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Abstract

Data reconciliation consists in modifying noisy or
unreliable data in order to make them consistent
with a mathematical model (herein a material flow
network). The conventional approach relies on
least squares minimization. Here we show that
the setting of fuzzy sets provides a generalized ap-
proach that is more flexible and less dependent
on oftentimes debatable probabilistic justifications.
Moreover the proposed setting also encompasses
constraint-based formulations using intervals.

Keywords: Material flow analysis, data reconcilia-
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1. Introduction

Material flow analysis consists in calculating the
quantities of a certain product transiting a network
of local entities referred to as processes, considering
input and output flows and including the presence
of material stocks. The unknowns to be determined
are the values of the flows and stocks. The basic
principle that provides constraints on the flows is
that what goes into a process must come out, up
to the variations of stock. Flows and stocks must
be balanced, through a set of linear equations. The
mass-balance equation relative to a process with n
flows in, k flows out and a stock level s is written:

n
∑

i=1

INi =

k
∑

j=1

OUTj + ∆s (1)

where ∆s is the amount of stock variation (positive

if
∑k

j=1OUTj <
∑n

i=1 INi and negative otherwise).
Such flow balancing equations in a process net-

work define a linear system of the form Ayt = B, y
being the vector of N flows and stock variations. In
order to evaluate balanced flows and stocks, data
is collected regarding the material flow transiting
the network and missing flow or stock variation val-
ues are calculated. But this task may face several
difficulties:

• There may not be sufficient information to de-
termine all the missing flows or stock varia-
tions.
• There may be on the contrary too much in-

formation available and the system of balance
equations may not have any solution.

• The available information is often not suffi-
ciently reliable and precise.

In this paper we address the second and third cases.
If the data are in conflict with the mass-balance
equations, it may be because they are erroneous and
should be corrected: this is the problem of data rec-
onciliation, a well-known problem in statistics ever
since its origins. As early as the end of the XVII-
Ith century, this question was addressed using the
method of least-squares. It still is the case today,
but the justification is statistical and usually based
on the Central Limit Theorem and the principle of
maximum likelihood. In this paper, we examine the
limitations of this approach and propose a prelimi-
nary discussion on alternative approaches that take
into account more explicitly data uncertainty, us-
ing intervals or fuzzy intervals. Following the latter
approaches, the problem can then be solved using
crisp or fuzzy linear programming. We outline a
general framework based on fuzzy intervals, under-
stood as flexible constraints, that encompasses the
least-squares method.

2. Data reconciliation

Data reconciliation consists in modifying measured
or estimated quantities in order to balance the mass
flows in a given network. The vector of flows y is
subdivided into two sub-vectors x and u, i.e., k in-
formed quantities xi and N − k totally unknown
quantities uj , to be determined. We denote by x̂
the vector of available measurements x̂i. In general,
the system A(xu)t = B has no solution such that
x = x̂. This absence of solution is assumed to be
due to measurement errors or information defaults.
The problem to be solved is to modify x, while re-
maining as close as possible to x̂, such that the mass
balance equations Ayt = B, with y = (xu), are sat-
isfied.

2.1. The least-squares approach

The traditional approach to data reconciliation [16]
considers that data come from measurements, and
measurement errors follow a Gaussian distribution
with zero average and a diagonal covariance matrix.
The precision of each measurement x̂i, understood
as a mean value, is characterized by its standard
deviation σi. Data reconciliation becomes a prob-



lem of optimization under linear constraints. In the
simplest case (assuming no u):

Find x minimizing

k
∑

i=1

wi(xi − x̂i)2

such that Axt = b

It is the method of weighted least-squares used in
many data reconciliation packages such as STAN
[2]. The solution is known to be of the form [16]:

x∗ = x̂−W−1At(AW−1At)−1A(x̂− b),

where W is a diagonal matrix containing terms
1/wi. Weights are often of the form wi = (σi)

−2.
Such packages sometimes also reconcile variances

as explained in [16]. It assumes that the vector of
estimated values x̂ has a multivariate normal distri-
bution characterized, by a covariance matrix C gen-
eralizing W , whose diagonal contains the variances
σ2
i . The balance flows being linear, the reconciled

values x∗ depend to the estimated values via a lin-
ear transformation, say x∗ = Bx̂ hence also have a
normal distribution. The covariance matrix of x∗ is
then of the form C∗ = BCBt.

