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From preferences over arguments to preferences over attacks
in abstract argumentation: A comparative study

Claudette Cayrol, Marie-Christine Lagasquie-Schiex

IRIT-UPS, University of Toulouse, France
Email: {ccayrol, lagasq}@irit.fr

Abstract—Dung’s argumentation framework has been ex-
tended to consider preferences over arguments or over attacks,
in a qualitative or in a quantitative way. In this paper, we
investigate the relationships between preferences over argu-
ments and preferences over attacks. We give conditions on the
definition of preferences over attacks from preferences over
arguments. Following these principles, we propose different
instantiations of an AFvs (argumentation framework with
attacks of various strength), when preferences over arguments
are available. Our proposal is compared to existing work,
particularly regarding the conditions in which the defence
holds.

Keywords-Reasoning Agents, Knowledge Representation, Ar-
gumentation.

I. INTRODUCTION

Argumentation has become an influential approach in

Artificial Intelligence to model cognitive tasks such as

inconsistency handling and defeasible reasoning (e.g. [1],

[2], [3]), decision making (e.g. [4]), or negotiation between

agents (e.g. [5]). It is based on the evaluation of interacting

arguments, which may support opinions, claims or decisions.

Usually, the interaction takes the form of conflicts between

arguments, and the fundamental issue is the selection of

acceptable sets of arguments, based on the way they interact

and the key concept of defence. Most of the argumentation-

based proposals are instantiations of the abstract system pro-

posed by Dung [6], which is reduced to a set of arguments

(completely abstract entities) and a binary relation, called

attack, which captures the conflicts between arguments. The

increasing interest for the argumentation formalism has led

to numerous extensions of the basic abstract system which

are more appropriate to the applications.

A first extension of Dung’s system has included a pref-

erence relation between arguments, which models their

relative strength. For instance, an argument built from certain

knowledge is stronger than an argument relying upon default

knowledge (see e.g. [7], [8], [9], [10]).

Other extensions have been proposed to make a distinction

between various types of conflict: [11], [12] in a logical

setting, [13] in case of symmetric attacks, [14] in a multi-

agent setting, [15], [16] with weighted attacks. Behind these

proposals, there is a common idea that attacks may have

different strength and can be compared according to their

relative strength. However, there is so far no consensus about

how it should be used to define extensional semantics, ac-

cording to which acceptable sets of arguments are selected.

Some works towards that direction have been proposed

in [17], [18], [19], where an abstract argumentation system

with varied-strength attacks has been defined and a new kind

of defence, the vs-defence, has been introduced.

Our purpose is to take advantage of that abstract system

in order to investigate the relationships between preferences

over arguments and preferences over attacks. We consider

quantitative as well as qualitative approaches for expressing

these preferences. Some results for the quantitative setting

have been presented in [20]. We pursue that work by

providing a comparative study of different proposals. Sect. II

gives the background about the modelling of strength (of

arguments and of attacks) in abstract argumentation. Sect. III

presents our proposals for moving from preferences over

arguments to preferences over attacks. These proposals are

compared with existing ones in Sect. IV and Sect. V is

devoted to concluding remarks.

II. BACKGROUND

A. Dung’s argumentation framework

In Dung’s abstract framework [6], arguments are supposed

to be given and conflicts between arguments are represented

by a binary attack relation.

Def. 1: An argumentation framework (AF) is a pair

〈A,R〉 of a finite set A of arguments1 and a binary (attack)

relation R over A. ARB means that A attacks B.

An AF may be represented by a directed graph G whose

nodes represent arguments and edges represent the attack

relation. Acceptable sets of arguments can be defined from

the concepts of conflict-freeness and defence.

Def. 2: A set S ⊆ A is conflict-free iff2 there are no

A,B ∈ S such that ARB. Let A,B,C ∈ A, C defends A
against B iff BRA and CRB. A set S defends A iff for

each B such that BRA, there exists C ∈ S such that C
defends A against B. S is admissible iff S is conflict-free

and defends all its elements.

1We assume that A represents the set of arguments proposed by rational
agents at a given time; so it makes sense to assume that A is finite.

2iff: if and only if



B. Preferences between arguments: PAF or WAF

Strengths of arguments have been introduced in two ways:

a qualitative way in Preference Argumentation Frame-
works (PAF) [3]: an AF is associated with a partial

preordering � over A; so a PAF is a triplet 〈A,R,� 〉.
a quantitative way in Weighted Argumentation Frame-
works (WAF) [16]: an AF is associated with a function

ω : A→ R; so a WAF is also a triplet 〈A,R, ω〉.
Notations: Let � be a binary relation on A.

The corresponding strict relation is denoted by � and

defined by A � B iff (A � B and not(B � A)). Note

that � is irreflexive and asymmetric.

