough input data, with several aircraft flying

in various directions. In addition these aircraft should fly at similar

constant airspeeds. In practice, we have shown that this occurs in

the upper airspace, where commercial aircraft with similar perfor-

mances fly at similar cruising flight levels. A good compromise for

the time window used to filter the input data seems to be between

1 and 2 h.

To summarize, our wind extraction method is most efficient

when applied to the en-route airspace, at altitudes ranging from

flight level 310 to 390, where the cruising commercial traffic is

of highest density. Conveniently, such airspace volumes of high

traffic density are the ones where air traffic controllers most need

accurate wind estimations for their trajectory prediction purposes.

Some interviews with air traffic controllers confirmed the interest

of our approach, from an operational point of view.

Concerning the perspectives of operational use, one could think

of feeding the existing meteorological models with the wind

approximated from radar data. In our opinion though, this seems

a less promising approach than using the aircraft on-board
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Fig. 22. Size of the confidence intervals for the estimated wind (left) and for the estimated average true airspeed, for a 4 � 4 grid, at flight level 350.

2 ATCC: Air Traffic Control Center.



measurement of the true airspeed and ground speed, downlinked

to ground systems via Mode-S. However, collecting and using such

data does require fully deployed Mode-S datalink capabilities, and

also some additional data processing in order to remove some

equipment biases (see De Haan & Stoffelen, 2012). There are good

hopes that such wind predictions with enhanced accuracy will be

made available in the future, at least in the core traffic areas where

Mode-S radars are being deployed. In the meantime, our method

could be used as an inexpensive alternative to this approach. It

could provide up-to-date wind estimations in dense en-route air-

space areas, as a complement to the meteorological wind grid

which is currently refreshed every hour at best.3 It could also be

useful in geographic areas not covered by accurate meteorological

models, or where Mode-S capabilities will not be deployed.

As future work, we plan to try robust estimation methods in-

stead of the ordinary least squares approximation. More extensive

numerical experiments could also help to tune our data quality cri-

teria. Another promising path could be to take into account some

constraints on the wind field (minimum L2 norm of the Laplacian),

so as to improve our wind estimation. Concerning the interactive

procedure, further investigations are in progress, to validate the

user performance when adjusting the sinus shape. Finally, we plan

to design a specific system to emphasize wind dynamic perception

for the air traffic controller.
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