2.2. Limitations of the approach

The method of least-squares is often justified based
on the principle of maximum likelihood, applied to
normal distributions, in turn justified by the Central
Limit Theorem (CLT). If pi is the probability den-
sity function associated with error ǫi = xi − x̂i, the
maximum likelihood is calculated on the function
L(x) =

∏k

i=1 pi(xi− x̂i). If the pi’s are normal with
average 0 and standard deviation σi, then pi(xi−x̂i)

is proportional to e
− (xi−x̂i)2

σ2
i . As a consequence, the

maximum of L(x) coincides with the solution to
the least squares method. The Gaussian assump-
tion seems to be made because of the popularity of
Gauss law (that computes an approximation of the
standard deviation of a function f(x1, . . . xk) in the
vicinity of a measurement point based on the linear
part of its Taylor expansion). The universal char-
acter of this approach, albeit reasonable in certain
situations, is nevertheless dubious:

• It is not consistent with the history of statis-
tics [18]. The least-squares method, developed
by Legendre (1805) and Gauss (end of XVII-
Ith century), was discovered prior to the CLT,
as is the Gauss function. Invented precisely to
solve a problem of data reconciliation in astron-
omy, the least squares method sounded natural
since it was in accordance with the Euclidean
distance. Moreover, it led to solutions that
could be calculated analytically and it could
justify the use of the average in the estimation
of quantities based on several independent mea-
sures. The normal law was discovered by Gauss
as the only error function that was compatible

with the average estimator. However, CLT is
a mathematical result obtained independently
by Laplace, who later on made the connection
between his mathematical result and the least
squares method.
• The CLT presupposes a statistical process with

a finite average E and standard deviation σ. In
this case, the average of n random variables vi
has standard deviation σ/

√
n and the distribu-

tion of the average

∑

n

i=1
vi−nE√
n

is asymptoti-

cally Gaussian as n increases. The fundamen-
tal hypothesis behind the normal distribution
is the existence of a finite σ. In practice, this
implies that for N observations ai of v, the em-

pirical variance msd =
2
∑

i<j
(ai−aj)2

N(N−1) remains

bounded as N increases, which is neither al-
ways true nor easily verifiable.
• The Gaussian hypothesis is only valid in the

case of an unbounded random variable. If
vi is positive or bounded, assuming that the

quantity En =

∑

n

i=1
vi

n
assymptotically follows

a normal distribution with standard deviation
σ/
√
n is an approximation that may be useful

in practice but does not constitute a general
principle.

Based on the remarks above, it is natural to look
for alternative methods for reconciling data that do
not come from a statistical measurement process.
A first alternative consists in representing error-
tainted data by means of intervals and checking the
compatibility between these intervals.

3. Interval reconciliation

In practice, information on mass flows is seldom
precise: the data-gathering process often relies on
subjective expert knowledge or on scarce measure-
ments published in various documents that more-
over might be obsolete. Each flow value provided
by a source can be more safely represented by an in-
terval X̂i, which in a first stance, can be considered
as encompassing the actual flow value: of course,
the less precise the available information, the wider
the interval. Missing values ui can also be taken
into account: we then select as its attached interval
the domain of possible values of the corresponding
parameter (for example, the unknown grade of an
ore extracted from a mine and sent to the treat-
ment plant can, by default, be represented by the
interval [0 ,100]%). In the least-squares approach to
data reconciliation, we use weights to reflect the as-
sumed variance of a Gaussian phenomenon; if such
information on variances σ2

i are available, we can

set X̂i = [x̂i − 3σi, x̂i + 3σi], as the distribution of
xi is often assumed to be Gaussian. Thus each of
the N variables yi of the vector y = xu is delimited
a priori by an interval Ŷi.

