
  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 12430 

The contribution was presented at IC0804 EE-LSDS 2013 :  
http://www.cost804.org/ 

To cite this version : Sharrock, Remi and Monteil, Thierry and Stolf, Patricia and 
Brun, Olivier Autonomic computing to manage green Core networks with Quality 
of Service. (2013) In: IC0804 Energy Efficiency in Large Scale Distributed 
Systems conference (EE-LSDS 2013), 22 April 2013 - 24 April 2013 (Vienna, 
Austria). 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/78384211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Autonomic Computing to Manage Green Core

Networks with Quality of Service

Remi Sharrock1(B), Thierry Monteil2,4, Patricia Stolf3,4, and Olivier Brun2

1 Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI UMR 5141, Paris, France
remi.sharrock@telecom-paristech.fr

2 CNRS, LAAS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
3 IRIT, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

4 UPS, INSA, INP, ISAE; UT1, UTM, LAAS, Université de Toulouse,
31077 Toulouse Cedex 4, France

Abstract. In a context where data and computing services are mov-
ing to external specialized datacenters the manual management of these
systems is becoming an issue. Human administrators have to deal with
hardware resources optimization while meeting the users’ needs. In our
approach we propose to reconfigure both a set of applications deployed
in a datacenter (by adapting their behaviors using autonomic comput-
ing) and the wired network (by switching on and off its equipments like
routers, modules). We take into account both the energetic costs with the
network equipments and the quality of service provided to the end user
by the deployed applications. The main contribution of the proposed
model is to consider a compromise between the total power consump-
tion of the network equipments and the application quality of service.
We validated our approach by simulating deployed applications on the
Grid’Mip infrastructure similar to a small core network made up of Cisco
routers (part of Grid’5000 project).

1 Introduction

Data and computing services outsourcing (Web sites, Databases, Distributed
applications) towards specialized datacenters is increasingly selected as a way to
delegate complex infrastructure management to experts. Some of these datacen-
ters tend to offer cloud computing services which allow access to pre-configured
platforms or software environments, sometimes in a matter of seconds. From
the datacenter customer point of view, these services allow to adapt the applica-
tion architecture dynamically, for example according to the fluctuating incoming
request flows. From the datacenter’s administrator point of view, the mix of cus-
tomers’ needs and deployed application’s needs may require an optimization of
the hardware resources usage, for example to reduce the electrical power con-
sumption of the datacenter. Thus, there is a compromise to be found between, on
one hand, the quantity of resources (power) that are needed for a given service
and on the other hand the quality (performance) of this service.



In our approach, we tend to introduce the general problem of self-optimization
applied at both application (performance optimization) and network infrastruc-
ture levels (power optimization). We introduce a criterion which is a function of
the global electric power consumed by the network and of a parameter represent-
ing the loss of service quality for the applications. The problem of optimization
consists in minimizing this loss and/or the power consumption depending on
the administrator’s choice. This minimization takes into account a number of
constraints such as the dynamic topology (links shutdowns, network equipments
or nodes shutdowns), the network links capacities and the routing policies.
The rest of the paper is organized as follows. Related work is first discussed
in Sect. 1.1. Then the environment considered by our approach is presented in
Sect. 1.2. Section 2 presents the model proposed including the network, the appli-
cation, the routing protocol and the criterion used. Results of our experimental
evaluation are presented in Sect. 3 , then finally, we conclude in Sect. 4.

1.1 Related Work

Quality of Service characteristics The QoS characteristics are measurable
values and a set of constraints on these values. They are mainly classified in the
following groups [1]:

– Temporal: transit time, response time, time of establishment, jit
– Capacity: entrance/exit flow rate, user data rate, data control rate
– Integrity: connection breakdown probability, loss probability
– Security: protection level, authentication

Difference between QoS characteristic, profile and needs It is important
to first differentiate the QoS profile of an application (its multiple behaviors)
and the QoS characteristics. Indeed, the first one has an influence on the
other. The QoS profile is a set of internal values for the application which influ-
ences the QoS characteristics. For example, a video application may have two
possible types of compression for the images [2], one using the BZIP2 algorithm
and the other Lempel-Ziv. The internal parameter is the compression algorithm
which influences the transmission time because both algorithms have different
compression times. We can thus say that the QoS profile of the application is
described by the compression algorithm (two behaviors possible) and the in-
fluenced QoS characteristics is the transmission time. In this case, by using the
BZIP2 algorithm, the application has a transmission time of 20 ms, whereas with
the algorithm Lempel-Ziv the transmission time is 40 ms. Finally, QoS needs

are a set of predefined QoS characteristics needed by the application. Depending
on its different QoS profiles, the application may have different QoS needs.

