

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12546

The contribution was presented at RCIS 2013 :
http://www.rcis-conf.com/rcis2013/

Official URL: http://dx.doi.org/10.1109/RCIS.2013.6577721

To cite this version : Bouaziz, Wassim and Andonoff, Eric Autonomic Protocol-
based Coordination in Dynamic Inter-Organizational Workflow. (2013) In: 7th
IEEE International Conference on Research Challenge in Information Science
(RCIS 2013), 29 May 2013 - 31 May 2013 (Paris, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Autonomic Protocol-based Coordination in Dynamic

Inter-Organizational Workflow

Wassim BOUAZIZ

SOGETI High Tech

AEROPARK, 3 Chemin de Laporte

31300 Toulouse, France

wbouaziz@gmail.com

Eric ANDONOFF

Laboratoire IRIT / Université Toulouse 1

2 rue doyen Gabriel Marty

31042 Toulouse Cedex, France

andonoff@univ-tlse1.fr

Abstract— Given the maturity of Internet standards, inter-

organizational workflow is expected to be deployed in

environments that are more dynamic and open than before. This
paper addresses Inter Organizational Workflow (IOW)

coordination in such a context, mainly investigating autonomic
coordination managed at run-time. It is based on the idea that an

agent-based approach is suitable to deal with this issue. More
precisely, this paper introduces a framework for dynamic IOW

in which involved processes are encapsulated into agents, called
Process Agents (PA) in order to give them the capability to
autonomously decide with whom, when and how to cooperate,

and in which involved processes can access protocol components
for their coordination needs. Our approach is based on the

capability of PAs in playing different coordination protocols in
order to take part in new business opportunities. This solution

has numerous advantages. First, it provides extendable and
reusable coordination components. Then, it supports run-time

protocol integration. Finally, it eases openness since it imposes
very few constraints.

Keywords— Dynamic Inter-Organizational Workflow,

Autonomic Coordination, Agent Protocol

I. INTRODUCTION

Nowadays, competition in which organizations are
involved leads them to cooperate and share business
opportunities: they coordinate their business processes in order
to reach a common goal corresponding to a value added service
[1]. Moreover, these coordinated processes constantly evolve
due to both organizational (e.g., business objectives, process
improvement) and technological changes (e.g., new resources,
new technologies) that occur in the involved organizations.
Thus, these organizations need a flexible framework to support
their cooperation, i.e. a framework that supports dynamic inter-
organizational workflow applications.

Inter-Organizational Workflow (IOW) is a key concept to
support the cooperation between distributed and heterogeneous
processes running in different autonomous organizations [2]. It
thus requires specific features such as autonomy,
decentralization, definition of the universe of discourse through
a repository (to solve the various semantic conflicts that are
bound to occur between the involved processes) and capability
of interaction among processes. Dynamic IOW refers to
applications where partners (i.e. organizations) are not

necessarily known before IOW execution; these partners can
also be unable to provide anymore the required service, they
can provide it with a bad quality of service or they can be
temporarily unavailable. Dynamic IOW also takes into account
specific additional features: openness and flexibility. Openness
refers to the freedom the partners have to join or leave the
cooperation while flexibility corresponds to the ability of the
IOW to face changes that occur in its environment [3].

Coordination of business processes involved in an IOW is
defined as the set of activities concretizing the cooperation
between the involved organizations in order to reach their
common goal. In a dynamic context, it also includes additional
coordination services (patterns) such as:

• Finding partners, which consists in, for a requester
organization, selecting one or several provider
organizations able to execute a requested process.

• Negotiation of a process between the requester
organization and the previous selected provider
organizations. Negotiation criteria may be as varied as
due time, quality of the process, visibility of its
evolution and way of executing it. The result of this step
is the identification of the provider organization in
charge of the requested process.

• Contracting between the requester and the selected
provider aiming at formalizing their cooperation.

• Synchronization of the distributed and concurrent
execution of these processes.

Autonomic coordination refers to the ability of processes
involved in a dynamic IOW to automatically and autonomously
coordinate their activities. It means that the involved processes
decide by themselves how to maintain the cooperation.

The issue being addressed in this paper is how to provide a
framework for autonomic coordination in dynamic IOW, i.e. a
framework making involved processes able (i) to support the
different additional coordination services listed before (finding
partners, negotiation, contracting between partners…), and (ii)
to decide by themselves when, with whom, and how to
cooperate.

Coordination of processes involved in IOW is addressed in
different works following two types of approaches. The first

one advocates to use a service-oriented approach [4–9]. This
approach, supported by different industrials companies, gave
rise to several languages for inter-organizational processes
interconnection such as ebXML or WSCL, and also to the
development of service oriented architectures for the execution
of these processes. For instance, [7] and [9] define a framework
for both process specification including their resources, and
process selection, interconnection and execution. But works
following this approach do not address the issue of this article
that is autonomic coordination in dynamic IOW: they lack the
dynamic dimension as they do not propose coordination
mechanisms deployed during the IOW execution.

The second type of approach advocates an agent-based
approach. Indeed, as different authors [10–18] suggest, agent
technology is being used in an increasingly wide variety of
applications, ranging from small systems for personal
assistance to open complex systems for industrial applications.
The Internet has also pushed the use of agent technologies in
the business process field and electronic commerce. Multi-
agent systems bring technical solutions and abstractions to deal
with distribution, autonomy and openness, which are inherent
to the automation of dynamic IOW. For instance, [10, 12, 13,
15, 17, 18] use the agent notion to enhance the capabilities of
workflow management systems for autonomous cooperation
including finding or subcontracting workflow services. But
these works do not consider all the coordination services
identified before to address the problem of autonomic
coordination in dynamic IOW in a comprehensive and unified
framework.

As a consequence, even if IOW coordination has been
heavily investigated, this issue remains open in a dynamic
context: it is still a topical issue, which needs to be tackled and
solved.

In this paper, we advocate an agent-based approach to deal
with this issue. On the one hand, agent coordination protocols
serve as a basis for dynamic IOW business process
coordination. Coordination protocols, which are widely
recognized as an essential mechanism for coordination within
multi-agent systems, are also well suited for process
coordination. Indeed, whatever the coordination service
(finding partners, negotiation or contracting between partners)
identified before, it follows a recurrent schema. After an
informal interaction, the participating processes commit to
follow a strict coordination protocol. This protocol rules the
conversation by a set of laws which constraints the behavior of
the participants, assigns a role to each of them and organizes
their cooperation. Therefore, protocols constitute well
identifiable and reusable coordination patterns in dynamic
IOW. For this reason, we decided to isolate them in order to
better study and implement them as first class entities and reuse
them at run-time; we entrusted their management to a Protocol
Management System (PMS), which can be viewed as a server
of coordination protocols for processes involved in dynamic
IOW [19]. Doing so, we apply the principle of separation of
concerns, recognized as a good design practice from a software
engineering point of view [20], in order to separate the
functional capability of each IOW participant from its
interaction capabilities.

On the other hand, agent technology is also used to make
processes involved in dynamic IOW more autonomous than
before, providing them with decision-making abilities to decide
by themselves when, with whom, and how to coordinate.