The representation of flow data by intervals leads



us to consider the reconciliation as a problem of
constraint satisfaction; the mass balance equations
must be satisfied for flux and stock values that lie
within the specified intervals - or, to be more pre-
cise, we can restrain these intervals to the sole values
that are compatible with the balancing model given
the possible values of other variables. Formally, the
reconciliation problem can be expressed as follows:

For each i = 1, . . . N , find the smallest and largest
values for yi, such that :

Ayt = B

yi ∈ Ŷi, i = 1, . . . , N

The calculation of consistent minimum and max-
imum values of yi is sufficient: since all the equa-
tions are linear, we can show that if there exists two
flow vectors y and y′, each being a solution to the
above system of equations, then any vector v lying
between y and y′ componentwise is a solution of the
system of equations Ayt = B. The problem can of
course be solved using linear programming.

Due to the linearity of the constraints, it may also
be solved by methods based on interval propagation.
For each variable yi, equation j of the system Ayt =
B can be expressed as

yi =

∑

k Ó=i bj − ajkyk
aji

, i = 1, . . . , N.

We can then project this constraint on yi and find
the possible values of yi consistent with it. Due
to the m linear constraints, the values of yi can be
restricted to lie in the interval:

Yi = Ŷi ∩ (∩j=1...,m

∑

k Ó=i bj − ajkŶk
aji

),

where

∑

k Ó=i
bj−ajkŶk
aji

is calculated according to the

laws of interval arithmetic [12]; if the new interval
of possible values of yi is more precise (Yi ⊂ Ŷi), it
is in turn propagated to the other variables. This
procedure, known as “arc consistency”, is iterated
until intervals are stabilized; it converges within a
finite number of steps to a unique set of intervals
[13] (for additional details on interval propagation
techniques, see [1, 11]). Note that contrary to the
statistical approach, here the model constraints and
the imprecise data are handled on a par.

4. Modeling data using fuzzy intervals

In the framework of measurement problems, Mau-
ris [14] has suggested that in the case of competing
error functions (empirical probability distributions
pi, i = 1 . . . k), one may refrain from choosing one
of them and consider a family of probabilities P in-
stead, to represent our knowledge about x, where
pi ∈ P,∀i. In general such a representation can
be extremely complex. For instance, P should be
convex, typically the convex hull of {pi, i = 1 . . . k}.

However a very simple and convenient representa-
tion is via possibility distributions having the shape
of a fuzzy interval [4].

A possibility distribution is a mapping π : R →
[0, 1] such that π(r∗) = 1 for some r∗ ∈ R. It repre-
sents the current information on a quantity x. The
idea is that π(r) = 0 if and only if x = r is impos-
sible, while π(r) = 1 if x = r is a totally normal,
expected, unsurprizing value. One rationale for this
framework is that the set Iα = {r, π(r) ≥ α} (α-cut)
contains x with level of confidence 1 − α, that can
be interpreted as a lower probability bound. In par-
ticular, it is sure that x ∈ {r, π(r) > 0} = S(π), the
support of the possibility distribution.

A fuzzy interval is a possibility distribution whose
α-cuts Iα are closed intervals. They form a nested
family of intervals containing the core C(π) =
{r, π(r) ≥ α} = 1 and contained in the support.
The simplest representation of a fuzzy interval is
a trapezoid defined by the core and the support.
Note that this format is very convenient to gather
information from experts in the form of confidence
intervals.

Given a possibility distribution π, the degree of
possibility of an event A is Π(A) = supr∈A π(r).
The degree of certainty of event A is N(A) =
1 − Π(Ac), where Ac is the complement of A. A
possibility distribution can be viewed as encoding
a convex probability family P(π) = {P, P (A) ≥
N(A),∀A measurable} (see [4] for references).
Functions Π and N can be shown to compute exact
probability bounds in the sense that

Π(A) = sup
P∈P(π)

P (A) and N(A) = inf
P∈P(π)

P (A).

When several error functions are possible, one
may choose to represent them by a possibility distri-
bution that encompasses them. This is the idea de-
veloped by Mauris [14]. Probabilistic inequalities is
one example. For instance, knowing the mean value
and the standard deviation of a random quantity,
Chebyshev inequality gives a possibility distribution
that encompasses all probability distributions hav-
ing such characteristics [7]. Gauss inequality also
provides such possibility distributions encompass-
ing probability distributions with fixed mode and
standard deviation (see [15]). It yields a triangular
(bounded) fuzzy interval if probability distributions
have bounded support. Hence a possibility distri-
bution may account for incomplete statistical data.