A self-adaptive application would choose automatically its QoS profile so as
to satisfy the QoS needs, which is a complex optimization problem by itself.
In our approach, we introduce a mathematical model which takes into account
those QoS needs. One part of the optimization consists in selecting which QoS
needs will satisfy at best the global minimization problem.



Applications’ QoS management capacity We consider two cases for the
applications’ QoS management capacity: either the application has multiple QoS
profiles (multiple behaviors) or it has absolutely no notion of QoS (no QoS profile
at all and only one behavior).

Application without notion of QoS: for an application without notion of
QoS, it cannot change its functioning neither at the beginning, nor during the
execution.

Applications with multiple QoS profiles: the application has the capacity
to modify its behavior and is able to send/receive different traffics (for example,
compression of different data). In this case, either the application is self-adaptive
and has internal mechanisms to choose its QoS profiles or the application is
external-adaptive and rely on external mechanisms to choose its QoS profile.

For our approach, we consider external-adaptive applications with multiple
QoS profiles. Indeed, the change of QoS profile (the reconfiguration) is made by
an autonomic tool according to the results of the optimization. This allows to
make reconfiguration decisions at the global level, by taking into account all the
applications and the datacenter network infrastructure.

1.2 Environment Considered by the Approach

The DiffServ domain Our approach considers one DiffServ domain[3]. The
DiffServ model is implemented in a DiffServ domain (DS Domain) which cor-
responds to a zone having a common QoS policy, usually true for datacenter
network. Indeed, a datacenter is for the most part managed by a single admin-
istrative entity which integrates the network into a DS domain belonging to
the entity. Our approach proposes to use a single optimization tool for the DS
Domain.

The routing of the network Usually, the machines of a datacenter are grouped
in clusters. A cluster can be connected physically to several routers. This means
that all the machines of the cluster are connected with several routers and thus
have several network cards. Our approach considers only the case of the dynamic
routing tables and does not take into account the case of Channel Bonding[4]
(aggregation of several network interfaces in a logical interface).

Also, for the border routers and core routers, the routing is either static, or
it depends on the routing protocol used inside the DS domain, meaning that it
depends on the IGP (Interior Gateway protocol). The roles of an IGP are:

– to establish the optimal routes between a point of the network and all the
destinations available of a bounded domain;

– to avoid buckles;
– in case of modification of the topology (disconnection of a physical link, a

router’s shutdown), to guarantee the convergence of the network, that is the
restoring of it’s optimal connectivity without buckle as soon as possible.



25

We distinguish usually:

– link state protocols which establish neighborhood tables and use the Dijkstra
algorithm to calculate the best routes. Two examples of such protocols are IS-

IS (Intermediate system to intermediate system) [5], OSPF (Open Shortest
Path First) [6];

– distance vector protocols: RIP (Routing Information Protocol), IGRP (In-
terior Gateway Routing Protocol) [7];

– The hybrid protocols, which have characteristics of both first ones: EIGRP

(Enhanced Interior Gateway Routing Protocol) [8].

The inclusion of QoS and network energy consumption can be done at the
protocol level. [9] proposes the use of energy Efficient Ethernet standard (IEEE
803.3az) by adding a prioritization of streams impacted by the saving energy
mechanisms (sleeping mode, coalescing mechanism) to ensure the desired level
of QoS. In [10], is proposed a change in the OSPF that allows (depending on
the communication links usage) to reconfigure the routing tables and to turn off
routers. In [11], the authors present some detailed router consumptions and a
generic router consumption model. Studies specifically on datacenter and core
networks have been made in [12]. They are interested in the location of data-
centers from the data access point of view under network energy consumption.
The authors also define classes of popularity data leading them to address the
problem of data replication. There is a linear programming formulation to find
a solution.

Our approach considers the case of various routing protocols. We give a first
example of heuristics with a dynamic routing table generated by the OSPF
routing protocol. The choice of OSPF as routing protocol has for consequence
to create routing tables following a metric defined on the links. For example, the
cost of routes can be calculated according to the capacities of all the links of
the route. A load balancing is made on routes having the same cost and routes
having a higher cost are not used. It is then possible to switch off some router
links or some routers.

