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MANAGING TEMPORAL CYCLES IN PLANNING PROBLEMS

REQUIRING CONCURRENCY

MARTIN C. COOPER, FRÉDÉRIC MARIS, AND PIERRE RÉGNIER

IRIT, University of Toulouse III, Toulouse, France

To correctly model certain real-world planning problems, it is essential to take into account time. This is
the case for problems requiring the concurrent execution of actions (known as temporally expressive problems).
In this paper, we define and study the notion of temporally cyclic problems, that is problems involving sets of
cyclically dependent actions. We characterize those temporal planning languages, which can express temporally
cyclic problems. We also present a polynomial-time algorithm, which transforms a temporally cyclic problem into
an equivalent acyclic problem. Applying our transformation allows any temporal planner to solve temporally cyclic
problems without explicitly managing cyclicity. We first present our results for temporal PDDL (Planning Domain
Description Language) 2.1 and then extend them to a language that allows conditions over arbitrary intervals and
effects at arbitrary instants.

Key words: planning, time, temporally expressive problems, temporally cyclic problems.

1. INTRODUCTION

An important challenge for today’s planners is the management of the time dimension, to
allow the simultaneous execution of noninstantaneous actions. A large majority of real-world
problems, to be solved or to be solved as efficiently as possible, require the execution of
concurrent actions. In this paper, we specifically study temporally expressive problems, in
other words, problems that cannot be solved without using the concurrency of actions. A
typical example of temporally expressive problem is cooking: Several ingredients or dishes
must be cooked simultaneously to be ready at the same moment. As another example,
driving a car requires concurrent actions on the steering wheel and the pedals. Large-
scale applications include the management of an airport or a railway station. In industrial
environments, concurrency of actions is often used to keep storage space and turn-around
times within given limits. In this paper, we do not study the case in which concurrency is
necessary simply to achieve all the goals within a given time span.

When Cushing et al. (2007) published their important work on temporally expressive
planning, the majority of temporal planners were incapable of solving temporally expressive
problems, although certain planners have since been improved to solve such problems. Apart
from HTN-type planners such as IxTeT (Ghallab and Alaoui 1989; Laborie and Ghallab
1995) or HSTS (Muscettola 1994), only CRIKEY3 (Coles et al. 2008), VHPOP (Younes
and Simmons 2003), LPGP (Long and Fox 2003), TLP-GP (Maris and Régnier 2008a,b),
TM-LPSAT (Shin and Davis 2004; Hu 2007), STEP (Huang et al. 2009), and the most recent
version of LPG (Gerevini et al. 2010) can solve this type of problem.

Certain temporally expressive problems involve a cyclically dependent set of actions
(temporally cyclic problems). A simple example of this type of problem is the construction
of two pieces of software, written by two different subcontractors, each needing to know the
specification of the other program to correctly build the interface between the two programs.
As another example, a bank will lend me money provided I pay it back after some mutually
agreed number of years, and I will pay it back provided the bank lends me the money in the
first place. Many contracts (such as between an employer and an employee or between two
companies) can be seen as a mutually agreed plan to solve temporally cyclic problems. For
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example, a condition for an employee to start work is that they will be paid at the end of the
month, and a condition for the employer to pay their salary is that the employee did indeed
work during the given month.

Within this framework, an interesting question is the characterization of planning lan-
guages, which allow the user to express temporal cycles. We first solve this theoretical
question. We then propose a general method for simplifying the solution of problems involv-
ing temporal cycles: they are transformed into equivalent problems in which cycles cannot
occur. From the point of view of the designer of a temporal planner, this transformation
avoids having to explicitly manage temporal cycles. Finally, from the user’s point of view, we
propose an extension of these results to a higher-level language allowing temporal intervals.
This potentially facilitates the task of expressing temporal planning problems.

This paper is structured as follows. After defining the framework of temporal planning
(Section 2), we give a formal description of temporally cyclic problems studied in this paper
together with a simple example (Section 3). Then, we characterize the temporal sublanguages
of PDDL 2.1 (Planning Domain Description Language; McDermott 1998; Fox and Long
2003), which can express these temporally cyclic problems (Section 4). We then propose
a polynomial-time transformation to convert temporally cyclic problems into equivalent
acyclic problems (Section 5) before extending these results to a richer temporal planning
language (Section 6). We conclude with a discussion of related work (Section 7) together
with topics for future research (Section 8).

2. TEMPORAL PLANNING

A temporal planning problem consists of a set A of durative actions a = 〈Cond(a), Eff(a),
Duration(a)〉, an initial state I, and a goal G. I and G are sets of fluents (propositions), that is,
positive or negative atomic propositions. Initially only the propositions in I are true and, after
the execution of all the actions in the plan, all propositions in the goal G must be true. For
each action a: Cond(a) is a set of propositions p together with an instant (a positive rational
number representing the time relative to the start of a) at which p is required to be true or
an interval over which p is required to be true; Eff(a) is a set of propositions p together with
an instant (relative to the start of a) at which p is produced; Duration(a) is a positive rational
number. A condition, which is a disjunction of propositions, can be simulated by introducing
a copy of the action for each proposition in the disjunction. Note that our definition of an
action includes its duration purely to be compatible with PDDL 2.1. The duration is not
actually necessary: It could simply be calculated, by default, to be the time between the first
and last condition/effect of the action. A temporal plan is a set of instances of actions 〈a,
tstart〉, where a is an action and tstart a positive rational number representing its start time. For
each action a in the temporal plan, each of its conditions p ∈ Cond(a) must be true at the
instant when it is required by a (or during the whole of the interval over which it is required
by a), and each of its effects p ∈ Eff(a) is assigned true at the instant when it is produced
by a.