A∼B denotes (A � B and B � A); it means that A
and B are equivalent.

A	≈B denotes (not(A � B) and not(B � A)); it means

that A and B are incomparable.

A WAF enables to construct a particular PAF as follows:

Def. 3: Let WAF = 〈A,R, ω〉. The PAF corresponding

to WAF is the triplet 〈A,R,� 〉 where ∀A,B ∈ A, A � B
iff ω(A) ≥ ω(B).

In this case, the resulting preordering � is total (no

incomparable arguments in the PAF).

C. Preferences between attacks

Strengths of attacks have also been introduced in a qual-

itative way and in a quantitative way. The first modelling is

given in [18], [19] (a variant has been introduced in [17]):

Def. 4: An argumentation framework with attacks of var-
ious strength (AFvs) is a triplet 〈A,ATT,

→� 〉 where A is a

finite set of arguments, ATT is a finite set of attack relations

{ 1→, . . . ,
n→} over A and

→� is a binary relation over ATT.

Each
i→⊆ A × A represents a conflict relation, and

→�
enables to express a relative strength between these relations.

The relation
→� is only assumed reflexive (it may be partial,

and transitive or not). The corresponding strict relation,

equivalence relation and incomparability relation will be

respectively denoted by
→�,

→
∼, and

→
	≈.

In [18], [19], the strength of attacks has been used for

refining the notion of defence. When BRA and CRB, it is

natural to account for the relative strength of the attacks in

order to define the defence of A by C. If the attack on B is

too weak to inhibit the attack on A, it will not be relevant

for reinstating A. Let AFvs = 〈A,ATT,
→� 〉, the following

definition captures the idea of relevant defender3:

Def. 5: Let A, B, C ∈ A such that C
j→ B and B

i→ A.

C vs-defends A against B (or C is a vs-defender4 of A

against B) iff
i→	→� j→ (i.e. the attack from B to A is not

strictly stronger than the one from C to B).

3Note that if
→� is empty, the classical notion of defence is recovered.

4vs means “various strength”.

The second modelling is given in [20]. It is a quantitative

approach inspired by [16].

Def. 6: An argumentation framework with varied-
strength defeat (AFV) is a triplet 〈A,R,Vdef〉5 where

A is a finite set of arguments, R is an attack relation

and Vdef is a function from R to the interval [0, 1].
Vdef(A,B) represents the degree of certainty of the

statement “A attacks B”.

Note that, according to the previous definition, [20] con-

siders that the case when Vdef(A,B) = 0 is equivalent to

not(A attacks B). In other words, attacks that have a Vdef
value equal to 0 are removed from R.

A new notion of defence is defined in an AFV:

Def. 7: Let A, B, C ∈ A such that CRB and BRA
(so with Vdef(C,B) 	= 0 and Vdef(B,A) 	= 0). C vdef-
defends A against B (or C is a vdef-defender of A against

B) iff Vdef(C,B) ≥ Vdef(B,A) (i.e. the attack from C
to B is at least as strong as the attack from B to A).

Note that the intuition for extending the notion of defence

is the same in both frameworks AFvs and AFV. The

only difference lies in the nature of the preference relation

over attacks: an AFvs uses a preordering (allowing for

incomparable attacks), whereas in an AFV the preference

relation is based on a function with values on a linearly

ordered scale (thus providing a total ordering over attacks).

D. From preferences between arguments to weighted attacks

In [20], different instantiations of an AFV6 by a PAF
or a WAF have been proposed, according to the following

intuition: the larger the preference of A over B, the stronger

the attack from A to B.

Def. 8: Let PAF = 〈A,R,� 〉. Two different AFV =
〈A,R,Vdef〉 can be built according to the following defi-

nitions for Vdef: let (A,B) ∈ R,

Vdef�
1 (A,B) = 0 if B � A, 1 otherwise

Vdef�
2 (A,B) = 0 if B � A, 1 if A � B, 1/2

otherwise

Def. 9: Let WAF = 〈A,R, ω〉. Three different AFV =
〈A,R,Vdef〉 can be built according to the following defi-

nitions for Vdef: let (A,B) ∈ R,

Vdefω
bool(A,B) = 0 if ω(B) > ω(A), 1 otherwise

Vdefω
1 (A,B) = max(ω(A)− ω(B), 0)

Vdefω
2 (A,B) = 1−max(ω(B)− ω(A), 0)

Note that Vdefω
bool exactly corresponds to Vdef�

1 , when

� is built from ω as in Def.3.

Similarly, Vdef�
2 could be built from a WAF by:

Vdef�
2 (A,B) = 0 if ω(B) > ω(A), 1 if ω(A) > ω(B),

1/2 otherwise.