Thus, the features of our approach are the following:

• Coordination of processes involved in dynamic IOW is
protocol-based.

• Processes are encapsulated into agents, called Process
Agents (PA), in order to give them the ability to
autonomously decide with whom, when and how to
cooperate.

The paper contributions are (i) an ontology for specifying
coordination protocols as separated services managed by a
PMS, (ii) a model enabling dynamic extraction, instantiation
and execution of roles that the different protocol participants
may hold in a protocol, and (iii) an illustration of how
processes involved in a dynamic IOW coordinate together
using coordination services offered by the PMS.

The remainder of the paper is organized as follows. Section
2 gives an overview of our approach to deal with autonomic
coordination in dynamic IOW. It also introduces an example,
which will be used throughout the paper. Section 3 is dedicated
to the PMS presentation. It first presents the Protocol ontology
for protocol specification, while section 4 deals with dynamic
role behavior extraction and execution from protocol
specification. Section 5 first gives a brief description of the
implementation and then illustrates coordination of processes
involved in the dynamic IOW application introduced in section
2. Finally, section 6 stands our contribution according to
related works and concludes the paper.

II. APPROACH OVERVIEW

This section presents the two main features of our approach
to deal with autonomic coordination in dynamic IOW and
introduces the running example.

A. Using Agent Technology and the Semantic Web

As said before, dynamic IOW is a specific case of IOW
where inter-organizational business process is defined at run-
time: partners are not necessarily known before the IOW
execution either because they are unknown at design-time or
no more available or defective at run-time. Consequently it is
necessary that the different business process involved in a
dynamic IOW integrates specific abilities to face this dynamic
context.

On the one hand, agent technology [21] provides natural
abstractions to design and model dynamic IOW taking into
account autonomic abilities, flexibility and openness [2].

Regarding autonomic abilities, agent technology permits to
model each participating process as an autonomous agent,
called Process Agent (PA) representing an organization that it
is able to cooperate with the other organizations involved in the
IOW. In addition to their internal behavior implementing the
process they represent, these PAs may be completed by
supervising, reasoning and decision-making abilities in order to

be able to decide by themselves when, with whom and how to
coordinate. Modeling IOW processes as agents is thus natural
from the autonomic point of view.

Openness is a specific feature of dynamic IOW since
process partners are not necessarily known at design-time, but
also may change during IOW execution. Openness is also a
property of multi-agent applications where agents may freely
appear or disappear during execution. Modeling IOW
processes as agents is thus natural from the openness point of
view.

Flexibility, is a consequence of autonomy and openness.
Since dynamic IOW is an open structure, that process partners
may leave or enter freely, and since process partners are
implemented as agents (PAs) having autonomy, reasoning and
decision-making abilities, these agents have to be flexible to
adapt their interactions. These PAs must be able to execute
coordination services listed before (finding partners,
negotiation between partners…) and eventually modify their
internal behavior redefining, reordering or subcontracting their
activities. Modeling IOW processes as agents is thus natural
from the flexibility point of view.

On the other hand, the semantic Web is a complementary
enabling technology. It first helps to represent a shared
business view, through a common terminology or an ontology,
without which it would not be possible to solve the various
semantic conflicts that are bound to occur between the
heterogeneous, distributed and autonomous processes involved
in an IOW. Moreover, in open and dynamic environments,
where process partners are numerous and not necessarily
known a priori, the semantic Web also provides means to
describe, publish and discover processes, called process
services, offered by involved partners. Finally, the semantic
Web permits to describe coordination means as explicit,
machine readable and sharable specifications: it facilitates
communication and semantic inter-operability between
processes involved in an IOW, and makes reasoning about
coordination means (i.e. protocols) possible. Consequently, the
semantic Web contributes to make automated coordination
possible [22, 23].

B. Protocols for Dynamic IOW Processes Coordination

This second feature is divided into the two following
principles.

1) Protocols as Coordination Services. As previously said,
another feature of our approach is that agent coordination
protocols serve as a basis for dynamic IOW processes
coordination. Indeed, whatever the coordination service
(finding partners, negotiation or contracting between partners)
identified before, it may be implemented as an agent
coordination protocol. Several protocols in multi-agent
applications such brocker, matchmaker, argumentation,
heuristic, delegation, or call for proposal may be used to
implement these coordination services (e.g. matchmaker or
broker protocols for the finding partners coordination service).
To sum up, the idea is to consider multi-agent protocols as
coordination patterns to support the entire coordination life
cycle in dynamic IOW.

2) PMS as a Coordination Middleware. We also advocate
the separation of coordination protocols from IOW process.
The consequence of pushing coordination protocols out of
dynamic IOW is that coordination protocols are managed by
an external component called a Protocol Management System
(PMS), whose architecture has been presented in [19]. A PMS
proposes the three following services: (i) specification of
coordination protocol, (ii) selection of a protocol according to
the IOW coordination needs, and finaly (iii) for each process
agent involved in a coordination protocol, the dynamic
integration and execution of the role it holds in the protocol.
This paper only focuses on the specification and execution
services; the selection service is out of the scope of the paper.

As illustrated in Fig. 1 and as suggested in [24], a specific
agent, called Moderator, rules the conversation between PAs
involved in an IOW. Instead of being duplicated and
encapsulated into each PA, these shared rules are centralized in
the Moderator agent whose aim is to ensure that each
interaction in the conversation is compliant with the underlying
protocol rules. Fig. 1 below illustrates this idea.

Fig. 1. Moderator Agent for Ruling Conversations

Each moderator manages a single conversation which is
consistent with a coordination protocol, and it has the same
lifetime as the conversation it manages. It also grants roles to
participating agents and stores in a database all the
communication acts issued by participating agents. A
moderator also exploits a Domain Ontology to ensure that
these participating agents use an adequate vocabulary. Finally,
the moderator is an agent that runs inside the PMS.

C. Running Example

The proposed running example represents a dynamic IOW
application for repairing electronic equipments. This example
involves several organizations, including the organization
responsible for the reparation. We call this organization the
Pilot Organization (PO). The other organizations are seen as
contractors, helping the PO to reach the repairing objective.
According to the type of repair to carry out, the PO
dynamically finds a partner able to help it. Protocols intervene
at this stage. In the example, we use the Iterative Contract Net
protocol [25] to support PO’s partner selection. Each
organization involved in the process is represented by a process
agent and the Iterative Contract Net (ICN) protocol is used to
rule the interaction between them. Of course, process agents do
not necessarily implement the ICN protocol: they just need to
dynamically integrate it, according to the role they hold in the
protocol.

Below, we detail the PO’s process along with the
Interactive Contract Net protocol used for partner selection. In

both cases, we use the Petri Net (PN) formalism for
cooperation description.

The PO process. is defined as follows. A client initiates the
process by submitting to the PO a request for repairing an
electronic equipment. After analyzing the request, an
estimation is done and a quote is sent to the client. If the quote
is accepted by the client, a diagnosis determines if the repair is
outsourced or not.

Fig. 2 gives a PN representation of this process and
illustrates the interaction between the different involved
organizations.

Fig. 2. Inter-Organizational Repairing Process of Electronic Equipment.