We consider that a solution-plan should be robust to infinitesimal shifts in the starting
times of actions. This means that we disallow plans which require perfect synchronization
between different actions. Fox et al. (2004) show how this condition can be imposed within
PDDL 2.1. For example, suppose that a plan P contains an action a1 with a condition p on
an interval I and another action a2 which produces ¬p at a time t. Clearly t cannot belong
to the interval I, but our assumption that plans are robust to infinitesimal shifts implies that
t cannot be an end-point of the interval I. However, within a same action, conditions and
effects can be perfectly synchronized. Indeed, we allow an action a to have p as a condition
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FIGURE 1. Temporal plan for the program-interfacing problem.

on an interval I and to produce ¬p at the very end of I. If I is of zero length, then a tests p
and immediately destroys p. On the other hand, we can disallow actions a which produce ¬p
at the very beginning of an interval I on which a has p as a condition. This is because such
an action a could only be executed if a second action a’ was perfectly synchronized so as to
produce p at the beginning of I. Similarly, an action a cannot have condition p on an interval
I which touches an interval I′ on which the same action a has the condition ¬p, because
such an action could only be executed if a second action a’ was perfectly synchronized
so as to change the truth-value of p at the exact instant at which the intervals I and I′

touch.
To begin with, we restrict ourselves to the PDDL 2.1 language and its sublanguages

(described in detail in Section 5). If we allow several instances of the same action to
overlap, then testing the existence of a valid plan becomes an EXPSPACE-complete problem
(Rintanen 2007). This is why in this paper, as in almost all previous work in temporal
planning, we do not authorize two instances of the same action to execute in parallel. This
means that we conserve the PSPACE-complete complexity of classical planning (Bylander
1994). Indeed, we also impose the slightly stronger condition that no two instances of the same
action touch (i.e., there is always some nonempty interval between the end of one instance and
the start of the following instance). This is a consequence of our assumption of robustness
to infinitesimal shifts in the starting times of actions together with the fact that we forbid
overlapping instances of the same action. One way to impose the nonoverlapping/nontouching
constraint on instances of the same action is by introducing a fluent fa for each action a: fa is
initially true (i.e., fa ∈ I), fa is added as a condition and ¬fa as an effect at the start of a, and
fa is added as an effect at the end of a.

3. TEMPORALLY CYCLIC PROBLEMS

We restrict ourselves to planners which are capable of solving temporally expressive
problems (Cushing et al. 2007). We start by giving an example of a certain type of temporally
expressive problem. Consider the simple example of the problem of interfacing two programs,
described in Section 1. A temporal plan for this simple temporally expressive problem is given
in Figure 1. Each rectangle represents a durative action a = 〈Cond(a), Eff(a), Duration(a)〉.
The conditions Cond(a) are shown earlier the action a and the effects Eff(a) later. The duration
of the action is given in square brackets. In this problem, the initial state is empty, the goal
consists in building the two programs to be interfaced (effects r and s), and:



• Action A (of duration 4) corresponds to the construction of the first program for which
we need to know, to complete it, the specifications of the second program (condition
p).

• Action B (of duration 2) corresponds to the construction in parallel of the second
program for which we need to know, to complete it, the specifications of the first
program (condition q).

This temporal plan is characteristic of a class of plans that we call temporally cyclic and
that can be formalized as follows.

Definition 1 (cyclic set of actions). A set of actions Q = {a1, . . . ,an} is a cyclic set if there
is a set of propositions {p1, . . . , pn} such that ∀i ∈ {1, . . . , n − 1} pi ∈ Eff(ai) ∩ Cond(ai+1)
and pn ∈ Eff(an) ∩ Cond(a1). We denote this cyclic set together with the propositions pi by
a1 → p1 → a2 . . .→ pn → a1.

Definition 2 (temporally cyclic plan). A temporal plan is temporally cyclic if it contains
a set of action–instances {〈a1,t1〉, . . . ,〈an,tn〉}, where a1→ p1→ a2 . . .→ pn→ a1 is a cyclic
set of actions, and is such that deleting pi from Eff(ai) in the action–instance <ai,ti>
(for any i ∈ {1, . . . , n}) would invalidate the plan because <ai,ti> must produce pi to
satisfy the conditions of 〈ai+1,ti+1〉 (for each i ∈ {1, . . . ,n − 1}) and 〈an,tn〉 must produce pn

for a1.

It is easily verified that the temporal plan of Figure 1 is temporally cyclic.
Although the problem of interfacing two programs could be modeled using actions with

conditional effects, the language allows the statement of this problem using only deterministic
actions. Hence, to be complete, a planner must be able to find temporally cyclic plans.

For this particular problem, in a forward search (in which actions can only be triggered
when all their conditions are satisfied) or during the construction of the planning graph
starting from the initial state, it is impossible to produce r ∈ G or s ∈ G because neither of
the conditions {p, q} required by the actions {A, B} can be produced from I. Indeed, neither
of the two actions A or B can be triggered.

In a backward search, this difficulty does not apply because, as the choice of actions
is based on the goals, actions A and B will necessarily be selected. However, this is not
sufficient to guarantee the completeness of the search algorithm. Indeed, if the heuristic,
which guides the choice of actions, does not prefer those actions which are already present
in the plan, then the algorithm can enter an infinite loop.