2 Model

2.1 Network Model

Variables and functions for the network representation The topology of
the network is expressed with an oriented graph G = {N,E} where N is the
set of nodes of one network domain and E is the set of edges. A couple (i, j)
represents the edge between the node i and the node j. A node can be a border
router, a core router or a host. A router has different modules plugged into his
frame. Each module contains several network ports that can be used to create
links between the nodes. We consider that the hosts have only one module but
possibly multiple network ports.

– | N |= nN and | E |= nE

– ce
i,j is the capacity of the edge (i, j)



– pe
i,j is the electric power consumption of the port in the node i used to create

the link between the node i and the node j
– ze

i,j defines the state of the port in the node i used for the link (i, j), 1 means
the port is switched on and 0 is switched off

– pm
i,l is the electric power consumption of the module l of the node i

– zm
i,l defines the state of the module l of the node i (same convention as for

ze
i,j)

– pc
i is the electric power consumption of the node i when all modules and

ports are switched off (also called the frame consumption)
– zc

i defines the state of the node i (same convention as for ze
i,j)

– Mi is the set of the modules in the node i :
Mi = {m1, . . . ml . . . , mnMi

}, | Mi |= nMi

– Ei,l is the set of ports of the module l of the node i
– Ei is the set of all the ports of the node i, ∀i ∈ N :

Ei =
⋃

l∈[1,nMi
] Ei,l

Relations and constraints for the network The total electric power con-
sumption of the network Ptotal is:

Ptotal =
∑

i∈N

{pc
i .z

c
i +

∑

l∈[1,nMi
]

[pm
i,l.z

m
i,l +

∑

j∈Ei,l

pe
i,j .z

e
i,j ]} (1)

=
∑

i∈N

pc
i .z

c
i +

∑

i∈N,l∈[1,nMi
]

pm
i,l.z

m
i,l +

∑

i∈N,j∈Ei

pe
i,j .z

e
i,j (2)

If all ports of a module are switched off the module can also be switched off:

∀i ∈ N,∀l ∈ [1, nMi
] :

∑

(i,j)∈Ei,l

ze
i,j = 0 ⇒ zm

i,l = 0 (3)

Because it is easier to solve a linear problem the relation (3) could be ex-
pressed as two linear constraints:

∀i ∈ N,∀l ∈ [1, nMi
] : zm

i,l −
∑

j∈Ei,l

ze
i,j ≤ 0 (4)

∀i ∈ N,∀l ∈ [1, nMi
], j ∈ Ei,l : ze

i,j − zm
i,l ≤ 0 (5)

The same linear constraints can also be written for the nodes. If all modules of
a node are switched off the node can also be switched off:

∀i ∈ N : zc
i −

∑

l∈[1,nMi
]

zm
i,l ≤ 0 (6)

∀i ∈ N, l ∈ [1, nMi
] : zm

i,l − zc
i ≤ 0 (7)

There is a symmetry when two ports are connected, when one is switched off
then the connected one is also switched off:

∀i, j ∈ N : ze
i,j − ze

j,i = 0 (8)



2.2 Application Model

Variables and functions for the applications We consider one-to-one ap-
plications that are composed of one sender and one receiver. This will simplify
the traffic matrix, the final notation and the number of unknown values. Yet the
generalization of more complex applications is possible for the model used. The
following variables are defined:

– A is the set of applications on the datacenter:
A = {a1, . . . ak . . . , anA

}, | A |= nA

– as
k is the sender process of the application ak and ar

k the receiver (generalisa-
tion with several receiver is possible). We suppose that the communication
is one-way and we neglected back traffic (signaling, acknowledgements, etc)

– Nk
s is the host of as

k and Nk
r the host of ar

k

– NE is the set of QoS needs for all applications. Every element of this set
is composed of a set of values expressing an elementary QoS characteristic
asked by the application (flow, jit, response time, ...) which are grouped
together in a tuple. NE is composed of numerical values, interval or other
representations allowing to characterize an elementary need in QoS NE =
{n1, . . . ns . . . , nnNE

}, | NE |= nNE

– NEk allows to specify for an application ak the various possible needs for
this application.