These instantiations of an AFV have been extensively

studied in [20] and interesting properties have been provided,

5def stands for defeat.
6In [20], these instantiations have been built using an intermediary

argumentation framework, called a VPAF. Nevertheless, due to lack of
place, here we only give the last step of this process.



particularly for Vdefω
2 . However, most of the definitions for

Vdef lead to suppress the attacks (A,B) for which B is

strictly preferred to A. With Vdefω
2 , an attack from A to B

is removed when (ω(B)− ω(A)) = 1.

This point is problematic to us. Moreover, our idea is to

investigate the instantiation process in the qualitative setting.

III. FROM PREFERENCES OVER ARGUMENTS TO

PREFERENCES OVER ATTACKS

Our purpose is to investigate different ways by which

preferences over attacks are computed from preferences

over arguments. In the qualitative setting (Sect. III-A), we

start by laying down some principles which should govern

the instantiation of an AFvs by a PAF and we propose

examples of such an instantiation. The partial preordering

and the attack relation available in a PAF serve to compute

a particular AFvs in which the relative strength of attacks

is represented by a preordering on the attacks. A particular

case is to start from a WAF and to construct the associated

PAF according to Def.3. Then, we consider a quantitative

setting (Sect. III-B) and follow the same methodology. We

propose some principles and take advantage of weights over

arguments in order to define a value-based preference on

the attacks. An important result is that we can provide a

construction of a valued AFvs in which the preference over

attacks refines the preference obtained in the qualitative

setting (see Sect.III-C).

A. AFvs induced by a PAF
We introduce some conditions on the relationship between

PAF = 〈A,R,� 〉 and AFvs = 〈A,ATT,
→� 〉 when

ATT and
→� are built from R and �. These conditions

are expressed under the form of principles:

P1 The initial set of conflicts between arguments must

not be modified (no attack disappears, no attack ap-

pears).

P2 An attack from A to B with A strictly preferred

to B must be strictly stronger than an attack between

two equivalent or incomparable arguments; in the same

way, an attack from A to B with B strictly preferred to

A must be strictly weaker than an attack between two

equivalent or incomparable arguments; this principle

induces a partition into at least 3 classes of attacks.

P3 An attack between two equivalent arguments must

be strictly stronger than an attack between two incom-

parable arguments; this principle associated with P2
induces a partition into at least 4 classes of attacks.

So, starting from PAF = 〈A,R,� 〉, the following

definitions give the way for building an AFvs respecting

P1 to P3:

Def. 10: The partition of R induced by PAF, denoted by

Part(R), is defined as the set { 1→,
2→,

3→,
4→} with:

1→= {(A,B) ∈ R such that A � B}

2→= {(A,B) ∈ R such that A∼B}
3→= {(A,B) ∈ R such that A	≈B}
4→= {(A,B) ∈ R such that B � A}

Def. 11: The AFvs induced by PAF is the triplet

〈A,ATT,
→� 〉 where ATT = Part(R) and

→� is the reflex-

ive transitive closure of the binary relation over Part(R)

defined by:
1→→� 2→→� 3→→� 4→.

Note that the relation
→� is a total ordering over ATT. From

the above definitions, it follows easily that
→� enables to

define preorderings on R that satisfy P1, P2, P3. It may be

a total preordering such that two attacks of the same class

are equivalent, or a partial preordering such that two attacks

of the same class are incomparable.
Two other principles may be introduced in the qualitative

setting for taking into account the following cases:
A

C

B

i

i with A � B

C

A

B

i

i with B � C
In these cases, it is natural to consider that:

A
i→ C

→� B
i→ C A

i→ C
→� A

i→ B
Formally, we introduce7:

P4 Consider an attack from A to C and an attack from

B to C of the same class. If A is strictly stronger than

B, the attack (A,C) must be strictly stronger than the

attack (B,C).
P5 Consider an attack from A to C and an attack from

A to B of the same class. If B is strictly stronger than

C, the attack (A,C) must be strictly stronger than the

attack (A,B).

So, starting from PAF = 〈A,R,� 〉, we define a new

relation over R, which is only a partial preordering:

Def. 12: Given Part(R), the partial ordering
→� over R

induced by P1 to P5 is the reflexive transitive closure of the

binary relation over R defined by:

Let (A,B), (C,D) ∈ R such that (A,B) ∈ i→ and

(C,D) ∈ j→. Then (A,B)
→� (C,D) iff i < j.

Let (A,B), (C,D) ∈ 2→, then (A,B)
→
∼ (C,D).

Let (A,C), (B,C) ∈ 1→ (resp.
3→,

4→). If A � B then

(A,C)
→� (B,C), and if A∼B then (A,C)

→
∼ (B,C).