Conversely, if an expert provides a probability
distribution that represents subjective belief, it is
possible to reconstruct a possibility distribution
that fits the Laplace principle of indifference. When
the available knowledge is an interval [a, b], and the
expert is forced to propose a probability distribu-
tion, the most likely proposal is a uniform distri-
bution over [a, b] due to symmetry. If the available
knowledge is a possibility distribution π, this sym-
metry argument leads to replace π by a probability



distribution constructed by (i) picking at random a
threshold α ∈ [0, 1] and (ii) a number at random in
the α-cut Iα of π. One may argue that we should
bet on the basis of this probability function in the
absence of any other information. Conversely, a
subjective probability provided by an expert can be
represented by the (unique) possibility distribution
that would yield this probability distribution using
this two-stepped random Monte-Carlo process [10].

In summary, fuzzy intervals, and specifically tri-
angular or trapezoidal possibility distributions, may
account for various kinds of uncertain information.

5. Fuzzy interval reconciliation

The interval approach does not yield the same type
of answer as the least-squares method because it
provides only intervals rather than precise values.
Such intervals can be compared to reconciled vari-
ances provided by current software for MFA and
data reconciliation like STAN [2]. A natural way
to obtain both reconciled values and intervals is to
tolerate a certain level of flexibility on the flow esti-
mates using the notion of fuzzy interval: the more-
or-less possible values of each flow or stock yi will
be limited by a fuzzy interval Ỹi. For some of these
quantities, these constraints will be satisfied to a
certain degree, rather than simply either satisfied
or violated. The problem of searching for a possible
solution then becomes an optimization problem - we
seek an optimal position within all the (fuzzy) inter-
vals of possible values. If no solution provides entire
satisfaction for all intervals, some will be relaxed if
necessary [5].

5.1. A general framework

In this approach, the linear equations describing the
material flow for each process are considered as in-
tegrity constraints that must necessarily be satis-
fied, but the information relative to possible values
of each flow or stock quantity yi is represented, not
as a strict interval Ŷi but as a fuzzy interval Ỹi,
interpreted as a possibility distribution πi. This
interval may still coincide with the domain of the
quantity, in the case of total ignorance.

An assignment y for all yi is possible, provided it
satisfies all the constraints. In other words, the de-
gree of plausibility of an assignment y = xu can be
obtained by a conjunctive aggregation of the local
satisfaction degrees. Namely it is ⋆Ni=1π(yi) if y sat-
isfies the integrity constraints, and 0 otherwise - the
operation ⋆ being associative, commutative and in-
creasing on [0, 1] (a t-norm). We may then calculate
the most plausible reconciled vectors and the asso-
ciated degree of possibility by solving the following
problem:

Find the values y = xu that maximize:

π⋆(y) = ⋆Ni=1πi(yi) such that Ayt = B

Rather than providing the user with one amongst
several optimal solutions, it is often more informa-
tive to have reconciled flows in the form of fuzzy
intervals obtained by projection on the domain of
each yi:

max
y s.t. yi=v and Ayt=B

⋆Nj=1πj(yj)

The operator models the fact that the yi must be
placed as close as possible to the cores of the fuzzy
intervals - to their center if we use triangular (or
trapezoidal) representations. In the case of “classi-
cal” intervals, i.e. when degrees of membership to
the Ỹi’s are 0 or 1, the ⋆ operator performs a simple
conjunction and we come back to the formulation of
Section 3. The cases ⋆ = min and ⋆ = product con-
stitute two basic modeling choices. We may also use
the Łukasiewicz t-norm : max(0, a + b − 1), which
eliminates as impossible some vectors y that have
albeit positive but too low scores. The first opera-
tor, the minimum, nevertheless presents advantages
from a computation viewpoint: it allows the use of
tools from linear programming or interval propaga-
tion.