In the Iterative Contract Net (ICN) protocol, an agent
assumes the initiator role looking for a service performed by
one or several other agents, called contractors. To this end, the
initiator sends a call for proposal to the different possible
contractors. After evaluation, contractors can accept or refuse
the proposal. Then, the initiator evaluates the received offers
and can decide to accept one, reject all, or send a modified call.

Fig. 3 below illustrates this protocol. We have simulated
and validated it using Renew, a Petri net-based environment
[15]. This figure shows a simplified version of the ICN
protocol which includes three roles held by several agents: the
Moderator role, the Manager role and the Contractor role. The
Manager role (M) corresponds to the role held by the PO while
the Contractor role (C) corresponds to the role held by the
different contractors to which the call for proposal is sent. The
Moderator role (Mo) supports the interaction between the two
previous roles: interaction places are places of the Petri-net
which are shared between two roles (e.g. Confirm, Accept…).
Suppose that five agents are involved in a conversation based
on this protocol: the manager, the moderator and three partners
playing the Contractor role. The manager advertises the
moderator for a requested service, e.g. repairing a specific
component of an electronic equipment task. This latter sends a
call for proposal to three contractors. Each one analyzes this
proposal and can decide to accept or refuse. The moderator
manages the reception of answers in parallel and forwards to
the manager only the accepted bids.

If all the contractors decide to not answer to the proposal,
the moderator informs the manager that there is no bid. When

the manager selects a bid, the moderator sends an Accept to the
corresponding contractor and a Reject to others, and then waits
for an acknowledgement from the selected contractor before
ending the protocol.

����

���
�� ����	�
���

����

�	
�	

�
���

��
���
�
�
	

����� �

����� � � 	 ��� �

����

�	�� � � 	 �� �

�� ��
�
��

�� ��
������

��� ���	 �

�

���
�
��

��� ���	 �

� �� ���	 �
���

� �� ���	 �

�

���	�
�	���

�

�� ��

���
!
�	
� �� ���	 �

�"��	

#����

��� �	 ���$�

���

� �� ���	 �

���"��	

%
�&

%
�&

�	�� ����"��	

���� ����� ��$ �

����� �

���

�� �
�'
	

 ��

����� ��$�

�������(

������
�
���

���

%
�&

���	�
�	���

����
�(�

�	���

����
��

#
)
���

�

��� ���	 �

� �� ���	 �

� ��
�
�	���

�
�
�	
�
���

�$�$���� �

�
!
�	

����
��

�� ��
���
!
�	

�� ��
�����
�	

�

���
�	

�� �
�
��

��*
�	���

�� ��+
�'�

�� ��

��� �	 ���$�

��&
������,

-��
�
�
!
�	

�

$

� ���	

� 	 �� �

�� �
����&

���
!
�	

��� �
��#
)���

*
�	���
�
�'�	

#$�
���	�
�	���

����� �

� �� �	 �� ���	�

���$��� ��� �

���$������ �

���$�

���$� �� �

$

����

����

$

�� ��
�
��

�
!
�	

���$��� �

�

���$��� �

���$��� �

� ��
�����

Fig. 3. Iterative Contract Net Protocol

III. COORDINATION PROTOCOL ONTOLOGY

The first step for engineering coordination protocols is to
deal with protocol specification issue. As said before, the
semantic Web is useful to deal with this issue since it permits
to describe coordination protocols as an explicit, machine
readable and sharable ontology [23].

This section gives a precise and non-ambiguous definition
of what is a coordination protocol. It first introduces the three
abstraction levels for protocols. It then presents the protocol
ontology and a protocol classification model taking into
account only dynamic IOW coordination protocols. These
models have been specified in OWL using Protege-2000
software, but they are presented with equivalent UML models
for readability reasons.

A. Three Levels for Coordination Protocols

As illustrated in Fig., we distinguish three abstraction levels
for coordination protocols.

The first and more abstract level corresponds to the
Protocol meta-model (protocol ontology), defining the
invariant structure shared by all the protocols considering both
static (profile) and dynamic (behavior) aspects of protocol in
order to facilitate their dynamic selection and execution to
process agents. The second abstraction level is the specification
level. Concrete coordination protocols, such as for example the
iterative Contract Net protocol [25], are defined as instances of
the previous ontology.

Meta-model

Invariant

structure

shared by all

protocols

Protocols

Specifications

Execution of an

instance of a

protocol

Protocol

Ontology

Voting

Matchmaking

Contract

Net

Auction

…

Instance-of

Specification

Conversation

Instance

1

Instance

3Instance

2

Implements

Fig. 4. Abstraction Levels of Protocols

The third abstraction level is the execution level. At this
level, we find conversations (occurrence or instance of a
protocol) between the different IOW Process Agents (PA),
each one playing a role in the conversation. For instance,
considering the previous running example section, we can have
different instances of the Iterative Contract Net (ICN) protocol
ruling the execution of different requests submitted by clients
to the PO for repairing electronic equipments.

B. Protocol Ontology

The Protocol ontology defines coordination protocols as
services considering both their profile and behavior. The
profile defines the purpose of a protocol while the behavior
describes actions achievable by roles involved in a protocol.
Fig. 5 and 8 give an UML representation of the concepts of
these two notions (profile and behavior).

1) Protocols Profile. The protocol profile defines a
structured description of protocol purpose.

�

ProtocolProfile

+ID: String[1]

+Description: String[1]

ProtocolProperty

+ContextOntology: String

+Multiplicity

+ParticipantInclusivity: Boolean

+SouscriptionRequired: Boolean

+ConversationVisibility: {Private,Public}

+ParticipantVisibility: Boolean

+Retraction: Boolean

����������	

���

ProtocolCategory

+CategoryID

+Description: String

+URLSpecificRules

���������	

�

ParInput

ParResult

��������

���������

Parameter

+ParamType: URI

+Value

Condition

+LangageName

+LogicalExpression

���������������

���

Fig. 5. Protocol Profile

As illustrated in Fig. 5, the protocol profile is described
through a set of properties (ProtocolProperty class), parameters
(Parameter class), and a category characterizing the type of
protocol (ProtocolCategory). ProtocolProperty describes static
properties of the protocol, as pairs <name, value>. Among

these properties, we note the ContextOntology property, which
refers to the domain ontology of the protocol, and the
ProtocolCategory property, which refers to a protocol
taxonomy clustering coordination protocols according to the
purpose. This taxonomy is visualized in Fig. 6.

MonitoringProtocol

ProtocolCategory

FindingPartnersProtocol NegotiationProtocol EContractProtocol

Matchmaking Brokering CooperativeNegotiation CompetitiveNegotiation

CoopSubContracting Bargaining CompSubContracting Auction

HeuristicNegotiation ArgumentationNegotiation SimpleAuction DoubleAuction

PrivateAuction PublicAuction

No Privacy Increase global utility Increase individual utilityPrivacy

Multi-sellersOne-seller

Sealed bid Open cry

With argumentsWithout arguments

Price basedCounter offers

Rechercher Négocier

Fig. 6. Protocol Taxonomy

This taxonomy includes multi-agent coordination protocols

useful in dynamic IOW. More particularly, these protocols

support coordination services listed before, i.e. finding

partners, negotiation between partners and contracting services.

