

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12883

To link to this article : DOI :10.1109/CloudCom.2013.63
URL : http://dx.doi.org/10.1109/CloudCom.2013.63

To cite this version : Thiam, Cheikhou and Da Costa, Georges and
Pierson, Jean-Marc Cooperative Scheduling Anti-load balancing
Algorithm for Cloud : CSAAC. (2014) In: IEEE International
Conference on Cloud Computing Technology and Science - CloudCom
2013, 2 December 2013 - 5 December 2013 (Bristol, United Kingdom).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12883/
http://oatao.univ-toulouse.fr/12883/
http://dx.doi.org/10.1109/CloudCom.2013.63
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Cooperative Scheduling Anti-load balancing

Algorithm for Cloud : CSAAC

Cheikhou Thiam

IRIT

Universit Paul SABATIER

Toulouse, France F-31062

Email: Cheikhou.Thiam@irit.fr

Georges Da Costa

IRIT

Universit Paul SABATIER

Toulouse, France F-31062

Email: Georges.Da-Costa@irit.fr

Jean-Marc Pierson

IRIT

Universit Paul SABATIER

Toulouse, France F-31062

Email: Jean-Marc.Pierson@irit.fr

Abstract—In the past decade, more and more attention focuses
on job scheduling strategies in a variety of scenarios. Due to
the characteristics of clouds, meta-scheduling turns out to be
an important scheduling pattern because it is responsible for
orchestrating resources managed by independent local schedulers
and bridges the gap between participating nodes. Likewise, to
overcome issues such as bottleneck, overloading, under loading
and impractical unique administrative management, which are
normally led by conventional centralized or hierarchical schemes,
the distributed scheduling scheme is emerging as a promising
approach because of its capability with regards to scalability and
flexibility. In this paper, we introduce a decentralized dynamic
scheduling approach entitled Cooperative scheduling Anti-load
balancing Algorithm for cloud (CSAAC). To validate CSAAC we
used a simulator which extends the MaGateSim simulator and
provides better support to energy aware scheduling algorithms.
CSAAC goal is to achieve optimized scheduling performance and
energy gain over the scope of overall cloud, instead of individ-
ual participating nodes. The extensive experimental evaluation
with a real workload dataset shows that, when compared to
the centralized scheduling scheme with BestFit as the meta-
scheduling policy, the use of CSAAC can lead to a 30%61%
energy gain, and a 20%30% shorter average job execution time
in a decentralized scheduling manner without requiring detailed
real-time processing information from participating nodes.

Keywords: Energy, Heuristic, Virtual Machines, Cloud,
Migration.

I. INTRODUCTION

Cloud computing delivers infrastructure, platform, and
software (applications) as services that are made available
to consumers in a pay-as-you-go model. In industry these
services are referred to as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS) respectively. Many computing service providers includ-
ing Google, Microsoft, Yahoo, and IBM are rapidly deploying
data centers in various locations around the world to deliver
Cloud computing services. Cloud service providers ensure
that they can be flexible in their service delivery to meet
various consumer requirements, while keeping the consumers
isolated from the underlying infrastructure. Until recently, high
performance has been the sole concern in data center de-
ployments, and this demand has been fulfilled without paying
much attention to energy consumption. However, an average
data center consumes as much energy as 25,000 households
[13]. Green Cloud computing is envisioned to achieve not
only the efficient processing and utilization of a computing

infrastructure, but also to minimize energy consumption [14].
To address this problem of minimizing energy and drive Green
Cloud computing, data center resources need to be managed in
an energy-efficient manner. Furthermore the increasing demand
of computation resources has led to new types of cooperative
distributed systems for cloud computing.

Given the increasing data center scales, such systems are
faced with challenges in terms of scalability, autonomy, and
energy-efficiency. In large-scale Cloud, the centralized ap-
proach is clearly unfeasible. Firstly, centralized scheduling [11]
requires accurate, centralized information about the state of the
whole system. Secondly, sites forming the grid maintain some
level of autonomy, yet classic algorithms implicitly assume a
complete control over individual resources. Thus, many of the
existing attempts to design and implement cloud systems are
still based on centralized architectures, have limited autonomy,
and lack of energy saving mechanisms.