– Bk is a set which has the same size of NEk:
Bk = {bk

1 , . . . bk
n . . . , bk

n
Bk

}, | Bk |= nk
B . It is composed of binary variables

bk
n ∈ Bk :

bk
n =







1 if the need nk
s(s = n) is chosen for the

application ak,
0 otherwise

– We suppose that there is a metric function called M allowing to measure
the quality of a need. This last one allows to define a total order relation
noted < between the various needs of an application. To simplify afterward
the notation, we suppose that needs are altogether tidied up NEk following
this order < using the metric M (this is always achievable with an index
permutation):

M(nk
1) < M(nk

2) < . . . < M(nk
n

NEk
)

– xk
i,j is the network data flow for the application ak on the edge (i, j)

– AF gives for an application ak and a chosen need nk
m, the average flow

produced by this application. Our approach supposes that the average flow
produced by the application according to its needs can be estimated.

– The function RoutingNodes for the network takes a sender node and a re-
ceiver node and creates the set of nodes used to go from the sender node
to the receiver node depending on the routing policy (OSPF, RIP, RIPv2,
etc). This function takes into account the unusable switched off nodes. For
an application ak:

RNk = RoutingNodes(Nk
s , Nk

r )



– for a node i, the set RN
k,i
input defines the set of nodes connected to node

i and sending data for the application ak and RN
k,i
output the set of nodes

connected to node i and receiving data for the application ak:
j ∈ RN

k,i
input if j ∈ RNk and ∃ei,j ∈ E

j ∈ RN
k,i
output if j ∈ RNk and ∃ej,i ∈ E

Relations and constraints for the applications For an application, only
one single need can be chosen:

∀k ∈ [1, nA] :

n
Bk

∑

n=1

bk
n − 1 = 0 (9)

The flow going out of the sending node is equal to the average flow produced
by the application and follows the routing policy :

∀k ∈ [1, nA], j ∈ E so that ∃eNk
s ,j ∈ E :

xk
Nk

s ,j −

n
Bk

∑

n=1

(AF (nk
n).bk

n) = 0 (10)

For an application ak the flow which goes out of the sending node is equal to
the flow which goes in the receiving node. We suppose that hosts are connected
to border routers with only one link:

∀k ∈ [1, nA],∀i ∈ E so that ∃eNk
s ,i ∈ E,

∀l ∈ E so that ∃el,Nk
r

∈ E : (11)

xk
Nk

s ,i − xk
l,Nk

r
= 0

The conservation of the flows across the core network is expressed as follow.
There is no lost of information, and all information that enter in a core router
should exit :

∀k ∈ [1, nA],∀i ∈ E :
∑

j∈E,∃ei,j

j 6=Nk
s ,Nk

r

xk
i,j −

∑

u∈E,∃eu,i

u6=Nk
s ,Nk

r

xk
u,i = 0 (12)

The capacity of the switched on links must be respected:

∀(i, j) ∈ E :

nA
∑

k=1

(xk
i,j − ce

i,j .z
e
i,j) ≤ 0 (13)

∀(i, j) ∈ E,∀k ∈ [1, nA] : −xk
i,j ≤ 0 (14)

We define a quality loss of service QL for the application ak with the chosen
quality need of service c as being:

∀k ∈ [1, nA] : QLak
= M(nk

nNEk
) −

n
Bk

∑

c=1

M(nk
c ).bk

c



The total quality loss for all applications on the datacenter is:

QLTotal =
∑

ak∈A

QLak

2.3 The Routing Protocol

Two cases have to be discussed. In the first one, the routing policy is not con-
strained (called optimal policy). All routes can be used and the optimal solution
represents the optimal propagation flow on the network. In the second one, the
OSPF policy is used. In that case, it is necessary to add constraints which specify
that data flows are fairly divided on the routes having the same cost (the cost
being calculated by the OSPF-specific metrics, usually the links capacities):

∀k ∈ [1, nA];∀i ∈ RNk, Cardinal(RN
k,i
output) > 1,

i 6= Nk
s ;∀j ∈ RN

k,i
output : (15)

xk
i,j =

1

Cardinal(RN
k,i
output)

∑

l∈RN
k,i

input

xk
l,i

2.4 Global Criterion

The problem can be written as the minimization of a criterion, by going through
the possibilities for the various variables z = [0; 1] (the switched on/off elements
of the managed network), b = [0; 1] (the chosen QoS needs for the applications)
and x ∈ R

+ (the flow values of the network):

Min
x∈R+;z=[0;1];b=[0;1]

α.Ptotal + β.(1 − α).QLtotal (16)

We introduce α ∈ [0; 1] which represents the compromise between the total
power of the managed network and the service quality loss. It is the duty of the
datacenter’s administrator to define α.