In Section 7, we discuss how existing planners such as CRIKEY (Coles et al. 2008)
and LPGP (Long and Fox 2003) transform the problem so they can find temporally cyclic
solution-plans to the original problem.

4. TEMPORALLY EXPRESSIVE AND TEMPORALLY CYCLIC LANGUAGES

Cushing et al. (2007) use the notation Lconditions
effects to represent the expressivity of a temporal-

planning language, where 〈conditions〉 and 〈effects〉 represent the instants at which the
conditions must be true and those at which the effects are produced. The values taken by
〈conditions〉 and 〈effects〉 can be

• s: the start of the action;
• e: the end of the action;
• o: (only concerns conditions) over all the duration of the action.



For example, the notation Lo
s,e denotes a language for which the conditions of each action

must be true over all its duration, and each of its effects can occur either at the start instant
or the end instant of the action. PDDL 2.1 is a temporally expressive language of type Ls,o,e

s,e .

Cushing et al. (2007) also give a necessary and sufficient condition for a planning domain
to be temporally expressive. This allows them to partition the space of temporal languages
into:

• temporally expressive languages in which it is possible to represent problems whose
solution requires concurrency of certain actions; and

• temporally simple languages in which it is not possible to represent such problems.

They also give the following definitions and prove the temporal-expressivity theorem,
which we give below.

Definition 2 (before-condition/after-condition).

• A before-condition is a condition which is required at the same time as, or before, the
production of at least one of the effects of the action.

• An after-condition is a condition which is required at the same time as, or after, the
production of at least one of the effects of the action.

Definition 3 (temporal gap).

• A gap between two disjoint temporal intervals, which do not meet (in the sense of the
primitive “meets” of Allen [1984]), is the interval between them (and such that the
union of these three intervals forms a single interval).

• An action has a temporal gap if there is a gap between a before-condition and an
effect, or between an effect and an after-condition, or between two effects.

Theorem 1. (Cushing et al. 2007). A sublanguage of PDDL 2.1 is temporally simple if
and only if it disallows temporal gaps.

We will now show that a certain type of temporal gap allows a language to express
temporally cyclic problems.

Notation. Let a be an action, with p ∈ Cond(a) and e ∈ Eff(a). In a temporal plan containing
an action-instance <a,t>, we use τ (p → <a,t>), or more simply τ (p → a) when no confusion
is possible, to represent the instant at which this instance of a begins to require the condition
p and τ (<a,t> → e), or more simply τ (a → e), to represent the instant at which this instance
of a produces e.

Definition 4 (temporally cyclic/acyclic language). A language is temporally cyclic if
it allows temporally cyclic plans. Otherwise, it is temporally acyclic.

Theorem 2. A sublanguage of PDDL 2.1 is temporally cyclic if and only if it authorizes
temporal gaps between an effect and an after-condition.

This theorem, whose proof is given below, allows us to refine the taxonomy of temporal
languages proposed by Cushing et al. (2007) by distinguishing a subclass of temporally
expressive languages corresponding to temporally cyclic languages. This new taxonomy is
given in Figure 2.
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FIGURE 2. Taxonomy of temporal languages and their expressivity.

Proof of Theorem 2. (1) First, we show that if a sublanguage of PDDL 2.1 authorizes
temporal gaps between an effect and an after-condition then it authorizes temporally cyclic
plans. The problem whose solution is given in Figure 1 (consisting of the two actions A and
B) demonstrates that the language Le

s authorizes the existence of temporally cyclic plans.
As all sublanguages of PDDL 2.1, which authorize temporal gaps between an effect and
an after-condition, contain Le

s as a sublanguage (Cushing et al. 2007), all these languages
authorize cyclic sets of actions.

(2) Second, we show that if a temporal planning language authorizes the existence of
temporally cyclic plans, then it authorizes temporal gaps between an effect and an after-
condition. Consider a temporal planning problem with a temporally cyclic plan. This means
that the temporal plan contains a set of action–instances {〈a1,t1〉, . . . ,〈an,tn〉}, where a1 →
p1 → a2 . . .→ pn → a1 is a cyclic set of actions (i.e., ∀i ∈ {1, . . . , n − 1} pi ∈ (Eff(ai) ∩
Cond(ai+1)) ∧ (pn ∈ Eff(an) ∩ Cond(a1))). Furthermore, 〈ai,ti〉 must produce pi to satisfy
the conditions of 〈ai+1,ti+1〉 (for each i∈{1, . . . ,n–1}) and 〈an,tn〉 must produce pn for a1. It
follows that (∀i ∈ {1, . . . , n−1} τ (ai → pi) < τ (pi → ai+1)) ∧ (τ (an → pn) < τ (pn → a1)).
Suppose that there cannot be a temporal gap between an effect and an after-condition of an
action. Then (∀ i ∈ {1, . . . , n−1} τ (pi → ai+1) ≤ τ (ai+1 → pi+1)) ∧ (τ (pn → a1) ≤ τ (a1 →
p1)). Therefore τ (a1 → p1) < τ (p1 → a2) ≤ τ (a2 → p2) < τ (p2 → a3) ≤ . . . ≤ τ (an → pn) <

τ (pn → a1) ≤ τ (a1 → p1). From which we can deduce that τ (a1 → p1) < τ (a1 → p1), which
is impossible. Therefore there is a temporal gap between an effect and an after-condition.

Corollary 1. A sublanguage of PDDL 2.1 is temporally cyclic if and only if it is a
superlanguage of Le

s .