Let (A,C), (A,B) ∈ 1→ (resp.
3→,

4→). If B � C then

(A,C)
→� (A,B), and if B∼C then (A,C)

→
∼ (A,B).

Now, using this relation
→� on R8, we can define an AFvs

respecting P1 to P5.
Def. 13: The AFvs induced by PAF is the triplet

〈A,ATT,
→� 〉 where ATT is the set of singletons {(A,B)}

s.t. (A,B) ∈ R and
→� as defined in Def.12.

7Note that these principles do not apply to the class
2→, since all tracks

in this class are between arguments which are equivalent.

8
→
� is partial since, considering (A,B) and (C,D) ∈ i→, ∀i = 1, 3, 4,

with A �= C and B �= D, there is no reason for deciding either that

(A,B)
→� (C,D) or that (A,B)

→
∼ (C,D).



Note that a particular case of the construction provided

by Def.11 (resp. Def.13) occurs when the PAF is obtained

from a WAF according to Def.3.

In the following, we give some properties of AFvs
induced by a PAF. First, it is worth noticing that an AFvs
is a strict extension of a classical Dung’s framework.

Let AFvs = 〈A, { 1→, . . . ,
n→},→� 〉, AF = 〈A,∪ i→ 〉

denotes the classical Dung’s argumentation framework as-

sociated with AFvs. It has been shown in [18], [19] that if

a set of arguments S is vs-admissible9 in AFvs, it is also

admissible in AF. However, there does not exist a formal

compilation of an AFvs (even obtained from a PAF) into a

classical Dung argumentation framework over the same set

of arguments, which would be equivalent; i.e. such that the

vs-admissible sets of AFvs would exactly coincide with the

admissible sets of AF (see the following example).

Ex. 1: Consider the AFvs represented by:
A

B

C

D E

2 1

1 4

with B � C, D � B,

E � B, A∼B.

Assuming that AFvs can be compiled into an equivalent

classical 〈A,R〉, the following constraints hold:

{A,C,D,E} is vs-admissible, so {A,C,D,E} must

be admissible in 〈A,R〉, and so {A,C,D,E} must be

conflict-free in 〈A,R〉.
{E} is not vs-admissible, so {E} should not be ad-

missible in 〈A,R〉. So, E must be attacked and since

{A,C,D,E} is conflict-free, E is attacked by B in

〈A,R〉, and B is the only attacker of E in 〈A,R〉.
And similarly, B is the only attacker of C in 〈A,R〉.
{A,E} is vs-admissible, so {A,E} must be admissible

in 〈A,R〉. So, A must attack B in 〈A,R〉.
{A,C} is not a vs-admissible set, so {A,C} should not

be admissible in 〈A,R〉.
As A attacks B, which is the only attacker of C, and due

to the fact that {A,C,D,E} is conflict-free, it must be the

case that {A,C} does not defend A. The only possibility is

that A is attacked by B (since {A,C,D,E} is conflict-free).

But then, the set {A,C} would still be admissible (since A
attacks B). So, in conclusion, it is not possible to turn the

above AFvs into an equivalent classical system.

Nevertheless, there exist at least two cases in which the

vs-defence in AFvs and the defence in AF coincide:

If all arguments are equivalent (resp. incomparable)

then AFvs = AF.

If any attack from A to B is such that A � B and if

the preordering between arguments is a total one then

AFvs = AF.

Depending on the properties of the relations R and �
over arguments, particular cases of Def.10 can be identified:

9S is vs-admissible iff it is conflict-free and contains a vs-defender for
each of its elements, see [18], [19].

If � is a total preordering then there are only 3 classes

of attacks in Part(R):
1→,

2→ and
4→ (for instance, if

the PAF is obtained from a WAF).

If there is no (A,B) ∈ R such that B � A then there

are only 3 classes of attacks in Part(R):
1→ to

3→.

If there is no (A,B) ∈ R such that B � A and if �
is a total preordering then there are only 2 classes of

attacks in Part(R):
1→ and

2→.

Finally, we establish links between our construction and

other approaches based on a framework close to AFvs. The

first one [13] starts from a PAF where the attack relation R
is supposed symmetric. So, 3 classes of attack are obtained:

ATT1 = {(A,B) in conflict, with A � B} (A is a

“proper defeater” of B),

ATT2 = {(A,B) in conflict, with A∼B} (A is a

“blocking defeater” of B and vice-versa),

ATT3 = {(A,B) in conflict, with A	≈B} (A is a

“blocking defeater” of B and vice-versa).

The correspondence with our AFvs follows easily: let

(A,B) such that A attacks B,

(A,B) ∈ ATT1 iff (A,B) ∈ 1→ and (B,A) ∈ 4→.

(A,B) ∈ ATT2 iff (A,B) and (B,A) ∈ 2→.