In contrast, decentralized scheduler [12] negates the limi-
tations of centralized structures with respect to fault-tolerance,
scalability, autonomy, and most importantly the adequacy for
the Cloud computing environment. Jobs are submitted locally,
but they can be migrated to another cluster, if the local cluster
is overloaded. The possibilities of migration are, however, lim-
ited, so that migrated jobs do not overload the host system. A
decentralized scheduling approach assumes that each entity is
autonomous and has its own control that derives its scheduling
decision based on its policies. However, if the decisions are
taken by several independent units, it might be the case that
these units aim at optimizing their own objectives rather than
the performance of the system as a whole. Such situations call
for models and techniques that take the strategic behavior of
individual units into account, and simultaneously keep an eye
on the global performance of the system. In most cases, self-
interested entities have to cooperate to achieve their respective
objectives, but any cooperation must be self-enforcing and not
enforced by binding agreements through third parties.

Such a cooperative scheduler can be seen as a system
including a set of consumers, e.g. applications or tasks, and
a set of resources as energy and processing power. To make
the most of all available resources, a proper distribution of
tasks among the devices such as to optimize the energy con-
sumption, represents a key issue to be addressed. The design
and implementation of such task allocation (or task scheduling)
strategy is an objective of this paper. The main design principle
of our scheduler is to find a task allocation in order to

maximize energy saving. Thus we propose an energy-aware
task allocation scheme that distributes energy consumption
among clusters by balancing the energy load among them. To
this aim, we designed and implemented a two phase heuristic-
based algorithm. This algorithm first tries to assign a task
locally to the cluster that generated the execution request by
minimizing energy consumed. If the task cannot be assigned
locally, the second phase of the algorithm is performed by
assigning the task to the most suitable node from the complete
network of resources, minimizing the energy requirements
of the system. We characterize the energy consumption of
the system defining an energy efficiency model in which the
energy costs of both computation and communication activities
are taken into account.

There are several works in literature whose goal is to evenly
distribute workload. But when the goal is to reduce energy
consumption, this type of algorithms can lead to resources
being largely underloaded, resulting in unnecessary energy
consumption. This weakness is a major problem of load
balancing algorithms.

A part of this work focuses on the extension of the MaG-
ateSim simulator [7] as well as better support to energy aware
scheduling algorithms. MaGateSim is based on GridSim toolkit
[10] and Alea simulator [19], and abstracts the features and
behaviors of complex fundamental grid elements, such as grid
jobs, grid resources, and grid users. the simulator itself can be
easily extended, and adopted for evaluating newly developed
decentralized scheduling algorithms, models, or workflows.
Community Aware Scheduling Algorithm (CASA) [10] makes
job allocation decisions based on contacted nodes loads and
real-time responses. In this case, each participating node needs
to expose its resource utilization, during cooperation with other
nodes. Furthermore, it is able to reschedule jobs through time,
in order to adapt to the unpredictable performance changes
of independent underlying resources. Cooperative scheduling
Anti-load balancing Algorithm for cloud (CSAAC) extends
CASA. CSAAC extends CASA adding migration of VMs and
the ability to avoid underload and overload nodes. We have
evaluated our network of schedulers using a simulation of the
system Grid5000. To save energy, CSAAC provides a holistic
energy-efficient task placement algorithm. Particularly, it inte-
grates migration of jobs and mechanism which automatically
switch off nodes, transitions them into a power-saving state
(e.g. suspend), and wakes them up once required. The detection
of underload and overload nodes is performed. To remedy this,
consolidation is used. The experimental results have proven
this algorithm to be energy-efficient.

The remainder of the paper is organized as follows. Section
II discusses related work. Section II presents the Model and
objectives. Section IV presents the Decentralized dynamic
scheduling anti-load balancing Algorithm for grids (CSAAC).
Section V presents the experimental results. Section VI Finally
concludes the paper.

II. RELATED WORK

Generally meta-scheduling solutions are classified into
three categories, namely the centralized, hierarchy, and de-
centralized schemes. In a centralized scheduling architecture
[11], scheduling decisions are made by a central controller

for all VMs. The scheduler maintains all information about
the VM and keeps track of all available resources in the
system. Centralized scheduling organization is simple to im-
plement and easy to deploy. A. Beloglazov and Rajkumar
Buyya [16] have proposed and evaluated heuristics for dynamic
reallocation of VMs to minimize energy consumption, while
providing reliable QoS. Their results show that the technique
of dynamic reallocation of VMs and switching off the idle
servers brings substantial energy savings and is applicable to
real-world Cloud data centers. This work has not investigated
setting the utilization thresholds dynamically according to a
current set of VMs allocated to a host, leveraging multi-core
CPU architectures, and decentralization of the optimization
algorithms to improve scalability and fault tolerance. In order
to avoid scheduling self competition, some Clouds only allows
one scheduler to manage each virtual organization. However,
Centralized scheduling organization is not adequate for the
Cloud because of the nature of the Cloud computing environ-
ment. Again, these centralized services limit their scalability.