An important question is whether it is possible to model temporally cyclic problems
differently so as to avoid temporal cycles. The next section shows that it is indeed possible to
reduce the temporally cyclic language Ls,o,e

s,e (i.e., the whole of PDDL 2.1) to the temporally
acyclic language Ls,o

s,e . This is achieved by modeling differently actions which have a temporal
gap between an effect and an after-condition.

Note that neither Theorem 2 nor Corollary 1 require the two technical assumptions of
Section 2 that we forbid perfect synchronization of actions and overlapping instances of the
same action. They are, on the other hand, necessary for the reduction described in the next
section.

5. TRANSFORMATION OF A TEMPORALLY CYCLIC PROBLEM INTO A
TEMPORALLY ACYCLIC PROBLEM

In this section we show how to transform a problem whose solutions potentially contain
cycles, expressed in the PDDL 2.1 language Ls,o,e

s,e , into an equivalent problem expressed in
the language Ls,o

s,e, which, by Theorem 2, does not authorize cycles. In practice, according
to the problem, we could transform all actions, which amounts to expressing the problem in
the language Ls,o

s,e, or only transform those actions which can possibly lead to the creation
of cycles, while still remaining in the language Ls,o,e

s,e . The proof of Theorem 2 shows that a
necessary condition for a problem to have a temporally cyclic solution-plan is the existence
of a cyclic set of actions a1 → p1 → a2 . . .→ pn → a1 involving a temporal gap between an
effect pi and an after-condition pi−1 of some action ai.

To detect such actions, we construct the causality graph <V,E> where the set of vertices
V is the union of the set of actions and the set of propositions, and the set of directed
edges E = {〈p,a〉: p ∈ Cond(a)} ∪ {〈a,p〉: p ∈ Eff(a)}. For each candidate action A (i.e., an
action which has a gap between an effect and some after-condition p), we check a necessary
condition for the existence of a cycle: Does the link p → A belong to a cycle in the causality
graph? If not, then there is no need to transform A.

An action A, which has after-conditions which could cause a cycle, must be transformed
into an action A′ for which these conditions have been deleted (to eliminate the temporal
gap). Each such deleted after-condition p of A is reformulated as a link between A and the
presence in the plan of some action B which produces this condition p for A (in fact B is the
last, in the temporal order of the plan, to produce p before it is needed by A). This link must
be active whenever A is present in the plan. The presence of this link is checked by an action
LCp,A (link check between A and some action B which produced p for A).

To transform an action A to delete an after-condition p, we:

• Add a proposition Linked(p,A) to the initial state and to the goal of the problem. This
link-proposition will mean that, when A is executed and deletes Linked(p,A) (see
below) this forces the execution of the check action LCp,A to re-establish Linked(p,A).
LCp,A can only execute if some action B actually produced p for A.

• Transform A into A′ by

- deleting the after-condition p;
- adding the proposition LC-Active(p,A) at the instant when p was required, to denote

the fact that p must be produced by some action before it is required by A;
- adding the effect ¬Linked(p,A) which forces the execution of the action LCp,A to

reestablish Linked(p,A) (this proposition being present in the initial state and the
goal);
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- adding the effect ¬LC-Active(p,A) at the start of A′ to ensure that LCp,A is executed
after the end of A′;

- adding the condition Linked(p,A) at the start of A′ to ensure that every execution
of A′ is followed by an execution of LCp,A.

• For each action B which produces p, transform B into B′ by adding the effect ¬LC-
Active(p,A) at the instant when B produces p to denote the fact that p must be produced
(by at least one of these actions B) before being required by A.

• Add an instantaneous action LCp,A (Link Check) with the two conditions p and LC-
Active(p,A) and with the effect Linked(p,A).

• In the special case that A also destroys p at the end of A, we also need to perform the
following two modifications:
the effect ¬p is deleted from the end of A′ and added to LCp,A;
for each action C (apart from A) such that p ∈ Cond(C), transform C into C′ by adding
the effect ¬LC-Active(p,A) at the instant when p is required by C, to ensure that such
actions cannot be executed between the end of A′ and LCp,A.

These new propositions and actions cannot introduce new temporal gaps between effects
and after-conditions because all the conditions, which are added during the transformation,
are added at the start of actions. The resulting problem is equivalent to the original problem
and the inverse transformation of a temporal plan is achieved by simply deleting the actions
LCp,A and replacing transformed actions A′, B′, and C′ by the original versions A, B, and
C of these same actions. We prove formally the equivalence of the original and transformed
problems in Theorem 4 in the Appendix.

In our running example, for action A with after-condition p, the transformation is illus-
trated in Figure 3.

The complete transformation of the problem into the temporally acyclic language Ls,o
s,e

can be achieved via the systematic deletion of all after-conditions (without testing for cy-
cles in the causality graph) via the transformation described earlier. Let n denote the size
of the problem, that is, n = 6(|Eff(a)| + |Cond(a)|) where the sum is over all actions a
(assuming, without loss of generality, that each action has at least one condition or effect).
Then this simple algorithm has a complexity of O(n2). This is because, for each action
A with an after-condition p ∈ Eff(A), we may need to transform all other actions B. The



Transformation Algorithm 

Candidates ← {actions with an effect/after-condition gap} 

While Candidates ≠ ∅

 Extract A from Candidates ; 

For each after-condition p of A which causes a gap 

  Build the causality graph G from p → A ; 

If p → A belongs to a cycle in G then

   Transform-Cond-and-Eff(A,p,A') ; 

For each action B which produces p 

    Transform-Eff-1(B,p,B') ; 

End For ; 

   If A simultaneously requires and destroys p then 

    For each action C ≠ A which requires p 

     Transform-Eff-2(C,p,C') ; 

End For ; 

   End If ; 

   Add the action LCp,A to the problem ; 

End If ; 

 End For ; 

End While ; 

FIGURE 4. Transformation algorithm using the causality graph.

transformation of the actions A and B, for a given after-condition p ∈ Eff(A), requires
constant time.