5.2. The max-min approach

The optimization problem to be solved takes the
form:

Find y∗ that maximizes

πmin(y) =
N

min
i=1
πi(yi) where Ayt = B

with Ayt = B. Let α∗ = minNi=1 πi(y
∗
i ) where y∗

is an optimal solution. This implies that we cannot
aim at a plausibility value α > α∗, since there will
be no simultaneous choice of the yi in the α-cuts
of Ỹi that will form a consistent vector in the sense
of the network defined by Ayt = B, whereas there
exists at least one consistent assignment of flows
at the level α∗. Note that there may exist several
solutions that allow a level of satisfaction α∗.

Once α∗ is known, we can assign to each flow an
interval of optimal values (Ỹi)α∗ = {yi : πi(yi) ≥
α∗} by solving for each yi the following interval
reconciliation problem: Find the minimum (resp.
maximum) values of yi such that Ayt = B and:

πj(yj) ≥ α∗, j = 1, . . . , N.

The fuzzy reconciliation problem fails if α∗ = 0.
The optimal supports of the optimal fuzzy intervals
containing the yi’s can be obtained if we use the
supports of the Ỹi in the procedure of the previous
section. This program contains on the one hand the
mass flow model Ayt = B which, as seen previously,
is linear, and then we force the yi to belong to the
supports [si, si], i = 1, . . . N of the fuzzy intervals
Ỹi’s.



5.3. Resolution methods

From a technical standpoint, the fuzzy interval rec-
onciliation problem can be solved using three alter-
native approaches:

Using a fuzzy interval propagation algorithm

As in the crisp case, fuzzy intervals of possible val-
ues Ỹi can be improved by projecting the fuzzy do-
mains of other variables over the domain of yi via
the balancing equations:

Ỹ ′i = Ỹi ∩ (∩j=1...,m

∑

k Ó=i bj − ajkỸk
aji

),

where

∑

k Ó=i
bj−ajkỸk
aji

is a fuzzy interval Ãj that

can be easily obtained by means of fuzzy inter-
val arithmetics [8] since equations are linear. Note
that Ỹi ∩ (∩j=1...,mÃj) has possibility distribution
π′i = min(πi,minj=1...,m πÃj ).

The propagation algorithm iterates these up-
dates by propagating the new fuzzy intervals on all
the neighboring yi’s, until their domains no longer
evolve. This procedure presupposes efficient fuzzy
interval representation schemes must be used. Typ-
ically we should use piecewise linear fuzzy intervals
[17] including subnormalized ones. Eventually, op-

timal (maximally precise) fuzzy intervals Ỹi
∗

are ob-
tained as resulting fuzzy domains of the reconciled
flows. These fuzzy domains may be subnormalized:
at least one of them has height hi = supyi π

∗
i (yi) =

α∗ that may be less than 1 and may contain a sin-
gle value. However the heights hj of other opti-
mal fuzzy intervals may be greater that α∗. Their
hj-cuts contain the optimal values y∗i . However,
this method will only provide the fuzzy intervals
with possibility distributions min(πi, α

∗) since fuzzy
arithmetic methods applied to fuzzy intervals of var-
ious heights only preserve the least height [8].

Using α-cuts In order to take advantage of the
calculation power of modern linear programming
packages, a simple solution is to proceed by di-
chotomy on the α-cuts of the fuzzy intervals : once
each Ỹi is cut at a given level α, we obtain a sys-
tem of equations as in Section 3, replacing Ŷi by the
interval (Ỹi)α; this system can therefore be solved
by calling an efficient linear programming solver. If
the solver finds a solution, the level α is increased; if
not, i.e., if it detects an inconsistency in the system
of equations, the value α is decreased, etc. until the
maximum value α∗ is obtained with sufficient preci-
sion, along with the corresponding intervals (Ỹi)α∗ .