This taxonomy is thus specific to the IOW field.

Fig. 7 below illustrates the ICN protocol profile. Its

category is SubContracting; it includes several parameters

(input and result parameters) such as the call for proposal, the

agreement, the chosen contractor, and several properties

including a reference to the domain ontology underlying the

conversation.

� �������� 	 �������	
����

�
��������
 	

� ������������ � ���

� ������
�������
������� � ������

� ���������� � �	��

� ��������������� � �����	�������	�

�
������� 	

� ���
����
�� 	 �	����
�

�
����������
 	 �
���

�
����
��� 	

� ��������� 	 ����	�

� ��
����������� 	 �
���

� ��
������ 	����	

� �� �� 	 � ��!

� ���!�����	 "
��� �	����
�

Fig. 7. Profile of the Iterative Contract-Net Protocol

2) Protocols Behavior. The protocol behavior describes
the control structure of the protocol. It is defined through the
concepts of role, action, conversation acts, data, which can be
local variables, input or output parameters, and objectFlow
linking actions and conversation acts. Three types of roles are
distinguished in a protocol: i) the initiator, responsible for
initializing the conversation, ii) the moderator, responsible for
monitoring and ruling the conversation, and iii) the
participant, representing other stakeholders involved in the
conversation.

Roles exchange conversations acts. These latter are
described through a type and a content. AbstractAction are
operations performed by a role. Every action has a name, and a
content type, i.e. an action of sending or receiving a message.
An AbstractAction is activated after receiving a message from
another role, or after a deadline. Temporal events are
represented by data variables including conditions. The
description of these actions is abstract; it means that only the
signature of the action is specified. The two relationships
hasInitialAction and hasFinalAction define respectively the
initial action of a protocol and one or more final actions.
ObjectFlow, DataFlow and MessageFlow classes are
introduced to express the possible transmission of data
variables between actions. More precisely, the class
ObjectFlow expresses the transition between two actions. Two
types of transitions are defined: MessageFlow for the exchange
of conversation acts, and DataFlow to represent data streams.

Finally, the Parameter class describes the necessary data
structures for protocol execution. Two types of parameters are
considered: input and output parameters. Input parameters
enable the initialization of a protocol while output parameters
are the result of protocol execution. Conditions may be
associated to these parameters.

�

AbstractAction

+ActionID: String[1]

+ActionContent: URI

+ActionType: String

ProtocolBehaviour

+Name: String[1]

+Description: String[1]

Role

+RoleName: String

+Description: String

+NbOccurence[1..*]

Variable

+Name: String[1]

+Type: URI

ObjectFlow

+ObjectID: String[1]

ConversationAct

+Type: String

+Content: String

Condition

+LangageName

+LogicalExpression

���������

����

� ������������

���

�������������� ����

����������������

�

����

���

 ���!�����

 �����

�

���

 ���"����#��

 �����#��

����

���

������ �

������

�

DataFlow��������
���

MessageFlow

��������

� �

������������

���

������������

Parameter

+Name: String

+Type: URI

 ������������

���

 �����

���

Fig. 8. Protocol Behavior

We do not give additional details about this protocol
ontology. Interested readers can refer to [3] for a more detailed
presentation of these concepts.

IV. DYNAMIC PROTOCOL EXECUTION

The second step for engineering coordination protocols is to
deal with protocol execution. The section first defines protocol
life cycle along with the adopted approach for role extraction
and execution according this life cycle. The section then
presents role behavior extraction from protocol specification,
and finally focuses on dynamic extracted role execution.

A. Protocol Life Cycle

Protocol life cycle includes several states which are
presented in Fig. 9. We distinguish two levels for these states: a
specification level and a deployment level. Regarding the
specification level, three states are defined. The first state (state
designed) corresponds to specified protocols, i.e. protocols

specified in OWL as instances of the Protocol ontology. The
second state (state validated) corresponds to a state of a
validated protocol, i.e. a protocol whose behavior is validated
by simulation and that checks specific properties (e.g.
accessibility, ending...). The third state (state implemented) is a
complex state since it includes role extraction, role generation
and role concretization. Role extraction (state extracted) is the
activity which identifies actions performed by PAs holding the
role, while role generation (state generated) is the activity
which translates extracted roles into XML specifications which
are readable and executable by a role engine (cf. section IV.C).
Finally, each role is concretized in order to specify how each
process agent interprets the actions it integrates (state
concretized).

Regarding the deployment level, two states are defined:
selected and deployed. The first one is the process agent state
when it has chosen the role it is going to hold in a protocol,
while the second one is the process agent state when it is
holding the chosen role.

Selected

Execution Level

(Protocol Instance)

Deployed

Designed

Validated

Create

Modify

Delete

Validation

Specification Level

(Protocol/ Role)

Implemented

Extracted

Concretized

Transformation

Concretisation

Role
Extraction

Generated

Fig. 9. Protocol Life Cycle in UML.

B. Role Extraction, Generation and Implementation

Role implementation is based on the OWL protocol
specification obtained after instantiation of the protocol
ontology. However, this protocol specification is not
executable. To make it executable, we adopt the principle
illustrated in Fig. 10 following the protocol life cycle.

Protocol

Specification (OWL)

Extraction of

roles behavior

Generation of roles

skeletons

Implementation of

roles

Top Down Bottom Up

Fig. 10. Top-Down Approach for Role Implementation.

In this paper, we will only focus on the top-down approach
to generate role behavior. The bottom-up approach is out of the
scope of the paper. Extraction of role behavior from OWL
protocol specification consists in performing a projection
operation on roles. This operation, well known in relational
database algebra, is to only keep control structure related to a

particular role (actions, messages, data, etc.). It is based on the
analysis of conversation acts sent or received by a role, and
variables shared and actions it performs. The result is a set of
role skeleton specifications, described in XML and consistent
with a model of roles.

We define a role in the same way as a protocol, i.e. as a
composition of a profile and a behavior. The profile describes
the properties, parameters and data variables of a role while the
behavior defines authorized actions performed by a participant
holding this role in a conversation. However, because of space
limitation, we neither present the proposed algorithm to carry
out the projection nor present the model of roles. The interested
reader can consult [3] for more information about this
algorithm and the role model.

To illustrate role extraction, we use the example of Iterative
Contract-Net protocol presented in section 2. We applied the
projection algorithm to extract manager, moderator and
contractor roles. A partial view of the manager role is presented
in Fig. 11 below. This role skeleton specification includes two
parts. The first one describes the role profile through properties
such as multiplicity, protocol name, referenced protocol
ontology, list of parameters necessary for enacting the role and
list of results it produces. The second part describes the role
behavior in terms of the sequence of actions to be performed.

Profile

Behavior

Manager role

Fig. 11. Extract of manager role in ICN protocol.