In distributed scheduling, there is a central manager and
multiple lower-level entities. This central manager is responsi-
ble for handling the complete execution of a VM and assigning
the individual VM to the low-level providers. Each lower-level
entity scheduler is responsible for mapping the individual tasks
into Cloud resources. R. Ranjan et al [4] [5] proposed a meta-
scheduling framework. Each resource consumer may value
various resources differently depending on its QoS based utility
functions and may want to negotiate a particular price for using
a resource based on demand, availability and its budget. An
SLA is the agreement negotiated between a meta-scheduler,
entitled the Grid Federation Agent (GFA), and the Local
Resource Management System (LRMS) of the local sites in
terms of acceptable job QoS constraints, such as job response
time and budget spent. It highlights a bid-based SLA contract
negotiation model. Furthermore, the contract net protocol [6]
based SLA bids are restricted with a certain expiration time,
and a variety of economic parameters such as setting price,
user budget and deadline. A greedy backfilling heuristic is also
proposed for application on the participating LRMSs during
their cooperation with the meta-schedulers. The failure of the
central manager results in entire system failure.

The decentralized meta-scheduling scheme allows each
node to own a meta-scheduler which receive job submis-
sions originated by local users, and to assign such jobs to
the local resource management system, i.e., local scheduler.
Meta-schedulers of different nodes are capable of exchanging
information and sharing jobs between each other in order
to balance the resource load amongst participating nodes.
Besides the issue of efficiency and overhead, the decentralized
scheme brings better scalability, compared to other scheduling
schemes. C. Comito et al [8] proposed a task allocation
scheme for mobile networks focusing on energy efficiency. To
conservatively consume energy and maximize network lifetime
they have introduced a heuristic algorithm that balances the
energy load among all the devices in the network. Authors
have implemented a prototype of the system and evaluated
the scheduling strategy through simulation experiments. Re-
sults show that the proposed scheduler greatly enhances the
performance of the system compared to time-based traditional
schedulers like the round-robin. They achieved improvements
in terms of network lifetime, number of active devices and

number of completed tasks. Authors refer to a cooperative
Energy-Aware Scheduling strategy that assigns computational
tasks over a network of mobile devices optimizing the energy
usage. We use the same type of decentralized architecture, but
their objective is to find a task allocation that prolongs the
network lifetime while our main objective is to minimize the
energy consumption in Cloud.MaGateSim [7], a Simulation
Environment for a Decentralized Grid Scheduler, is designed
to be a decentralized grid scheduler that emphasizes on grid
scheduler interoperation, and is complemented by a dynamic
resource discovery approach on decentralized network. In
order to share the jobs submitted from a local MaGate to
other MaGates within the same grid community, a set of
community scheduling relevant parameters are evaluated and
discussed to address various job delegation scenarios between
different MaGates. The same authors propose a decentralized
dynamic scheduling approach named the community-aware
scheduling algorithm (CASA) [10]. However, the problem has
not been explored in the context of the optimization of energy
consumption. In an attempt to remedy this issue, our work is
based on CASA with a main purpose to optimize the energy
gain and ensuring a good quality of service.

III. MODEL AND OBJECTIVES

The overall objective of the energy management policy
is reducing energy consumption, while satisfying the users
performance demand within Cloud. In this section, we discuss
the Model, hypotheses, constraints and objectives.

A. Model and hypothesis

We consider an cloud environment compared of several
clusters. Each application will run in a dedicated VM. Each
VM has requirements in terme of computing power. For
example in figure 1 job 1 neads 30% of it’s host cpu. Hosts
can be switched off to save energy.

Fig. 1. Different contexts for a migration.

• hypotheses

◦ Communications within a cluster and between
other clusters for migration are considered as
negligible

◦ For each cluster there is at least one host and
one VM.

◦ Migration cost [21] is considered as the same
in CloudSim. To migrate a VM, only RAM has
to be copied to another node. The migration
time depends on the size of RAM and the

available network bandwidth. VM migration
delay = RAM / bandwidth + C (C = 10 sec).
Bandwidth is considered as constant.