Using fuzzy linear programming When the
fuzzy intervals are triangular or trapezoidal (or even
homothetic, as in the case of L-R fuzzy numbers),
it is possible to write a (classical) linear program
in order to obtain the value of α∗, then obtain the
optimal ranges (Ỹi)α∗ ’s for the reconciled flows. It

is necessary to model the fact that the global de-
gree of plausibility of the optimal reconciled val-
ues is the least among the local degrees of possi-
bility, i.e., we should maximize a value less than
all the πi(yi), hence we should write N constraints
α ≤ πi(yi), i = 1, . . . , N . When the original fuzzy
intervals are triangular with core ŷi, each constraint
is written in the form of two linear inequalities, one
for each side of the fuzzy intervals. All these equa-
tions being linear, we can then use a linear solver
to maximize the value α such that:

Ayt = B

si ≤ yi ≤ si, i = 1, . . . , N

α(ŷi − si) ≤ yi − si, i = 1, . . . , N

α(si − ŷi) ≤ si − yi, i = 1, . . . , N

The same type of modeling yields the inf and sup
limits of the α∗-cuts for the reconciled intervals Ỹ ∗i
(maximizing and minimizing yi, letting α = α∗ in
the constraints above). By virtue of the linearity
of the system of equations and of the membership
functions, we can reconstruct the reconciled Ỹ ∗i up
to possibility level α∗ by linear interpolation be-
tween the cores and the optimal supports obtained
by deleting the third and fourth constraints in the
above program (although strictly speaking the rec-
onciled fuzzy intervals might only be piecewise lin-
ear).

It is possible (and recommended) to iterate the
above procedure and refine the optimal intervals
(Ỹi)α∗ by instanciating the quantities yi such that
(Ỹi)α∗ reduces to a singleton {y∗i } as described in
[6], leaving other variables in their optimal α∗-cuts.
Namely, let V1 = {i : (Ỹi)α∗ = y∗i }. We can solve
the problem of maximizing the value α such that

Ayt = B

si ≤ yi ≤ si, i Ó∈ V1

yi = y∗i , i ∈ V1

α(ŷi − si) ≤ yi − si, i Ó∈ V1

α(si − ŷi) ≤ si − yi, i Ó∈ V1

α ≥ α∗

Then we get an optimal value α∗1 > α
∗, and we can

look for the optimal ranges (Ỹi)α∗1 , i ∈ V1 some of
which again reduce to singletons. So, at this second
step we have instanciated a set V2 ⊃ V1 of variables.
We can iterate this procedure until all variables
are instanciated, at various levels of optimal pos-
sibilities. Eventually, it delivers precise reconciled
values along with possibility distributions around
them. These values are Pareto-optimal in the
sense of the vector-maximisation of the vectors
(π1(y1), . . . πN (yN )).

Among the three approaches, the latter based on
fuzzy linear programming looks like the most con-
venient one.



y1 y2 y3 y4
Least squares method

Original data 24± 2 16± 3 15± 4 22± 5

Reconciliated values 23, 8 15, 5 15, 9 23, 4

Reconciliated fuzzy intervals

Triangular fuzzy intervals (22, 24, 26) (13, 16, 19) (11, 15, 19) (17, 22, 27)
α∗ : 11

14

Reconciliated cores 23 + 4/7 15 + 5/14 15 + 6/7 23 + 1/14

Reconciliated supports [22, 26] [13, 19] [11, 19] [17, 27]

Table 1: Reconciliated flows for Example 1

6. Some examples

We present simple examples in order to compare the
statistical and fuzzy approaches

6.1. One-process case

We consider the example illustrated in Figure 1,
which is composed of four flows (y1, y2, y3, y4) and
one process (P1). Flows y1 and y2 enter the pro-
cess, while y3 and y4 exit the process. There are no
stocks. In this example we have symmetric trian-
gular fuzzy intervals Ỹ1 = 24± 2, Ỹ2 = 16± 3, Ỹ3 =
15±4, Ỹ4 = 22±5. In the least-squares method, we
interpret the half-length of the interval as a stan-
dard deviation.