The worst-case time complexity of the partial transformation of a problem, in which we
eliminate only those after-conditions that could potentially give rise to cycles (detected by
causality graph analysis), is also O(n2), but this algorithm has the advantage that the number
of new actions introduced will generally be less. The algorithm is given in Figure 4. For
each action A and each after-condition p ∈ Eff(A), we first test whether there is a cyclic
set of actions including p → A. This can be achieved by finding the strongly connected
components of the causality graph G using the algorithm of Tarjan (1972). On a directed
graph <V,E>, this algorithm has a time complexity of O(|V| + |E|). However this is O(n),
because n is exactly equal to the number of directed edges. A complete transformation can
therefore be achieved in O(n2) by the argument above.

In both cases, the number of new actions LCp,A (as well as the number of new propositions
LC-Active(p,A) and Linked(p,A)) is bounded above by the number of after-conditions present
in the actions of the problem.

6. A RICHER TEMPORAL PLANNING LANGUAGE

In this section, we introduce a temporal planning language which is richer than temporal
PDDL 2.1 (which is a language of type Ls,o,e

s,e ). Although this language can be reduced in
polynomial time to PDDL 2.1 (Fox et al. 2004), it allows the user to express real-world
problems more easily. In this language, instantaneous conditions and effects may occur at
any instant of an action A; they are no longer restricted to occur only at the start or the end
of A. Furthermore, conditions of an action A may now also occur over arbitrary intervals;
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FIGURE 5. Example of temporally cyclic plan.

they are not restricted to “overall” (which corresponds to an interval equal to the duration of

A). We denote this new language by L
[]
inst because actions can have conditions on arbitrary

intervals (of possibly zero length) and effects at arbitrary instants. Because L
[]
inst includes

Ls,o,e
s,e as a sublanguage, it is clearly temporally cyclic.

Theorem 3. A sublanguage L of L
[]
instis temporally cyclic if and only if L authorizes

actions with a temporal gap between an effect and the start of an after-condition.

Proof of Theorem 3. (1) First, we show that if the planning language L authorizes
actions with an effect before the start of a condition, then L authorizes temporally cyclic
plans. We use a slightly modified version of the example of Figure 1, shown in Figure 5. Let
A be an action of length 4 with a condition p on the interval [3,4] and an effect q at the start
of A. Let B be an action of length 2 with a condition q on the interval [1,2] and an effect
p at the start of B. It is easy to see that a solution-plan for the temporal planning problem
with empty initial state and goal {p,q} consists in executing A at time 0 and B at time 1
(because τ (A → q) = 0 < 2 = τ (q → B) and τ (B → p) = 1 < 3 = τ (r → A)). In this
temporal plan P, p ∈ Eff(B) ∩ Cond(A) and q ∈ Eff(A) ∩ Cond(B) and hence A → q → B
→ p → A is a cyclic set of actions. Furthermore, deleting p from Eff(B) or q from Eff(A)
would invalidate the plan. Thus, by Definition 2, P is a temporally cyclic plan and hence L
is temporally cyclic.

(2) The proof that if a planning language L authorizes the existence of temporally cyclic
plans, then it authorizes actions with an effect before the start of a condition is identical to
part (2) of the proof of Theorem 2.

We now show how to generalize the transformation described in Section 6 to the richer

language L
[]
inst. Once again it suffices to eliminate all temporal gaps between effects and

after-conditions. In practice, according to the problem, we could transform all actions or
only transform those actions which can possibly lead to the creation of cycles, as discussed
in detail in Section 6: For each candidate action A (i.e., an action which has a gap between
an effect and some after-condition p), we can check a necessary condition for the existence
of a cycle: Does the link p → A belong to a cycle in the causality graph? If not, then there
is no need to transform A.

An action A, which has after-conditions which could cause a cycle, must be transformed
into an action A′ for which these conditions have been deleted (to eliminate the temporal
gap). Each such deleted after-condition p of A is transferred to a Link-Check action LCp,A

which effectively checks the presence in the plan of some action B, which produces this
condition p for A. If the condition p of A is over an interval I, then the action LCp,A is
not instantaneous (as in Section 6) but has a duration corresponding to the duration dp of I.
This is illustrated in Figure 6. If A has more than one after-condition, then we transform it
separately for each of its after-conditions taken in reverse chronological order of the beginning
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FIGURE 6. Example of the transformation of a problem in L
[]
instto eliminate a temporal gap between an effect

and the start of an after-condition.

of the interval over which it is required. In other words, we delete the last after-condition first.
In particular, it is possible in our new language for an action A to require the same proposition
p at several different instants and/or over several different intervals during the execution of
A. In the following, we consider only the last interval I (of length 0 in the case of an
instantaneous condition) over which p is required by A. Because p is an after-condition of
A, the beginning of the interval I cannot coincide with the start of A.

To transform an action A to delete the after-condition p over interval I, we:

• Add a proposition Linked(p,A) to the initial state and to the goal of the problem. This
means that, when A is executed and deletes Linked(p,A) this forces the execution of
the check action LCp,A to reestablish Linked(p,A). LCp,A can only execute if some
action B actually produced p for A.