We will use the classical linear model of power consump-
tion in function of load :
∀i, j Pi,j = P

i,j
min + ci,j(P

i,j
max − P

i,j
min)

Therefore the total power consumption of the system is:

P =
∑N

i=1

∑Hi

j=1
Pi,j

To obtain energy consumed during a time slice, instanta-
neous power has to be multiplied by time. Total energy is then
obtained by summing all the energy of those time slices.

B. Objectives

The main objective of our approach is to improve cloud’s
total energy efficiency by controlling cloud applications’ over-
all energy consumption while ensuring cloud applications
service level agreement. Therefore our work aims to satisfy
several objectives :

• Ease of task Management : we design a system which
is flexible enough to allow for dynamic addition and
removal of servers. As system components can fail
at any time, it is desirable for a system to heal
in the event of failures without human intervention.
Consequently, we aim at designing a system using
self-healing mechanisms to enable high availability.

◦ Conservation of the execution context : It must
be possible to stop the execution process of
the task and restart it where it has stopped.
Execution time can be reduced when the job
migrates to a more powerful node.

◦ Slowdown prevention : Job slowdown in-
creases the execution time and therefore in-
creases the energy consumed by hosts and
impact users.

• Energy Efficiency: One of our goals is to propose task
placements management algorithms which are capable
of creating idle times, transitioning idle servers in a
power saving state and waking them up once required
(e.g. when load increases). To measure the saturation
of a cluster, we use the saturation threshold ε.

IV. COOPERATIVE SCHEDULING ANTI-LOAD BALANCING

ALGORITHM FOR CLOUD (CSAAC)

A. Our threshold based Anti-load balancing model

Scheduling a workflow is a process of finding the mapping
of tasks to the suitable resources so that the execution can
be completed with the satisfaction of objective functions, such
as execution time minimization. Existing workflow scheduling
approaches are non-coordinated, where workflow schedulers
perform scheduling related activities independent of the other
schedulers in the system. They directly submit their tasks to
the underlying Cloud resources without taking into account
the current load, priorities, and utilization. This leads to
over-utilization or a bottleneck on some valuable resources,
while leaving others largely under-utilized. Further, broker-
ing approaches do not have a coordination mechanism. This

worsens the load sharing and utilization problems of Cloud
resources. Cooperative decision making for scheduling in an
open environment enables an optimized workflow execution
considering the dynamic resource behavior in the Cloud.

The proposed algorithm in this article works by associating
two threshold values with each host. When a host is under-
loaded (load < globally defined threshold), all its tasks are
migrated to a comparatively more loaded host. we also use the
over-loaded threshold ε, which we call saturation, to measure
the saturation of a cluster,.

In dynamic load unbalancing schemes, the two most impor-
tant policies are selection policy and location policy. Selection
policy concerns the choice of the host to unload. Location
policy chose the destination host of these moved tasks. An
important characteristic of selection policy is to prevent the
destination host to become overloaded. Also, migration costs
must be compensated by the performance improvement.

B. The Community-Aware Scheduling algorithm (CASA)

As a multi-phase decentralized scheduling solution, CASA
is comprised of the job submission phase responsible for
job dissemination, as well as the dynamic scheduling phase
responsible for iterative scheduling improving. Job submission
phase is the first phase of the community-aware scheduling
algorithm. Each time when a node i, receives a job k submitted
by its local user, node i behaves as a requester node and uses
algorithm hrequest to generate a request message reqi,k for job
k. Job characteristic information including estimated execution
time lnk and requested amount of Processor Elements (PEs)
pek will be appended to the generated request message.
Afterwards, request message message reqi,k replicated and
disseminated to each of the discovered remote nodes asking for
the job delegation possibilities. For all nodes receiving the job
delegation request message reqi,k, including the requester node
i itself, are considered as responder nodes. Each responder
node j needs to launch an algorithm named haccept to decide
whether node j is able and willing to execute the received
job k. Algorithm hrequest takes various factors, such as the
responder nodes capabilities and administrative preferences,
into consideration to decide whether job k can be executed
upon the responder node. If yes, each candidate, considered
as responder node, computes an estimated completion time
according to its current scheduling and resource status and
delivers the information by means of an ACCEPT message. In
addition, the estimated response time if job k is executed by
node j is also appended to the generated ACCEPT message,
which can be utilized by the requester node for responder
node evaluation and selection. Each time a request message
reqi,k is generated by the requester node and disseminated to
contactable remote nodes, the requester node waits and collects
all received ACCEPT messages and invokes an algorithm
hassign to select a proper remote node to which to delegate
the job. An assign will be generated and send to the assignee
node, wherein the job k and its relative data are enclosed.