(A,B) ∈ ATT3 iff (A,B) and (B,A) ∈ 3→.

Note that a constraint analogous to P4 was added in [13]

in order to compare two vs-defenders of a same argument.

Another approach given in [17] aims at defining four

notions of defence in an AFvs: let C
j→ B

i→ A,

C is a strong defender of A against B iff
j→→� i→.

C is a weak defender of A against B iff
i→→� j→.

C is a normal defender of A against B iff
i→→
∼

j→.

C is an unqualified defender of A against B iff
i→
→
	≈ j→.

It is easy to see that our notion of vs-defence corresponds

to a defence which is either strong or normal or unqualified.

Moreover, if we consider an AFvs built from a PAF obtained

with a WAF, the vs-defence corresponds to strong or normal

defence.

B. Valued AFvs induced by a WAF

In this section, we turn to the qualitative setting. Starting

from a WAF, our purpose is to take advantage of the

weights over arguments to define an AFvs with a value-

based preference over attacks. For simplicity, we assume

that ω : A→ [0, 1], but any linearly ordered scale with top

and bottom could be used as well.

Given ω, we define the strength of an attack from A to B
from ω and a function f : [0, 1] × [0, 1] → R. Formally,

let A,B ∈ A, such that A attacks B. We assume that

the strength of the attack from A to B is quantified by

f(ω(A), ω(B)). As for the construction of an AFvs induced

by a PAF, we want to impose conditions on the relationship

between the weights on arguments and the strength on



attacks. We keep Principles P1 and P2. Principle P3 be-

comes out of interest since there are no more incomparable

arguments. Then we strengthen Principles P4 and P5 and

reformulate them in terms of weights: let (A,B) ∈ R,

P4′ If the weight of A is greater than the weight of

B, then the higher the difference of the weights, the

stronger the attack from A to B.

P5′ If the weight of A is lower than the weight of B,

then the higher the difference of the weights, the weaker

the attack from A to B.

In order to build a valued AFvs satisfying P1, P2, P4′,
P5′, we assume some conditions on the function f .

Def. 14: A weighting translation function is a function

f : [0, 1]× [0, 1]→ R such that: ∀x, y, z, t ∈ [0, 1],

if x > y and t > z then f(x, y) > f(y, y) > f(z, t).
f(x, x) = f(y, y).
if x− y > z − t > 0, then f(x, y) > f(z, t).
if x− y < z − t < 0, then f(x, y) < f(z, t).

The first and second items of the previous definition allow

the respect of P2. The other items correspond to P4′ and P5′.
An example of a such weighting translation function is:

Def. 15: ∀x, y ∈ [0, 1], fαβ(x, y) = α(x − y) + β, with

α > 0 and β > 0.

The following definition gives the way for building an

AFvs respecting P1, P2, P4′, P5′ (due to the conditions

assumed for the weighting translation function f in Def.14):

Def. 16: Let WAF = 〈A,R, ω〉. Let f be a weighting

translation function. An AFvs induced by WAF using f is

a triplet 〈A,ATT,
→� 〉 where ATT is the set of attack

relations over A 〈 1→, . . . ,
n→ 〉 defined by:

i→= {(A,B) ∈ R such that f(ω(A), ω(B)) = i} and
→� is the reflexive transitive closure of the binary relation

on ATT defined by:
i→→� j→ iff i > j.

C. Qualitative vs quantitative setting

So far we have two ways for building an AFvs from a

given WAF:

either applying Def.3 and then using Def.13 (which

offers a more interesting ordering than Def.11),

or using Def.16.

There is an important difference between these two con-

structions: in the first case, the resulting preference over

attacks is a partial preordering, whereas, in the second case,

it is a total one. Hopefully, these two ways are coherent,

in the following sense: the second construction provides a

valued AFvs in which the preference over attacks refines

the preference obtained by the first construction.

Prop. 1: Let WAF = 〈A,R, ω〉 be a weighted argumen-

tation framework. Let PAF be the corresponding preference

argumentation framework obtained from WAF using Def.3.

Let AF1
vs (resp. AF2

vs) be the argumentation system with

attacks of various strength obtained from PAF (resp. WAF)

using Def.13 (resp. Def.16).
→�1 (resp.

→�2) denotes the

associated preference relation between attacks. We have:

∀(A,B), (C,D) ∈ R, if (A,B)
→�1 (C,D) then

(A,B)
→�2 (C,D).

∀(A,B), (C,D) ∈ R, if (A,B)
→
∼1 (C,D) then

(A,B)
→
∼2 (C,D).

∀(A,B), (C,D) ∈ R, if (A,B)
→�2 (C,D) then

(A,B)
→�1 (C,D) or (A,B)

→
	≈1 (C,D).