Figure 1: Example 1

With the fuzzy interval approach, the calculation of
α∗ using linear programming is obtained by solving
the following linear problem: Maximize α such that:

y1 + y2 = y3 + y4

22 ≤ y1 ≤ 26

α · (26− 24) ≤ 26− y1
α · (24− 22) ≤ y1 − 22

13 ≤ y2 ≤ 19

α · (19− 16) ≤ 19− y2
α · (16− 13) ≤ y2 − 13

11 ≤ y3 ≤ 19

α · (19− 15) ≤ 19− y3
α · (15− 11) ≤ y3 − 11

17 ≤ y4 ≤ 27

α · (27− 22) ≤ 27− y4
α · (22− 17) ≤ y4 − 17

Figure 2: Example 2

The results obtained using the two methods
(least-squares and fuzzy interval reconciliation) are
provided in Table 1. We note that the alpha-cuts
of the fuzzy intervals at level α∗ after propagation
are singletons and that the maximum deviation be-
tween the initial and reconciled values is smaller in
the case of the fuzzy method than with the least-
squares method.

6.2. Two-process example

We consider the example in Figure 2, composed of
four flows (y1, y2, y3, y4) and two processes (P1 and
P2). Flows y1 and y2 both enter process P1; y3
exits P1 to enter P2, two flows exit P2: y4 and y2,
while the latter is recycled into P1. In this example
Ỹ1 = 20± 3, Ỹ2 = 10± 2, Ỹ3 ∈ 20± 4, Ỹ4 = 16± 3.

For the approach using fuzzy intervals, the calcu-
lation of α∗ by linear programming is obtained by
solving a system of equations similar to that of the
previous case. We obtain α∗ = 1/3. We can also
obtain this value by calculating the height of Ỹ1∩Ỹ4.
Indicated in Table 2 are the cuts at level 1/3 and the
supports of the reconciled fuzzy intervals. We note
that reconciled values obtained by least-squares are
at the center of the supports of the reconciled inter-
vals obtained using the fuzzy interval method.

However, it is possible to refine the remaining in-
tervals. If we retain the information y∗1 = y∗4 = 18
and run the fuzzy interval propagation procedure
again, we verify that the intersection Ỹ2 ∩ (Ỹ3− 18)
has a height of unity, obtained for y2 = 10. We



can also fix y3 = 28 considering Ỹ3 ∩ (Ỹ2 + 18).
We can therefore verify that π1(18) = π4(18) =
1/3, π2(10) = π3(28) = 1 and therefore that the
least-squares solution coincides in this particular ex-
ample with the Pareto-optimal solution of the fuzzy
data reconciliation problem. The former example
shows that this is not always the case.

6.3. Comparing reconciled values: a generic

example

Consider a single process with n inputs xi and a
single output x0 =

∑n

i=1 xi. Suppose all mea-
sured inputs are x̂i = a > 0 while x̂0 = ka > 0.
One may argue that, assuming the xi’s have the
same variance 1, x0 has variance equal to n. It is
easy to obtain least squares estimates, minimizing
∑n

i=1(xi − a)2 + (x0−a)2

n
under the balancing con-

straint. It is easy to find that xLS0 = a(k+n)
2 and

xLSi = a
2 + ak2n . Note that limn→∞ x

LS
i = a/2 and in

fact a2 < x
LS
i ≤ a(k+1)

2 . All reconciled flows linearly
increase to infinity if k increases.

In the fuzzy interval approach we can assume tri-
angular membership functions : X̃i has mode a
and support [a − α, a + β], where the magnitudes
of α, β depend on the available knowledge. Sup-
pose that the relative error of the data is every-
where the same so that X̂0 has mode ka and sup-
port [k(a−α), k(a+β)]. The reconciled value for x0

is obtained as the value for which the intersection
X̂0 ∩ nX̃i has maximal positive possibility degree.
There are two cases

x∗0 =

{

nka(α+β)
nα+kβ if k ≤ n and k(a+ β) > n(a− α)
nka(α+β)
kα+nβ if k ≥ n and k(a− α) < n(a+ β).

It can be checked that the least squares solution
is encompassed by the fuzzy interval approach. If
k ≤ n, x∗0 = xLS0 if and only if α, β are chosen such

that nα = kβ > a(n−k)
2 (the inequality makes the

fuzzy reconciliation problem feasible). Likewise, if

n ≥ k, the condition is kα = nβ > a(n−k)2 .
Finally we check when x∗0 is closer to the esti-

mated value ka than xLS0 . For instance, if k ≤ n,
x∗0 > ka and xLS0 > ka, and xLS0 > x∗0 > ka pro-
vided that kβ < nα.