Furthermore, CASA is a collection of heuristic sub-
algorithms, which are used to facilitate job scheduling across
decentralized distributed nodes. For an arbitrary node i, due
to the effect of the job submission phase, it has received a set
of jobs from either local users submissions or remote nodes

delegations. A rescheduling process helps CASA to adapt to
the changes of both underlying resources and arriving jobs.
Each time a node attempts to (re)assign a job to another node
(or the same node) for execution according of its load, the
assignment initiator is called the requester node, and the node
receiving such a request is called the responder node.

C. Algorithm description

As a decentralized scheduling solution, the cooperate
scheduling anti-load balancing algorithm in Cloud (CSAAC)
is based on CASA [10]. CASA proposed algorithm adopts the
promised job response time as the only criterion to evaluate the
nodes capabilities. Participating nodes only need to calculate
estimated response time for a concerned job and bid for the
job delegation using the calculated and promised job response
time. CSAAC add another criterion to evaluate the nodes
capabilities, the node load.

Each responder node computes an estimated completion
time according to its current scheduling and resource status,
calculates the necessary energy, and delivers the information
by means of an ACCEPT message. In addition, the node load
is also appended to the generated message, which can be
utilized by the requester node for responder node evaluation
and selection.

The selected node is the best candidate node based on sev-
eral parameters, such as the promised time to complete, energy
consumed, the node load between under-load threshold and
over-load threshold, node weight due to historical interaction
records, etc. Furthermore, during the execution of the tasks,
all the time the system verifies if there are under loaded or
overloaded nodes.

CSAAC provides task scheduling strategy, which dynami-
cally migrate tasks among computing hosts, transferring tasks
from underloaded hosts to loaded but not overloaded hosts. It
balances load of computing hosts as far as possible in order
to reduce program running time.

The decision making algorithm behaves globally as fol-
lows:

• If total Vm load on the host j of cluster i > ε ,host
is over-loaded

• If total Vm load on the host j of cluster i < γ , host
is under-loaded

Selection policies take into account migration cost. The
selected host (node j′ in cluster i′) is the one with the minimun
energy consumed with best execution time, weighed by the
migration cost between the current position of the VM and
the potential host. To reduce the load of an overloaded host, it
begins to migrate the slowest task. Selection policy will choose
the task that will stay the longest on the host.

This migration algorithm’s goal is to minimize the energy.
During the execution of the task it may happen that a node
is overloaded. We decided in this case to migrate VMs whose
execution time remaining is greater.

Policy of localization will then identify the host that will
receive the task without exceeding its capacities (ie. its load
after migration will still be under ε). So this host will be the

Fig. 2. How migrations can reduce makespan. CSAAC compared to CASA

new destination of the task. Figure 2 shows that CSAAC can
produce better execution time due to migration.

V. EXPERIMENTS AND RESULTS

In order to evaluate the gains of CSAAC compared to
classical algorithms, we implemented this algorithm in our
simulator based on MaGateSim [7], with the addition of power
consumption and virtual machine (mainly their migration). It
is designed to be a decentralized grid scheduler that empha-
sizes on cloud scheduler interoperation, and complemented
by a dynamic resource discovery approach on decentralized
network. In order to share the jobs submitted from a local
CSAAC to other CSAAC within the same grid community, a
set of community scheduling relevant parameters are evaluated
and discussed to address various job delegation scenarios
between different CSAAC. CSAAC schedulers are driven to
cooperate with each other, to provide intelligent scheduling
for the scope of serving the grid community as a whole, not
just for a single grid node individually. Our simulator is a
java event driven simulator of Clouds. It provides information
about execution times, but also about instantaneous power
consumption and energy consumption of tasks. We have also
performed an implementation of CASA within the context of
current developments in cloud computing.

A. Simulation environment

The workload trace archive and resource deployment topol-
ogy of the Grid5000 [9] is selected to organize the experiment
of this work. We use 1700 jobs of grid5000 workload.The
grid consists of 9 sites, 26 nodes and 3194 processors. Hosts
have two different power states for each core : Switched on
and switched off. While switched on, the power consumption
depends on load, Pmin and Pmax. Those values are different
for each host and are respectively between 75 and 150W, and
200 and 560W as measured on Grid5000. In the following we
compare CSAAC with algorithms CASA.