Proof

Let (A,B), (C,D) ∈ R such that (A,B)
→�1 (C,D). Due

to Def.12 and 13, it is sufficient to consider three situations:

1) (A,B) ∈ i→ and (C,D) ∈ j→ with i < j. For instance,
we have ω(A) > ω(B) (i = 1) and ω(C) = ω(D)
(j = 2). In that case, due to the first and second items
of Def.14, we have f(ω(A), ω(B)) > f(ω(C), ω(D))

and then (A,B)
→�2 (C,D). The proof is similar for

the other cases (i = 1 and j = 4, i = 2 and j = 4).

2) B = D, (A,B), (C,B) ∈ i→ with A � C (or
equivalently ω(A) > ω(C)). For instance, we have
ω(A) > ω(B) and ω(C) > ω(B) (i = 1). In
that case, due to the third item of Def.14, we have

f(ω(A), ω(B)) > f(ω(C), ω(B)) and then (A,B)
→�2

(C,B). For the case i = 4, we use the fourth item of
Def.14.

3) A = C, (A,B), (A,D) ∈ i→ with D � B (or
equivalently ω(D) > ω(B)). For instance, we have
ω(A) > ω(B) and ω(A) > ω(D) (i = 1). In
that case, due to the third item of Def.14, we have

f(ω(A), ω(B)) > f(ω(A), ω(D)) and then (A,B)
→�2

(A,D). For the case i = 4, we use the fourth item of
Def.14.

Let (A,B), (C,D) ∈ R such that (A,B)
→
∼1 (C,D). Due

to Def.12 and 13, three different situations may occur.

1) (A,B), (C,D) ∈ 2→. So ω(A) = ω(B) and ω(C) =
ω(D). In that case, due to the second item of Def 14,
we have f(ω(A), ω(B)) = f(ω(C), ω(D)) and then

(A,B)
→
∼2 (C,D).

2) B = D, (A,B), (C,B) ∈ i→ (i = 1 or 4) with A∼C
(or equivalently ω(A) = ω(C)). Obviously, in that case,

f(ω(A), ω(B)) = f(ω(C), ω(D)) and then (A,B)
→
∼2

(C,D).

3) A = C, (A,B), (A,D) ∈ i→ (i = 1 or 4) with D∼B
(or equivalently ω(D) = ω(B)). Obviously, in that case,

f(ω(A), ω(B)) = f(ω(C), ω(D)) and then (A,B)
→
∼2

(C,D).

Let (A,B), (C,D) ∈ R such that (A,B)
→�2 (C,D). Due

to the first and second points of this proof, we cannot have

(C,D)
→�1 (A,B), nor (A,B)

→
∼1 (C,D). So we must have

either (A,B)
→�1 (C,D), or (A,B)

→
�≈1 (C,D).

�

D. Examples

In this section, our main definitions are illustrated on

AF = 〈A,R〉 represented by the following graph:
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First, we consider the PAF = 〈A,R,� 〉 such that:
A � B D � I J � L B∼D F 	≈G
C � E D � J J � I C∼F D 	≈E
C � A I � K G∼H
The AFvs obtained with Def.11 is represented by:
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J L
1

1

1

1

1 14

3 2

3
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2
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In this example, Arguments E and F are not vs-defended
by A against C, the attack from A to C being too weak;

similarly, H is not vs-defended by F against G, the attack

from F to G being too weak. Moreover, following Def.12,

(D, I)
→� (D, J) (and this fact has no impact on the vs-

defence). However, with Def.12, (A,B), (C,E) and (D, I)
(for instance) are left incomparable.

Now, we consider the WAF = 〈A,R, ω〉 with the follow-

ing weighting function:

ω(A) = 0.7
ω(B) = ω(D) = ω(E) = 0.6
ω(C) = ω(F ) = ω(G) = ω(H) = 1
ω(J) = 0.5
ω(I) = 0.4
ω(K) = ω(L) = 0.3

Using Def.15 with α = β = 110, the AFvs obtained with

Def.16 is represented by:
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B
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F G H
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J L
1.1

1.4

1.1
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1.2 1.10.7

1.0 1.0

1.0
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1.0
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Here again, Arguments E and F are not vs-defended by A
against C, the attack from A to C being too weak. The case

of H is different: H is vs-defended by F against G since

Arguments F and G have been made equivalent. Note also

that, due to Principles P4′ and P5′, a difference between

K and L appears: L is no longer vs-defended. Moreover,

this example illustrates Point 3 of Prop.1: with Def.16, we

have (C,E)
→� (D, I)

→� (A,B), whereas these attacks were

incomparable with Def.12.

IV. A COMPARATIVE STUDY OF SEVERAL PROPOSALS

In this section, we propose a comparative study of the

different proposals presented so far for defining preferences

10So, the weighting translation function will be defined by f11 : [0, 1]×
[0, 1]→ [0, 2] with f11(x, y) = (x− y) + 1.