• Transform A into A′ by
- deleting the after-condition p over the interval I;
- adding the effect ¬Linked(p,A) which forces the execution of the action LCp,A

to reestablish Linked(p,A) (this proposition being present in the initial state and
the goal);

- adding the condition Linked(p,A) at the start of A′, to ensure that there is an
execution of LCp,A for every execution of A′;

- adding the proposition LC-Active(p,A) at the beginning of the interval I, to prevent
actions changing the value of p between this moment and the start of the execution
of LCp,A (which has LC-Active(p,A) as a condition);

- adding the effect ¬LC-Active(p,A) at the start of A′ to ensure that LCp,A is
executed after the beginning of the interval I.

• For each action B which produces p, transform B into B′ by adding the effect ¬LC-
Active(p,A) at the instant when B produces p to denote the fact that p must be produced
(by at least one of these actions B) before being required by A.

• Add an action LCp,A (Link Check) of duration dp (the length of interval I) with
condition LC-Active(p,A) at the start of LCp,A, effect Linked(p,A) at the end of
LCp,A, and p as an overall condition (i.e., required over the whole duration of LCp,A).

• In the special case that A also destroys p precisely at the end of the interval I, we also
need to perform the following two modifications:



- the effect–p is deleted from the end of the interval I in A′ and added to the end of
LCp,A;

- for each action C (apart from A) such that p is required by C over an interval I′ (of
possibly zero length), transform C into C′ by adding the effect ¬LC-Active(p,A)
at the instant dp time units before the end of I′, to ensure that this instant does
not fall between the beginning of the interval I in A′ and the start of LCp,A. This
ensures that the interval over which C requires p does not overlap the end of the
interval I in A′ (corresponding to the moment when A destroys p).

These new propositions and actions cannot introduce new temporal gaps between effects
and after-conditions because all the conditions which are added during the transformation
are added at the start of actions. The resulting problem is equivalent to the original problem
and the inverse transformation of a temporal plan is achieved by simply deleting the actions
LCp,A and replacing transformed actions A′, B′, and C′ by the original versions A, B, and
C of these same actions. We prove formally the equivalence of the original and transformed
problems in Theorem 5 in the Appendix. The time complexity of this transformation is again
quadratic, by the same argument as in Section 5.

7. RELATED WORK

In this section we first review temporally expressive planners, before examining the
solutions that have been proposed to cope with temporal cycles. The planners, which can
solve temporally expressive planning problems, are essentially based on three different types
of algorithm (Maris and Régnier 2010).

• State-space search. Cushing et al. (2007) describe TEMPO, a temporally expressive
paradigm based on search in an extended state-space in which decisions concerning
when to execute an action are made after all decisions concerning which actions
to execute have been made (lifting over time). The CRIKEY3 planner (Halsey et al.
2004; Coles et al. 2008) performs a state-space search coupled with a Simple Temporal
Network (STN) associated with each action. It also uses a novel version of the relaxed
planning graph to optimize search.

• Partial-order planners. Partial-order planners (POP) have been successfully extended
to the temporally expressive framework with planners such as VHPOP (Younes and
Simmons 2003) and DT-POP (Schwartz and Pollack 2004). Many other planners have
in the past used a hierarchical plan-space (HTN). They use a temporal logic based on
instants and intervals, together with a Time Map Manager which manages the tempo-
ral constraints. This is the case for planners such as FORBIN (Dean et al. 1988), HSTS
(Muscettola 1994), IXTET (Ghallab and Alaoui 1989; Laborie and Ghallab 1995),
TEST (Reichgelt and Shadbolt 1990), TIMELOGIC (Allen and Koomen 1983), TLP
(Tsang 1987), and TRIPTIC (Rutten and Hertzberg 1993). Although their represen-
tation languages are very expressive, there are many differences with PDDL 2.1,
which makes the comparison with other systems particularly difficult. The limited
experimental trials, which we were able to perform, highlighted their relatively poor
performance.

• Temporal extensions of GRAPHPLAN . The use of the planning graph (Blum and
Furst 1995) has also been extended to temporally expressive problems. In LPGP
(Long and Fox 2003) and TM-LPSAT (Shin and Davis 2004), durative actions are



decomposed into three instantaneous actions (start, invariant, and end). Both of these
planners use a solver to extract a solution. However, whereas LPGP uses backward
search in the planning graph while maintaining the consistency of a set of temporal
constraints, TM-LPSAT simultaneously codes the planning graph and the temporal
constraints then calls the LPSAT solver (Wolfman and Weld 1999). Hu (2007) also
describes a similar method: All actions are decomposed into two simple actions, then
the problem is coded as a CSP according to semantics based on modal operators
and which include the coding of the planning graph. The TLP-GP planner (Maris
and Régnier 2008a,b) uses similar methods to those of LPGP and TM-LPSAT. TLP-
GP delegates a larger part of search to a solver, which probably explains why it is
able to outperform LPGP, VHPOP2.2, and CRIKEY3 (on problems without numeric
effects). Any improvement in the performance of the solver automatically leads to an
improvement of the performance of TLP-GP. The LPG planner (Gerevini et al. 2010)
has been recently revised, decomposing each action into two instantaneous actions, to
deal with temporally expressive problems. It uses temporal action graphs (which are
similar to a planning graph) and local search.