The role generation step uses an XML role skeleton
specification to generate the corresponding executable role
skeleton specification. This specification depends on the
chosen target platform. Several platforms are eligible. In our
work, we used the WADE platform [25] and generated
skeletons roles in Java (since Java is the language of WADE).
Thus, the transformation process is an algorithm for mapping
XML specifications (describing roles) to Java skeletons
(implementing roles). XSLT is used to describe the mapping
rules. The use of this language makes the transformation
algorithm independent of any programming language.

More specifically, each role gives rise to the production of
a Java class, each action of a role is implemented by a method
of the class and each variable of a role is represented by a class
attribute. Once generated, roles are then refined and
concretized by developers of process agents in order to indicate
the functional code of these actions (e.g. SendBid,
MakeAdvertisement…). Refined roles are stored in the PMS
library to be exploited by agents participating in conversations.
A partial view of the Java class that defines the role Manager is
presented below.

Fig. 12. Extract of the Java class implementing the role Manager

C. Role Execution

This section introduces our strategy for role integration and
execution at run time. It presents the Micro-Role (MR) engine
component we defined for loading and executing role behavior.
It also explains how a process agent holding a role drive the
execution of the MR engine.

1) Micro Role Engine. To hold a role, a process agent
needs to load and execute the extracted behavior at run time.
Load means instantiate the role behavior according to the
internal state of the agent (with it specific settings or
parameters), and execute means enact it on the fly.

In order to support this, we extend the traditional agent
behavior adding a specific component, called Micro-Role (MR)
engine, responsible for loading and executing extracted and
generated roles. When created, an agent is equipped with this
specific component. It runs its MR engine only when
participating in a conversation ruled by a specific protocol.
Thus, we distinguish the internal behavior of the agent from its
external behavior, which corresponds to the actions the agent
has to execute when it holds a role in a conversation. The agent
is itself responsible for the execution of its internal behavior
(i.e. what it has to do), while the MR engine it integrates is
responsible for the execution of its external behavior (i.e. the
actions it has to execute within the role it holds). The
connection between the internal behavior and the role behavior
monitored by the MR engine is supported through
communication between agent local behavior and the MR
engine it integrates. This communication permits to give values
to the different variables defined in the role profile. Fig. 13
below illustrates the architecture of an agent integrating a MR
engine.

To go further into details, the MR engine is a small
component which is able to execute generated role behavior.
More precisely, for each role behavior, we have generated a
corresponding Java class that exactly implements the behavior
defined in the role. Thus, the MR engine is able to load, using
an ad hoc class loader, a compiled Java class and to execute it.

MRE

Role Profile

External Behavior

Internal

Behavior

Role

Behavior

Decision

Process

Fig. 13. Agent with Micro Role Engine.

So, when a process agent integrates a new role, the MR
engine initializes the different variables of the role (role
profile), reads the role specification, triggers the actions to be
done and waits for incoming messages from others agents
involved in the protocol. The actions triggered by the MR
engine correspond to messages sent to the other participants of
the conversation. When receiving a message, the MR engine
reads the role specification and triggers the actions to be done
according to its current state. Then, either it waits for new
messages or it ends its participation in the protocol.

2) Driving Role Execution. It is also important to discuss
about driving role execution, highlighting the communication
between the internal behavior of the agent and its MR engine.
We distinguish three objectives for driving role execution: (i)
binding values to variables corresponding to those defined in
the role profile, (ii) decision-making, which corresponds to the
agent strategy in the way it holds the role, and (iii) supervision
of the MR engine execution. The first objective is mandatory
for a minimal execution of a role, while the others are required
for a more advanced execution of a role.

As indicated before, the interface between the internal
behavior of the agent and the MR engine ensures the
communication between the agent and its MR engine providing
services. This interface is the support for driving role
execution. We now discuss in details how to use this interface
to reach the three driving role execution objectives.

First, two services are provided to support the binding of
values introduced before: the RequestVariables(parameters)
service and the ProvideValues() service, where parameters
correspond to the values defined in the role profile.
RequestVariables will be used by the agent to receive a request
from the MR engine while ProvideValues provides the MR
engine with values given by the agent to the parameters. For
instance, an agent holding the role Manager in the Iterative
Contract Net protocol defines the minimal number of available
contractor agent’s to start a conversation.

Second, we propose two other services to support both
decision making and role execution supervision:
RequestDecision() and ProvideDecision(). Regarding decision-
making, Request-Decision() corresponds to a request from the
MR engine when alternatives occur in role execution, while
ProvideDecision() is used to answer to this request. Of course,

to be able to answer to a request, we consider that agents have
a set of basic abilities. For instance, an agent holding the role
Manager in the Iterative Contract Net protocol is able to
evaluate a bid, to compare bids... The service ProvideDecision
may be used when the agent has to make decides. This
corresponds to strategic aspects in the way of holding a role for
an agent. In order to help agents in their decisions, we have
introduced a Process Decision ontology. Such an ontology
defines a set of strategies for each role embedded in
coordination protocols. Strategies are represented as sets of
rules. An agent that has previously defined as being able to
interpret a strategy described in the ontology is then able to
load and execute any coordination protocol that is defined in
concordance with this ontology. The presentation of this
ontology is out of the scope of the paper.

Regarding the supervision of the MR engine execution, the
ProvideDecision() service is used by agents to suspend, follow-
up or stop the execution of the role.

To sum up, we do not impose any constraints on the type of
agents holding roles but just assume they ensure the listed
services to be able to drive role execution. The type of these
agents can differ according the application in which they are
involved. For instance, in the context of a dynamic IOW,
process agents must integrate, in addition to the MR engine, a
workflow engine in order to execute their local processes,
which are a part of the inter-organizational process.

V. IMPLEMENTING DYNAMIC IOW COORDINATION USING

PROTOCOLS

This section first addresses the PMS implementation before
focusing on the implementation of protocol-based coordination
in dynamic IOW.

A. PMS Implementation

We first discuss of the technical choices we did for the
PMS implementation and then give its technical architecture.

1) Technical choices. To implement the PMS server, we
have chosen JADE (Java Agent DEvelopment Framework)
[27], integrated in a JEE architecture. This platform eases the
implementation of multi-agent applications in compliance
with FIPA specifications (http://www.fipa.org). Morever,
process-agent are implemented using WADE (Workflow
Agent Development Environment), built on top of JADE.
Indeed, WADE, unlike JADE, allows the definition of agents
able to execute workflow processes on the fly. It also offers a
set of mechanisms to handle the complexity of administration
and fault tolerance operations in a decentralized and
distributed environment. In WADE, each workflow agent is
equipped with a set of workflow abilities and the main duty of
an agent is to enact its proper workflow depending on the
dynamic situations it faces.

2) PMS technical architecture. According to the
technology discussed above, we propose the technical
architecture of PMS given in Fig. 14 below.

In this architecture; data layer includes following data
sources: conversation database, protocol ontology, domain
(context) ontology and roles skeletons models, which are used

by process agents. The conversation database plays an
important role in the system. It saves and maintains not only
the runtime data of different conversations, but also the data of
every connected process agent involved in the IOW.