PAF WAF

AFvs AFV

vs-defence vdef-defence

Def.3

Def.11 and 13 Def.9 [20]

Def.8 [20]Def.16

Figure 1. The different proposals for coping with preferences between
arguments

over attacks from preferences over arguments. We are inter-

ested in two issues: the ordering between the attacks and the

notion of defence. Figure 1 gives a synthetic representation

of these different proposals.

A. Proposals issued from a PAF
Starting from a PAF, we compare the approach proposed

by [20] given in Def.8 with our approach given in Def.11.

Table I shows how the set of attacks is partitioned.

Our approach Approach of [20]

A
i→ B Vdef�1 (A,B) Vdef�2 (A,B)

A � B A
1→ B 1 1

A∼B A
2→ B 1 1/2

A �≈B A
3→ B 1 1/2

B � A A
4→ B 0 0

4 classes 2 classes 3 classes

Table I
CLASSES OF ATTACKS IN THE CASE OF PAF

The main difference lies in the treatment of attacks (A,B)
such that B � A. With the weighted attacks of [20], all these

attacks are removed (since the weight equals to 0), whereas

we keep these attacks. Moreover, our approach enables to

distinguish the attacks between equivalent arguments with

those between incomparable arguments.

Then we are interested in the defence provided by C
for A against B. Table II shows the different cases. Three

situations are worth-noticing (in bold in the table). They

highlight the fact that our approach provides a finer partition

of the set of attacks.

Note that considering Def.13 instead of Def.11 would

not modify the comparison, since applying Def.13 does not

modify the hierarchy of the classes of attacks. It only adds

preferences between attacks of the same class. Moreover, the

ordering defined by Def.13 has no impact on the vs-defence.

B. Proposals issued from a WAF
Starting from a WAF, we compare the approach proposed

by [20] given in Def.9 with our proposal for building an

AFvs. As said in Section III-C, we can apply either Def.3

and then Def.13, or Def.16. We successively consider both



Our approach Approach of [20]

vs-defence Vdef�1 -defence Vdef�2 -defence

C � B � A yes yes yes
C � B∼A yes yes yes
C � B �≈A yes yes yes
C � B ≺ A yes yes, since no attack on A

C∼B � A no yes no
C∼B∼A yes yes yes
C∼B �≈A yes yes yes
C∼B ≺ A yes yes, since no attack on A

C �≈B � A no yes no
C �≈B∼A no yes yes
C �≈B �≈A yes yes yes
C �≈B ≺ A yes yes, since no attack on A

C ≺ B � A no no, since no attack on B
C ≺ B∼A no no, since no attack on B
C ≺ B �≈A no no, since no attack on B
C ≺ B ≺ A yes yes, since no attack on B

and no attack on A

Table II
DEFENCE IN THE CASE OF PAF: LET (C,B), (B,A) ∈ R, IS C A

DEFENDER OF A AGAINST B?

cases. Table III partially shows how the attacks are ordered

in the quantitative setting (we only consider Vdefω
1 and

Vdefω
2 , since the other definitions correspond to Vdef�

1

and Vdef�
2 ).

Our prop. Proposition of [20]

A
i→ B Vdefω1 (A,B) Vdefω2 (A,B)

ω(A) > ω(B) A
1→ B ω(A)− ω(B) 1

so A � B ∈ ]0; 1]

ω(A) = ω(B) A
2→ B 0 1

so A∼B

ω(A) < ω(B) A
4→ B 0 1− (ω(B)− ω(A))

so B � A ∈ [0; 1[
3 classes 2 classes 2 classes

(classes 1, with 1 with 1
3 refined) refined class refined class

Table III
PREFERENCES ON ATTACKS IN THE CASE OF WAF

Note that with our approach, the hierarchy between the

classes of attacks remains unchanged (the class
3→ has been

removed since there are no incomparable arguments in a

WAF). Moreover, due to Def.13, the classes
1→ and

4→ are

partially ordered. Let us prove that in the class
1→ (resp. the

class
4→) this partial ordering is extended by the ordering

associated with Vdefω
1 (resp. Vdefω

2 ).

Let (A,B), (C,D) ∈ 1→ (resp.
4→) such that (A,B)

→�
(C,D). Then, it must be the case that B = D or A = C.

Moreover, due to Def.13, if (A,B)
→� (C,B), we have

necessarily A � C, and if (A,B)
→� (A,D), we have

necessarily D � B. So,

With A
1→ B, C

1→ B, (A,B)
→� (C,B) implies

ω(A) > ω(C) and then ω(A)−ω(B) > ω(C)−ω(B).

So Vdefω
1 (A,B) > Vdefω

1 (C,B).