7. A unified framework for least squares

and fuzzy interval reconciliation

If we select the product for operation ⋆ in the gen-
eral formulation of Section 5.1, the reconciliation
problem boils down to maximizing the expression
π⊙(y) =

∏N

i=1 πi(yi) under constraints Ayt = B.
If in addition we choose to use Gaussian shapes

πi(y) = e
− (yi−ŷi)2

σ2
i for the fuzzy intervals, it becomes

clear that this formulation brings us precisely back
to the maximum likelihood expression L(x). There-
fore the fuzzy interval approach defined in Section

5.1 captures the least-squares method as a special
case, minimizing the distance to estimated values in
the sense of the l2 norm.

With ⋆ = min and triangular fuzzy intervals Ỹi
centered around measured values ŷi, solving the
max-min fuzzy constraint problem, reduces to min-
imizing the maximal weighted absolute deviation:

e∞(y) = max
i=1,...,N

|yi − ŷi|
σi

,

using an l∞ norm instead of the Euclidean l2 norm.
Here σi is interpreted as the spread of the fuzzy
interval Ỹi.

Similarly, choosing a ⋆ b = max(0, a + b − 1) un-
der the same hypotheses comes down to minimizing
a weighted sum of absolute errors, i.e., use the l1
norm:

e1(y) =
∑

i=1,...,N

|yi − ŷi|
σi

.

More generally recent works on penalty-based ag-
gregation [3] may help us find an even more general
setting for devising reconciliation methods in terms
of general penalty schemes when deviating from the
measured data flows.

8. Conclusion

In the context of the mass flow reconciliation prob-
lem, we often deal with scarce data of various ori-
gins, pertaining to different quantities, that we can
hardly assume to be generated by a standard ran-
dom process. It seems more natural to concentrate
efforts on the choice of a distance (l1, l2, l∞, . . . ) for
minimizing the error rather than to invoke the CLT
to justify the least-squares method. A fuzzy-set ap-
proach to data reconciliation has been proposed. Its
advantages are:

• Its general character: in a formal sense, it gen-
eralizes the least-squares method without be-
traying the principle of maximum likelihood.
Indeed, it is well-known that a likelihood func-
tion is a special case of a possibility distribution
[9] and we see clearly that the likelihood L(x)
is a special case of π⋆(x), with ⋆ = product.
• Its clear conceptual framework, both for repre-

senting uncertainty pervading the data (statis-
tical or subjective) and for leaving the choice
of the distance that enters the error function
to the user. The reconciled ranges around the
reconciled values are also more easy to inter-
pret than the reconciled variances, as they re-
sult from standard interval propagation.
• The opportunity of solving the problem in the

max-min case, using standard methods and
software.

However, our framework does not encompass the
probabilistic method of variance reconciliation de-
scribed in Section 2.1, since the latter views the nor-
mal distribution on flow measurements as a data



y1 y2 y3 y4
Least squares method

Original data 20± 3 10± 2 28± 4 16± 3

Reconciliated values 18 10 28 18

Reconciliated fuzzy intervals

Triangular fuzzy intervals (17, 20, 23) (8, 10, 12) (24, 28, 32) (13, 16, 19)
α∗ : 1

3

Reconciliated cores [18, 18] [8 + 2

3
, 12− 2

3
] [26 + 2

3
, 29 + 1

3
] [18, 18]

Reconciliated supports [17, 19] [8, 12] [25, 31] [17, 19]
Reconciliated cores: 2d round [18, 18] [10, 10] [28, 28] [18, 18]

Table 2: Reconciliated flows For Example 2

generation process and not as an additional con-
straint. In contrast one could consider reconciling
variances as a data fusion problem.

Mind that minimizing a sum of absolute valued
deviations (and to a lesser extent quadratic), runs
the risk of making certain values of xi deviate sig-
nificantly from the data x̂i, whereas the max-min
approach is designed to keep all of them as close
as possible to the initial data. The latter approach
seems to be more reasonable if the data come as
single estimate from an expert or other sources for
each quantity. This approach is currently being
studied for analyzing the material flow of rare earth
elements in the anthroposphere of the EU-27.
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