B. Experimental results

In this subsection, we describe the simulation study per-
formed to evaluate the performance of our algorithms in terms
of energy minimization as well as the execution time and the
number of migrations. We compare our algorithms with the
CASA [10] algorithm that produces energy-efficient schedules.
The first observation is that for two algorithms, CSAAC

Fig. 3. Energy of algorithms compared to CASA with sorted hosts by pmax.
Lower is better

consumes the least energy while CASA algorithm consumes
the most energy (see figure 3), when the number of jobs
T > 300. For a small number of tasks our algorithm leads to a
significant energy consumption. The second observation is that
CSAAC algorithm is able to reduce the energy consumption by
5 percent to 80 percent when job increases from 300 to 1700.
Figure 4 demonstrates the energy consumption and the number
of migrations incurred by 1700 jobs. An obvious observation is
that migrations are beneficial to save energy. The second phase
of our algorithm calls into question the choices and therefore
modifies the host loads over time. If at any time the tasks are
finished and that there’s several machines under loaded, you
can consolidate them. This is not the case for CASA which
never calls into question the allocation once the jobs is running.
In addition we can’t use jobs between neighbor and find a more
efficient than neighboring nodes starting from step by step.
The impact of migration, however, may not be large enough
to dominate the total energy consumption when the number
of jobs is less than 300. As CSAAC has more flexibility with

Fig. 4. CSAAC : Migration

using the migration possibilities, simulation showed that for all
cases, maskespan of jobs with CSAAC is always lower than
with CASA.

Fig. 5. comparison between two algorithms CSAAC and CASA. Standard
deviation σ of node load

Due to the thresholds of CSAAC, it would be possible
to reduce further the number of switched on hosts but it
would overload remaining hosts. Those hosts would become
hot points and would have a negative impact on cooling. In

order to prevent overloading, CSAAC adjusts load. Also the
figure 5 show how widely host load are dispersed from the
average value (the mean). In previous results (figures 3 and
4),the CSAAC algorithm is in the lead in terms of energy gain
and execution time, since in this algorithm there is cooperation
between schedulers which allows an efficient consolidation in
cloud. Figure 5, shows the standard deviation σ of the nodes
load which confirms the good distribution of the load after
consolidation. Thus figure 5 shows that the algorithm CSAAC
gives the best standard deviation after compared CASA, which
is an indication of the good predictability of the performance
of the algorithm CSAAC. We observe that when the number
of tasks increases, our algorithms perform better.

VI. CONCLUSION

In this paper, we presented and evaluated our energy-
efficient migration algorithm for cloud. This algorithm is based
on the principle of CASA. It takes into account energy and
provides energy-efficiency improvement compared to classical
load unbalancing algorithms. Also current version of CSAAC
is decentralized.

Our main problem was to optimize energy consumption
given task performance constraints. Energy consumption is to
be taken in a broad way as we try to prevent hot spots to
reduce impact on cooling.

Thus, we have compared CSAAC to CASA over a range
of realistic problem instances using simulation. CSAAC pa-
rameters lead to a family of heuristics that perform well
in terms of energy savings while still leading to good task
performance. It consolidate tasks on a subset of the cluster
hosts judiciously chosen depending on the characteristics and
state of resources. This algorithm has a low computational
cost. It can then be employed in practical settings. Overall,
the proposed CSAAC algorithm can compute allocations ef-
fectively with an important energy gain. The simulations in this
paper were based on heterogeneous processors with a real job
workload, but it des not take into account latency and energy
consumed during migration and communication. However, our
proposed algorithms can be easily extended to those systems.
Our simulator which extends MaGateSim is selected as the
simulator for experimental evaluation. The first phase of this
work was to extend MaGateSim by adding properties that
allow it to take into account energy and migration. We have
also performed an implementation of CASA within the context
of current developments in cloud computing.

The simulation results showed that our algorithm is capable
of obtaining energy-efficient schedules using less optimiza-
tion time. In particular, we showed that for the case when
jobs > 300, our algorithm is able to reduce the average energy
consumption by about 10 percent to 80 percent. At the same
time, the execution time of jobs is also reduced by 5 percent
to 25 percent when number of jobs > 300, when compared to
the CASA algorithm. Finally, the encouraging results observed
from this work serve as the motivation to improve the quality
of service.