β allows a normalization to return both criteria on a comparable scale. This
is made using the minimal and maximal borders of PTotal and QLTotal. These
borders can be easily calculated for Pmax and QLmax by setting all the power
variables and quality of service variable to the maximum. To calculate Pmin and
QLmin we use a pre-optimization by setting α = 0 and α = 1. β is calculated by
means of an average arithmetic on these borders:

β = (Pmin + Pmax)/(QLmin + QLmax) (17)

3 Experiments

3.1 Context

Resolution context To validate our approach, we chose to use the Grid’MIP
topology (a part of the grid’5000 project [13]) described by Fig. 1. The three



Fig. 1. Topology of the Grid’MIP architecture

border routers are numbered 0, 1, 2 and have two modules: one has 48 Gigabit-
ethernet ports (each link connected has a capacity of ci,j = 1000 Mbits/s) and
the other has four Fiber Channel 10-Gigabit ports (ci,j = 10000 Mbits/s). The
first module is linked to hosts that run applications and the second module to
core routers. The three core routers are numbered 3, 4, 5 and have one Fiber
Channel module with four 10-Gigabit ports. For the initialization of the power
constants (pc

i , pm
i,l, pe

i,j) we used values measured on the Grid’MIP platform using
specific bluetooth wattmeters called Plogg.

Regarding the application placement, we decided to use a simple layout that
allows to highlight the switching on/off difference of the network equipments
in two precise cases: the optimal-policy case and the OSPF-policy case. That’s
why we chose to place all the sending applications on hosts linked to the border
router 0 and all the receiving applications on hosts linked to the border router
1 (∀k ∈ [1, nA] : Nk

s = 0, Nk
s = 1). Thus, the host 6 sends traffic to host 7, host

8 to host 9, etc. If we consider the optimal case there are 3 possible routes from
router 0 to router 1: 0-2-1, 0-4-1 and 0-3-5-1. All links of these three routers being
different and having a 10-Gbit/s capacity, the total possible bandwidth from
router 0 to router 1 is 30 Gbit/s. If we then consider the OSPF case, only 2 routes
remain because of the OSPF metric based on capacity: 0-2-1 and 0-4-1. The
total bandwidth is therefore 20 Gbit/s. For the average flow constants AF (nk

n)
we consider that all applications are consistent for a better result readability.
We associate 5 basic QoS needs to these applications (| Bk |= nBk = 5) and
for simplification purposes we consider the metric M defining the quality of
each need to be equal to the average flow resulting from the chosen need, i.e.
M(nk

n) = AF (nk
n). The 5 average flows resulting of the 5 needs are fixed in

Mbits/s to AF (nk
0) = 200, AF (nk

1) = 400, AF (nk
2) = 600, AF (nk

3) = 800 and
AF (nk

4) = 1000. Finally, for our experiments, we vary the number of applications
between 1 to 60 (nA ∈ [1..60]) and α by steps of 0.5.



3.2 Simple Configuration

Resolution for the optimal case The variables of the global model are never
multiplied together, so this is a linear programming (LP) problem. However, it
is necessary to use discrete variables when modeling the problem, for example
for the values associated with binary variables of the problem. In this particular
case, the model adds integrity constraints and the problem is known as integer
linear (LP) programming.

For the first optimal calculation we use JOpt [14], an open-source java tool
that encapsulates LP. JOpt adds a generic layer to linear solvers by using java
objects. This allows to access distant solvers like CPLEX [15]. JOpt manages
the calculation with an internal load-balancing policy over multiple solvers.

For the criterion resolution, four steps are needed for the optimal case:

– Step 1 Initialization: The first step initializes the problem inputs: network
graph (routers, modules, ports and links), the placement of the applications
on the graph (for each ak creation of the sending and receipting nodes, of the
application needs and calculation of the average flows) and the constants.

– Step 2 Preparation: The second step prepares the criterion for the fi-
nal objective function and the constraints. In fact, this step calculates the
coefficients and constructs the JOpt java objects: variables, terms, criteria,
constraints and objective function.

– Step 3 Normalization: The third step allows to calculate the normaliza-
tion needed for the objective function. Two calls on the distant solver are
needed for this step for the calculation of Pmin and QLmin. Pmax and QLmax

are also calculated but do not need a solver.
– Step 4 Minimization: The forth step consists in launching the minimiza-

tion of the distant solver and getting the results back.