With A
1→ B, A

1→ D, (A,B)
→� (A,D) implies

ω(D) > ω(B) and then ω(A)−ω(B) > ω(A)−ω(D).

With A
4→ B, C

4→ B, (A,B)
→� (C,B) implies

ω(A) > ω(C) and then 1 − (ω(B) − ω(A)) > 1 −
(ω(B)− ω(C). So Vdefω

2 (A,B) > Vdefω
2 (C,B).

With A
4→ B, A

4→ D, (A,B)
→� (A,D) implies

ω(D) > ω(B) and then 1 − (ω(B) − ω(A)) > 1 −
(ω(D)− ω(A)).

Note also that, as in the case of PAF, some attacks are

removed in [20] (particularly with Vdefω
1 ).

Then, Table IV synthetizes the results about defence in

the different approaches. Some particular cases (in bold in

the table) are identified and described below.

Our approach Approach of [20]
vs-defence Vdefω1 -defence Vdefω2 -defence

ω(C) > ω(B) yes Case 1 yes
ω(B) > ω(A)
ω(C) > ω(B) yes yes (Note 1) yes
ω(B) = ω(A)
ω(C) > ω(B) yes yes (Note 1) yes
ω(B) < ω(A)

ω(C) = ω(B) no no (Note 1) yes (Case 3)
ω(B) > ω(A)
ω(C) = ω(B) yes yes (Note 1) yes
ω(B) = ω(A)
ω(C) = ω(B) yes yes (Note 1) yes
ω(B) < ω(A)

ω(C) < ω(B) no no (Note 1) no
ω(B) > ω(A)
ω(C) < ω(B) no yes (Note 1) no
ω(B) = ω(A)

ω(C) < ω(B) yes yes (Note 1) Case 2
ω(B) < ω(A)

Table IV
DEFENCE IN THE CASE OF WAF: LET (C,B), (B,A) ∈ R, IS C A

DEFENDER OF A AGAINST B?

Note 1: With Vdefω
1 , attacks (D,E) such that ω(D) 	>

ω(E) are not considered. So in many cases, either A is

defended since the attack from B to A does not exist or A
cannot be defended since the attack from C to B does not

exist.

Case 1: In this case, C Vdefω
1 -defends A against B

except if (ω(B)− ω(A)) > (ω(C)− ω(B)). In contrast, C
always vs-defends A against B.

Case 2: In this case, C Vdefω
2 -defends A against B

except if (ω(B)− ω(C)) > (ω(A)− ω(B)). In contrast, C
always vs-defends A against B.

Case 3: As Vdefω
2 does not discriminate between an

attack (A,B) with A � B and an attack (A,B) with A∼B,

if (ω(B) = ω(C)) > ω(A), C Vdefω
2 -defends A against

B. In contrast, we have B
1→ A and C

2→ B, so C does not

vs-defend A against B.

Finally, let us consider the valued AFvs obtained with



Def.16. Due to the conditions stated in Def.14, and the

definition of Vdefω
1 and Vdefω

2 , it is easy to see that:

With ω(A) > ω(B) and ω(C) > ω(D),
if Vdefω

1 (A,B) > Vdefω
1 (C,D), then

f(ω(A), ω(B)) > f(ω(C), ω(D))
With ω(A) < ω(B) and ω(C) < ω(D),
if Vdefω

2 (A,B) > Vdefω
2 (C,D), then

f(ω(A), ω(B)) > f(ω(C), ω(D))

In other words, the valued AFvs obtained with Def.16

allows for a total preordering on R that extends the Vdefω
1 -

based ordering on the attacks (A,B) such that A � B and

the Vdefω
2 -based ordering on the attacks (A,B) such that

B � A:
Ordering
given by

Ordering ↗ Vdefω
1 on

1→ ↘ Ordering
given by extends extends given by
Def.16 ↘ Ordering ↗ Def.13

given by

Vdefω
2 on

4→

V. CONCLUSION

In this paper, we have investigated the relationships

between preferences over arguments and preferences over

attacks in abstract argumentation. We have laid down some

principles which should govern the definition of preferences

over attacks from preferences over arguments. Following

these principles, we have proposed different instantiations

of an AFvs (argumentation framework with attacks of

various strength), when preferences over arguments are

available. We have considered qualitative as well as quan-

titative approaches for expressing preferences. Then, we

have compared our proposal with related works, particularly

regarding the conditions in which the defense holds. This

work is a first contribution towards a better handling of

preferences in argumentation. The proposed principles will

have to be validated by considering how preferences over

arguments can be obtained, when arguments have an internal

structure (for instance, when they are built from pieces of

knowledge). Another issue for future work concerns the

computation of acceptable sets of arguments, when arguing

with preferences.
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