REFERENCES

[1] Etinski, M., Corbalan, J., Labarta, J., Valero, M.: Utilization driven
power-aware parallel job scheduling. Computer Science - Research and
Development 25, 207-216 (2010), doi:10.1007/s00450-010-0129-x

[2] Lawson B., Smirni, E.: Power-aware resource allocation in high-end
systems via online simulation. In: Proceedings of the 19th Annual
international Conference on Supercomputing, ICS 2005, pp. 229-238.
ACM, New York (2005)

[3] Rajkumar Buyya and Manzur Murshed, GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource Management and
Scheduling for Grid Computing, The Journal of Concurrency and Com-
putation: Practice and Experience (CCPE), Volume 14, Issue 13-15,
Wiley Press, Nov.-Dec., 2002.

[4] R. Ranjan, A. Harwood, R. Buyya, SLA-based coordinated super-
scheduling scheme for computational Grids, in: 2006 IEEE International
Conference on Cluster Computing, 2006, pp. 18.

[5] R. Ranjan, A. Harwood, R. Buyya, SLA-based coordinated superschedul-
ing scheme for computational Grids, in: Cluster Computing, 2006 IEEE
International Conference on, IEEE, 2007, pp. 18.

[6] R. Smith, The contract net protocol: High-level communication and
control in a distributed problem solver, IEEE Transactions on Computers
100 (29) (1980)11041113.

[7]] Y. Huang, A. Brocco, M. Courant, B. Hirsbrunner, P. Kuonen, MaGate
Simulator: a simulation environment for a decentralized grid scheduler,
Advanced Parallel Processing Technologies (2009) 273287.

[8] C. Comito et al, Energy Efficient Task Allocation over, Mobile Networks
Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE
Ninth International Conference on, 12-14 Dec. 2011

[9] GWA, Grid5000 workload trace archive,
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Gwa-t-2,
2010.

[10] Y. Huang et al, Exploring decentralized dynamic scheduling
for grids and clouds using the community-aware scheduling
algorithm, Future Generation Computer System (2011), doic :
10,.1016/j.future.2011.05.006

[11] 2009] Yu J. and Buyya R. Gridbus Workflow Enactment Engine, Grid
Computing: Infrastructure, Service, and Applications, L. Wang et al.
(eds.). CRC Press, USA, 2009.

[12] Ranjan R., Rahman M., and Buyya R. A decentralized and cooperative
workflow scheduling algorithm. In Proceedings of the 8th IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGrid08),
France, May, 2008.

[13] J. Kaplan, W. Forrest, N. Kindler, Revolutionizing Data Center Energy
Efficiency, McKinsey Company, Tech. Rep.

[14] R. Buyya, A. Beloglazov, J. Abawajy, Energy-efficient management
of data center resources for cloud computing: a vision, architectural
elements, and open challenges, in: Proceedings of the 2010 International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications, PDPTA 2010, Las Vegas, USA, 2010.

[15] E. Pinheiro, R. Bianchini, E.V. Carrera, T. Heath, Load balancing and
unbalancing for power and performancee in cluster-based systems, in:
Proceedings of the Workshop on Compilers and Operating Systems for
Low Power, 2001, pp. 182195.

[16] Anton Beloglazov and Rajkumar Buyya, Energy Efficient Allocation
of Virtual Machines in Cloud Data Centers, 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing

[17] L. Chiaraviglio, I. Matta, GreenCoop: cooperative green routing with
energyefficient servers, in: Proceedings of the 1st ACM International
Conference on Energy-Efficient Computing and Networking, e-Energy
2010, Passau, Germany, 2010, pp. 191194.

[18] M. Koseoglu, E. Karasan, Joint resource and network scheduling with
adaptive offset determination for optical burst switched grids, Future
Generation Computer Systems 26 (4) (2010) 576589.

[19] Dalibor Klusek and Hana Rudov. Alea 2 - Job Scheduling Simulator.
In proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques (SIMUTools 2010), ICST, 2010

[20] M. Murshed, R. Buyya, D. Abramson, GridSim: A Toolkit for the
Modeling and Simulation of Global Grids, Technical Report, Monash-
CSSE 2001/102, Monash University, Australia, November 2001.

[21] https://groups.google.com/forum/#!forum/cloudsim