The calculation of the coefficients and the construction of the JOpt java
objects (variables, terms, criteria, constraints and objective function) are be-
ing made on a JOpt client coded in java that transfers these objects to the
distant linear solver. In our case, we use a CPLEX solver on a distant server
with four processors dual-core Intel Xeon 3.2 GHz. In our experiments we dis-
tinguish between the preparation time needed to prepare the calculation and
the network time needed to transfer the JOpt java objects and get the results
back.

Figures 2a and 3a show the electric power needed by the network as a function
of the number of applications and some selected α values.

In the optimal case, (Fig. 2a), between 0 and 10 applications for α < 0.8
there is only one route switched on (on Fig. 1 the route 0-2-1 or 0-4-1) and the
power consumption increases slowly from 1600 to 1700 Watts as a function of the
number of ports (approximately 4 ports per application: 2 for the sender and 2 for
the receiver, so 4 Watts per application). For α = 0, 9 the consumption increases
following this scheme until 50 applications. Between 11 and 13 applications for
α < 0, 8, we can see a jump in the power consumption indicating that a router
(frame, modules and ports concerned) is switched on. We have to wait until 50



Fig. 2. Optimal self-optimization case

Fig. 3. Heuristic with OSPF routing protocol for self-optimization case

applications to observe this jump for α = 0, 9. Indeed, after 50 applications, the
average flow resulting from the minimum needs is fixed to 200 Mbits/s and the
capacity of this unique route (10 Gbit/s) is exceeded which forces the switch on
of a second route.

We observe that the more α increases the more power is taken into account
in the minimization, delaying the switch on of new routers to the detriment of
quality of service, as can be seen on Fig. 2b. Between this first jump and the
second after 20 applications we have routers 0, 1, 2 and 4 switched on and the
routes 0-2-1 and 0-4-1 used. Starting at 20 applications and for α < 0, 7, we
see a second power jump more important than the first one because it concerns
the switch on of routers 3 and 5. This jump is moving from 21 applications
for α = 0, 1 to 27 applications for α = 0, 6. We see experimentally that for
α = 0, 7 this jump isn’t happening (until 60 applications). With the routers 3
and 5 switched on, the network reaches a power consumption of more than 2900
Watts and 3 routes are used (0-4-1, 0-2-1 and 0-3-5-1).

Regarding the QoS (Figs. 2b and 3b), we see that globally the more α is
increasing, the more quality loss of service the user gets. We also see that the



quality losses coincide with the power jumps of Figures 2a and 3a. For example
for α = 0, 9, the power is predominant in the objective function. In this case we
see that the quality loss of service starts after 11 applications. Indeed, until 10
applications, the total average flow cannot exceed the capacity of the only route
switched on (either 0-2-1 or 0-4-1). Thus these 10 applications use the needs
whose quality measured by M is maximum and have a resulting average flow
AF (nk

4) = 1000 Mbits/s. After 11 applications, the QoS is degraded for at least
one application. This phenomenon is visible just before new routers are switched
on. We can indeed observe a slight increase of quality loss, visible from 20 to 27
applications for α < 0, 7 in the optimal case (Fig. 2b).

Algorithm 1 Heuristic used with OSPF as the routing function

Initialize constants, constraints and execute algorithm OSPF
Solve Pmin (LP with α = 1), QLmin (LP with α = 0)
Solve directly Pmax, QLmax

β = (Pmin + Pmax)/(QLmin + QLmax)
Create Solution best solution ← Solve LP

Create List explored solutions ← best solution

while nb iterations < max iter & moving objective do

Ntrie
← sort N by inverse number of applications ak using them

for i ∈ Ntrie do

Mtrie

i ← sort Mi by inverse number of applications ak using them
for l ∈Mtrie

i do

Etrie

i,l ← sort Ei,l by inverse number of applications ak using them

for ei,j ∈ Etrie

i,l do

execute algorithm 2 with ze
i,j = 0

nb iterations← nb iterations + 1
end for

execute algorithm 2 with zm
i,l = 0

nb iterations← nb iterations + 1
end for

execute algorithm 2 with zc
i = 0

nb iterations← nb iterations + 1
end for

end while

return best solution

Resolution when using a heuristic The use of a heuristic when the network
routing policy is OSPF is mandatory because when minimizing the global ob-
jective function, for each change of the value of variable z, the routing function
changes. Because the Constraint 15 becomes dependent on a variable to min-
imize, we introduce a heuristic proposed by algorithm 1. The idea consists in
calculating a first solution that uses all OSPF routes for all applications. This is
done at the beginning of the heuristic with “algorithm OSPF”. This algorithm
adds constraints that force the flows using non-OSPF routes to be null. Before
starting the iteration loop of the heuristic, a first solution (saved in variable