In Section 3, we have shown that problems can occur when temporally expressive
problems involve temporally cyclic sets of actions. Theorem 2 shows that one solution is
to disallow after-conditions; this may permit a more efficient implementation (Maris and
Régnier 2008a,b), but is not totally satisfactory because it places what the user may perceive
as a rather arbitrary restriction within the temporal planning language. Another approach is
for the planner to transform the original problem, within a preprocessing step, to produce
an equivalent problem without after-conditions. The transformation described in Section 5
introduces at most one new action for each after-condition. Other transformations have been
proposed in the literature (Long and Fox 2003; Coles et al. 2008), which also eliminate
after-conditions, although this was not an explicitly stated aim in the descriptions of these
transformations.

In CRIKEY3 (Coles et al. 2008), all durative actions are decomposed into instantaneous
(“snap”) actions denoting the start and end of the action. The correct duration of an action
is then imposed as a simple linear constraint between the times of these two snap actions. A
solution plan is a classical plan composed of snap-actions which also has a consistent solution
for an STN associated with each envelope between corresponding start and end snap actions.
In LPGP (Long and Fox 2003), a transformation decomposes all durative actions into a
start, an invariant, and an end action. To guarantee equivalence with the original problem,
“clip” actions have to be introduced to ensure that the start, invariant, and end component
actions are always contiguous in a solution plan. Intermediate conditions can be managed
by splitting actions into component actions enclosed within an “envelope” action (Smith
2003). All of these approaches have the effect of eliminating after-conditions from problems
expressed in PDDL 2.1, because, for example, conditions at the end of the original action
are now associated with the instantaneous end-action. Compared with the transformation
described in this paper, these transformations each involve a constant factor increase in the
number of actions, even when the number of after-conditions is small. Of course, if the only
aim is to eliminate temporal cycles, these transformations could also be applied selectively,
that is, only to actions a with an after-condition p such that p → a is part of a cyclic set of
actions.

Rintanen (2007) proposed an interesting and altogether different transformation, from
discrete temporal PDDL 2.1 to classical planning. For each durative action a, there is a
counter in the transformed problem together with an action which initializes the counter
to the duration of the corresponding action. The passage of time is itself simulated by a
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FIGURE 7. Example of problem which has a solution over continuous time but no solution over discrete time.

single action which decrements all counters (or a set of actions which simulate the passage
of 1,2,4, . . . basic time units). All conditions and effects of all actions are coded by a single
action whose conditions and effects are conditioned by the values of the counters. This
is a polynomial transformation, which necessarily eliminates after-conditions, because the
time dimension itself has been eliminated. However, there are essential differences between
discrete and continuous time. Even if all action durations are integers, there are simple
temporal planning problems, which have a solution over continuous time but no solution
over discrete time. Figure 7 shows such an example, adapted from an example of Cushing
et al. (2007). The initial state is I = {} and the goal is G = {b, d, e}. The resolution of this
problem requires the concurrent execution of the actions A, B, and C. Over discrete time,
this problem has no solution. Indeed, in a solution we must have

• tstart(B) + 4 > tstart(A) + 5 so that the goal fluent d is established by B after the effect
¬d of A;

• tstart(A) + 5 > tstart(C) + 3 so that the goal fluent b is established by A after the effect
¬b of C;

• tstart(C) > tstart(B) because the fluent c must be established by B before it is required
by C.

It is easily verified that this system of inequalities has a solution over the rationals but
not over the integers. Although this particular problem can be rendered solvable over discrete
time by dividing the basic time unit by three (as shown in Figure 7), it is an open problem
whether there is even a polynomial bound on the number of times the basic time unit would
need to be divided by a constant to guarantee finding a discrete solution to a problem which
has a continuous solution. Such a bound is required to guarantee that plan-length over discrete
time is a polynomial function of plan-length over continuous time.



8. CONCLUSION AND FUTURE WORK

In this paper, we have studied a particular class of temporal plans involving concurrency
of actions: those plans containing a set of cyclically dependent actions. Care is required in
developing a temporal planning algorithm so as to guarantee completeness with respect to
the class of problems requiring temporally cyclic plans. A language is temporally cyclic if it
allows temporally cyclic plans. We have given a simple characterization of temporally cyclic
languages. We have also shown that it is possible to reduce the temporally cyclic language
Ls,o,e

s,e (i.e., the whole of PDDL 2.1) to the temporally acyclic language Ls,o
s,e at the cost of

a modest increase in problem size. This reduction allowed us to give a polynomial-time
transformation to transform a temporally cyclic problem into a temporally acyclic problem.
This transformation simplifies the task of writing complete temporal planners.

We have extended this work to a more expressive language, which allows actions contain-
ing conditions over arbitrary intervals as well as conditions and effects at arbitrary instants.
An interesting open question is whether a similar polynomial-time transformation exists
for languages which allow perfect synchronization between the actions in a plan (some-
thing which we have explicitly disallowed in this paper). Possible avenues of future research
opened up by the work presented in this paper include the completeness of algorithms which
use even more expressive languages. For example, in the long term, one can imagine the
extension to numerical planning involving incertitude and noninstantaneous transitions.

Our long-term aim is to build tools to allow a naive user to use a temporal planner to
solve complex temporally expressive problems. This involves constructing a rich high-level
temporal planning language involving intervals but also modalities over intervals (Cooper
et al. 2010). An essential part of this research programme is the building of compilers to
translate to lower-level languages so that technical details are hidden from the user. The
possible presence of temporal cycles is one such technical detail.
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APPENDIX

Let TEMPORAL PLANNING(L) represent the set of instances of the temporal planning
problem (as described in Section 3) belonging to the language L.