���������
"!�"

���������

����

#$������

Conversations

Server Agent

OWL-API

JESS

Agent Protocol

Launcher

���%
�� ���%
��

��
��������

&����
��� ������"���������"

'#%���(

��
���

"&����

�#"�����"&����

)���"&����������
�����

!���

��������	
���

�
���

Matchmaker

Protocol

Conversation

Moderator n

Contract-Net

Protocol

Conversation

Moderator 1

…
Agent Role

Extractor

Agent Protocol

Designer

Agent OWL

Loader

Agent Role

Generator

Agent Protocol

Selector

ACL

Directory

Facilitator (DF)
Agent Management

System AMS

Message Transferring Service (http, soap, iiop, etc)

Protocols Design
and Selection

Module

Protocol

Execution
Module

Users

Managemen
tModule

Ontology

Managemen
tModule

Contract

Managemen
tModule

…

#�$�%��
���	 ACL

�������

��������

ACL

Fig. 14. Agent with Micro Role Engine.

PMS agent layer consists of seven agents implementing
different services. These services are:

• The Designer, Extractor and Generator agents are used
at the design level. The Designer agent helps to define
new protocols from the protocol ontology. The
Extractor agent is used to produce the XML role
specifications of the defined protocols, while the
Generator agent generates Java executable role
specifications. This transformation is carried out using
XSLT (eXtensible Stylesheet Language
Transformations).

• The Launcher, Selector, OWLLoader and
Conversations server agents, are used at the execution
level to select and execute protocols, or to subscribe to
new conversations. The Launcher helps process agents
to instantiate a new conversation while the Selector
agent handles process agent requests for protocol
selection. The Conversations server agent makes
information about conversations (current or past)
accessible to agents connected to the PMS. Finally, the
OWLLoader agent loads ontology protocol.

The communication between PMS agents is based on FIPA
ACL messages. ACL is a special kind of messages transport
format, which clearly expresses the intention of interactions
between agents, but also describes in detail the content of
interactions. At the same time, these agents can interact with
remote process agents via HTTP, IIOP and SOAP protocols.

The Agent Management System (AMS) and the Directory
Facilitator (DF) are two JADE system agents. The former one
(AMS), assigns an ID to each PMS agent and performs basic
operations such as creating and deleting an agent, modifying
the agent’s description, and monitoring agents migrating
among different platforms. The latter (DF), provides yellow

pages query service for all PMS agents. Every agent on the
PMS has to publish information via DF, such as its name, its
address, the services it provides...

The business layer is divided into two modules, the
protocol management module and the administration support
module. The protocol management module is responsible for
providing interfaces for protocol design and selection. It is also
responsible for supporting protocol execution and monitoring.
The administration support module handles the management of
users, of connected clients (process agent), and of data sources.
The whole business layer is deployed in the EJB (Enterprise
Java Bean) container; it provides data persistence and
transaction management for the system, and provides security
and stability.

The presentation layer uses JSP, Java Servlet and HTML
technologies to dynamically produce web pages on the
browser, to ease the interaction between the system and the
users. We also developed a rich client interface for protocol
design and protocol enactment simulation.

B. Protocol-based Coordination Implementation

In order to illustrate autonomic coordination in dynamic
IOW implementation using the PMS, we discuss about the
implementation of the autonomic dimension of process agents,
and their dynamic coordination dimension following a
coordination service process. We also report about the
implementation of the dynamic IOW application presented in
section 2.

1) Autonomic Coordination Dimension. Autonomic
coordination means that the process agents are able to identify
by themselves when they need dynamic coordination. This
ientification occurs during process agent execution; it cannot
be defined at design-time. There are two main situations that
lead to this dynamic coordination:

• Presence of subcontracting activities in the process
(e.g. Repair activity in the running example of section
2), scheduled to be executed by external partners
whose identity is unknown at design-time.

• Unavailability or defection of partners at run-time.
These failures can affect both human actors and
physical resources, and can be, for instance, due to a
decrease in the quality of service, a workload of an
existing partner, or the discovery of a new partner
offering a better quality of service.

The supervision of the execution process is needed to
identify the failure and/or the presence of unknown
subcontracting activities realized at runtime.

2) Dynamic Coordination Dimension. When failure and/or
presence of unknown subcontracting activities are identified,
protocols are used as follows. The running process agent is
first suspended, and an instance of what we call the
coordination service process is launched.

This process, introduced in Fig. 15, and detailed in Fig. 16,
executes the different coordination services supporting finding
partners, negotiation, contracting and execution of requested
process (see introduction). For each service of this process, a

protocol is selected from the set of protocols provided by the
PMS and an instance of the selected protocol is launched to
give rise to a new conversation. The conversation result will be
used for the next service. Example of used protocols are
matchmaking protocol for finding partners, iterative contract
net protocol for negotiation between partners, template-
contract protocol for contracting between partners. The result
of the finding partners step (i.e. a set of potential partners able
to provide the requested process) is the starting point of the
negotiation step. In the same way, the result of the negotiation
step (the chosen partner) is the starting point of the contracting
step. The last step is the execution of the subcontracted
business process (see Fig. 15, BPMN middle pool).

Matchmaking Contract-Net

Iteratif
…

Fig. 15. Using Protocols for Coordination.

Fig. 15 below shows how to use protocols for the
Subcontract repair activity, which is an unknown
subcontracting activity of the process agent representing the
organization responsible for the reparation of the equipment.
Thus, this process agent must find a partner able to execute the
repair activity. The execution of the process agent is suspended
and the coordination service process (see Fig. 15, BPMN
middle pool) is launched according to the following principle.
For each coordination step (finding partners, negotiation,
specification or contract and execution), there is an interaction
with the PMS (see flow messages exchanged between the
coordination service process and the PMS) and new
conversations are opened for each of these steps. As indicated
before, the result of the first three steps of the coordination
service process is the selected partner with which partnership
will be established. The final step is the execution of the
requested service, i.e. the reparation of the damaged equipment
(see messages flow between the activity execution of contracts
coordination process and initial and final events of the repair
process of the chosen partner).

The coordination service process presented above is
implemented using the platform WADE. Fig. 16 gives a
detailed view of this process showing how its activities are
gradually refined according to the step in which it is located.

Fig. 16. Implementation of the Coordination Service Process

To illustrate how the coordination service process runs, we
take an example that only focuses on the negotiation step. This
step is described as a sub process that expresses three different
scenarios for the implementation of the negotiation protocol: i)
whether the protocol to be deployed is known, ii) whether the
protocol is unknown and the process agent aiming at repairing
the equipment looks for a specific protocol (activity Selecting
protocol type, in the BPMN schema of Fig. 16) and then
initiates a conversation, or, iii) the repairing company process
agent is looking for an existing conversation. Depending on the
scenario from previous alternatives, the repairing company
process agent will therefore directly open a conversation with
for example the Iterative Contract Net protocol, or choose a
protocol by sending a selection request to the PMS as
explained in [3].

3) Implementation of the Example. We illustrate here the
implementation of the dynamic IOW application presented in
section 2.