Algorithm 2 Verifying function for the heuristic

Require: z as input; explored solutions & best solution as input/output
if z = 0 /∈ explored solutions then

if ∀k ∈ [1, nA] & z = 0 & ∃OSPF route(Nk
s , Nk

r ) then

Solution s ← execute algorithm OSPF and Solve LP with best solution and
z = 0
if ∃s then

explored solutions ← s

if s is best then

best solutions ← s

nb tries← 0
else if nb tries < max tries then

nb tries← nb tries + 1
explored solutions ← s

else

moving objective = false

end if

else

explored solutions ← s

stop the for loop
end if

else

explored solutions ← s

stop the for loop
end if

end if

best solution) is calculated taking into account these constraints. A history
saved in variable explored solutions allows to memorize an association be-
tween the set of solutions for the variables and the set of constraints added by
the heuristic to avoid recalculating a solution with a topology that has already
been explored.

The heuristic is stopped if the maximum number of iterations is reached
(nb iterations < max iter) or if the best solution hasn’t changed since a number
of iterations moving objective). We sort the frames (nodes), the modules and the
ports by number of flows using them (smaller number first). We try to switch
off first the ports then the modules and finally the frames (nodes) using the
sorted list. Indeed, this minimizes the number of applications impacted when
switching off the equipment. For each switching off we verify if one OSPF route
still exists for all applications and if one solution exists using algorithm 2. This
algorithm is the same for the ports (ze

i,j = 0), the modules (zm
i,l = 0) or the

frames (nodes) (zc
i = 0) and we describe it in a generalized way with variable z.

If this algorithm finds an OSPF route for all applications and a better solution,
it is saved in best solution, otherwise it continues exploring the solutions for
max tries iterations. Every time a better solution is found nb tries = 0. If we



Fig. 4. Resolution time

reach max tries without finding a better solution then we stop the heuristic
moving objective = false.

When using the heuristic (Figs. 3a and b) we observe that the results follow
the optimal ones but never switch on routers 3 and 5. As explained in Sect. 3.1,
when using an OSPF-policy, the route 0-3-5-1 cannot be used for load balancing.
Indeed, when using the link capacities as the OSPF metric the cost of route 0-
3-5-1 is more important and will never be used for the routes from router 0 to
router 1. Regarding the QoS, it is therefore globally more degraded than in the
optimal case because the total bandwidth is lower without this third route.

3.3 Comparison of the Optimal and Heuristic Cases

Figures 4a and b show the resolution times of the objective function in the op-
timal and heuristic cases. We varied the number of applications to 100 to show
the impact on the different times:

– Preparation time: calculation of the objective, variables, terms and JOpt
constraints(developed form).

– Network time: transfer time for the set of optimization parameters to the
CPLEX server and transfer time to get the results back.

– Calculation time: the raw and only calculation time for the criterion by the
CPLEX server.

Each resolution makes three calls to the distant CPLEX server. Indeed, two
calls are needed for the calculation of β (for Pmin and QLmin) and a call for
the resolution of the criterion. The preparation and calculation times include
the times for Pmin, Pmax, QLmin, QLmax and the final problem. The network
transfer times include the three distant CPLEX calls.

We observe that the preparation and calculation time are substantially the
same in the optimal and heuristic cases. These times vary between 20 ms for one
application to one second for 80 applications. After 80 applications, these times
increase to 4 seconds because it is more difficult to find a solution because all



network links considered in the experiment are saturated. For 100 applications
there is no possible solution so the times decrease to one second.

Regarding the network transfer times for the JOpt data to the CPLEX server,
we see that when we use the heuristic it is more important than in the optimal
case. Indeed the heuristic adds additional constraints related to the routing pol-
icy. Adding constraints increases the number of variables and terms to be trans-
mitted to the server for the resolution. In the heuristic case, this time varies
exponentially from 360 ms for one application to 12 seconds for 100 applica-
tions.

Given the results, we can conclude that using a heuristic doesn’t generate
an overhead for the calculation time or preparation time. However, the network
transfer time is multiplied by 2.6. Globally, these times are still reasonable in
the case of dynamic reconfiguration of network devices like routers. Therefore,
the optimization of the network has to be planned with a granularity of about
an hour, which makes the resolution time negligible.