Theorem 4. There is a polynomial-time reduction from TEMPORAL PLANNING(Ls,o,e
s,e )

to TEMPORAL PLANNING(Ls,o
s,e).

Proof of Theorem 4. It suffices to show that the transformation given in Section 6
produces an equivalent problem, because we have already shown in Section 6 that it is a
polynomial reduction. Let 5 and 5′ be the original and transformed problems, respectively.

Let P be a valid plan for 5, and let P′ be identical to P except that all actions have
been transformed (i.e., A becomes A′, B becomes B′, etc.). Let δ be strictly positive
but smaller than the interval between any two distinct times at which a condition or ef-
fect occurs during the execution of the plan P. For each instance of A′ in P′, we add
an instance of LCp,A at a time δ after the end of A′. Because nothing happens during
this interval of length δ after the end of A′, by definition of δ, the combined effect of
this instance of A′ and the following instance of LCp,A is equivalent to A in the original
plan P.

Now consider a plan P′ for 5′. Let P be obtained from P′ by deleting all instances of
LCp,A and by replacing all transformed actions by their original versions (i.e., A′ by A, B′

by B, etc.). We will show that P is a valid plan for 5. The condition LC-Active(p,A) of
LCp,A is only established by action A′ (at its end). Furthermore, LC-Active is destroyed
at the start of A′ and remains false during the execution of A′, because, by assumption,
no two instances of A′ can overlap. Therefore, no instance of LCp,A can occur during the
execution of A′. The condition Linked(p,A) of A′ is only established by LCp,A. Furthermore,
A′ destroys Linked(p,A) which is one of the goals of 5′. It follows that every instance of
A′ must be followed by an instance of LCp,A in P′. We must show that p is true at the end
of the execution of each instance of A′. We know that p is true when the following instance
of LCp,A is executed, so we only have to show that p was not established between the end
of A′ and the execution of LCp,A. However this is impossible, because all actions B′ which
establish p also destroy LC-Active(p,A). In the case that the effect ¬p is transferred from the
end of A to LCp,A, we have to show that no action C′ in P′ uses p as a condition during the
interval between the end of A′ and the execution of LCp,A. Again, this is impossible since all
such actions C′ also destroy LC-Active(p,A).

Recall that L
[]
inst represents the temporal planning language in which actions can have

conditions on arbitrary intervals (of possibly zero length) and effects at arbitrary instants.

Let nac − L
[]
inst represent the same language in which actions have no after-conditions.



Theorem 5. There is a polynomial-time reduction from TEMPORAL PLANNING(L
[]
inst)

to TEMPORAL PLANNING(nac − L
[]
inst).

Proof of Theorem 5. By the same argument as in Section 6, the global transforma-
tion consisting in replacing every after-condition by a corresponding link-check action
is a polynomial reduction. Thus, it suffices to show that the transformation described in
Section 7 produces an equivalent problem. We consider a single transformation correspond-
ing to the deletion of the after-condition p over the interval I in action A. Let 5 and 5′ be
the original and transformed problems, respectively.

Let P be a valid plan for 5, and let P′ be identical to P except that all actions have been
transformed (i.e., A becomes A′, B becomes B′, etc.). By our assumption of robustness to
small shifts in the execution times of actions, we can assume that no two actions are perfectly
synchronized in terms of the start/end times of conditions or the times of effects. Let δ

be strictly positive but smaller than the interval between any two distinct times at which a
condition begins or ends or an effect occurs during the execution of the plan P. For each
instance of A′ in P′, we add an instance of LCp,A starting at a time δ after the beginning of the
interval I of A′. Because nothing happens during this interval of length δ after the beginning
or the end of the interval I of A′, by definition of δ, the combined effect of this instance of
A′ and the following instance of LCp,A is equivalent to A in the original plan P.

Now consider a plan P′ for 5′. Let P be obtained from P′ by deleting all instances of
LCp,A and by replacing all transformed actions by their original versions (i.e., A′ by A,
B′ by B, etc.). We will show that P is a valid plan for 5. The condition LC-Active(p,A)
of LCp,A is only established by action A′ (at the start of the interval I over which p is a
condition). Furthermore, LC-Active is destroyed at the start of A′ and remains false during
the execution of A′ up to the start of I, since, by assumption, no two instances of A′ can
overlap. Therefore, no instance of LCp,A can begin during the execution of A′ before the start
of interval I. The condition Linked(p,A) of A′ is only established by LCp,A. Furthermore,
A′ destroys Linked(p,A) which is one of the goals of 5′. It follows that every instance of
A′ must be followed by an instance of LCp,A in P′. We must show that p is true during the
interval I of each instance of A′. We know that p is true when the following instance of
LCp,A is executed, so we only have to show that p was not established between the start of the
interval I in A′ and the start of the execution of LCp,A. However this is impossible, because
all actions B′ which establish p also destroy LC-Active(p,A). In the case that the effect ¬p
is transferred from the end of the interval I of A to LCp,A, we have to show that no action
C′ in P′ requires p as a condition during the interval between the end of interval I of A′ and
the end of the execution of LCp,A. Again, this is impossible because all actions C′ with p ∈
Cond(C′) destroy LC-Active(p,A) at an instant dp time units before the end of the interval I′

over which C′ requires p. This ensures that the end of I′ does not fall between the end of I in
A′ and the end of LCp,A (because, otherwise, C′ would destroy LC-Active(p,A) before it is
required by LCp,A).