To implement this inter-organizational process, we have
created WADE agents for each local process involved in the
IOW. More precisely, we defined the following WADE agents:
ClientAgent that implements the process of a client,
CompanyAgent that implements the process of the company
and as many SubContractingAgents as partners involved in
equipments reparation. The CompanyAgent uses other internal
agents which are not detailed in the paper. In addition, to be
able to execute process, the CompanyAgent and the different
SubContractingAgents are equipped with the Micro Role
engine in order to be able to execute roles; they also integrate
primitives to communicate with the PMS. Finally, the
CompanyAgent also includes supervision to support autonomic
coordination in order to identify situations of dynamic
coordination (e.g. for dealing with failure situations).

As shown in Fig. 17, these agents run in distributed mode
on several real machines. They are identified by their name and
IP address (Internet Protocol). Note that the Inter-
Organizational Workflow itself is distributed: each agent
encapsulates a part of this process.

Inter-organizational

Workflow Process

CompanyAgent@10.7.242.10

ClientAgent@10.7.246.9

PMS

SubcontractingAgent1@10.7.265.3 SubcontractingAgent2@10.7.265.3 SubcontractingAgent3@10.7.265.3

Local Repair

ProcessCoordination Process

Manager Role

Local Client Process

Contractor

Role

Contractor

Role

Contractor

Role

Local process agent 3
Local process agent 2

Local process agent 1

Fig. 17. Agents Implementing the Dynamic IOW Example.

VI. DISCUSSION AND CONCLUSION

This paper has addressed the issue of autonomic
coordination in open and flexible business processes
environments such as dynamic IOW. We adopt an agent-based
approach to deal with this issue: (i) coordination of processes
involved in dynamic IOW is protocol-based, and (ii)•dynamic
IOW processes are encapsulated into agents, called Process
Agents (PA). Our work is based on the assumption that multi-
agent coordination protocol support coordination services
which are inherent to dynamic IOW, i.e. finding partners,
negotiation between partners, and contracting services. It is
also based on the assumption that encapsulating processes into
process agents gives them the ability to autonomously decide
with whom, when and how to cooperate.

In our approach coordination protocols are isolated from
processes involved in dynamic IOW and their management is
entrusted to a Protocol Management System (PMS), which can
be seen as a server of protocols. In an engineering perspective,
we defined a life cycle for protocols and specified services
ensuring their specification, selection and execution. We also
illustrated how process agents involved in a dynamic IOW
could coordinate using these coordination protocols.

Related works may be considered according to two
complementary points of view: the IOW coordination and the
protocol points of view.

Regarding the IOW coordination point of view, the main
works are [10,12,13,15,16,28,29]. All these works provide
middleware-based solutions to deal with one of the following
coordination services: finding partners or negotiation between
partners. These works also exploit the agent approach as an
enabling technology to both model coordination and implement
flexible and adaptive processes. Regarding finding partners,
[10,12] define a matchmaker to find and coordinate agents
implementing processes. [13,29] both mix Web services and
agents to implement flexible processes running on the web.
While [13] implements a matchmaker for finding partners, [29]
implements a broker. [15] is the only work dealing with
negotiation of processes. It defines an agent-based architecture
including a moderator implementing a coordination protocol,
and a conversation server recording information about open

negotiations. Unfortunately, none of these works adopt a
comprehensive approach to deal with all the coordination
services in a coherent and uniform framework. They also lack
an engineering perspective to deal with this coordination issue.

Regarding the protocol point of view, we highlight four
main works [22,24,30,31]. First of all, [22] defines an ontology
to support negotiation in E-Commerce thanks to a conceptual
model describing the general concepts of E-commerce
negotiation protocols, and suggests to use the Protocol
Specification Language (PSL) to specify the behavior of these
protocols. Second, [24] defines a conceptual model for
protocols using a declarative approach and shows how to
transform modeled protocols onto corresponding Petri Nets,
thus obtaining an executable specification. Unfortunately, these
two works neither identify and address IOW protocols, nor
provide solutions to the dynamic selection of protocols.
Moreover, [22] does not show how to specify the behavior of a
protocol using PSL while [24] does not address the
classification and selection of protocol issues. Third, [30]
defines an ontology of protocols devoted to business processes,
and address their coordination through their composition. It
also explains how to compile them into executable rules.
However, it does not address the selection issue and does not
provide a protocol classification useful to help process partners
in selecting the appropriate protocol according to the execution
context. Finally, [31] is a complementary work to ours. It deals
with protocol engineering issues focusing particularly on the
notion of protocol compatibility, equivalence and
replaceability. Actually, this works aims at defining a protocol
algebra which can be very useful to our PMS. At design time, it
could be used to establish links between protocols, while at
run-time, these links could be used by the PMS selection
service to propose set of equivalent protocols.

The originality of our proposal is based on two elements.
The first one is the proposed approach that provides a coherent
and unified protocol-based framework to deal with dynamic
IOW coordination. This approach takes into account the
integrity of the coordination process. Protocols are used as
reusable components to handle each step of the coordination
process. They are managed by a dedicated system called
protocols management system, which provides engineering
services covering the entire protocol life cycle. Another strong
element of our work is the definition and implementation of a
dynamic execution model of protocols for process agents to
integrate at real-time the roles they are playing, without being
stopped or reprogrammed. We believe that this contribution is
important since supporting dynamic execution of roles permit
agents to face new open and distributed modern MAS
applications such as e-commerce, e-government, crisis
management and web services conversations. It makes the
participation to several conversations at the same time possible:
agents can switch their role behavior at run-time without being
shutdown, retooled and restarted.

Regarding future works, we plan to complete the
implementation of the PMS and we will focus on the
specification and the development of a set of connectors to
allow Workflow Management Systems (SGWf) such as
YAWL [32] or Bonita [33] to connect to our PMS. We also
have to consider specific issues about loaded roles by process

agents. Are these loaded roles consistent with the internal
behavior of the agent ? Are they consistent with each others
(for instance, a process agent may load different roles if it is
involved in different conversations). The issue has begun to be
addressed in [34]; it needs to be revisited in our context.

Finally, protocols are essential components having an
important place in any area where coordination or collaboration
may be considered as a first class citizen. Therefore, even if our
PMS is dynamic IOW-oriented, we believe that protocols are
useful in other application domains. For example, they could
be used to manage web services conversations.

REFERENCES

[1] W. van der Aalst, “Inter-Organizational Workflows: An Approach
Based on Message Sequence Charts and Petri Nets”. Systems Analysis,

Modeling and Simulation, vol. 34, no. 3, 1999, pp. 335–367.

[2] M. Divitini, C. Hanachi and C. Sibertin-Blanc, “Inter Organizational
Workflows for Enterprise Coordination”. A. Omicini, F. Zambonelli, M.
Klusch, and R. Tolksdorf (eds): Coordination of Internet Agents, 2001,
pp. 46–77.

[3] W. Bouaziz, “Coordination à base de protocoles dans les systèmes
multi-agents : application au Workflow Inter Organisationnel”. PhD
Dissertation, IRIT, Toulouse, September 2010.

[4] K. Baïna, K. Benali, and C. Godart, “Dynamic Interconnection of
Heterogeneous Workflow Processes through Services”. International

Conference On the Move to Meaningful Internet Systems, CoopIS 2003,
R. Meersman, Z. Tari, D. Schmidt (Eds.), Catania, Sicily, Italy,
November 2003 pp. 444–461.