4 Conclusion

Human administrators cannot face the complexity of management of the IT
infrastructure and the deployed application on datacenters anymore. Whether
it concerns hardware or software issues, the optimization process is a tricky
and costly task. We introduced the “self-optimizing” autonomic property at the
hardware level by applying it to the optimization of datacenters energy costs.

We introduced an approach to describe a compromise between, on one hand,
the power consumption of the network infrastructure and on the other hand,
the deterioration of the QoS for the applications using this network. Being able
to control the dynamic reconfiguration at two levels: at the application level by
dynamically reconfiguring QoS profiles and at the hardware level by switching
on and off links, modules or routers allows to have a global management of the
datacenter. Indeed, the use of an autonomic manager allows the administrator
to control the energy costs or the performance by varying only one parameter
that handles a high level management policy.

Regarding the limits of our approach, we suppose that a relation of order
exists between the QoS needs by using the function M . This order is not to be
confused with the final user “quality of experience” (QoE) [16].

The goal was to deal with the performance/electric consumption dilemma
for the network part. This is a challenge for years to come as the perfect system
must take into account the energy consumption of the machines and also the
network equipments, the QoS and financial costs for example.

Acknowledgment. This work was partially supported by the COST (European Co-
operation in Science and Technology) framework, under Action IC0804. Experiments
presented in this paper were carried out using the Grid’5000 experimental testbed,
being developed under the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other funding bodies (see
https://www.grid5000.fr).



References

1. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level agreements. In: 26th
International Conference on Software Engineering (ICSE’04), Edinburgh, Scotland,
United Kingdom (2004)

2. Chang, F., Karamcheti, V.: Automatic configuration and run-time adaptation of
distributed applications. In: High Performance Data, Computing, p. 11 (2000)

3. Grossman, D.: New terminology and clarifications for diffserv. Technical report,
RFC 3260 (2002)

4. Hsueh, C., Lin, H., Huang, G.C.: Channel bonding in linux ethernet environment
using regular switching hub. Syst. Cybern. Inform. 2(3), 35–38 (2004)

5. Callon, R.W.: Use of OSI IS-IS for routing in TCP/IP and dual environments.
Technical report, RFC 1195 (1990)

6. Moy, J.: Ospf version 2. Technical report, RFC 2328 (1998)
7. Zinin, A.: Cisco IP routing: packet forwarding and intra-domain routing protocols.

Addison-Wesley, Boston (2002)
8. Albrightson, R., Garcia-Luna-Aceves, J.J., Boyle, J.: EIGRP-a fast routing pro-

tocol based on distance vectors. In: Proceedings of the Networld/Interop, vol. 94
(1994)

9. Liu, X., Ghazisaidi, N., Ivanescu, L., Kang, R., Maier, M.: On the tradeoff between
energy saving and qos support for video delivery in eee-based fiwi networks using
real world traffic traces. Lightwave Technol. J. 29(18), 2670–2676 (2011)

10. Arai, D., Yoshihara, K.: Eco-friendly distributed routing protocol for reducing
network energy consumption. In: International Conference on Network and, Service
Management, October 2010

11. Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., Wrigh, S.: Power
awareness in network design and routing. In: Proceedings of the IEEE INFOCOM
(2008)

12. Dong, X.W., El-Gorashi, T., Elmirghani, J.M.H.: Green ip over wdm networks
with data centers. Lightwave Technol. J. 29(12), 1861–1880 (2011)

13. Capello, F., Caron, E., Dayde, M., Jegou, Y., Desprez. F, Primet, P., Jeannot, E.,
Lanteri, S., Leduc, J., Melab, N.: Grid’5000: a large scale and highly reconfigurable
grid experimental testbed. In: 6th IEEE/ACM International Workshop on Grid
Computing, Seattle, Washington, USA, pp. 99–106 (2005)

14. Shneidman, J.: JOpt, a simplified java wrapper for linear and mixed integer pro-
gramming. Technical report, http://www.eecs.harvard.edu/econcs/jopt/ (2005)

15. IBM: Mathematical programs - IBM ILOG CPLEX optimizer - software.
Technical report. http://www-01.ibm.com/software/integration/optimization/
cplex-optimizer/ (2009)

16. Jain, R.: Quality of experience. IEEE Multimed. 11(1), 96–97 (2004)