[5] B. Benatallah, F. Casati and F. Toumani, “Web Service Conversation
Modeling : A Cornerstone for E-Business Automation”. IEEE Internet

Computing, vol. 8, no. 1, 2004, pp. 46–54.

[6] X. Zhao, C. Liu and Y. Yang, “Web Service Based Architecture for
Workflow Management Systems”. International Conference on

Database and Expert Systems Applications, DEXA 2004, Zaragoza,
Spain, September 2004, p. 34–43.

[7] I. Chebbi., S. Dustdar and S. Tata, “The view-based approach to
dynamic inter-organizational workflow cooperation”. Data Knowledge

Engineering, vol. 56, no. 2, 2006, pp. 139–173.

[8] J. Meng, S. Su, H. Lam, H. Abdelsalam, X. Jingqi, L. Xiaoli and Y.
Seok-Won, “DynaFlow: a Dynamic Inter-Organizational Workflow
Management System”. Business Process Integration and Management,
vol. 1, n°2, 2006, pp. 101–115.

[9] S. Tata, K. Klai, and N. M'Bareck, “CoopFlow: a Bottom-Up Approach
to Workflow Cooperation for Short-Term Virtual Enterprises”. IEEE

Transactions on Services Computing, vol. 1, no. 4, 2008, pp. 214–228.

[10] L. Zeng, A. Ngu, B. Benatallah and M. O’Dell, “An Agent-Based
Approach for Supporting Cross-Enterprise Workflows”. Australian

Database Conference, ADC 2003, Bond, Australia, February 2001, pp.
123–130,.

[11] A. Ricci, A. Omicini, and E. Denti E., “Virtual Enterprises and
Workflow Management as Agent Coordination Issues”. Cooperative

Information Systems, vol. 11, no. 3-4, 2002, p. 355–379.

[12] E. Andonoff, L. Bouzguenda, C. Hanachi and C. Sibertin-Blanc,
“Finding Partners in the Coordination of Loose Inter-Organizational
Workflow”. International Conference on the Design of Cooperative

Systems, COOP’04, Hyères, France, May 2004, pp. 147–162.

[13] C. Aberg, C. Lambrix and N. Shahmehri, “An Agent-Based Framework
for Integrating Workflows and Web Services”, International Workshop

on Enabling Technologies: Infrastructure for Collaborative Enterprises,
WETICE’05, Linköping, Sweden, June 2005, pp. 27–32.

[14] T. Savarimuthu, M. Purvis, MK. Purvis and S. Cranefield, “Integrating
Web Services with Agent Based Workflow Management System”,
International Conference on Web Intelligence, WI’05, Compiègne,
France, September 2005, pp. 471–474.

[15] E. Andonoff and L. Bouzguenda, “Agent-Based Negotiation between
Partners in Loose Inter-Organizational Workflow”. International

Conference on Intelligent Agent Technology, IAT’05, Compiègne,
France, September 2005, pp. 619–625.

[16] P. Buhler and J. Vidal, “Towards Adaptive Workflow Enactment Using
Multi Agent Systems”. Information Technology and Management, vol.
6, no. 1, 2005, pp. 61–87.

[17] B. Blake and H. Gomaa, “Agent-Oriented Compositional Approaches to
Services-based Cross Organizational Workflow”. Decision Support

Systems, vol. 40, no. 1, 2005, pp. 31–50.

[18] E. Andonoff, W. Bouaziz, C. Hanachi and L. Bouzguenda., “An Agent-
based Model for Autonomic Coordination of Inter-Organizational
Business Processes”. Informatica, vol. 20, no. 3, September 2009, pp.
323–342.

[19] E. Andonoff., W. Bouaziz. and C. Hanachi, “Protocol Management
Systems as a Middleware for Inter-Organizational Workflow
Coordination”. IEEE International Conference on Research Challenge

in Information Science, RCIS 07, Ouarzazate, Morocco, April 2007, pp.
85–96.

[20] C. Ghezzi, M. Jazayeri and D. Mandrioli, “Fundamentals of Software
Engineering”. Prentice-Hall International, 1991.

[21] M. Wooldridge, “An Introduction to MultiAgent Systems”. Whiley
Editions, 2009.

[22] V. Tamma, S. Phelps, I. Dickinson and M. Wooldridge, “Ontologies for
Supporting Negotiation in E-Commerce”. Engineering Applications of

Artificial Intelligence, vol. 18, no 2, 2005, pp. 223–236.

[23] B. Lithgow Smith, V. Tamma and M. Wooldridge, “An Ontology for
Coordination”. Applied Artificial Intelligence, vol. 25, no 3, 2011, pp.
235–265.

[24] C. Hanachi and C. Sibertin-Blanc, “Protocol Moderators as active
Middle-Agents in Multi-Agent Systems”. Autonomous Agents and

Multi-Agent Systems, vol. 8, no. 3, March 2004, pp. 131–164.

[25] Foundation for Intelligent Physical Agents, FIPA ACL Message
Structure Specification. December 2002, Available at
http://www.fipa.org/specs/fipa00061/

[26] G. Caire, D. Gotta and M. Banzi, “WADE : a software platform to de-
velop mission critical applications exploiting agents and workflows”.
International Conference on Autonomous Agents and Multiagent

Systems, AAMAS 08, Industrial Track, Estoril, Portugal, May 2008, pp.
29–36.

[27] F. Bellifemine, G. Caire and D. Greenwood, “Developing Multi-Agent
Systems With Jade”. John Wiley & Sons Ltd, 2007.

[28] A. Negri, A. Poggi, M. Tamaiuolo and P., Turci, “Agents for e-Business
Applications”. International. Conference on Autonomous Agents and

Multi-Agent Systems, AAMAS 04, Hokodate, Japan, May 2004, pp.
907–914.

[29] B. Blake, “Agent-Based Communication for Distributed Workflow
Management using JINI Technologies”. Artificial Intelligence Tools,
vol. 12, no. 1, 2003, pp. 81–99.

[30] N. Desai., A. Mallya, A. Chopra and M. Singh, “Interaction Protocol as
Design Abstractions for Business Processes”. Transactions on Software

Engineering, vol. 31, no. 12, 2005, pp. 1015–1027.

[31] B. Benatallah, F. Casati and F. Toumani, “Representing, Analyzing and
Managing Web Service Protocols”. Data and Knowledge Engineering,
vol. 58, no. 3, 2006, pp. 327–357.

[32] W. Van der Aalst and A ter Hofstede, “YAWL : yet another workflow
language”. Information Systems, vol. 30, no. 4, 2005, pp. 245–275.

[33] D. Grigori, F. Charoy and C. Godart, “Coo-Flow: A Process Technology
to Support Cooperative Processes”. Software Engineering and

Knowledge Engineering, vol. 14, no.1, 2004, pp. 61–78.

[34] A. Chopra, F. Dalpiaz, P. Giorgini, J. Mylopoulos. “Modeling and
Reasoning about Service-Oriented Applications via Goals and
Commitments”. International Conference on Advanced Information
Systems Engineering, CAiSE’10, Hammamet, Tunisia, June 2010, pp.
113–128.:

